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Objectives of Spectroscopic Data Analysis

1. To provide an accurate, compact, and comprehensive representation

of experimental data.

2. To be able to interpolate reliably for missing observations within the data range.

3. To be able to provide realistic predictions in the ‘extrapolation region’ outside

the range of existing data.

4. To provide reliable estimates of physically interesting molecular properties (e.g.,

bond lengths, force constants, intensities).
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What is the best way of doing this?

Ans. By using a compact, analytical potential energy function

How do we determine this potential energy function?

Ans. By performing ‘direct potential fits’



Direct Potential Fits

• Simulate level energies as eigenvalues of some parameterized

analytic potential energy function V (r; {pj})

• Partial derivatives of observables w.r.t. parameters pj required for fitting are

generated readily using the Hellmann-Feynman theorem:

∂E(v, J)

∂pj
=

〈
ψv,J

∣∣∣∣
∂ V (r; {pi})

∂pj

∣∣∣∣ ψv,J

〉

• Compare predicted transition energies with experiment, and

optimize potential parameters via an iterative least-squares fit
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Challenge . . . to develop analytic potential function forms

∗ flexible enough to fully represent extensive high-resolution data

∗ robust and ‘well behaved’ (no spurious extrapolation behaviour)

∗ compact and portable – defined by a ‘modest’ no. of parameters

∗ incorporating appropriate physical limiting behaviour

Two successful approaches: 1. a ‘spline-pointwise’ potential

2. a global analytic function



1. The Spline Pointwise Potential (SPP)

∗ V (r) is represented by a cubic spline through a set of specified points

∗ The energies of the points are the fitted parameters

∗ Attach a long-range function at a chosen (ad hoc) radial distance rout

∗ Fits/adjusts long-range coefficients (and sometimes also rout) until a smooth

connection is achieved.
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1. The Spline Pointwise Potential (SPP)

∗ V (r) is represented by a cubic spline through a set of specified points

∗ The energies of the points are the fitted parameters

∗ Attach a long-range function at a chosen (ad hoc) radial distance rout

∗ Fits/adjusts long-range coefficients (and sometimes also rout) until a smooth

connection is achieved.

Advantages

• Smooth and very flexible function: readily able to fit to irregular potentials such

as those with double minima or a ‘shelf’

• Little interparameter correlation

Disadvantages

• Discontinuous derivatives at attachment to the extrapolation regions

• Third derivatives discontinuous at all spline points. Higher-order derivatives do

not exist.

• Requires a large number of parameters/spline points (! 50), each specified to

many significant digits, making it inconvenient to copy and use



2. Global Analytic Morse/Long-Range (MLR) Function

V (r) = De

(
1 − uLR(r)
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e−β(r)·yeq

p (r)
)2

• yeq
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• β(r) is the exponent coefficient function defined as

β(r) = βq
p(r) = β∞ yref

p (r) + [1 − yref
p (r)]

N∑

i=0

βi [y
ref
q (r)]i

where the coefficients βi are the fitting parameters and

lim
r→∞

β(r) = β∞ ≡ ln

(
2De

uLR(re)

)

these definitions allows the long-range behaviour of the potential to be

V (r) ≈ De − uLR(r)
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• Function and all derivatives smooth everywhere

• Requires relatively few parameters a achieve a better fit to experimental data

than other forms
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Advantages

• Incorporates physically meaningful quantities (De, re, Cn) as fitting parameters

in the algebraic form

• Function and all derivatives smooth everywhere

• Requires relatively few parameters a achieve a better fit to experimental data

than other forms

Disadvantages

• High correlation among parameters

• Difficulty accounting for abrupt changes in shape

Can we combine the advantages of both forms?



The Spline Exponent-MLR (SE-MLR)

Same structure as the MLR, except that it is β(yref
p (r)) [rather than V (r)]

which is defined as a spline function through a specified set of function values,

and it can be written as:

β(r) =
n∑

k=1

Sk(r) β(rk) =
n∑

k=1

Sk(r) βk

• Combines the very high flexibility of an SPP-type potential with the seamless

incorporation of theoretical long-range behaviour inherent in the MLR form.
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How do we use the SE-MLR?

1. Choose parameters defining yref
p (r) {p and rref}

2. Place the spline points {N , yref
p (rk) , βk}

3. Fit to the data to optimize the βk values

4. Consider the quality of fit (dimensionless root-mean-square deviation, dd) and

check the resulting potential for unphysical behaviour



Applications

In order to test the abilities of the SE-MLR, consider the following systems:

1. Ca2 X1Σ+
g

• 3573 data, uncertainties 0.006-0.15 cm−1

• Data covers 99.97% of De (∼ 1100 cm−1)

• Highest observed level (v=38) bound by only ∼ 0.3 cm−1

• MLR treatments fitted C6 while holding other dispersion coefficients (C8, C10)

fixed

2. N2 X1Σ+
g

• 1221 data, uncertainties 0.0015-0.015 cm−1

• Data covers only 47% of De

• Highest observed level (v=20) bound by 37600 cm−1

• Challenge Very narrow data region ( 0.9 - 1.55 Å), far extrapolation



How do we use the SE-MLR ?

1. Choose parameters defining yref
p (r) { p, rref}

2. Place initial points {here, 2 points < re, 13 points ≥ re, β(yref
p (∞)) = β∞}
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How do we use the SE-MLR?

1. Choose parameters defining yref
p (r) {p and rref}

√

2. Place the spline points {N , yref
p (rk) , βk}

√

3. Fit to the data to optimize the βk values
√

4. Consider the quality of fit (dimensionless root-mean-square deviation, dd) and

check the resulting potential for unphysical behaviour
√

5. Change number of points and repeat

6. Compare models

with different

numbers of points
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Spline pointwise potential (2003) PE− MLR5,3 SE −MLR5
De 1102.060 De 1102.081 De 1102.072
rout 9.44 re 4.27781 re 4.27780
C6 1.0023×107 C6 1.046×107 C6 1.030×107

C8 3.808×108 C8 3.0608×108 C8 3.0608×108

C10 5.06 ×109 C10 8.344×109 C10 8.344×109

r/Å U/cm−1 r/Å U/cm−1 rref 5.55 rref 6.3
3.096980 9246.6895 5.678571 636.3741 {p, q} {5, 3} y6.3

5 β
3.188725 6566.7325 5.809524 684.9589 β0 −0.19937072 −1.000 0.0084239
3.280470 4525.7282 5.940476 728.9235 β1 −0.23219 −0.844 −0.0034414
3.372215 3090.9557 6.071429 768.5976 β2 −0.06091 −0.688 −0.0300237
3.463960 2134.2175 6.202381 804.2551 β3 0.1383 −0.447 −0.0839978
3.555705 1475.2425 6.333333 836.2419 β4 −0.1791 −0.206 −0.1384960
3.647450 1004.5043 6.464286 864.8746 β5 0.362 0.034 −0.1865833
3.739195 661.4123 6.595238 890.4666 β6 0.249 0.276 −0.2250030
3.830940 410.6117 6.726191 913.2923 dd 0.628 0.517 −0.2481562
3.922685 234.0001 6.857143 933.6417 0.758 −0.2466246
4.014430 116.0996 6.988095 951.7718 1.000 −0.2134933
4.106174 44.5437 7.119048 967.8632 dd 0.628
4.197920 8.6885 7.250000 982.2159
4.289664 0.1760 7.500000 1005.2497
4.381409 11.9571 7.750000 1023.6698
4.500000 48.5948 8.000000 1038.3262
4.630952 106.9081 8.358974 1054.3861
4.761905 175.7311 8.717949 1066.0579
4.892857 248.8199 9.076923 1074.5969
5.023809 322.3873 9.435897 1080.8961
5.154762 393.7222 9.794872 1085.5974
5.285714 461.4555 10.303419 1090.2990
5.416667 524.6311 10.811966 1093.5160
5.547619 582.9870 11.611111 1096.6870

dd 0.70



Results

The SE-MLR achieves accuracy of the PE-MLR with requiring significantly fewer

parameters than the SPP, but more than the PE-MLR

Ca2(X1Σ+
g ) SPP PE-MLR SE-MLR

# fitted param. 55 10 12

dd 0.70 0.628 0.628

The fitted value of C6 obtained

using the SE-MLR shows less model

dependence than when using

the PE-MLR
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Ca2(X1Σ+
g ) SPP PE-MLR SE-MLR

# fitted param. 55 10 12

dd 0.70 0.628 0.628

The fitted value of C6 obtained

using the SE-MLR shows less model

dependence than when using

the PE-MLR

N2(X1Σ+
g PE-MLR SE-MLR

# fitted param. 10 17

dd 1.416 1.404

SE-MLR can incorporate a sensible

long extrapolation to the limit,

but a conventional SPP cannot !
1.0 1.5 2.0 2.5

-50000

0

50000

100000

V(r) / cm-1

r /Å

N2(X
1

g
+)

data
region

1.60 1.80 2.00 2.20 2.40

-30000

-20000

-10000

0

PE-MLR

SE-MLR



A challenging Ssstem for the SE-MLR form

Double-minimum potential - Na2(21Σ+
u )
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Conclusion

• By having the exponent coefficient function (rather than the potential itself)

be represented by a cubic spline, the number of points required to describe the

potential is reduced dramatically.

• The SE-MLR successfully combines the flexibility of the spline-pointwise

approach with a natural incorporation of the theoretically predicted

inverse-power long-range behaviour.

• To obtain a given quality of fit for a conventional single-minimum potential,

the SE-MLR requires more parameters than does a PE-MLR.

• However, preliminary results suggest that fits using an SE-MLR may provide

a more reliable determination of long-range coefficients such as C6 .

Future Work

• Explore the SE-MLR’s utility in describing double-minimum potentials.

• Possible quantitative incorporation of the correct, very short range ‘united-atom-

limit behaviour’ V (r) = Z1Z2e
2

4πε0 r ?



Splitting the radial variable exponent

β(r) = c0y
ref
q (r) + c1y

ref
q (r) + c2y

ref
q (r)2 + c3y

ref
q (r)3

yref
q (r) =

1 −
(

r
rref

)q

1 +
(

r
rref

)q =

(
1

1 + xq

)
(1 − xq)

For q < p

e−β(yref
q (r))yeq

p (r)) = eβ∞

(
1 +

2rq
ref(c1 + 2c2 + 3c3)

rq
+

2rp
eqC

rp
+

2r2q
ref(c1 − 3c3)

r2q

)

However, at r = ∞ , yref
q (r) = 1 and if

dβ(yref
q )

dyref
q

= c1+2c2+3c3 = 0

then at large distances

V (r) + De

(
1 − uLR(r) +

2rp
eβ∞

rp
+ . . .

)



Improving Short-range behaviour

lim
r→0

lim
r→0

V (r) =
C1

r
=

Z1Z2C
pp
1

r
≈ Z1Z2C

pp
1 DeuLR(r)2e2β(r=0)

uLR(re)2r

β(r = 0) = ln




uLR

√
Z1Z2C

pp
1 /DeuLR(re)

∑last
i=1

(
bρ
mi

)mi−1/2






