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Abstract 

 

This project uses an RNA-based gene expression control system for metabolic engineering of 

Clostridium acetobutylicum. The primary focus is enhancing production of n-butanol, a green 

alternative to fossil fuels. Butanol is an attractive alternative fuel with higher energy density than 

other biofuels, and can directly replace gasoline. To improve the production of butanol using 

Clostridium, a small RNA (sRNA) platform is utilized. RNA is useful as a genetic regulatory 

tool because it provides flexible expression tuning compared to the on/off DNA knockout 

method. sRNAs are used by bacteria for regulating gene expression, as they bind to protein-

coding mRNA sequences. Through binding, sRNA can enhance or reduce mRNA translation and 

thus protein expression. Two genes in the metabolic pathway, buk and hydA, will be down 

regulated using sRNA, potentially increasing butanol titer and yield without compromising cell 

growth.  Down-regulation of these genes presents a novel opportunity to modify Clostridium, as 

hydA is essential to cellular function and cannot be completely turned off. Furthermore, using 

sRNA allows for simultaneous targeting of both genes. This is done using genetic engineering 

techniques to transform wild type cells with the desired genes. The recombinant plasmid for 

sRNA production is derived from E. coli and then ported over. Mutants are then screened and 

tested to determine performance as compared to the original strain. One mutant and a control 

plasmid have been successfully transformed. Preliminary results show that the mutant targeting 

hydA successfully down regulates the gene and reduces production of butyric acid, while also 

increasing butanol production. This project could have significant contribution to improving 

economic viability of biologically derived n-butanol. Furthermore, the sRNA platform has 

potential for broad applications in metabolically engineering various bacterial species. 
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Chapter 1: Introduction 

 

1.1 Backgrounds and Motivation 

Consumer consumption of gasoline in the United States totals 384.74 million gallons per 

day. Due to its nonrenewable status, damaging environmental impacts, and trade requirements, 

alternative fuels are under active development. One such fuel is biobutanol. This four-carbon 

alcohol is fermentatively derived from biological carbon sources like sugarcane, cassava, and 

wheat 
[1]

. Biologically produced n-butanol (bio-butanol) displays potential as a gasoline 

alternative, sharing many key traits and being directly usable in cars and pipelines without 

infrastructure changes. Currently, ethanol can be blended at up to 85% volume as a gasoline 

substitute, but butanol can fully replace gasoline with less performance trade-offs in 

conventional combustion engines 
[1]

. Butanol has 87% of the energy content of gasoline, 

compared to only 67% for ethanol 
[14, 16]

. Furthermore, bio-butanol has industrial applications as 

a chemical feedstock, solvent, lubricant and diluent 
[1, 2, 4]

.  

The foremost microbe used in fermentative butanol production is Clostridium 

acetobutylicum. This is a gram-positive, spore-forming, rod-shaped, obligate anaerobe. 

Furthermore, it is capable of utilizing a wide variety of carbon sources to grow, and produce 

metabolites. Fermentation of butanol using the Acetone-Butanol-Ethanol (ABE) metabolic 

pathway in C. acetobutylicum is a well-understood process. This fermentation has been used 

industrially since 1916, and was first discovered in the late 1800’s by Louis Pasteur 
[14]

. For 

example, in the Second World War, C. acetobutylicum was used to produce acetone for use in 

explosives 
[2]

. Other microbial systems are being researched for potentials use in producing this 

biofuel, but thus far Clostridium remains the most promising means of doing so 
[1, 2]

.   The ABE 

fermentation pathway in C. acetobutylicum is shown in Figure 1. This pathway consists of two 
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phases: acidogenic and solventogenic. The acidogenic phase has acid production (acetate and 

butyrate), with ATP formation and hydrogen evolution. Acid production reduces external pH, 

and triggers the solventogenic phase. This phase produces the pathway’s namesake solvents 

acetone, butanol, and ethanol in a 3:6:1 ratio
 [1,5,7]

. Regulation of this pathway is complex. C. 

acetobutylicum produces butanol through the alcohol-aldehyde dehydrogenase (AAD) and AAD2 

enzymes, expressed by the genes adhE and adhE2 
[7]

. In the wild type microbe, C. 

acetobutylicum ATCC 824, butanol production reaches about 10.3 g/L via the solventogenic 

phase, while acidogenic fermentation can produce up to 5.5 g/L 
[7, 8]

. Butanol is produced by 

enzymatic transformation of butyryl-CoA into butanol, as ethanol is transformed from acetyl-

CoA. Metabolite production is found primarily in the stationary phase. Butyrate, is produced via 

expression of the buk gene, which directly competes for carbon flux with butanol production 
[3]

.  

While the Clostridia butanol fermentation pathway is well understood, there are several 

barriers to the economic feasibility of bio-butanol: substrate costs, titer/selectivity, and recovery 

costs
 [1, 2, 4]

. Currently, biobutanol has a market price of $7.94 per gallon vs. ~ $2.00 per gallon 

gasoline. Production costs for biobutanol range from one to three dollars per gallon 
[15]

. To 

reduce production costs, yield and selectivity must be increased. Conventional metabolic 

engineering strategies have shown successful application towards this goal 
[6-12]

. Metabolic 

engineering typically involves gene manipulation through addition, deletion, or over-expression 

in a pathway. While metabolic engineering techniques are easily applied in well-understood 

bacteria like E. coli, Clostridia lack the genomic background for easy genetic manipulation. 

Attempts to knock out acidogenic pathways that produce byproducts have not fully succeeded. 

While single knock out attempts have succeeded 
[2]

, double knockouts targeting multiple genes 

have failed, since the pathways are important to ATP production and cell health
 [11, 12]

. This is 
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especially relevant in concerning the hydA gene, which is expressed in hydrogenase production, 

and is essential to microbe survival. Previous attempts to knock-out this gene have proven 

unsuccessful 
[11. 12]

.  

Small regulatory RNA (sRNA) is universal in bacteria for regulation of gene expression. 

These are complex polymers that base pair with messenger RNA (mRNA). Normally, DNA 

encodes genes that are transcribed to mRNA. This is then translated to proteins. But, when sRNA 

binds mRNA, protein synthesis can be prevented. In E. coli, DsrA sRNA (DsrA) has tertiary 

structure in the form of stem-loops, and is used in activation of rpoS and hns translation 
[3]

. See 

more about the DsrA in Figure 2. The DsrA has three loops in its stem, with the relevant 

sequences on the first two. It is dual acting; modifying the code of one of the stem loops can 

produce synthetic sRNA variants, which are re-targeted as desired. Since we can modify two 

loops, we can thus target two genes: hydA and buk. As mentioned, these genes regulate the 

hydrogen and butyrate production pathways, respectively, as seen in Figure 1.  

  sRNA regulation provides a more flexible and tunable alternative to knocking out DNA 

genes. Advantages of using this tool include portable and cost efficient control of the pathways, 

as well as circumvention of tampering with the host chromosomal DNA. The sRNA can be used 

to target mRNA used for translating the fermentative enzymes used in a metabolic pathway of 

interest. Thus, down-regulation presents an intriguing alternative to completely eliminating 

undesirable side reactions or components of a metabolic pathway 
[3]

. Post-transcriptional tuning 

of gene expression for hydA and buk can enhance titer by directing carbon flux through the ATP 

and butanol production pathways. This has a dual effect of reducing side reactions and increasing 

the primary reaction. 

 



4 

 

1.2 Problem Statement 

Improving yield and selectivity of the fermentative process is a challenging problem. The 

goal of this project is to increase these in C. acetobutylicum by targeting the hydA and buk genes 

using an sRNA based metabolic engineering tool.  This project also seeks to demonstrate the 

effectiveness of this tool as a platform that can be easily used across differing microbes. The 

platform can circumvent the present conundrum of deactivating vital genes, and also provide a 

flexible, simpler method to act on dual-targets within a microbe. The effectiveness of retargeting 

the DsrA stem loop will be tested for three different targets: hydA expression, buk expression, 

and both hydA and buk gene expression. Each of these will be tested for enhanced butanol 

production at different concentrations of this sRNA in C. acetobutylicum, as compared to the 

ATCC 824 wild type, using the native E. coli DsrA, and current standards of butanol production.  

 

1.3 Organization 

 Chapter two of this thesis discusses the materials and methods used in executing the 

project. In Chapter three, results and discussion, as well as setbacks and are discussed. Chapter 

four provides a summary and conclusion, as well as suggestions for future work. Figures are 

placed at the end of each appropriate section.  
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Figure 1: C. acetobutylicum Metabolic Pathway 
[19]

 

Enzymes are shown with arrows. Acid and solvent fermentations are shown in red and blue 

respectively. Acetate and butyrate pathways comprise the acid production. The hydrogen 

pathway is regulated by hydA (essential). An enzyme generates NADH from NAD, which is 

favored when this pathway is blocked. Acid production detracts from butanol synthesis and 

selectivity. The hydrogen pathway also consumes NADH required for butanol production. 
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Figure 2: sRNA Scaffold Design 
[18]

 

The RNA loops on itself three times, due to complementary sequences. Here are shown three 

variants with a) being retargeted for buk, b) being retargeted for hydA, and c) having both targets. 
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Chapter 2: Methodology  

 

2.1 Bacterial Strains and Plasmids 

In order to perform this experiment, two strains of E. coli were required, and Clostridium 

acetobutylicum ATCC 824 was used. Plasmid amplification was performed using the E. coli 

strain CA434, graciously provided by Dr. Yang’s laboratory. Constructed vectors were 

transformed into CA434 using heat shock transformation. Subsequent methylation of the plasmid 

was undertaken in E. coli strain pAN2, also provided by Dr. Yang’s laboratory. This was then 

used to transform the final vector in C. acetobutylicum ATCC 824. All E. coli cells were grown 

aerobically in LB medium (LB Broth, Miller R453642) with shaking in a rotary shaker, at 37°C. 

Clostridium acetobutylicum was grown in clostridial growth medium (CGM). Strains were 

retained via 15% Glycerol stocks constructed and stored at -80°C for up to eight months.  

Furthermore, the construction of several plasmids was necessary. Plasmid construction 

will not be discussed in this work, as Ashwin Lahiry undertook this. Several initial plasmids 

have been constructed for use in proof of concept work. Proof-of-concept plasmids are pAL001 

(containing a hydA targeting DsrA), pALDsrA (containing the native E. coli DsrA), and have 

pMTL85151 as the control plasmid for transformation into Clostridium. These vectors were 

designed for use in either electroporation or conjugation into C. acetobutylicum. Features of 

interest include the ORF H gene for plasmid replication within C. acetobutylicum, ColE1 for 

plasmid replication in E. coli, catP for thiamphenicol resistance, and traJ for E. coli conjugation. 

Plasmid maps can be found in Figure 3. A list of strains and plasmids is provided in Table 1, 

Appendix A.  
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2.2 Transformation Methods 

2.21 Heat Shock 

Heat shock transformation was executed using 50 μL of CA434 cells, and 10 μL of 

ligation product. These were cooled to 4°C, mixed and held on ice for 30 minutes. Subsequently, 

the mixture was placed in a 42°C water bath for one minute, and then returned to ice for five 

minutes. The mixture was then regenerated in 240 μL of SOC medium (Invitrogen 15544-034) 

and held for 60 minutes at 37°C and 250 rpm. The mixture was then spread onto plates having 

cycloserine as a selective agent. All cell exposure to air was performed near a flame to ensure 

sterility.  

 

2.22 Electroporation 

C. acetobutylicum ATCC 824 cells were grown in 50 mL serum bottles in CGM to mid-

log phase, based on an OD600 of 0.6. These were inoculated using a 2.5 mL seed culture grown 

overnight in an anaerobic test tube containing 5 mL CGM, inoculated with 250 μL of a culture 

regenerated from 15% glycerol stock and grown overnight to OD600 of 2-3. Cells were harvested 

via centrifugation at 2200g, for 10 minutes at 4°C. The cells were then resuspended and washed 

in a total of 60 mL ETM buffer (270 mM saccharose, 0.6 mM Na2HPO4, 4.4 mM NaH2PO4, 10 

mM MgCl2). This suspension was centrifuged for 10 minutes at 2200g, again at 4°C. The 

resulting pellet was resuspended in total 1.5 mL ET buffer (270 mM saccharose, 0.6 mM 

Na2HPO4, 4.4 mM NaH2PO4). Electroporation cuvettes (0.1 cm inter-electrode distance) were 

placed on ice for 15 minutes, before adding 400 μL cells, and 10 μL (400 ng/μL) of recombinant 

DNA plasmid. Cuvettes were held on ice for another 15 minutes, before performing 

electroporation. Electroporation was performed using 2kV voltage, 200 Ohms resistance, and 25 

μF capacitance (Bio-Rad Gene Pulser). Resulting time constant values were kept under 3 msec. 
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After electroporation, cuvettes were immediately returned to ice for 10 minutes. Subsequent 

regeneration in 1 mL of liquid CGM was performed at 37°C until bubbles indicated growth (4 – 

12 hours).  Then, 3 mL of liquid CGM with thiamphenical (15 μL/mL final concentration) was 

added. This was grown at 37°C for 12 hours, or until substantial growth was observed. Resulting 

cells were confirmed as described in 2.3, before being stored at -80°C in 15% glycerol stock 

solutions. All electroporation steps were performed anaerobically using an anaerobic chamber.  

 

2.23 Conjugation 

C. acetobutylicum ATCC 824 cells were grown in 5 mL liquid CGM at  37°C using a 

anaerobic tubes at OD600 of 2-3, inoculated with 250 μL of a culture regenerated from 15% 

glycerol stock and grown overnight to OD600 of 2-3. E. coli CA434 cells harboring recombinant 

plasmids were grown in liquid LB medium containing 30 mg/L chloramphenicol at 37°C and 

250 rpm to reach OD600 of 1.5–2.0. 3 mL of donor CA434 cells were centrifuged at 4000f doe 2 

minutes before being resuspended and washed using 1 mL of sterile phosphate-buffered saline 

(PBS). This as mixed with 0.4 mL of recipient ATCC 824 cells, and spotted onto well-dried 

CGM agar plates using a pipette. Plates were then incubated at 37°C for 24 hours to allow 

conjugation to occur. After 24 hours, 1 mL CGM was applied to each plate to harvest cells. 

Harvested cells were resuspended and spread onto CGM plates containing 45 mg/mL 

thiamphenicol and 250 mg/mL cycloserine as selective agents. Plates were incubated for 2-3 

days to allow colony growth, and positive transformants were then confirmed as described in 2.3, 

before being stored at -80°C in 15% glycerol stock solutions. All conjugation steps were also 

performed in an anaerobic chamber.  
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2.3 Mutant Confirmation 

Mutant confirmation was done using colony PCR screening and plasmid extraction. 

Colonies were added to a PCR reaction using the appropriate Taq polymerase and primers. 

Resulting DNA products were confirmed using gel electrophoresis.  

DNA was extracted by mini prep, as follows. 2 mL culture was centrifuged at 10,000g for 10 

minutes. The pellet was resuspended in 200 μL P1 buffer, and 10 μL lysozyme added. The 

mixture was held at 37°C for 20 minutes. Then 250 μL P2 buffer was added, the solution gently 

mixed and let sit for 5 minutes. 350 μL N3 buffer was added and solution centrifuged at 21,000g 

for 5 minutes. The solution was then transferred to a filter, and centrifuged for 2 minutes at 

6,000g. A 700 μL silica wash was added, and centrifuged at 10,000g for 1 minute. The pass 

through was discarded and filter centrifuged again at the same settings. 30 μL de-ionized water 

was added and let stand for 1 minute before centrifuging at 10,000g for 5 minutes. The pass 

through was recycled and centrifuged again at the same settings. Resulting DNA was then sent 

for final confirmation via sequencing.  

 

2.4 Fermentation 

 Fermentation kinetics were studied using serum bottles. 125 mL serum bottles were 

prepared with 50 mL CGM, and purged to anaerobic condition using N2 for a time period of 10 

minutes. These were inoculated using 2.5 mL of a seed culture grown overnight in an anaerobic 

test tube having 5 mL of CGM, inoculated with 250 μL stock culture regenerated from 15% 

glycerol and grown overnight to OD600 of 2-3. Fermentation broth was sampled at 12 hour 

intervals, using 1-mL syringes, checked for OD600 and pH and centrifuged for 15 minutes at 



11 

 

12,800 rpm. The supernatant was collected and stored at -20°C for future analysis. All 

fermentative runs were performed in triplicate.  

 

2.5 Analytical Methods  

Cell density was measured using a spectrophotometer (UV-16-1, Shimadzu, Columbia, 

MD), at 600 nm. Glucose values were analyzed using a high-performance liquid chromatograph 

(HPLC, LC-20AD, Shimadzu, Columbia, MD) equipped with an HPC-87H organic acid analysis 

column (Bio-Rad) at 65°C, with 0.6 mL/min, 5mM H2SO4 as the mobile phase, as described 

elsewhere 
[2]

. A gas chromatograph (GC-2014 Shimadzu, Columbia, MD) equipped with a flame 

ionization detector (FID) and a 30.0 m fused silica column (Stabilwax-DA, 0.25 mm film 

thickness and 0.25 mm ID, Restek, Bellefonte, PA) was used to analyze butanol, ethanol, 

acetone, acetate, and butyrate values. The GC was run at an injection temperature of 200°C with 

1 μL of sample injected using an auto injector (AOC-20i, Shimadzu). Column temperature was 

held at 80°C for 3 minutes, increased at 30°C/min to 150°C, and held at 150°C for 3.7 minutes.  

Furthermore, enzyme activity assays were used to determine level of sRNA expression within 

fermentation cultures.  

2.6 Statistical Analysis 

Average values from triplicate bottles were calculated and reported. 
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Chapter 3: Results and Discussion 

 

3.1 Roadblocks and Troubleshooting 

Although transformation of C. acetobutylicum has a demonstrated history of success and 

should be trivial, initial attempts to transform our plasmids into Clostridium were unsuccessful. 

There have been many unexpected challenges. First, electroporation results were showing odd 

sized DNA results from colony PCR, not appropriate to the sizes expected for our recombinant 

DNA plasmids. Eventually, it was found that our ATCC 824 stock was impure, having some 

plasmid already within it. This also had the unfortunate effect of conferring antibiotic resistance 

to our control/recipient strain. Upon determination of this, a fresh strain was ordered from 

ATCC. The first strain we received was nonproductive and had to be replaced. Having fixed our 

stock ATCC 824 issue, we determined that the agar present in reinforced clostridial media 

(RCM) was preventing proper purification of cells from medium components during 

electroporation preparation steps. This caused electroporation cuvettes to be burst, and reduced 

successfulness of the transformation.  Upon switching to CGM media, initial attempts at C. 

acetobutylicum culture were met with perplexing unsuccessfulness, and we determined that the 

type of tryptone and yeast extract used were not appropriate quality for use in CGM.  Issues with 

anaerobic chamber integrity have also set back progress and complicated transformation.   

 

3.2 Metabolic Engineering Results 

Plasmids have been constructed, and verified in E. coli. The pAL001, pALDsrA, and 

pMTL85151 plasmid maps are shown in Figures 3 - 5. Currently, pAL001 and pMTL85151 

plasmids have been successfully transformed into C. acetobutylicum ATCC 824. These mutants 

are referred to as C. acetobutylicum pAL001 and C. acetobutylicum pMTL85151, respectively. 
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Sequencing has shown that the pAL001 mutants are a mixed population, with some having lost 

part or all of their synthetic sRNA sequence conferring hydA regulation.    

 

3.3 Fermentation Results  

Exploratory fermentation was performed to compare C. acetobutylicum pAL001 to 

ATCC 824, using serum bottles run in triplicate for 60 hours. Fermentation data from the first 

run differed from those of the second two, so all data is reported based on the duplicates. Data 

tables are attached in Tables 2 and 3, in Appendix B. As seen in Figures 6 & 7, the pAL001 

mutant significantly outperforms ATCC 824 in regards to both butanol and butyrate production. 

pAL001 produces ~0.45 g/L butanol vs. 0.05 /L in ATCC 824. This is almost 10-fold 

improvement. Furthermore, butyrate production is severely reduced: 0.01 g/L vs. 0.27 g/L. 

Reduction is 27-fold. Data must be considered in light of ATCC 824 having acid crashed during 

these studies. That is, pH values were below optimal for solventogenesis. Comparison of other 

solvents production also produced interesting results. While ethanol production was 

approximately equal between both strains, acetone production was improved four fold in 

pAL001. It produced ~0.2 g/L acetone compared to ~0.05 g/L in ATCC 824. Acetic acid 

production was unchanged from the wild type strain.  

Both strains reached OD600 of 5.5, but the wild type strain had a longer lag time before the log 

phase: 20 hours vs. 10 hours in the mutant strain. Figures showing discussed comparisons are 

given in Appendix C.  

Unfortunately, neither strain performed as expected, faring far worse than literature 

values show the wild type being capable of achieving. Furthermore, pH shift experienced was 

inconsistent between the two strains, with the wild type seeming to have remained in the 
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acidogenic phase, causing acid crash and preventing entry into solventogenesis. The mutant 

strain demonstrated superior pH regulation, switching from acid production to solvent production 

earlier relative to the control. Furthermore, neither strain seemed to consume much glucose, 

having only used 20 g/L equivalent over the course of a 60-hour fermentation. These 

complications can be attributed to the serum bottle fermentations being performed in CGM, 

rather than one designed for metabolite production like P2 medium. This was done due to a lack 

of the necessary medium components to produce P2. Even so, the total productivity of carbon 

conversion to metabolites was much lower than expected.  
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Figure 3: pMTL85151 Plasmid Map. 
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Figure 4: pAL001 Plasmid Map. 
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Figure 5: pALDsrA Plasmid Map. 

 

 

 



18 

 

 

 

 

 

 

 

 

 

Figure 6: Comparison of Butanol Production between pAL001 Mutant and ATCC 824 Control 

Strain. 
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Figure 7: Comparison of Butyrate Production between pAL001 Mutant and ATCC 824 Control 

Strain. 
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Chapter 4: Conclusions & Recommendations 

 

4.1 Conclusions 

Butanol is a promising alternative fuel that can directly replace gasoline in current 

infrastructure. The major impediment to butanol utilization is high production costs, primarily 

stemming from low yield and selectivity in fermentation. Standard metabolic engineering 

practices have demonstrated some effectiveness in improving the C. acetobutylicum production 

of butanol, but have not managed to achieve economic feasibleness. One major problem is the 

targeting of organism essential genes, such as hydA. Since these cannot be knocked out, there is 

little that can be done to redirect carbon flux to desirable pathways. Furthermore, construction of 

double knock-outs is a time consuming and nontrivial process. We have developed an sRNA 

gene expression control system is a promising metabolic engineering tool, which provides a 

finessed alternative to the classical knockout technique. This both allows targeting of essential 

genes, previously inaccessible for metabolic tuning, and also an easy platform to construct dual-

targeting mutants.  

 Preliminary data shows that our single target mutant strain outperforms the wild type, albeit both 

strains performed quite poorly in the initial fermentation.  

 

4.2 Recommendations 

The mutant pAL001 strain is currently being purified to ensure a pure population before 

moving forward with further fermentation and assays to quantify its performance. In light of 

poor performance from both pAL001 and ATCC 824 in CG, fermentation should be repeated in 

the appropriate P2 medium. Furthermore, all constructed mutants are being ported over to the 

pMTL82151 plasmid, which has better compatibility and ease of insertion into ATCC 824. 
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Further mutants are also currently being transformed into Clostridium to test their effect when 

targeting the buk gene and using the native E. coli variant. As well, work is being done to 

transform the dual acting sRNA into Clostridium, as this is the best outcome mutant being 

explored by this project.  
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Appendix A: List of Strains and Plasmids. 

 

 

 

 

Table 1: List of Strains and Plasmids. 

STRAINS 

C. acetobutylicum E. coli 

ATCC 824 (Wild Type) CA434 (plasmid amplification strain) 

pAL001 (hydA targeting mutant) pAN2 (methylation strain) 

pALDsrA (native E. coli DsrA mutant)  

pMTL85151 (control transformed mutant)  

PLASMIDS 

pAL001 (hydA targeting plasmid constructed using pMTL85151) 

pALDsrA (native E. coli targeting plasmid constructed using pMTL85151) 

pMTL85151 (Original Base Plasmid) 

pMTL82151 (New Base Plasmid) 
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Appendix B: Serum Bottle Data Tables. 

 

 

 

 

 

Table 2: Fermentation Data for pAL001 Mutant. 

Time (hrs) 0 12.75 17 21.75 24 37.58 47 
Acetone (g/L) 0.008065 0.063641 0.10206 0.121275 0.159715 0.198425 0.198155 
Ethanol (g/L) 0.0103 0.014575 0.01443 0.01729 0.000215 0.00025 0.000245 
Butanol (g/L) 0.007355 0.14628 0.23123 0.324365 0.338245 0.427935 0.428815 
Acetate (g/L) 0.210295 0.188035 0.17876 0.1661 0.138325 0.126115 0.122915 
Butyrate 
(g/L) 0 0.00693 0.00606 0.00603 0.00486 0.01147 0.01164 
OD 1.045 3.4 4.875 5.4 5.81 5.69 5.31 
pH 6.22 4.925 4.93 5.15 4.85 4.83 4.805 

Glucose (g/L)  62.74583647 
39.88660

139 
38.70951

544 
34.10620

136 
32.03950

121 
29.54347

644 
28.59067

704 
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Table 3: Fermentation Data for ATCC 824 Control. 

Time (hrs) 0 12.75 17 21.75 24 37.58 47 
Acetone (g/L) 0.00508 0.00422 0.00584 0.00315 0.00508 0.05134 0.04972 
Ethanol (g/L) 0.01363 0.01037 0.00565 0.00693 0.00011 0.00016 0.00016 
Butanol (g/L) 0 0 0 0 0 0.06554 0.06281 
Acetate (g/L) 0.22784 0.23455 0.17786 0.19898 0.15484 0.15761 0.14945 
Butyrate 
(g/L) 0.02742 0.0179 0.01284 0.03215 0.09385 0.28836 0.27104 
OD 0.51 0.53 0.55 1.01 2.14 5.41 4.9 
pH 5.6 6.08 6.16 5.17 4.28 3.72 3.75 

Glucose (g/L)  62.76675872 
56.32270

483 
45.00795

046 
34.76441

543 
34.87237

426 
32.62197

673 
27.32697

297 
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Appendix C: Fermentation Data Figures.  

 

 

 

 

 

 

Figure 8: Comparison of Acetone Production. 
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Figure 9: Comparison of Ethanol Production. 

 

 

 

 

 

 

 

-0.005 

0 

0.005 

0.01 

0.015 

0.02 

0.025 

0 10 20 30 40 50 

g/
L 

Time (hr) 

Ethanol Production 

pal001 Ethanol g/L 

WT824 Ethanol g/L 



29 

 

 

 

 

 

 

 

Figure 10: Comparison of Butanol Production. 
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Figure 11: Comparison of Acetate Production. 
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Figure 12: Comparison of Butyrate Production. 
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Figure 13: Comparison of Cell Growth. 
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Figure 14: Comparison of Fermentation pH. 
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Figure 15: Comparison of Glucose Consumption. 
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