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Abstract

This paper explores some theoretical properties of summativity, a general-
ization of cumulativity. It presents an approach to plural semantics in which
summativity can apply not only to lexical predicates, but also to partially sat-
urated predicates. It is shown how this approach can be tied to an explicit
type-logical syntax.

1 Introduction

The distinction between distributivity and collectivity has been taken as the start-
ing point for many discussions of the semantics of plural noun phrases (hereafter PNPs).
However, as noted early on in (Scha 1981) (also discussed in (Langendoen 1978)), it does
not exhaust the possibilities. An example like (1) also exhibits a “neutral” construal, which
says that the men can be divided up into groups, each of which lifted the piano, and which
put together just add up to the men; but says nothing about how they are divided up. What
is interesting about this construal is that it subsumes both the collective and distributive
construals, as we shall see in section 4.
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N V

(1) The men lifted the piano.

A common generalization for a semantics for PNPs extends the distributive/collective
distinction to the various argument places of multivalent verbs which can be occupied by
plural arguments. For instance, in the following example, we can interpret both arguments
distributively (understanding that each teacher marked each exam), interpret the subject
collectively and the object distributively (so that all the teachers as a group marked each
exam), and so forth.

(2) The teachers marked the exams.

Scha’s original treatment in (Scha 1981) was similar, and also allowed the neu-
tral construal as a third possibility for each argument (his C2 reading). However, (2) also
exhibits a construal that Scha called “cumulative”: this commits us to all of the teachers
marking and all the exams being marked, but to nothing about the “division of labor,” i.e.
how the teachers relate to the exams (what this exactly amounts to will be spelled out in
section 3). What is interesting is that the cumulative construal can’t be derived from any
combination of distributivity, collectivity, and neutrality of the separate argument places.
To see why, given a binary relation R and individuals x and y, say x is “R-involved” with y
if x is part of some group g1 and y is part of some group g2 such that g1 stands in the relation
R to g2. It is easy to prove that any reading of “the As R the Bs” derived from any of the
nine combinations (of distributivity, collectivity, and neutrality for both of the arguments)
requires that each individual in the As is R-involved with each individual in the Bs. The
cumulative construal on the other hand breaks this tight connection; this is what makes it
(properly) cumulative, by allowing various unconnected relations between parts of groups
to “add up” to a relation between groups. This perspective also drives home the point that
despite the complexity of some of the classic examples used to illustrate it, there’s nothing
“exotic” about the cumulative construal. For instance, distributivity and collectivity are too
specific, but cumulativity is sufficiently general, to account for the truth of a sentence like
the men lifted the boxes in the simple situation where each man lifts just one box.

Recall that in the single argument case, the neutral construal subsumed both the
collective and distributive ones. The cumulative construal (more accurately, the “gener-
alized cumulative” construal to be defined in section 3) exhibits parallel behavior in the
two argument case: it is more general that any of the nine combinations discussed above.
Furthermore, we will see in section 3 that when we generalize cumulativity to relations of
arbitrary arity, neutrality falls out as just the special instance of it in the unary case.

Because of its generality, it seems evident that cumulativity ought to occupy a spe-
cial place in any theory of plural semantics. First of all, one should be suspicious of any ap-
proach such as (Scha 1981), (Kamp & Reyle 1993) etc. that starts with a simple approach to
distributivity, collectivity, and neutrality, but is then forced to adopt additional, complicated
mechanisms to account for cumulativity. A more reasonable approach would start with the
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most general construal and derive the more specific instances by further restrictions. In
fact, it is arguable to what degree these restrictions have to be imposed semantically at all.
It seems advisable to postulate ambiguity (as opposed to simply vagueness of reference)
only where linguistic evidence motivates it, and some semanticists have questioned whether
the different construals derivable from restrictions on cumulativity have any such justifica-
tion to be treated as resolutions of true ambiguity (see especially (Schwarzschild 1991),
(Schwarzschild 1996), (van der Does 1993), (van der Does & Verkuyl 1996), and (Verkuyl
1994)). This paper will not attempt to reiterate or evaluate these arguments, but will rather
simply take the unambiguity hypothesis as its basis and study its semantic properties and
syntactic implementation.1

The paper is organized as follows: in section 2, I outline the algebraic approach
to plurality introduced in (Link 1983). Section 3 shows how cumulativity (or in a broader
sense, “summativity”) can be formalized and generalized within this framework and points
out what some different approaches to the phenomenon have in common. Section 4 presents
the main theoretical claim of this paper (which builds off of (Sternefeld 1998)): that sum-
mativity should not be taken as a lexical property of predicates, but rather as a combinatory
operation that may apply at different levels of predicate saturation to yield different seman-
tic results. A type-logical syntax/semantics interface is provided in sections 5 and 6, and
the derivations of some desired readings are illustrated.

2 Modeling Structures

An obvious way to model groups is with sets. This approach was taken in early
work on plural semantics (e.g. (Bennett 1975)) and in much subsequent research. However,
this paper will use the algebraic approach introduced in (Link 1983). In this framework,
both basic individuals and groups made out of them are of a single semantic type, which has
a lattice structure imposed on it. In fact, this structure will be isomorphic to an appropriate
kind of set-theoretic lattice, so the algebraic approach does not buy us much in principle.
The primary justification that Link notes is the ease with which it can be adapted to the ar-
guably non-well-founded domain of mass term denotations. For our purposes, the only real
advantage of this approach is its perspicuity: it is convenient for e.g. the sets of individuals
that model predicate or common noun denotations to be kept typographically distinct from
the denotations of PNPs. Everything discussed here can be translated straightforwardly
into purely set-theoretic terminology.

The algebraic structure that best mimics the part-whole structure the subset relation
imposes on sets is a Boolean algebra. However, the operation we most clearly need for
linguistic applications is a join which works like set-union to put objects together into
groups, and it is unclear that meets and bottom have any role to play. Thus we will follow

1For this reason, I will use the term construal in this paper whenever I am not committed to treating the
relevant distinction as an ambiguity. The term reading is only used where the analysis presented predicts an
ambiguity, i.e. where the syntax-semantics interface associates multiple, truth conditionally distinct semantic
representations with a single string of words.
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(Link 1998) (appendix) in using only semilattices. Nonetheless, the semilattices we want—
what Link dubs “plural semilattices”—will be just those that are like the “top half” of a
Boolean algebra. The following definitions set the stage:

1 Definition (Join Semilattice)
A join semilattice is a poset L = 〈S ,"L〉 where any two elements x and y of S have a least
upper bound w.r.t. "L (written x $L y).

In what follows, all our semilattices will be join semilattices by default. Semilattices can
also be characterized algebraically by viewing join as a binary operation. The conditions
on $L that ensure a semilattice structure are that it be commutative, associative, and idem-
potent. "L and $L then become interdefinable: x "L y ≡ x $L y = y. In what follows, we
will leave off the subscripts when it is clear which semilattice is being discussed.

It is easy to prove that in a semilattice, not only every pair of elements but also
every non-empty finite set of elements has a least upper bound. Completeness extends this
property to arbitrary non-empty sets:

2 Definition (Complete Semilattice)
A semilattice 〈S ,"L〉 is complete if for every non-empty subset S ′ of S , S ′ has a least upper
bound in S w.r.t. "L (written

⊔
L S ′).2

3 Definition (Atom)
Given a join semilattice L = 〈S ,"L〉, an L-atom is any minimal element of S w.r.t. "L. We
write u "◦L x as an abbreviation for “u is an L-atom and u "L x” (omitting reference to L
when convenient).

This gives us enough machinery to define plural semilattices; the following definition of
plural semilattices is taken from (Link 1998) (appendix, p. 376):

4 Definition (Plural Semilattice)
A plural semilattice (written PSL) is a complete join semilattice 〈S ,"〉 that obeys the fol-
lowing conditions:

1. S ! ∅. (Non-Emptiness)

2. S has no least element under ". (No Bottom)

3. For every x ∈ S , there is a u ∈ S s.t. u "◦ x. (Atomicity)

4. For each x, y ∈ S s.t. x (" y, there is a u "◦ x s.t. u (" y. (A-Separation)

5. For any X ⊆ S , for any u "◦ ⊔X, there is a b ∈ X s.t. u " b.
(Sup-Primes)

2Note that some authors use a stricter definition of completeness that requires the existence of
⊔ ∅, and

thus of a least element.
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As hinted at above, a plural semilattice is just like the “top half” of a Boolean algebra,
which itself is like a subset lattice. The following theorem relates plural semilattices and
set-theoretic lattices directly:

5 Proposition (PSL Representation Theorem)
For any PSL 〈S ,"〉 with A the set of its atoms, the function h which maps each s ∈ S to
{u ∈ A | u "◦ s} is a complete join semilattice isomorphism from 〈S ,"〉 to 〈℘(A) \ {∅},⊆〉.
Equivalently, for any non-empty X ⊆ S , h(

⊔
X) =

⋃
h[X]. (For proof, see (Link 1998)

appendix p. 381f.).

The last concept we discuss in this section can be used to model what (Quine 1960)
calls “cumulative reference.”3 Basically, (the extension of) a predicate P is said to have
cumulative reference if whenever P holds of two objects x and y, it holds of their join x$ y.
More generally, if a cumulatively referring P holds of all of the elements of some set S , it
also holds of

⊔
S . Algebraic closure is just a way of minimally extending a predicate P so

that it refers cumulatively.

6 Definition (!P)
Given a complete join semilattice L = 〈S ,"〉 and a P ⊆ S , the algebraic closure of P
w.r.t. L (written !P) is defined as the smallest superset of P which is closed under arbitrary
non-empty joins (i.e. !P =

⋂{Q ⊇ P | ∀Q′ ⊆ Q(Q′ ! ∅ → ⊔Q′ ∈ Q}).4

Now we can put these concepts to use in analyzing some plural expressions, fol-
lowing (Link 1983). Assume a domain D of the objects we use to model individuals and
groups. The former will be the atoms, the set of which we’ll call A; the latter will be the
non-atomic elements of D. [[— ]] will be the interpretation function mapping expressions
of the language to their model-theoretic interpretation.

One kind of PNP can be made from a plural common noun by adding the definite
determiner. Let’s assume that any singular common noun CN denotes a set of individu-
als, i.e. [[CN ]] ⊆ A. We want its plural counterpart CNs to be true of just those groups
that are made up of individuals which of which CN holds; this can be expressed by set-
ting [[CNs ]] = ![[CN ]]. Then, we can treat the CNs as “all the CNs put together,” i.e.
[[the CNs ]] =

⊔
[[CNs ]].

Another way of making PNPs is by conjoining definite NPs, such as proper nouns,
or NPs constructed from singular or plural common nouns with the definite determiner.
We interpret conjunction as putting its conjuncts’ denotations together in a group: for any
definite NPs DNP1 and DNP2, [[DNP1 and DNP2 ]] = [[DNP1 ]] $ [[DNP2 ]].

3One should not confuse cumulative reference with cumulativity in the sense used in this paper, though
as we will see in the next section, the two are closely related.

4The algebraic closure of P in L coincides with the complete sub-semilattice of L generated by P, a more
standard notation for which is [|P|]. We will use !P to avoid confusion with the denotation function [[— ]].

139



N V

3 Summativity

In this section, we explore how predicates combine with their plural arguments.
We assume that the predicate denotations encode the difference between individual and
group action by whether individuals or groups are contained in them. n-place predicates in
general denote appropriate subsets of D(n).5

With the tools from the previous section, we can formalize various possibilities for
combining predicates with arguments. (3) gives the one-argument case with an intransitive
verb V . The simplest option is (3a): the collective construal just amounts to the group
denoted by the NP inhabiting the predicate. The distributive construal in (3b) on the other
hand breaks the NP denotation up into its atomic parts and applies the predicate to each
of them individually. The neutral construal can be expressed by (3c): the NP denotation
is broken up into subgroups to which the predicate applies. The universal quantification
over atomic parts guarantees that the subgroups exhaust the NP denotation, i.e. that their
combinded join is just [[NP ]].

(3) (a) Collective:
[[NP]] ∈ [[V]]

(b) Distributive:
(∀x "◦ [[NP]])(x ∈ [[V]])

(c) Neutral:
(∀x "◦ [[NP]])(∃g " [[NP]])(x " g ∧ g ∈ [[V]])

This formulationmakes the relationships between the construals easy to understand.
The neutral construal associates each atomic part x with some group g it belongs to and
applies the predicate to g. The collective construal results from the neutral construal by
associating each xwith the same group, namely the whole [[NP ]]. The distributive construal
is similarly just the special case of the neutral one where each atomic x is associated with
the trivial group x containing just itself.

Now, one way to avoid a proliferation of different combinatoric options is to always
combine a predicate with its NP argument by just checking to see if the latter is an element
of the former, but first modifing the predicate denotation so that it has the desired properties.
Recall that our methodologial assumption is that only the most general construal needs to
be represented. Thus, the relevant question is how a predicate P can be modified to yield a
new predicate P′ which contains [[NP ]] if and only if (3c) holds.

This problem has been approached a few different ways in the literature. One line
of thought represented by Krifka in (Krifka 1989) and subsequent work links neutrality to
cumulative reference—P′ should contain just those groups which can be built up out of
memebers of P, i.e. !P.

5We write S (n) for S × · · · × S (n times).
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Another tradition begins with Higginbotham’s suggestion in (Higginbotham 1980)
that P′ contain just those groups that (speaking set-theoretically) can be divided into a
partition each of whose cells is in P. For empirical reasons, Gillon found it necessary in
(Gillon 1987) to relax the requirement imposed by a partition that its cells not overlap,
and reformulated the Higginbotham semantics with the weaker notion of a cover. We can
define an algebraic notion of cover as follows:

7 Definition (L-Cover)
Given a PSL L = 〈S ,"〉 and an a ∈ S , an L-cover of a is a non-empty set C ⊆ S such that⊔
C = a. (We drop reference to L when convenient).

What’s interesting is that with the relaxation to covers, the Krifka and Higgin-
botham approaches become equivalent. The following proposition relates them to each
other and to (3c):

8 Proposition
Given a PSL L = 〈S ,"〉, an a ∈ S , and a P ⊆ S , the following three statements are
equivalent:

(i) (∀x "◦ a)(∃g " a)(x " g ∧ g ∈ P)

(ii) There is an L-cover C of a such that C ⊆ P.

(iii) a ∈ !P.

Proof: This equivalence falls out as the special case of proposition 11 below, where n = 1.
!

Next we discuss the combination of multivalent verbs with their NP arguments. It
is at this point that the cumulative reading becomes important. Although this construal is
usually associated with Scha, the general truth condition schema in (4a) for a transitive
verb TV with plural arguments NP1 an NP2 is already to be found in (Langendoen 1978).
It says in essence that every atom in the subject did the relation to some atom in the object,
and that to every atom in the object was done the relation by some atom in the subject.
This captures the general conditions on sentences like the men talked to the women in an
appealing way. However, the restriction to atomicity in (4a) is rather arbitrary, and in fact
only works when the relation is inherently distributive on both argument positions. The
need for a generalization of this schema is exemplified by Langendoen’s example the men
released the prisoners. Here, releasing someone is a property a group can have without
it’s individual members having it (though this property holds less convincingly for being
released by someone, pace Langendoen). The revision in (4b) requires that every subject
atom belongs to some subject subgroup that does the relation to some object subgroup and
vice versa.
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(4) (a) Cumulative:
(∀x "◦ [[NP1]])(∃y "◦ [[NP2]])(〈x, y〉 ∈ [[TV]]) ∧
(∀z "◦ [[NP2]])(∃w "◦ [[NP1]])(〈w, z〉 ∈ [[TV]])

(b) Generalized Cumulative:
(∀x "◦ [[NP1]])(∃g1 " [[NP1]])

(x " g1 ∧ (∃g2 " [[NP2]])(〈g1, g2〉 ∈ [[TV]])) ∧
(∀z "◦ [[NP2]])(∃g3 " [[NP2]])

(z " g3 ∧ (∃g4 " [[NP1]])(〈g4, g3〉 ∈ [[TV]]))

Here we suppress the various construals that derive from the various combinations
of distributive, collective, and neutral readings for the two argument places; it is straighfor-
ward but tedious to verify that they all entail (4b).

The advantages of an approach which derives the cumulative construal by modify-
ing the relation and then applying it directly to its NP arguments are clearer in the multi-
valent case than for the derivation of the neutral construal with single argument predicates.
It is rather difficult to devise combinatoric rules that put two NPs and a verb together to
yield (4b). A DRT treatment of such rules is hinted at in (Kamp & Reyle 1993) and (Reyle
1996), but these rules involve copying of quantificational material into various DRS-boxes
in a way that is essentially non-compositional. Referring to the simpler (4a), Sternefeld
comments that “[i]t is fairly obvious that [it] cannot be derived from the syntactic struc-
ture. . . by compostional methods. . . [T]he paraphrase with four quantifiers will always ex-
hibit a kind of ‘cross-over effect,’ so that the quantifiers get in one another’s way, excluding
a compositional analysis.”

The problem is exacerbated if we make the plausible assumptions that predicates
with more than two argument places combine with their arguments in a parallel way, so
that e.g. the men gave the presents to the childrenmeans (5):

(5) (i) Each man belongs to a subgroup of the men that gave some subgroup of the
presents to some subgroup of the children, and

(ii) each present belongs to a subgroup of the presents that was given by some
subgroup of the men to some subgroup of the children, and

(iii) each child belongs to some subgroup of the children that was given some
subgroup of the presents by some subgroup of the men.

The problem is that the general schema for this kind of three-place cumulativity
can’t be gotten at by first deriving the two-place cumulative meaning for the combination
of the predicate with two of its arguments via (4b) and then adding something further; for
each argument A, existential quantification over subgroups of every other argument must
occur within the scope of universal quantification over A’s atomic parts. This difficulty
increases the desirablity of deriving (4b) and its counterparts at higher arities by modifying
the predicate somehow and then simply applying the result to the arguments.
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One way to do this is what Krifka calls “summativity” (Krifka 1989). This operation
closes an n-ary relation R under (binary) pairwise joins:

(6) summate(R) =def⋂{Q | R ⊆ Q ∧ (∀x1, . . . , xn)(∀y1, . . . , yn)
(〈x1, . . . , xn〉 ∈ Q ∧ 〈y1, . . . , yn〉 ∈ Q .→

〈x1 $ y1, . . . , xn $ yn〉 ∈ Q)}

The cover approach can get the same result by existentially quantifying over the
right kind of pair-cover, in a way introduced in (Schwarzschild 1991).

These approaches are obviously related to the corresponding closure and cover ap-
proaches for the one argument place. In fact, one can view the multivalent versions as
exactly the same as the one-argument versions if one thinks about the structure that the
semilattice structure of the domain D imposes on the domain D(n) of n-tuples of which an
n-ary relation is a subset:

9 Definition (L(n))
Given a complete join semilattice L = 〈S ,"L〉 and a natural number n > 0, we define the
n-th product of L to be the order L(n) = 〈S (n),"L(n)〉, where for each "x,"y ∈ S (n), "x "L(n) "y iff
for all i, 0 < i ≤ n, πi("x) "L πi("y). We abbreviate "L(n) as "n whenever L is fixed.6

It is easy to prove that the n-th product of any (complete) semilattice is itself a
(complete) semilattice. In particular, if L is a PSL, then so is L(n). This follows from the
easily proved lemmata in 10:

10 Lemma
For any PSL 〈S ,"L〉, the following hold of any 〈S (n),"n〉:

(i) For all non-empty R ⊆ S (n), the least upper bound of R w.r.t. "n (written
⊔

n R) exists
in S (n): it is the n-tuple 〈⊔L π1[R], . . . ,

⊔
L πn[R]〉.

(ii) For any "u, "x ∈ S (n), "u "◦n "x iff for all i (0 < i ≤ n), πi("u) "◦L πi("x).

(iii) For all "x,"y ∈ S (n), if "x ("n "y, then there is some "u "◦L "x and some i (0 < i ≤ n) s.t.
πi("u) ("n πi("y).

(iv) For any "a ∈ S (n), any R ⊆ S (n), if "a =
⊔

n R, then there is a "b ∈ R s.t. for all i
(0 < i ≤ n), πi("a) "L πi("b).

Recall that Krifka’s modification of a unary predicate P was just the algebraic clo-
sure of P; it’s easy to see that his modification of a higher arity relation, summate(R), is

6!x abbreviates the n-tuple 〈x1, . . . , xn〉, and we write πi(!x) for the i-th projection of !x.
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just the algebraic closure of R, but with respect to the product ordering D(n) (the only dif-
ference being that (6) above is insufficiently general in that summate only closes a relation
under finite, but not arbitrary non-empty joins). In what follows, we use the notation !nR for
the upper closure of R w.r.t. "n; then the general modification we make to an R of any arity
n, including 1, is !nR. The same kind of generalization can be made for the cover approach:
for an R of any arity n, we want {"a ∈ D(n) | there is an L(n)-cover C of "a s.t. C ⊆ R}. This
applies equally well for n = 1 if we equate the 1-tuple 〈x〉 with x.

The equivalence of the closure and cover approaches extends to the multivalent case
as well. The following theorem shows this, also shows that and that they both are equivalent
to the generalization of the cumulativity schema (4b) to arbitrary arities. The proof is given
in the appendix.

11 Proposition
Given a PSL 〈S ,"L〉, its n-product PSL 〈S (n),"n〉, an "a ∈ S (n), and an R ⊆ S (n), the following
three statements are equivalent:

1.

∧
0 < k ≤ n




(∀xk "◦L πk("a))
(∃g1 "L π1("a)) . . . (∃gn "L πn("a)) :

(xk " gk
∧ 〈g1, . . . , gn〉 ∈ R)




2. There is an L(n)-cover C of "a such that C ⊆ R.

3. "a ∈ !nR.

Despite the equivalence between the closure and cover approaches, their different
formulations make them lend themselves differently to certain extensions. For instance,
it has proved heuristically fruitful to begin with covers but then consider various stronger
notions, such as “pseudo-partitions”; this path is followed in (Verkuyl 1994) and (van der
Does & Verkuyl 1996). Another line of thinking introduced in (Schwarzschild 1991) re-
places quantification over covers with pragmatic determination. This allows some of the
distinctions the summative approach erases to be reintroduced, but in a parsimonious and
context-dependent way that is consistent with a treatment of sentences with PNPs as se-
mantically unambiguous. For the remainder of this paper however we will stick to the
closure approach and refer to the general phenomenon of algebraic closure over relations
of arbitrary arity as “summativity.”

What this section has shown is that for any arity n, there exists a general method
for associating the combination of an n-place predicate with n NP arguments yielding truth
conditions that account for the cumulative construal (and its higher arity generalizations),
and of which the distributive, collective, and neutral construals and their various combina-
tions are special subcases. Furthermore, this method ties together two different strands of
thought in the study of cumulativity and shows where they converge on the same result.
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4 Flexible Summativity

In the previous section, we relied on intuitions about the “basic” denotations of
predicates, and derived more complex summative denotations by means of algebraic clo-
sure or existential quantification over covers. In this section, we consider what linguistic
status these “derived” predicates have.

Some researchers view it as a lexical property of verbs. For instance, (Lasersohn
1995) assumes that certain verbs are inherently algebraically closed. Notice that for these
verbs, the intuitive distinction between the “basic” denotation and the derived one is lost,
since nothing in the lexicon represents the basic sense. Lasersohn’s motivation for lexical-
izing summativity comes from his conviction that the cumulative construal is not available
for all predicates. However, Bayer argues that although certain sentences seem to require
construals stronger than the cumulative one, the same predicates occurring in them can
be combined with different arguments in different contexts to allow the weaker construal
(Bayer 1996). Thus, it seems possible to preserve the general hypothesis that all predicates
allow summativity. Bayer makes this assumption, but still views summativity as a lexical
property. It is not clear to me what the motivation for this is. It would seem that we could
divorce specific predicate meanings from the general phenomenon of summativity by hang-
ing on to basic predicate denotations and then applying a summativity operator to them. It
might seem that there is no empirical difference between these two options. However, I will
argue that the nonlexical approach gives us a kind of flexibility that allow us to account for
a wider range of data.

Notice that the examples of summativity presented so far have all involved definite
noun phrases. An important property that these have is that they are referentially indepen-
dent, i.e. they don’t enter into scope relations that can affect truth conditions. Compare
(7a) with example (2), repeated here as (8a). Assume that predicate denotations are basic
(not summative). Let’s give an existential treatment to numerals as in (8b) following (Link
1983) (six being interpreted in a parallel fashion), where |x| is interpreted as the cardinality
of the set of atoms under x. Although we haven’t discussed an explicit syntax-semantics
interface, it should be clear that the only reading we get for (8a) from the machinery pre-
sented so far without further assumptions is something like (8c), a cumulative construal
exactly parallel to (7b). Since permuting existential quantifiers preserves truth conditions,
the two variables x and y are independent of each other, i.e. the choice of a value for one
doesn’t depend on the choice of a value for the other.

(7) (a) The teachers marked the exams.
(b) 〈⊔ ![[teacher ]],⊔ ![[exam ]]〉 ∈ !2 [[marked ]]

(8) (a) Three teachers marked six exams.
(b) [[three CNs ]] = {Q ⊆ D | (∃x ∈ [[CNs ]])(|x| = 3 ∧ x ∈ Q)}
(c) (∃x ∈ [[teachers ]])(∃y ∈ [[exams ]])(|x| = 3 ∧ |y| = 6 ∧ 〈x, y〉 ∈ !2 [[marked ]])
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However, (8c) does not cover all the ways (8a) can be understood. For instance, it
can be read as making a claim about not six exams, but eighteen—six per teacher for each
of three teachers. Now on this construal, it seems as if the predicate marked six exams is
being applied to each of the individual teachers in turn, i.e. being interpreted distributively.
The existence of such a construal with a concomitant difference in the total cardinality of
the object is taken by e.g. (Roberts 1987) as prime evidence that such sentences are in fact
ambiguous, not just vague, and that the distributive reading corresponds to one potential
disambiguation. I accept the first conclusion, but deny that the data show anything about
distributivity per se. I argue that the important difference between this construal and the
cumulative one lies in the referential dependency of the exams on the teacher. A sentence
can be ambiguous as to the dependencies between its NPs i.e. the scopes of its quantifiers,
while still remaining vague about the divisions of labor involved. For instance, a sentence
could have one reading where the choice of A depends on the choice of B and different
one where the choice of B depends on A. At the same time, in the disambiguation where
the choice of B depends on the choice of A, once we choose an x from the As, get the
dependent choice of y from the Bs, and relate x and y, we still don’t need to specify the
division of labor that underlies this relation.

The reason this bears on the issue of the locus of summativity is that if we view the
summativity operator as not tied to the completely unsaturated lexical predicate, but free
to apply to a partially saturated, syntactically derived predicate, we can get just such a rep-
resentation that specifies dependencies but underspecifies the division of labor. Consider
(9a), which by proposition 8 is equivalent to (9b); this analysis of (8a) differs from (8c) in
that the quantification over exams occurs within the scope of the closure, i.e. the closure
applies not to the lexical predicate marked but to the derived one marked six exams. Such
scope relationships encode the referential dependencies, while the use of summativity (in-
stead of forcing a choice between more specific options like distributivity and collectivity)
keeps the division of labor out of the semantics.

(9) (a) (∃x ∈ [[teachers ]])(|x| = 3 ∧ x ∈ !{g ∈ D | (∃y ∈ [[exams ]])(|y| = 6 ∧ 〈g, y〉 ∈
[[marked ]])})

(b) (∃x ∈ [[teachers ]])(|x| = 3 ∧ (∀z "◦ x)(∃g " x)(z " g ∧ (∃y ∈ [[exams ]])(|y| =
6 ∧ 〈g, y〉 ∈ [[marked ]]))))

Lastly, note that summativity has no effect when the predicate it yields gets applied
to only to singular arguments, so there is no harm in associating summativity with pred-
ication in general, not just predication of plurals. This allows us to have a reading for a
sentence like the lawyers hired a secretary where the choice of secretary is dependent on
the choice of lawyer:7

(10)
⊔ ![[lawyer ]] ∈ !{x ∈ D | (∃y ∈ [[secretary ]])(〈x, y〉 ∈ [[hired ]]}

7Unfortunately, nothing in the account I will give blocks the reverse dependency (∃y ∈ [[secretary ]])(y ∈
!{g ∈ D | 〈⊔ ![[lawyer ]], g〉 ∈ [[hired ]]}). This yields a purely collective reading, while our aim is to avoid
specifying readings stronger than necessary.
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A similar proposal is developed by Sternefeld in (Sternefeld 1998) which allows
operators to apply to partially saturated predicates. However, that account differs in both
spirit and specifics from the proposal I sketched above and develop more fully in section
6. First of all, the operators Sternefeld applies to these predicates are not restricted to
summativity; he also allows the option of using a more specific distributivity operator,
which I avoid. Secondly, I will assume that only one summativity operator is used with
each predicate, while Sternefeld allows no such restriction. This allows him to represent a
neutral–neutral reading of (8a) with two instances of 1-place summativity as in (11), as well
as a distributive–distributive one, a distributive–neutral one, etc. However, since all these
construals can be derived as special cases of the use of summativity plus scope variation, I
do not see the necessity of this option.

(11) (∃x ∈ [[teachers ]])(|x| = 3 ∧ x ∈ !{g ∈ D | (∃y ∈ [[exams ]])
(|y| = 6∧ ∈ !{g′ ∈ D | 〈g, g′〉 ∈ [[marked } ]])})

Lastly, Sternefeld’s syntax-semantics interface makes use of a syntactic level of
logical form where these operators can be introduced non-deterministically as “semantic
glue” in a way not related to the construction or lexical items used in a sentence. In the next
two sections, I will develop a more tightly constrained interface in type-logical grammar
that anchors summativity to predication.

5 Overview of Type-Logical Grammar

Type-logical grammar developed out of categorial grammar by focusing on the log-
ical nature of categorial combinatorics. The account developed in this paper presupposes
familiarity with the basics of the semantically annotated Lambek calculus, as it is presented
in (Carpenter 1997). The sequent rules for this calculus are given in figure 1.

Following the presentation in (Carpenter 1997), this calculus can be extended with
a binary connective ‘⇑’ to account for in situ binding phenomena. A category of the form
A⇑B has type (type(A)→ type(B))→ type(B). The application we will be concerned with
here is the analysis of some NP expressions as of category np⇑s, which occurs in an NP
position but can be interpreted as combining with and “quantifying-into” a sentence. For
example, assigning every the meaning and category λPλQ.∀x[P(x) → Q(x)] : (np ⇑ s)/n
permits a standard Montogovian treatment of universal quantification. Sequent are given
in figure 2.

The next extension we will need to make to the Lambek calculus for the purposes of
this paper is to incorporate a limited kind of polymorphism. This allows us to manipulate
not only constant categories, but also category variables. Polymorphic extensions to the
Lambek calculus are discussed in e.g. (Emms 1993) and (Moortgat 1997). The motivation
for such an extension is the desire to have a single, unambiguous lexical item be able to
take on different categories in different contexts. For example, the word and can be used to

147



N V

α: A 1 α: A (Ax)
∆ 1 α: A Γ,α: A, Γ′ 1 β: B

Γ,∆, Γ′ 1 β: B (Cut)

Γ, π1(α): A, π2(α): B, Γ′ 1 β:C
Γ,α: A • B, Γ′ 1 β:C (• L) Γ 1 α: A ∆ 1 β: B

Γ,∆ 1 〈α, β〉: A • B (• R)

∆ 1 β: B Γ,α(β): A, Γ′ 1 γ:C
Γ,∆,α: B\A, Γ′ 1 γ:C (\ L) x: A, Γ 1 α: B

Γ 1 λx.α: A\B (\ R)

∆ 1 β: B Γ,α(β): A, Γ′ 1 γ:C
Γ,α: A/B,∆, Γ′ 1 γ:C (/ L) Γ, x: A 1 α: B

Γ 1 λx.α: B/A (/ R)

Figure 1: Sequent rules for the Lambek calculus with semantic annotations

∆1, x: B,∆2 1 β: A Γ1,α(λx.β): A, Γ2 1 γ:C
Γ1,∆1,α: B⇑A,∆2, Γ2 1 γ:C (⇑ L) [x fresh]

Γ 1 α: A
Γ 1 λx.x(α): A⇑B (⇑ R) [x fresh]

Figure 2: Sequent rules for ⇑
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conjoin to expressions of category X for (almost) any X. We can capture this by assigning
it to the polymorphic category (∀X)(X\X/X). This universal category can be instantiated
to any constant category as needed.

In certain situations, we might want to limit this polymorphism so that the category
variable can only be instantiated to certain categories. For instance, say we want a certain
expression to be able to act as either a noun or noun phrase. In the system given here,
we provide names for classes of categories, e.g. nominal, and define the class-membership
relation “is a” in the metalanguage, by recursive definition or, as in this case, by simple
enumeration:

(12) • np is a nominal;
• n is a nominal;
• nothing else is a nominal.

We can now assign an expression to category (∀X ≤ nominal)X. The restriction
that in such a category, X can be instantiated only to np or n, is implemented in the sequent
rule by a side condition. Of course, in the case of a finite category class like this there are
simpler ways to deal with category vagueness; the usefulness of bounded polymorphism is
more apparent when the relevant class is infinite.

One question that needs to be asked about polymorphic categories is what type
their semantic labels should have. This can be answered most satisfactorily in a richer type
theory that countenances polymorphic types, such as that of (Cardelli & Wegner 1985).
However, for our purposes here we will sidestep this problem by requiring that polymor-
phic categories always be labeled by syncategorematic semantic terms. For instance, our
category for and can be labeled by the syncategorematic generalized conjunction symbol
of (Partee & Rooth 1983), which has no type of its own, but when combining with two
expressions of type τ is evaluated at type τ → (τ → τ). The rules of proof and use for
(∀— ≤—) thus leave the semantic terms unchanged. Note the resulting calculus no longer
exhibits a strict Curry-Howard correspondence between proofs and lambda-terms.

The details are as follows. We assume a denumerable set of category variables,
which we write as X, Y , etc. The set of basic categories is now expanded to contain these
alongside our atomic category constants. We also assume a set of category class symbols.
We add to our recursive definition of complex category the clause (13), and extend our
deductive calculus as in figure 3.

(13) If V is a category variable, c is a category class symbol, and A is a category, then
(∀V ≤ c)A, is a category.

The last extension we will need is a way for selected expressions to escape the
strict structural requirements of the Lambek calculus. We introduce a new unary category
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Γ,α: A{B\X},∆ 1 β: B
Γ,α: (∀X ≤ T )A,∆ 1 β: B (∀L) [where B is a T ]

Γ 1 α: A
Γ 1 α: (∀X ≤ T )A{X\B} (∀R) [where B is a T ]

Figure 3: Sequent rules for ∀

Γ1,α: A, Γ2 1 γ:C
Γ1,α:2A, Γ2 1 γ:C

(2L)
Γ1,α:2A, β: B, Γ2, 1 γ:C
Γ1, β: B,α:2A, Γ2 1 γ:C

(2P)

Figure 4: Sequent rules for 2

constructor ‘2’, borrowed from (Morrill 1994), which allows a formula it annotates to
undergo permutation. Since we will not need a rule of proof in our applications, only a left
rule is shown in figure 4: all it does is eliminate the 2 from a formula, with no effect on the
semantics.8

This concludes the presentation of the type-logical machinery used in this paper.
The next section applies it to the syntax-semantic interface for flexible summativity.

6 A Syntax-Semantics Interface

Our goal is to analyze predications of PNPs in such a way that they are associated
with a single summativity operator which can apply at any level of predicate saturation.
This variability in the behavior of summativity will be modeled using bounded polymor-
phism and structural permutation.

First we need to add a summativity operator to our semantic representation lan-
guage. It will be associated with a polymorphic category, since it can combine with a
relation of any arity to yield a summative interpretation of that relation. For this reason, it
will need to be syncategorematic. The following gives a meta-level definition of a semantic
type-class Erel, which contains all types of (curried) relations over type e. The summativity
operator Σ combines with any expression of such a type to yield a new expression of the
same type, which is interpreted as the algebraic closure of the denotation of the original
expression.

8The double line in the (P rule indicates that it should be read biconditionally.
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y: np 1 y: np Ax

x: np 1 x: np Ax φ(y)(x): s 1 φ(y)(x): s Ax
x: np, φ(y): np\s 1 φ(y)(x): s (\L)

γ: s 1 γ: s Ax
Q: np⇑s, φ(y): np\s 1 γ: s (⇑L)

Q: np⇑s, φ: (np\s)/np, y: np 1 γ: s (/L)

Q: np⇑s, φ: (np\s)/np 1 λy.γ: s/np (/R)

Figure 5: Quantifier subject + transitive verb; γ abbreviates Q(λx.φ(y)(x))

(14) • e→ t is an Erel;
• If α is an Erel, then e→ α is an Erel;
• Nothing else is an Erel.

(15) • The degree of e→ t is 1.
• For an Erel e→ α, the degree of e→ α is 1+ the degree of α.

(16) If φ is a wff of type τ and τ is an Erel with degree n, then Σ(φ) is a wff of type τ and
[[Σ(φ)]] = curry(!n decurry([[φ]])).9

Next, we define a category class Everb that picks out just those verbal categories
whose semantic terms are of an Erel type; this class will form the restriction of Σ’s poly-
morphic category.

(17) • np\s is a Everb;
• np/s is a Everb;
• If α is a Everb, then np\α is a Everb;
• If α is a Everb, then α/np is a Everb;
• Nothing else is a Everb.

Now, if we give the summativity operator the category of a polymorphicEverbmod-
ifier, it can combine with a lexical predicate, but also with a lower-arity partially saturated
predicate. For instance, if we have a way to combine a subject directly with a transitive verb
with category (np\s)/np, we can wait till after we do this to apply closure. The derivation
in figure 5 shows how we can do this, even when the subject is of a quantifier category. The
resulting category is that of a sentence missing an object, to which Σ can apply.

9Since the closure operator is defined to operate on sets of n-tuples, a curried relation must be decurried to
combine with it, and then the result must be re-curried. We could of course eliminate these steps by defining
closure directly over curried relations.
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Assoc
x: np 1 x: np Ax

y: np 1 y: np Ax φ(y)(x): s 1 φ(y)(x): Ax
λw.φ(w)(x): s/np, y: np 1 φ(y)(x): s (/L)

δ: s 1 δ: s Ax
λw.φ(w)(x): s/np,Q: np⇑s 1 δ: s (⇑ L)

x: np, λzλw.φ(w)(z): np\(s/np),Q: np⇑s 1 δ: s (\L)
x: np, φ: (np\s)/np,Q: np⇑s " δ: s Cut

φ: (np\s)/np,Q: np⇑s " λx.δ: np\s (\R)

Figure 6: Transitive verb + quantifier direct object; δ abbreviates Q(λy.φ(y)(x))

Figure 6 shows how an object can also be put together directly with a transitive
verb. The step labeled “Assoc” abbreviates the Lambek derivable sequent given in (18).

(18) φ: (np\s)/np 1 λzλw.φ(w)(z): np\(s/np).

These derived predicates give us three options for incorporating the summativity operator
(in a way to be explained in a moment) to derive four readings for a sentence of the form
“Q1: np⇑s, φ: (np\s)/np,Q2: np⇑s”.

We have a cumulative one in (19a), and the same with reversed scopes in (19b).
In these, both quantifiers lie outside the scope of summativity We also have an object
dependent reading (19c) and a subject dependent one (19d). This last one is perhaps hardest
to get for the relevant sentences, but I do not attempt to account for this asymmetry here.

(19) (a) Q1(λx.Q2(λy.(Σ(φ))(y)(x)))
(b) Q2(λy.Q1(λx.(Σ(φ))(y)(x)))
(c) Q1(λw.(Σ(λx.Q2(λy.φ(y)(x))))(w))
(d) Q2(λz.(Σ(λy.Q1(λx.φ(y)(x))))(z))

Now we turn to the question of how Σ can get these scopes. Since type-logical
grammar is radically lexicalized, the only way to introduce it into a sentence is by associa-
tion with a lexical item. Since I argued above that summativity should be seen as a property
of predication, I propose that it be incorporated lexically as part of the verbal predicate, but
in a way that allows it to break free from the predicate. This can be accomplished by
taking every lexical predicate we would normally assign some category φ:C and giving it
the new category 〈φ,Σ〉:C • 2(∀X ≤ Everb)(X/X). For instance, figure 7 shows a sample
derivation of a (19c)-type object dependent reading for three lawyers hired a secretary, i.e.
three(law)(λz.Σ(λx.a(sec)(λy.hire(y)(x)))(z)) (abbreviated γ in the example). Here hire,
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instead of category hire: tv, has category 〈hire,Σ〉: tv • (∀X ≤ Everb)(X/X). The polymor-
phic part can be dissociated from the predicate as in the first step; since it is marked with
2, it need not combine directly with hire, but can permute to take a different argument as
in the next step. When it finds one of some Everb category, here a yet-to-be-derived np\s,
it can lose its 2, be instantiated to (np\s)/(np\s), and take the np\s as an argument.

7 Conclusion

Summativity has been shown to be a general characterization of the semantics of
sentences with plural NPs, from which more specific construals can be derived as special
cases. The way summativity is treated in section 3 ties together different traditions of ap-
proaching cumulative construals. As shown section 4, letting summativity apply to partially
saturated predicates allows quantifier scope ambiguities to be captured in a representation
that does not force further disambiguation between subconstruals of the summative one.
The fragment in the final sections shows how this flexibility can be tied in a natural way to
an explicit syntax.

Although our aim has been to maximize the generality of the analysis, the result
may be too general in certain respects. First of all, as noted in footnote 7, the generality of
the syntax-semantics interface actually undermines the generality of the semantics by al-
lowing an undesirably specific construal as a combinatoric option. Secondly, as mentioned
in section 6, it is not clear that subject dependent readings of the form in (19d) are actually
possible. In that case, perhaps they should be ruled out in the syntax-semantics interface
itself.

In a related vein, even if we take the most general construal as basic, natural lan-
guage has mechanisms for forcing stronger readings. For instance, each appears to force
distributivity, while together forces collectivity. It remains to be demonstrated exactly how
this strengthening should be incorporated into the analysis given here.

Appendix

12 Proof (of proposition 11)
The definition of !Pw.r.t. L is equivalent to the definition of the complete sub-semilattice of
L generated by P, which is equivalent, in fact for any arbitrary complete join semilattice L,
to {x ∈ S | for someC ⊆ P, C ! ∅, x = ⊔LC} (see (Link 1998) p. 364 for proof). Since L(n)
is complete join semilattice by lemma 10(i), this holds for !nR as well, so 11(ii) and 11(iii)
are clearly equivalent. We now show the equivalence of 11(i) and 11(ii). As a preliminary,
notice that we can rewrite 11(i) as 12(i) by introducing explicit universal quantification
over the k’s (the projections of "a) and reducing the multiple existential quantifications over
gi’s to a single existential quantification over the whole n-tuple 〈g1, . . . , gn〉:
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12(i) (∀k, 0 < k ≤ n)(∀xk "◦L πk("a))(∃"gxk ∈ S (n)) :
π1("gxk) "L π1("a) ∧ · · · ∧ πn("gxk) "L πn("a)
∧ xk "L πk("gxk)
∧ "gxk ∈ R

Explicitly quantifying over the projections of "gxk and "a, we get 12(ii):

12(ii) (∀k, 0 < k ≤ n)(∀xk "◦L πk("a))(∃"gxk ∈ S (n)) :
(∀i, 0 < i ≤ n)(πi("gxk) "L πi("a))
∧ xk "L πk("gxk)
∧ "gxk ∈ R

We can pull the mention of R up to the quantification over "gxk . Finally, by the definition of
"n, we can rewrite the second line of 12(ii) as "gxk "n "a. This yields 12(iii):

12(iii) (∀k, 0 < k ≤ n)(∀xk "◦L πk("a))(∃"gxk ∈ R) :
"gxk "n "a ∧ xk "L πk("gxk)

11(i) implies 11(ii): Assume 11(i) holds; then 12(iii) above holds. For each xk "◦L πk("a),
let Gxk = {"gxk ∈ R | "gxk "n "a and xk "L πk("gxk)}. 12(iii) just tells us that each such Gxk is
non-empty. Furthermore, we know by atomicity that for any k (0 < k ≤ n), there is always
such an L-atom xk "◦L πk("a), so there is indeed such a Gxk .

For each k (0 < k ≤ n), let Dk =
⋃

xk#◦Lπk(#a)(Gxk). Let C =
⋃
0<k≤n(Dk). Clearly

C ⊆ R, since each Gxk ∈ R. We claim C is an L(n)-cover of "a.

The non-emptiness condition is straightforward to verify, since each Dk is non-
empty. Now we must prove that "a =

⊔
nC.

First of all, we show that "a is an upper bound for C. By the definition of C, we
know that for any "c ∈ C, there is a k (0 < k ≤ n) s.t. "c ∈ Dk. Then, by the definition of Dk,
there is an xk "◦L πk("a) s.t. "c ∈ Gxk ; so by the defintion of Gxk , "c "n "a.

Now, to see that "a is the least upper bound of C, say there were some "b ∈ S (n) s.t.
for all "c ∈ C, "c "n "b, but "a ("n "b. Then by lemma 10(iii) above, there is some L(n)-atom "u
s.t. "u "◦n "a and some i (0 < i ≤ n) s.t. πi("u) ("L πi("b). We will refer to this πi("u) as ui. Since
"u "◦n "a, ui "◦L πi("a) by lemma 10(ii) above. Pick an arbitrary "gui from Gui . Since "gui ∈ C,
"gui "n "b by assumption. This entails that πi("gui) "L πi("b), by the definition of "n. However,
by the definition ofGui , we know that ui "L πi("gui), so ui "L πi("b). But recall that ui = πi("u)
and πi("u) ("L πi("b). So there is no such "b, so "a =

⊔
nC. Thus C is an L(n)-cover of "a; since

C ⊆ R, 11(ii) is proven.
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11(ii) implies 11(i): Assume 11(ii) holds, i.e. that there is some non-empty C ⊆ R s.t.⊔
nC = "a. Since

⊔
nC = "a, we know by lemma 10(i) that for each i (0 < i ≤ n), πi("a) =⊔

L πi[C]. We now show 12(ii), thereby proving 11(i).

Pick an arbitrary k (0 < k ≤ n) and assume that xk "◦L πk("a). Then xk "◦L
⊔

L πk[C].
So by sup-primes, there is a "gxk ∈ C s.t. xk "L πk("gxk). Now pick an arbitrary i (0 < i ≤ n);
since πi("gxk) ∈ πi[C], πi("gxk) "L

⊔
L πi[C], i.e. πi("gxk ) "L πi("a). Lastly, since C ⊆ R, "gxk ∈ R.

!
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Stanford: CSLI Publications.

157




