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ABSTRACT 

The Na+/I- symporter (NIS) mediates radioiodine therapy in thyroid cancer 

patients. NIS is also present in many human breast tumors, suggesting that radioiodine 

may also be used for detection and ablation of breast cancer. Inhibition of MEK 

(MAPK/ERK Kinase) signaling has been shown to have anti-tumor activity in breast 

cancer models. Previous data from our lab shows that MEK inhibition reduces NIS 

protein level and function via lysosomal degradation in trans-Retinoic 

Acid/Hydrocortisone treated MCF7 human breast cancer cells. We investigated the effect 

of MEK inhibition on constitutively expressed NIS in MCF7 Cells 

Western blot analysis demonstrates that MEK inhibition also reduces exogenous 

NIS stably expressed in MCF7 cells, suggesting that NIS downregulation by MEK 

inhibition occurs at the post-transcriptional level. The extent of reduction in NIS activity 

as determined by radioiodine uptake assay correlates with the reduction of cell surface 

NIS levels as analyzed by flow cytometry. Fluorescence activated cell sorting was 

performed to isolate a population of MCF7 cells stably expressing high levels of cell 

surface NIS. To investigate whether the reduction of surface NIS is due to increased 

endocytosis, live cell labeling of cell surface NIS was successfully performed and 

internalization was visualized over time. While NIS remains at the cell surface after 

labeling with primary antibody alone, NIS endocytosis is induced by conjugated primary 

and secondary antibodies, presumably due to clustering. An immunofluorescence based 

internalization assay was performed to determine if the degradation of NIS by MEK 

inhibition is via increased internalization or by degradation prior to cell surface 
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trafficking. However, no detectable difference in NIS levels between treated and non-

treated cells was detected. Western blot analysis to determine the temporal profile of NIS 

degradation by MEK inhibition revealed that MEK inhibition does not lead to NIS 

degradation in the population of selected MCF7 cells with high surface NIS expression. 

Investigation of how NIS degradation is avoided in this population may help to develop 

strategies to prevent NIS reduction by MEK inhibition such that MEK inhibition and 

radioiodine therapy could be used concurrently for breast cancer treatment.    
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CHAPTER 1 

 

PROBLEM STATEMENT  

The Na+/I- symporter (NIS) is a transmembrane glycoprotein that mediates iodide 

uptake in thyroid cells for thyroid hormone synthesis. NIS-mediated iodide uptake is the 

molecular basis for targeted radionuclide imaging and ablation of differentiated thyroid 

carcinomas and their metastases. NIS expression is also found in many human breast 

tumors, suggesting that this symporter could be employed for radionuclide imaging and 

ablation of breast cancers. However, NIS expression and NIS-mediated radioiodine 

uptake (RAIU) activity are often low in breast cancer, such that tumors fail to concentrate 

sufficient levels of radioiodine for effective therapy. This makes it important to uncover 

signaling pathways that can upregulate NIS at several levels, from gene transcription to 

post-translational processing and cell surface trafficking. These investigations will 

eventually lead to strategies that can be used to increase functional NIS expression in 

breast cancer. 

Previous data from our lab shows that 24 hr inhibition of the MEK (MAPK/ERK 

Kinase)  signaling pathway by U0126 treatment reduces NIS protein level and function in 

trans-Retinoic Acid/Hydrocortisone (tRA/H)  treated MCF7 cells (tRA/H treatment 

induces expression of endogenous NIS in MCF7 cells). We also showed that 24 hr U0126 

treatment leads to lysosome-mediated NIS protein degradation in these cells as well as in 

MCF7 cells transiently transduced with exogenous NIS adenovirus. It was determined 

that this was not due to a decrease in NIS mRNA levels. To better understand the 
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mechanism underlying this degradation induced by MEK inhibition, we investigated the 

regulation of constitutively expressed NIS by MEK signaling in human breast cancer 

cells. Specifically, we investigated the modulation by the MEK inhibitor U0126 of 

exogenous FLAG-tagged NIS stably expressed in MCF7 breast cancer cells. 

 

BACKGROUND AND SIGNIFICANCE 

 Breast cancer is the most common type of cancer afflicting women in the United 

States, and it is the second most lethal form of cancer in women. Therefore, it is vital to 

find ways to improve methods of prevention, detection, and treatment of breast cancer. 

Current treatment options include lumpectomy or mastectomy, radiation therapy, 

chemotherapy, and targeted therapies such as trastuzumab for HER2/neu positive breast 

cancers. Despite advances in treatment options, 40,930 breast cancer deaths were 

expected in 20081. 

The sodium iodide symporter is an integral cell surface glycoprotein that 

functions to import iodide into thyroid follicular cells, utilizing the sodium concentration 

gradient to uptake two sodium (Na+) ions per iodide (I-) ion2. This ability to concentrate 

iodide is utilized clinically for imaging and ablation of thyroid carcinomas by 

administration of radioactive iodide after thyroidectomy3. NIS is expressed primarily in 

the thyroid gland, but is also found in the salivary glands, the gastric mucosa, and in the 

lactating mammary gland, where it functions to provide iodine to newborns for thyroid 

hormone synthesis4.  

The discovery that NIS is expressed 80% of human breast cancers suggests that it 

may be possible to utilize radionuclide imaging and ablation techniques for detection and 
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treatment of breast carcinomas4,5. An impediment to this prospect, however, is that cell 

surface NIS expression in breast tumors may be too low to accumulate sufficient amounts 

of radioiodine for therapy to be effective. Thus, it is pertinent to upregulate NIS 

expression and activity in order to realize its clinical potential for breast cancer 

patients6,7.  

MEK (MAPK/ERK kinase) signaling has been shown to function in cellular 

proliferation, differentiation, survival and metastasis, and is “aberrantly activated [with] 

overwhelming frequency” in cancer8. Inhibition of MEK signaling using the 

pharmacological agent CI-1040 showed anti-tumor activity in preclinical cancer models, 

including models of breast cancer. In one study, MEK inhibition reduced growth of 

tumor xenografts, reversed cellular transformation, decreased cell proliferation, and in 

some instances induced apoptosis9. Additionally, MEK inhibition has been shown to 

suppress estrogen-induced breast tumor growth in vitro and in vivo10. Therefore, the 

MEK signaling pathway could serve as a molecular target for cancer therapies.  

It has been shown that the MEK signaling pathway modulates expression of NIS 

in thyroid carcinomas. Constitutively active MEK1 has been shown to reduce NIS 

mRNA in the thyroid, and inhibition of MEK signaling upregulates NIS in papillary 

thyroid cancer cells expressing the RET oncogene (RET/PTC cells), which normally have 

reduced NIS expression,n and function11. Our lab demonstrated that MEK inhibition 

increases NIS protein levels in RET/PTC and normal PCCl3 rat thyroid cells, but does 

not increase NIS-mediated radioactive iodine uptake until 24-48 hrs later12. 

Unpublished data from our lab shows that, in contrast, an indicator of MEK 

activation, phospho-ERK, is correlated with increased NIS expression in human breast 
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tumors (Zhang et al, manuscript in preparation). We also have data showing that MEK 

inhibition decreases NIS expression in several different breast cancer cell lines through 

lysosomal degradation of NIS protein. This was shown to be true of tRA/H induced, 

endogenously expressed NIS in MCF7 cells as well as transiently expressed exogenous 

NIS in MCF7, SK-Br-3, and T47D breast cancer cells. Treatment with the MEK inhibitor 

U0126 decreased NIS-mediated radioactive iodine uptake in a dose dependent manner; 

24 hr treatment with 20uM U0126 decreased uptake by 27% (Zhang et al, manuscript in 

preparation). 

These findings present a challenge, because MEK inhibition has tumor 

suppressant effects in breast cancer, but also decreases functional NIS expression. 

Therefore, the use of MEK inhibitors for breast cancer therapies is likely to be 

incompatible with radioiodine ablation therapies. Further investigation of this process 

should reveal ways to prevent the reduction in functional NIS induced by MEK inhibition 

such that the two therapies could be used concurrently. These studies should also provide 

a better understanding of NIS regulation in breast cancer. Accordingly, we investigated 

the modulation of NIS by MEK inhibition in MCF7 breast cancer cells stably expressing 

human NIS (hNIS).  

 

OBJECTIVES 

We have observed that inhibition of the MEK signaling pathway reduces NIS 

expression and function via lysosomal degradation in tRA/H treated MCF7 cells 

(endogenous NIS) and in MCF7 cells transiently transduced with exogenous NIS. These 

data are limited by the fact that it describes a NIS population that is newly synthesized 
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(induced or transiently transduced) rather than constitutively expressed, as NIS in breast 

cancer is. Additionally, currently available antibodies recognize only an intracellular 

epitope of NIS, impairing the ability to distinguish cell surface NIS from intracellular 

NIS. Our objective, therefore, was to investigate the effect of MEK inhibition on 

exogenous hNIS with a genetically fused extracellular FLAG tag (FLAGhNIS) stably 

expressed in MCF7 human breast cancer cells. Comparison of our results with those 

obtained for transiently expressed NIS should reveal whether or not NIS downregulation 

is restricted to newly synthesized NIS protein. 

 

Determine the effect of MEK inhibition on the functional activity, total protein 

levels, and cell surface levels of stably expressed exogenous FLAGhNIS 

 I first sought to determine the effect of 24 hr MEK inhibition on stably expressed 

exogenous FLAGhNIS functional activity by analyzing NIS-mediated radioactive iodine 

uptake. I then investigated total protein levels after 24 hr MEK inhibition by performing 

western blot. Finally, I analyzed the effect of 24 hr MEK inhibition on cell surface 

FLAGhNIS levels by performing flow cytometry. 

 

Investigate the temporal profile of FLAGhNIS modulation by MEK inhibition 

 I sought to label cell surface FLAGhNIS with fluorescent antibodies to observe 

the effect of MEK inhibition over time using immunofluorescent microscopy. In order to 

eliminate cells without FLAGhNIS expression, and to obtain higher FLAGhNIS 

expression to improve fluorescence signal-to-noise ratio for microscopy, live-cell 

Fluorescence Activated Cell Sorting (FACS) was performed to isolate “high-expression” 
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clones from the heterogeneous cell population. This “high-expression” population was 

used for all subsequent experiments. I performed live-cell labeling of cell surface 

FLAGhNIS with fluorescent antibodies and observed it over time. I then attempted to 

optimize a fluorescence-based internalization assay to determine the effect of 24 hr MEK 

inhibition on NIS endocytosis. Finally, I investigated the temporal profile of total 

FLAGhNIS protein levels after various incubation times with MEK inhibition.  

 

 

CHAPTER 2 

 

MATERIALS AND METHODS 

Cell Culture 

MCF7 human breast cancer cells were maintained in 44.5% Dulbecco’s modified 

Eagle’s medium (DMEM) (Invitrogen) and 44.5% F-12 (Invitrogen) supplemented with 

10% fetal calf serum (Invitrogen) and 1% penicillin/streptomycin (Invitrogen). Stably 

transfected MCF7 FLAGhNIS breast cancer cells were maintained in MCF7 media 

containing 0.02% G418 (invitrogen) to maintain selection of FLAGhNIS expressing 

cells. 

 

Radioactive Iodide Uptake Assay (RAIU) 

MCF7 human breast cancer cells stably expressing FLAGhNIS were treated as 

indicated prior to RAIU, which was performed as described previously13. Briefly, cells 

were incubated with 2.0 μCi NaI125 in 5 μM non-radioactive NaI for 30 mins at 37°C with 
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5% CO2. Cells were then washed twice with cold HBSS and lysed with 95% ethanol for 

20 minutes. The cell lysate was collected and radioactivity was counted by a γ-counter 

(Packard Instruments). DPA test was performed as described previously13 to determine 

μg DNA per well. For each sample, radioactive iodine uptake was divided by μg DNA to 

normalize data. Experiments were performed in triplicate.  

 

Western Blot 

 MCF7 human breast cancer cells stably expressing FLAGhNIS were treated as 

indicated prior to harvesting. Cells were lysed and proteins were extracted. Total protein 

concentration was determined by Bradford protein assay, and extracted protein was 

denatured by adding sample buffer (Tris 150 mM, pH6.5, 4% SDS, 2% p-

mercaptoethanol, 10% glycerol). Equal amounts of protein (100ug) from each cellular 

lysate were resolved by polyacrylamide gel electrophoresis using 10% acrylamide. The 

proteins were electroblotted onto a nitrocellulose membrane in transfer buffer for 1.5 

hours. The membrane was blocked in TBST buffer (10mM Tris-HCl pH 8.0, 150 mM 

NaCl, 0.05% Tween 20) containing 5% dry milk overnight at 4°C. FLAGhNIS was 

detected using M2 monoclonal mouse α-FLAG antibody (Sigma, 1:1000) or polyclonal 

rabbit α-hNIS antibody (1:2500). β-actin was detected using monoclonal rabbit anti-β-

actin antibody (Abcam, INC, 1:2000). Phospho-ERK was detected using polyclonal 

rabbit α-p-ERK antibody (1:4000). Primary antibodies were detected using horseradish 

peroxidase (HRP)-conjugated α-mouse or α-rabbit IgG secondary antibody (Amersham, 

1:2500). The signal was then detected by enhanced chemiluminescence detection 

reagents (Amersham). Densitometry was performed using the public domain NIH Image 
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program (developed at the U.S. National Institutes of Health and available on the Internet 

at http://rsb.info.nih.gov/nih-image/). 

 

Flow Cytometry 

MCF7 cells stably expressing FLAGhNIS were treated as indicated prior to 

quantification of cell surface NIS levels by flow cytometry. Cells were rinsed with 

phosphate-buffered saline (PBS), then detached by incubation with 0.25% trypsin-EDTA 

(Invitrogen). Cells were suspended in cold FACS buffer (PBS containing 3% Fetal 

Bovine Serum, 0.02% Sodium Azide). Cells were incubated with M2 monoclonal mouse 

α-FLAG antibody or monoclonal mouse IgG antibody (both Sigma, 1:250). Cells were 

washed and incubated with FITC-conjugated α-mouse IgG secondary antibody (Sigma, 

1:100). Cells were washed and resuspended in 1% Paraformaldehyde in FACS buffer. 

Fluorescence flow cytometry was performed at the Davis Heart and Lung Flow 

Cytometry core laboratory using a FACSCalibur instrument (BD biosciences). Data was 

analyzed using WinMDI 2.9 (Microsoft). 

 

Fluorescence Activated Cell Sorting (FACS) 

MCF7cells stably expressing FLAGhNIS were rinsed with phosphate-buffered 

saline (PBS), then detached by incubation with 0.25% trypsin-EDTA (Invitrogen). Cells 

were suspended in sterile, cold “live FACS” buffer (PBS containing 2% Fetal Bovine 

Serum, 0.0031% Sodium Azide). Cells were incubated with M2 monoclonal mouse α-

FLAG antibody (Sigma, 1:250). Cells were washed and incubated with Alexa488-

conjugated α-mouse IgG secondary antibody (Sigma, 1:250). Cells were washed and 



9 

resuspended in “live FACS” buffer. FACS was performed at the Davis Heart and Lung 

Flow Cytometry core laboratory using a FACSAria instrument (BD biosciences). Cells 

were sorted according to cell surface fluorescence and “high expression” and “low 

expression” populations were retrieved. 

 

Immunofluorescence Microscopy: Optimization of Incubation Conditions 

MCF7 human breast cancer cells stably expressing FLAGhNIS were seeded at 6 x 

104 cells per well in 4-well chamber slides (Nunc Lab-tek). 24 hrs later, FLAGhNIS was 

labeled by incubation with M2 monoclonal anti-FLAG antibody from mouse (Sigma, 

1:1000) in blocking medium for 20 min at 37°C or for 1 hr on ice. Cells were washed 

three times with PBS prior to incubation with anti-mouse IgG-Cy3 (Jackson Immuno, 

1:500) in blocking medium for 20 min at 37°C or for 1 hr on ice. Cells were washed three 

times with PBS. Slides were mounted with Pro-long Gold anti-fade mounting solution 

(Invitrogen, 100ul), and a coverslip was added and sealed with nail-polish. Samples were 

viewed using a Zeiss Axiovert 200 and digital images were obtained using Axiovision 

software. 

 

Immunofluorescence Microscopy: Temporal Imaging of Labeled Cell Surface 

FLAGhNIS 

MCF7 +FLAGhNIS cells were seeded as described above. 24 hrs later, 

FLAGhNIS was labeled by incubation with M2 monoclonal anti-FLAG antibody from 

mouse (Sigma, 1:1000) in blocking medium for 20 min at 37°C. Cells were washed three 

times with PBS prior to incubation with anti-mouse IgG-Cy3 (Jackson Immuno, 1:500) in 
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blocking medium for 20 min at 37°C. Cells were washed three times with PBS prior to 

visualization of live cells. Cells were then incubated in media at 37°C (5% CO2) for 

various times before visualization. Samples were viewed using a Zeiss Axiovert 200 and 

digital images were obtained using Axiovision software. 

 

Immunofluorescence Microscopy: the Contribution of Antibody Conjugation to 

Induction of NIS Endocytosis  

 MCF7 +FLAGhNIS were seeded as described above. 24 hrs later, FLAGhNIS 

was labeled by incubation with M2 monoclonal anti-FLAG antibody from mouse (Sigma, 

1:1000) in blocking medium for 20 min at 37°C. For sample A, cells were washed three 

times with PBS before incubation with anti-mouse IgG-Cy3 (Jackson Immuno, 1:500) in 

blocking medium for 20 min at 37°C. Cells were then washed three times with PBS and 

maintained in media at 37°C (5% CO2) for 18 hrs. For samples B-D, cells were washed 

three times with PBS after labeling with M2 and then maintained for18 hrs (as in A). Cell 

surface M2:FLAGhNIS was labeled on live, non-permeabilized cells with anti-mouse 

IgG-Alexa488 (Sigma, 1:500) in blocking medium for 20 min at 37°C, prior to fixation. 

Internalized M2:FLAGhNIS was labeled after fixation and permeabilization (4% 

Saponin, 4% BSA, 1 hr on ice) by incubation with IgG-Cy3 (1:500). Total 

M2:FLAGhNIS was labeled the same way as internalized M2:FLAGhNIS, but without 

prior labeling of surface M2:FLAGhNIS. All fixation was performed in 4% 

paraformaldehyde (15 mins on ice). 

Cell nuclei were labeled with Hoechst 34580 (Invitrogen, 1:10,000) in PBS for 10 

min. at RT. Slides were mounted with Pro-long Gold anti-fade mounting solution 
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(Invitrogen, 100ul). A coverslip was added and sealed with nail-polish. Samples were 

viewed using a Zeiss Axiovert 200 and digital images were obtained using Axiovision 

software. 

 

Immunofluorescence-based Internalization Assay with or without MEK Inhibition

 MCF7 human breast cancer cells stably expressing FLAGhNIS were seeded as 

described above. 24 hrs later, FLAGhNIS was labeled by incubation with M2 monoclonal 

anti-FLAG antibody from mouse (Sigma, 1:1000) in blocking media for 20 min. Cells 

were fixed immediately, or maintained for 24 hrs at 37°C (5% CO2) with treatment as 

indicated before fixation in 4% paraformaldehyde (15 mins on ice). Cells were 

permeabilized as indicated (4% Saponin, 4% BSA, 1 hr on ice). Primary antibodies were 

labeled with IgG-Cy3 secondary antibody (Jackson Immuno, 1:500 in blocking media or 

permeabilization buffer) for 1 hr on ice. Cell nuclei were labeled with Hoechst 34580 

(Invitrogen, 1:10,000) in PBS for 10 min. at RT. Slides were mounted with Pro-long 

Gold anti-fade mounting solution (Invitrogen, 100ul). A coverslip was added and sealed 

with nail-polish. Samples were viewed using a Zeiss Axiovert 200 and digital images 

were obtained with equal exposure times using Axiovision software. Fluorescence was 

quantified using MetaMorph software (kindly provided by Dr. Jon Robinson). For each 

sample, 30 cells and 18 background regions were selected for quantification. 
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CHAPTER 3 

 

RESULTS 

FLAGhNIS-mediated iodide uptake (RAIU) is reduced by MEK inhibition 

 Previous data from our lab shows that inhibition of the MEK signaling pathway 

by U0126 treatment reduces NIS function in a dose-dependent manner in trans-Retinoic 

Acid/Hydrocortisone (tRA/H) treated MCF7 cells. Specifically, treatment with 20 uM 

U0126 for 24 hrs decreased NIS-mediated RAIU by 27%. We hypothesized that 24 hr 

MEK inhibition would decrease iodide uptake in MCF7 cells stably expressing 

exogenous FLAGhNIS. RAIU was performed to assess FLAGhNIS function. Inhibition 

of the MEK signaling pathway by 20 μM U0126 treatment for 24 hrs resulted in a 26% 

decrease in FLAGhNIS functional activity (figure 1).  

 

MEK inhibition reduces total FLAGhNIS protein levels 

Previous data from our lab shows that 24 hr inhibition of the MEK signaling 

pathway by U0126 treatment reduces NIS protein level in trans-Retinoic 

Acid/Hydrocortisone (tRA/H) treated MCF7 cells. We hypothesized that 24 hr MEK 

inhibition would reduce total FLAGhNIS protein levels in MCF7 cells stably expressing 

exogenous FLAGhNIS. Western blot was performed to assess FLAGhNIS protein levels. 

Inhibition of the MEK signaling pathway by 20 μM U0126 treatment for 24 hrs resulted 

in a 20% decrease in total FLAGhNIS levels (figure 2). 
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MEK inhibition reduces cell surface FLAGhNIS levels 

NIS must be at the cell surface in order to function, so a reduction in NIS cell 

surface expression would explain the observed reduction in NIS activity after 24 hr MEK 

inhibition. We hypothesized that 24 hr MEK inhibition would reduce cell surface 

FLAGhNIS levels. Flow cytometry of non-permeabilized MCF7 cells stably expressing 

FLAGhNIS was performed to assess cell surface FLAGhNIS levels. This method 

quantifies cell surface expression by recognizing fluorescent antibodies that bind the 

extracellular FLAG tag. Inhibition of the MEK signaling pathway by 20 μM U0126 

treatment for 24 hrs resulted in a 27% decrease in cell surface FLAGhNIS levels (figure 

3). Interestingly, the reduction in cell surface NIS level after 24 hr MEK inhibition seems 

to be directly proportional to the observed reduction in NIS activity after the same 

treatment. 

 

Fluorescence-activated cell sorting of MCF7 FLAGhNIS population 

 Initial immunofluorescence microscopy experiments revealed that the MCF7 

FLAGhNIS cell line was heterogeneous in expression of this exogenous gene (data not 

shown). In order to study a homogenous population, fluorescence-activated cell sorting 

was performed to isolate a population of “high expression” MCF7 FLAGhNIS cells 

(figure 4A). This population was used for all subsequent experiments and will be denoted 

MCF7 +FLAGhNIS. RAIU was performed to verify that this population had higher 

functional cell surface FLAGhNIS levels (figure 4B). Indeed, MCF7 +FLAGhNIS cells 

had 35% higher radioactive iodide uptake than the mixed population. 
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Secondary antibody conjugation induces endocytosis of FLAGhNIS  

Preliminary experiments showed that cell surface FLAGhNIS clustering occurred 

after incubation with primary and secondary antibodies (M2 and IgG-Cy3, respectively) 

in MCF7 +FLAGhNIS cells. When labeling live cells with antibodies, performing 

incubations at physiological temperature allows cellular processes to occur during the 

incubation, whereas performing incubations on ice arrests cellular physiology and 

endocytosis. FLAGhNIS labeling was observed after incubating live cells with primary 

and secondary antibodies at 37°C for 20 mins or on ice for 1 hr. The temperature used for 

M2 primary antibody did not substantially affect the labeling pattern. However, when 

labeling with IgG-Cy3 secondary antibody at 37°C, clustering of FLAGhNIS occurred 

within 20 mins, whereas labeling with IgG-Cy3 at on ice showed a more diffuse staining 

pattern (figure 5). This indicates that secondary but not primary antibody conjugation 

induces clustering of cell surface FLAGhNIS.  

We next sought to determine if this clustering during live-cell labeling would 

result in endocytosis of the symporter. FLAGhNIS was labeled with M2 followed by 

IgG-Cy3 and live cells were imaged over time. Clustering and internalization of 

FLAGhNIS occurred over a period of 8hrs (figure 6). The punctate staining pattern 

indicates that clustering occurred by 4 hrs, and it is likely that some endocytosis occurred 

by 4 hrs. After 8 hrs, intracellular clustering indicates that extensive internalization has 

occurred.  

We hypothesized that this internalization was induced by clustering via 

conjugation of secondary antibodies. To test this hypothesis, four experimental conditions 
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were employed. For condition A, cell surface FLAGhNIS was labeled in live cells by 

primary and secondary antibodies. Cells were then maintained at physiological conditions 

for 18 hrs before fixation and visualization. As evident in figure 7A, FLAGhNIS was 

completely internalized 18 hrs after incubation with primary and secondary antibodies.  

For conditions B-D, cell surface FLAGhNIS was labeled only with primary 

antibody before maintenance at physiological conditions for 18 hrs. In condition B, live, 

non-permeabilized cells were incubated with IgG-A488 secondary antibody to label M2 

bound to FLAGhNIS (M2:FLAGhNIS) that remained at the cell surface over 18hrs. Cells 

were then fixed and visualized. Figure 7B shows that M2:FLAGhNIS remained at the cell 

surface (green fluorescence). In condition C, remaining cell surface M2:FLAGhNIS was 

labeled as in B. After fixation, cells were permeabilized and labeled with IgG-Cy3 

secondary antibody to label M2:FLAGhNIS that was internalized over 18hrs. Cells were 

then visualized. The merged image in figure 7C shows again that M2:FLAGhNIS 

remained at the cell surface (green fluorescence). Additionally, the lack of red 

fluorescence indicates that internalized M2:FLAGhNIS was not detectable. This is either 

due to degradation of internalized M2:FLAGhNIS or lack of internalization. In condition 

D, cells were fixed and permeabilized prior to incubation with IgG-Cy3 secondary 

antibody to label total remaining M2:FLAGhNIS. The subcellular localization of labeled 

M2:FLAGhNIS in figure 7D is consistent with cell surface rather than intracellular 

labeling. This supports the conclusion that there is no detectable internalized 

M2:FLAGhNIS 18 hrs after labeling with primary antibody. Therefore, we conclude that 

labeling with primary antibody does not induce endocytosis of FLAGhNIS, but 

conjugation of secondary antibodies does. 
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Immunofluorescence-based internalization assay does not reveal a difference in 

FLAGhNIS levels after MEK inhibition in MCF7 +FLAGhNIS cells 

 To determine if MEK inhibition increases internalization of FLAGhNIS, an 

immunofluorescence-based internalization assay was performed on MCF7 +FLAGhNIS 

cells. FLAGhNIS was labeled with M2 primary antibody, then fixed immediately (0hr) or 

incubated for 24 hrs with MEK inhibition (20 uM U0126) or without treatment (DMSO). 

The “0hr” sample was fixed immediately and labeled with IgG-Cy3 to determine baseline 

cell surface FLAGhNIS levels. All other samples were fixed after 24 hr incubation with 

or without MEK inhibition. To label remaining cell surface M2:FLAGhNIS, cells were 

incubated with IgG-Cy3. To label total remaining M2:FLAGhNIS, cells were 

permeabilized prior to incubation with IgG-Cy3.  

For each sample, images of 6 different fields of view were taken with equal 

exposure time. These images were then analyzed using MetaMorph software to quantify 

fluorescence: for each image, five cells and three regions without cells were selected for 

quantification. Thus, for each sample, the fluorescence of 30 cells and 18 background 

regions was quantified. These values were averaged, and background was subtracted 

from cellular fluorescence to provide the mean fluorescence above background.  

We hypothesized that there would be less cell surface M2:FLAGhNIS after MEK 

inhibition. Surprisingly, remaining cell surface M2:FLAGhNIS and remaining total 

M2:FLAGhNIS levels were roughly the same for treated and untreated samples (figure  
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8). Therefore, we conclude that MEK inhibition did not increase the internalization or 

degradation of the cell surface FLAGhNIS population that was labeled by M2 primary 

antibody. 

 

MEK inhibition does not reduce total FLAGhNIS levels in MCF7 +FLAGhNIS cells 

 24 hrs after labeling with M2 primary antibody, little M2:FLAGhNIS remains that 

can be detected by IgG-Cy3 secondary antibody. This makes it difficult to quantify 

fluorescence above background for the immunofluorescence-based internalization assay 

(see figure 8). We theorized that this weak signal was one reason that we were unable to 

quantify a difference between MEK-inhibited and untreated MCF7 +FLAGhNIS cells. If 

FLAGhNIS degradation by MEK inhibition occurs with shorter U0126 incubations, we 

would be able to shorten the incubation for the internalization assay. Therefore, we 

decided to investigate the temporal profile of FLAGhNIS degradation by MEK inhibition 

in these cells 

MCF7 +FLAGhNIS cells were treated with 20 uM U0126 for 0, 8, 12, 18, and 24 

hrs before harvesting for western blot. Surprisingly, we found that U0126 treatment did 

not decrease total FLAGhNIS levels (figure 9A). In fact, FLAGhNIS levels were slightly 

increased after 12 and 18 hrs of MEK inhibition. Densitometry was performed and 

FLAGhNIS band intensities were divided by their corresponding β-actin band intensities 

for normalization of protein loading. Probe for phospho-ERK (p-ERK) verifies that the 

20 uM U0126 effectively inhibited the MEK signaling pathway. For each sample, RAIU 

was performed to determine functional FLAGhNIS activity. Interestingly, MEK 

inhibition did decrease FLAGhNIS activity in this experiment (figure 9B).  
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DISCUSSION 

Inhibition of the MEK signaling pathway by 24 hr U0126 treatment decreases 

NIS function, total NIS protein levels, and cell surface NIS levels in MCF7 breast cancer 

cells stably expressing exogenous FLAGhNIS. Additionally, labeling of cell surface 

FLAGhNIS in live cells revealed that secondary antibody conjugation induces clustering 

and endocytosis of the symporter. Fluorescence activated cell sorting was successfully 

utilized to select for a subset of cells with high cell surface FLAGhNIS expression. 

Regrettably, the selected clones seem to have different characteristics other than 

increased cell surface FLAGhNIS expression. In these “high expression” clones, MEK 

inhibition did not result in the degradation of FLAGhNIS, although it did decrease NIS-

mediated RAIU. A future direction is to investigate what makes these cells respond 

differently to MEK inhibition, perhaps by comparing the genetic profiles of MCF7 

FLAGhNIS cells with that of the selected MCF7 +FLAGhNIS cells. This is clinically 

relevant, because it suggests that the use of MEK inhibitors for breast cancer therapies 

could be compatible with radioiodine ablation therapies in some patients. 

Inhibition of the MEK signaling pathway by 24 hr U0126 treatment decreases 

functional activity and total protein level of FLAGhNIS in MCF7 cells stably expressing 

it. This is in agreement with previous data from our lab showing that MEK inhibition 

reduces the functional activity and total protein level of endogenous NIS protein in 

tRA/H treated MCF7 cells. However, tRA/H treatment induces the synthesis of 

endogenous hNIS. Therefore, this model allowed for analysis of the effect of MEK 

inhibition on the expression and activity of newly synthesized hNIS. Our study differs by 
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investigating the effect of MEK inhibition in a model of constitutively expressed 

FLAGhNIS. MEK inhibition had the same effect in both models, indicating that NIS 

degradation by MEK inhibition is not restricted to newly synthesized protein. 

Since NIS must be at the cell surface to function as a symporter, a decrease in cell 

surface expression could explain the observed decrease in function. 24 hr MEK inhibition 

resulted in a 27% decrease in cell surface FLAGhNIS protein level as assessed by flow 

cytometry. It is interesting to note the concordance of this value with the reduction in 

function of both tRA/H induced hNIS and constitutively expressed FLAGhNIS after 24 

hr MEK inhibition. In those experiments, RAIU was decreased by 27% and 26%, 

respectively. This suggests that the observed decrease in FLAGhNIS activity can be 

explained by a reduction in cell surface FLAGhNIS protein level.  

We next sought to determine whether this reduced cell surface FLAGhNIS was 

due to increased internalization, decreased trafficking to the cell surface, or both. The 

first objective to this end was to label cell surface FLAGhNIS with fluorescent antibodies 

and to track it over time. Unlike RAIU, Western Blot, and Flow Cytometry, which are 

population-based assays, immunofluorescence microscopy allows for visualization and 

hence characterization of individual cells. Preliminary experiments revealed that the 

MCF7 FLAGhNIS stably transfected cell line was heterogeneous in expression level of 

FLAGhNIS. In fact, many cells appeared to not express FLAGhNIS at all. As we were 

only interested in cells that expressed cell surface FLAGhNIS at levels high enough to be 

detected using immunocytochemistry, a more homogenous, “high expression” population 

was selected for using fluorescence activated cell sorting (FACS). This technique was 

successfully employed to isolate a population of MCF7 FLAGhNIS with high cell surface 
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FLAGhNIS expression. RAIU was performed on the separated populations. As expected, 

the “high expression” (MCF7 +FLAGhNIS) population had the highest radioactive 

iodine uptake, due to higher expression of functional cell surface FLAGhNIS.  

A straightforward way to investigate the effect of MEK inhibition on cell surface 

FLAGhNIS is to label with antibodies for indirect immunofluorescence microscopy and 

observe U0126 treated cells compared to non-treated cells over time. Preliminary 

experiments were performed to optimize live cell labeling of FLAGhNIS. As shown in 

figures 5-7, secondary antibodies induce clustering and internalization of FLAGhNIS. As 

this endocytosis is induced by antibodies and does not represent constitutive 

internalization, we believe that investigating the effect of MEK inhibition on this process 

would not be physiologically relevant. However, these data did show that labeling with 

primary antibody alone does not induce endocytosis of FLAGhNIS (figure 7). Since 

labeling of FLAGhNIS using M2 primary antibody does not seem to interfere with 

trafficking, this antibody can be used to pulse label a population of cell surface 

FLAGhNIS. This pulse labeling was used to investigate the effect of MEK inhibition on 

FLAGhNIS internalization by performing a fluorescence-based internalization assay. 

I next sought to optimize a fluorescence-based internalization assay using MCF7 

+FLAGhNIS cells. The strategy was to pulse label a population of cell surface 

FLAGhNIS, incubate at physiological conditions with or without MEK inhibition, and 

chase with one of two labeling methods: one for permeabilized cells and one for non-

permeabilized cells. This determines for each treatment how much of the pulsed 

population (M2:FLAGhNIS) has been internalized compared to how much has remained 

at the cell surface. M2 primary antibody was to pulse label cell surface FLAGhNIS, 
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followed by 24 hr incubation with or without MEK inhibition. The pulsed population was 

chased with IgG-Cy3 secondary antibody to label remaining cell surface M2:FLAGhNIS 

in non-permeabilized cells, and to label total remaining M2:FLAGhNIS in permeabilized 

cells. We theorized that by comparing the two labeling patterns we would be able to 

determine the relative amount of internalization of M2:FLAGhNIS for each treatment. 

Contrary to our hypothesis, we did not observe a more robust decrease in 

remaining cell surface M2:FLAGhNIS after 24 hr MEK inhibition compared to untreated 

cells, suggesting that MEK inhibition did not increase internalization. There was also no 

apparent difference in total remaining M2:FLAGhNIS between MEK inhibited and non-

treated cells, suggesting that degradation was not increased. However, for both 

permeabilized and non-permeabilized cells, there was very little detectable 

M2:FLAGhNIS remaining after the 24 hr incubation (figure 8A). This made it difficult to 

compare treatments, as quantifiable fluorescence above background was very low (figure 

8B).   

We theorized that levels of remaining M2:FLAGhNIS would be higher after 

shorter incubations between pulse and chase labeling, such that fluorescence could be 

more effectively quantified and compared. However, it was unknown if the MEK 

inhibitor U0126 could downregulate FLAGhNIS with shorter treatment times. In order to 

determine the appropriate incubation time for the fluorescence-based internalization 

assay, the temporal profile of FLAGhNIS modulation by MEK inhibition was 

characterized.   

To investigate the temporal profile of the effect of MEK inhibition on FLAGhNIS 

in MCF7 +FLAGhNIS cells, western blot was employed to quantify total FLAGhNIS 
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levels after 0, 8, 12, 18, and 24 hr U0126 treatment. Surprisingly, total FLAGhNIS 

protein levels did not decrease, and in fact were slightly higher after 12 and 18 hrs of 

MEK inhibition. Since U0126 inhibits phosphorylation of ERK, p-ERK was probed to 

ensure that the drug was effective. Indeed, p-ERK levels decreased dramatically in all 

U0126-treated samples. Additionally, the probe for hNIS only detected bands in MCF7 

+FLAGhNIS cells, verifying that the band is specific. Therefore, we must conclude that 

FLAGhNIS protein levels were not decreased by MEK inhibition. Interestingly, however, 

FLAGhNIS-mediated RAIU did decrease in a dose-dependent manner. This could be due 

to downregulation of cell surface FLAGhNIS, direct inhibition of FLAGhNIS function, 

or it may be an artifact due to cytotoxicity. 

The contradiction between the western blot results presented in figures 2 and 9 

may be due to phenotypic differences between the cell populations used for the 

experiments. It is likely that selecting for “high expression” MCF7 FLAGhNIS cells 

isolated a population that differed from the mixed population in other characteristics than 

cell surface FLAGhNIS expression. Regrettably, we had not considered this possibility 

before obtaining this western blot result. These cells were also used for the fluorescence-

based internalization assay, which may explain why there was no observable difference 

between MEK inhibited and non-treated cells in that experiment.   

The conflicting western blot results reveal a major limitation of this study: results 

of experiments performed on MCF7 +FLAGhNIS cannot be directly compared to those 

of experiments performed on the mixed population, due to different properties of these 

populations. However, this does open the door for a novel future direction. If these two 

populations can be compared genetically and biochemically, we may learn why MEK 
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inhibition leads to NIS degradation in one population but not the other. This would be an 

important step towards finding a way to use radioactive iodide ablation therapy 

concurrently with MEK inhibition as therapies for breast cancer.  

Another strategy to study the effect of MEK inhibition on NIS trafficking was 

pursued. A recently developed method for live cell labeling of proteins is the biarsenical-

tetracysteine system, which allows for protein labeling with small, membrane permeable 

dyes14. A tetracysteine motif (-CCXXCC-) is genetically fused to the protein of interest, 

and serves as a small tag. This is recognized by the small biarsenical molecules FlAsH 

(Flourescein Arsenical Helix) and ReAsH (Resorufin Arsenical Helix), which fluoresce 

green and red, respectively, when bound to the tetracysteine tag. These membrane 

permeable dyes can be used for pulse-chase labeling of a subset of proteins to study their 

temporal dynamics using fluorescence microscopy. 

An MCF7 human breast cancer cell line stably expressing human NIS with a 

tetracysteine motif fused to the intracellular C-terminus of the symporter (hNIS-TC) was 

established. We planned to use this system to investigate NIS modulation by MEK 

signaling in MCF7 cells stably expressing hNIS-TC. Initial experiments were performed 

to label hNIS-TC with FlAsH, but hNIS-TC labeling above the substantial background 

from non-specific binding was undetectable. To obtain higher expression of hNIS-TC, 

transient transfection of the plasmid was used in subsequent experiments. Efforts to 

optimize the FlAsH labeling method included using increasingly stringent wash 

conditions, lower FlAsH concentrations and shorter incubation times. Unfortunately, 

considerable non-specific binding persisted, and detection of FlAsH-labeled hNIS-TC 

above background was unsuccessful. Therefore, the use of this technique was abandoned. 
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The technology of FlAsH labeling of tetracysteine-tagged proteins was invented 

by Tsien et al and first reported in 199815. Since then, examples of the use of this 

technique include observation of connexin trafficking in live cells16, visualization of 

mRNA translation in live cells17, and labeling of the reggie-1/flotillin-2 receptor18. 

However, Stroffekova et al reported that FlAsH binds not only tetracysteine motifs, but 

also non-specifically to endogenous cysteine-rich proteins, and concluded that FlAsH 

“may be useful only for labeling those recombinant proteins that express at a very high 

level19.” They also found that the amount of non-specific binding varied by cell line. For 

example, background fluorescence was much higher in HEK293 cells than in HeLa or 

myocyte protein samples. 

In 2005, the tetracysteine motif was optimized for higher affinity labeling. The 

authors found that the hairpin motif –CCPGCC– yielded higher contrast of labeled 

proteins above background20. Specifically, the sequences HRWCCPGCCKTF and 

FLNCCPGCCMEP resulted in a >20-fold increase in contrast. Of note, we used the latter 

sequence as the TC motif of hNIS-TC, but were unable to successfully label this fusion 

protein. A future direction of this study could be to attempt labeling of hNIS-TC 

expressed in other cell lines, and to further test varying wash conditions, labeling times, 

and FlAsH concentrations. If this labeling technique can be optimized, it will be an 

informative tool for investigating the effect of MEK inhibition on the temporal dynamics 

of NIS trafficking in live cells.   
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Figure 1. 
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Figure 1. Reduction in FLAGhNIS function after 24 hr MEK inhibition (20 uM U0126) 
versus no treatment (DMSO). This corresponds to a 26% decrease in functional activity. 
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Figure 2.  

 
 
Figure 2. Reduction in total FLAGhNIS level after 24 hr MEK inhibition (20 uM U0126) 
versus no treatment (DMSO). Probe for β-actin allows for normalization of the amount of 
protein loaded per sample. This corresponds to a 20% decrease in total FLAGhNIS 
protein level. 
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Figure 3. 

 

 

Figure 3. Reduction in surface FLAGhNIS level after 24 hr MEK inhibition (20 uM 
U0126) versus no treatment (DMSO). 10,000 cells were counted for each sample, and 
mean fluorescence was used to quantify surface FLAGhNIS level. A) DMSO treated 
cells yield a mean fluorescence of 64.9. B) U0126 treated cells yield a mean fluorescence 
of 47.1. This corresponds to a 27% decrease in surface FLAGhNIS protein.   
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Figure 4. 
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Figure 4. Fluorescence activated cell sorting by cell surface FLAGhNIS expression of 
MCF7 FLAGhNIS mixed population. A) Cells were gated by fluorescence intensity. 
25,174 cells were excluded as dead or “no expression of FLAGhNIS” (blue), 10,737 cells 
were collected as “low expression of FLAGhNIS” (green), and 7,110 cells were collected 
as “high expression of FLAGhNIS” (red). B) RAIU of the different populations shows 
that “high expression” cells have 35% higher iodide uptake activity than the mixed 
population. The “high expression” clones were maintained and used for subsequent 
experiments. 
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Figure 5. 
 

Antibody Incubation Times and Temperatures 

 
 
Figure 5. Secondary antibody incubation causes clustering within 20 mins when 
performed at physiological temperature. FLAGhNIS was labeled with M2 primary 
antibody (1:1000) for 20 mins at 37°C (A, C) or 1 hr on ice (B, D), followed by IgG-Cy3 
secondary antibody (1:500) 20 mins at 37°C (A, B) or 1 hr on ice (C, D). Cells were fixed 
in 4% Paraformaldehyde, mounted, and viewed at 20x. 
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Figure 6. 

 
Figure 6. Internalization of FLAGhNIS after incubation with primary and secondary 
antibodies. Live MCF7 +FLAGhNIS cells were incubated with M2 monoclonal anti-
FLAG antibody from mouse (1:1000), followed by anti-Mouse IgG-Cy3 (1:500) for 
indirect immunofluorescent labeling of FLAGhNIS. Cells were visualized at 20x 
immediately (0 hrs), at 4 hrs, and at 8 hrs. Cells were maintained at 37°C (5% CO2) 

between visualizations. Images show the same field of view over time, revealing 
clustering and endocytosis of FLAGhNIS. 

 
 

Temporal imaging of  
surface +FLAGhNIS in live cells 
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Figure 7. 

 
 

Figure 7. Incubation with primary and secondary antibodies results in endocytosis of 
FLAGhNIS, but incubation with primary antibody alone does not. A) Cell surface 
FLAGhNIS was labeled with M2 followed by IgG-Cy3 (as described in figure 6). 18 hrs 
later, cells were fixed in 4% Paraformaldehyde and nuclei were labeled with Hoechst 
34580 (1:10,000, blue). B) Cell surface FLAGhNIS was labeled with M2. 18 hrs later, 
M2:FLAGhNIS that remained at the cell surface was labeled in live, non-permeabilized 
cells by IgG-A488 (green). Fixation and nuclear staining was performed as in A. C) Cell 
surface FLAGhNIS was labeled with M2. 18 hrs later, remaining cell surface 
M2:FLAGhNIS was labeled as in B (green). Cells were fixed and then permeabilized 
with 4% Saponin before incubation with IgG-Cy3 to label internalized M2:FLAGhNIS 
(red). Fixation and nuclear staining was performed as in A. D) Surface FLAGhNIS was 
labeled with M2. 18 hrs later, cells were fixed and permeabilized before incubation with 
IgG-Cy3 to label total M2:FLAGhNIS (red). Nuclear staining was performed as 
described in A. Cells were visualized at 20x. 

 

Surface +FLAGhNIS over 18 hrs 
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Figure 8.  
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Figure 8. MEK inhibition does not increase the internalization or degradation of surface 
FLAGhNIS in MCF7 +FLAGhNIS cells. After labeling cell surface FLAGhNIS with M2 
(1:1000), cells were fixed immediately or incubated with or without 20 uM U0126 
treatment for 24 hrs. Cell surface M2:FLAGhNIS or total M2:FLAGhNIS was then 
labeled with IgG-Cy3. A) Selected images taken at 20x. Fluorescence from FLAghNIS is 
red. Nuclei were labeled with Hoechst 34580 (1:10,000, blue). B) Results of 
quantification. For each sample, fluorescence was quantified using MetaMorph software 
for 30 cells (black) and 18 background regions (grey). These values were subtracted to 
provide mean fluorescence above background (white).   

20 uM U0126:   -   -   -    +     +
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Figure 9. 
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Figure 9. MEK inhibition does not decrease total FLAGhNIS but does decrease 
FLAGhNIS radioiodide uptake in MCF7 +FLAGhNIS cells. A) Temporal profile of total 
FLAGhNIS levels after MEK inhibition. Anti-hNIS polycloncal antibody from rabbit was 
used to probe for FLAGhNIS. Polyclonal antibodies from rabbit were used to probe for 
p-ERK and β-actin. Primary antibodies were detected by anti-rabbit IgG-HRP from goat. 
Densitometry was performed and band intensities were divided by β-actin band 
intensities for normalization of protein loading. Fold hNIS and fold p-ERK are measured 
relative to untreated MCF7 +FLAGhNIS level. B) Temporal profile of FLAGhNIS-
mediated iodide uptake after MEK inhibition. Iodide uptake was not divided by ug DNA 
and therefore has not been normalized for cell number.  
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