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Zusammenfassung

Bakterien, Archaeen und eukaryotische Mikroorganismen sind in fast jedem Habitat auf der
Erde zu finden, insbesondere im Erdreich, in Sedimenten und in Gewässern. Typischerweise
leben sie in komplexen Gemeinschaften mit verschiedenen Formen von symbiotischen As-
soziationen, insbesondere in Beziehungen mit größeren Organismen wie Tieren und Pflanzen.

Die große Mehrheit solcher Mikroorganismen ist nicht kultivierbar und kann daher nicht
mit traditionellen Methoden sequenziert werden. Die relativ junge Disziplin der
Metagenomik bietet verschiedene in vivo- und in silico-Werkzeuge um dieses Hindernis zu
überwinden. Insbesondere Hochdurchsatz-Sequenziertechnologien, wie 454 oder
Solexa-Illumina, ermöglichen es, solche Mikroorganismen zu untersuchen, indem komplette
natürliche mikrobielle Gemeinschaften einschließlich ihrer biologischen Diversität, sowie der
zugrundeliegenden metabolischen Pfade analysiert werden. Eine gegenwärtige Beschränkung
solcher Technologien ist, daß nur DNA Fragmente begrenzter Länge sequenziert werden kön-
nen. Ein zusätzliches Problem stellt dar, daß die sequenzierten Fragmente einer mikrobiellen
Gemeinschaft nicht ohne weiteres ihren jeweiligen Spezies aus der Gemeinschaft zugeordnet
werden können.

In den letzten Jahren wurden verschiedene Methoden entwickelt, deren Ziel es ist, einzelne
metagenomische Sequenzen sowohl taxonomisch als auch funktionell zu klassifizieren.
Trotzdem stellen insbesondere die taxonomische Klassifikation metagenomischer Sequenzen,
die von bisher unbekannten Spezies stammen und für die auch keine Sequenzen von anderen
nahe verwandten Spezies in den biologischen Sequenzdatenbanken vorliegen, eine besondere
Herausforderung dar. In solchen Fällen machen die bisher existierenden Methoden auf den
niedrigeren taxonomischen Ebenen viele falsche Vorhersagen.

In dieser Doktorarbeit präsentieren wir CARMA3, eine neue Methode zur taxonomis-
chen Klassifikation von assemblierten und unassemblierten metagenomischen Sequenzen,
die sowohl BLAST, als auch HMMER3, verwenden kann. CARMA3 akzeptiert Protein-
kodierende DNA Sequenzen, Protein Sequenzen und 16S-rDNA Sequenzen als Eingabe.
Zusätzlich stellen wir WebCARMA vor, eine Web-Anwendung für die Analyse von Protein-
kodierender DNA mit CARMA3, die eine lokale Installation von CARMA3 unnötig macht.
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Wir evaluieren unsere Methode in verschiedenen Experimenten mit simulierten und echten
Metagenomen und zeigen daß CARMA3 weniger falsche taxonomische Vorhersagen macht
(bei gleicher Sensitivität) als andere BLAST-basierte Methoden. In unserem letzten Experi-
ment zeigen wir, daß auch sehr kurze DNA Fragmente benutzt werden können – zumindest
prinzipiell – um die taxonomische Zusammensetzung eines Metagenoms zu bestimmen.
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Abstract

Bacteria, archaea and microeukaryotes can be found in almost every habitat present in nature,
in particular in soil, sediments and sea water. They typically live in complex communities
with different kinds of symbiotic associations which include relationships with larger organ-
isms like animals or plants. Examples are microbial communities in the gut or on the skin of
animals and humans, or bacteria that live in symbiosis with plants.

The vast majority of such microbes are unculturable and thus cannot be sequenced by
means of traditional methods. The recently upcoming discipline of metagenomics provides
various in vivo- and in silico-tools to overcome this limitation. In particular, high-throughput
sequencing techniques like 454 or Solexa-Illumina make it possible to explore those microbes
by studying whole natural microbial communities and analysing their biological diversity as
well as the underlying metabolic pathways. A current limitation of theses technologies is that
they can sequence only DNA fragments of a limited length. With this limitation it is usually
not possible to recover complete microbial genomes. In addition, the DNA fragments are
drawn randomly from the microbial communities and the exact species of origin is unknown.

Over the past few years, different methods have been developed for the taxonomic and
functional characterization of metagenomic shotgun sequences. However, the taxonomic
classification of metagenomic sequences from novel species without close homologues in the
biological sequence databases poses a challenge due to the high number of wrong taxonomic
predictions on lower taxonomic ranks.

In this thesis we present CARMA3, a novel method for the taxonomic classification of as-
sembled and unassembled metagenomic sequences that has been adapted to work with both
BLAST and HMMER3 homology searches. CARMA3 accepts protein-encoding DNA se-
quences, protein sequences, and 16S-rDNA sequences as input. In addition, we present
WebCARMA, a web application for the analysis of protein-encoding DNA sequences with
CARMA3 without the need for a local installation.

We evaluate our novel method in different experiments using simulated and real shotgun
metagenomes and show that CARMA3 makes fewer wrong taxonomic predictions (at the
same sensitivity) than other BLAST-based methods. In the last experiment we show that also
very short reads can, in principle, be used to describe the taxonomic content of a metagenome.
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Chapter 1
Introduction

When life on Earth arose about 3.5 billion years ago, it solely consisted of microbial life [172].
Still today, microbial life dominates Earth in many aspects. With an estimated population
of 5 � 10 30, prokaryotes are the most numerous organisms on Earth and constitute a huge
diversity [218]. They have been estimated to comprise 106 to 108 separate genospecies [177].
The total carbon of prokaryotes constitutes about 60 � 100% of the total carbon found in
plants [211]. Bacteria, archaea and microeukaryotes can be found in almost every habitat
present in nature, in particular in soil, sediments and sea water. Microbes can also be found
in rather hostile environments like the Arctic [18], deserts [48, 81], hot springs [141] and in
rocks as much as 7 kilometers below the Earth’s surface [192]. They typically live in complex
communities with different kinds of symbiotic associations which include relationships with
larger organisms like animals or plants. Examples are microbial communities in the gut and
rumen or on the skin of animals, or bacteria that live in symbiosis with plants. Figure 1.1
depicts a cow that has been surgically modified such that researchers have direct access to the
cow rumen and its microbial community.

Microbes are important for us as they are involved in the distribution and cycling of nu-
trients in the ecosystem, degradation of different compounds, and they also have substantial
impact on global climate. Furthermore, they account for the human micro flora — the human
body contains about 100 times more bacterial cells than human cells [14, 165]. Considering
the huge influence of microbes on the human body, it is clear that a more thorough under-
standing of the human condition also requires understanding of the diversity and functions
of the microbes in our body [132, 200, 218]. The MetaHIT project [144] and the Human
Microbiome Project [199] are examples of recent efforts to improve knowledge about the hu-
man micro flora. A prominent example for the importance of the human gut microbiome to
human health is the association of large-scale alterations in the phylogenetic composition of
gut microbiota with obesity [100].

Understanding microbes at the biochemical and genomic level is important as this will im-
prove our ability to use microbes and their genetic potential to produce useful materials and
products. In fact, we have been using microbes for more than 5000 years for food preser-
vation and to enrich our diet. Beverages like beer and wine, cheese, bread and a variety of
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Chapter 1. Introduction

Figure 1.1: A fistulated cow whose rumen microbiome has been searched for biomass-
degrading genes and genomes. From [70]. Reprinted with permission from ASSS.

other fermented foods form a significant proportion — about one third — of human food
consumption [23]. Whereas in ancient times microbes were used unknowingly, today mi-
crobes are actively used and modified to produce, for example, food flavoring and preserva-
tive agents [58]. But microbes are also useful in other fields. Microbial biotechnology makes
it possible to use microbes and their enzymes for the production of chemicals for industrial
and pharmaceutical applications like vaccines, antibiotics and other health-care products for
medical purposes [36]. Another application of microbes is the recovery of metals from cer-
tain types of copper, uranium, and gold-bearing minerals and the recycling of metals from
industrial waste to avoid excessive and environmentally harmful mining practices [21, 148].
A somewhat related application is the removal of toxic metals or organic pollutants from soil
or water with the help of microbes [28, 52].

Dwindling natural resources on Earth, in particular of fossil fuels, pose momentous chal-
lenges for humanity. At the same time, the world population is growing and developing
countries demand higher living standards involving further increase in consumption of en-
ergy and natural resources [203]. Environmental problems related to the usage of fossil fuels,
for example greenhouse gas emissions, are another argument to search for alternative sustain-
able energy sources. Among such alternatives are many technologies that involve the usage of
microbes. Complex microbial communities are used to produce methane by anaerobic degra-
dation of biomass, typically either high-energy biomass that has been grown for this purpose
or agricultural biomass waste [169]. Microbes are also used to produce ethanol from corn
glucose or sucrose by fermentation [102]. A promising technology, albeit still in its infancy,
includes microalgae to produce fuel by directly converting sunlight into hydrogen [59, 120].
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1.1. DNA

Knowledge about how microbes function is an essential prerequisite to improve efficiency
of such microbe-dependent technologies. The development of efficient technologies is of high
importance in order to meet the economic and ecological challenges of our society. Never-
theless, the study of microbes is hampered by the problem that most microbes in nature live
in complex microbial communities and therefore are not accessible by means of traditional
culturing methods. The recently upcoming discipline of metagenomics provides in vivo- and
in silico-tools to overcome this limitation. In particular, the development of new sequenc-
ing technologies has provided the possibility to gather genomic information from microbial
communities. A current limitation of theses technologies is that they can sequence only DNA
fragments of a limited length. With this limitation it is usually not possible to recover com-
plete microbial genomes. In addition, the DNA fragments are drawn randomly from the
microbial communities and the exact species of origin is unknown. Therefore, one of the
problems in metagenomics is to determine the species of origin and the function of a DNA
fragment. These questions can be answered, at least to some extent, using computational
methods for the taxonomic and functional classification of DNA fragments.

1.1 DNA

Prior to the advent of modern analysis techniques in the second half of the 19th century, the
scientific study of living organisms was mainly restricted to their phenotype, observable char-
acteristics like morphology or behavior. A deeper understanding and characterization of a
living organism can be obtained by knowledge of its genotype, the total genetic information
of the organism. The genotype is the genetic blueprint of an organism and thus mainly deter-
mines its phenotype. The genetic information is inherited from one or two parents, but smaller
amounts can also be obtained through horizontal gene transfer from other organisms. Most
of the information that accounts for the genotype is encoded at the molecular level by the
deoxyribonucleic acid (DNA), a double helix of two polymer strands. A schematic overview
of the DNA is depicted in Figure 1.2. Each of the strands consists of sugars and phosphate
groups that serve as backbones. Each sugar has one of four possible bases attached to it,
either one of the two purine bases adenine (A) and guanine (G), or one of the two pyrim-
idine bases thymine (T) and cytosine (C). The two strands of a double helix are connected
by hydrogen bonds between the complementary bases: A pairs with T and G pairs with C.
The order of these bases in a strand defines the DNA sequence. As bases in a strand can be
read in two directions, either right-to-left or left-to-right, it is convention to read the bases in
5’-to-3’ order, a convention based on the labeling of carbon atoms in the sugar group of the
backbone of the strand. Due to the complementarity in this base-pairing, the two strands are
anti parallel, i.e., the DNA sequence of one strand is the same as the reverse complement of
the DNA sequence of the other strand. The total DNA in a living cell constitutes the genome
which is partitioned into one or several long DNA molecules, the chromosomes. Archaeal and
bacterial cells typically contain one circular chromosome, whereas eukaryotic cells contain
several linear chromosomes [3]. In addition to the DNA sequence there are also epigenetic
factors that can be inheritable and do influence the phenotype, for example methylation of
DNA [209] or paramutation [25].
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Chapter 1. Introduction

Figure 1.2: DNA Overview, Source: [190]

DNA Sequencing

One of the most important steps in exploring DNA was the detection of the double-helix
nature of DNA by Watson and Crick in 1953 [210]. In the following years, different methods
have been developed with the goal to determine the exact sequence of nucleotides in a given
piece of DNA [121]. The DNA sequencing method developed by Sanger in 1977 [164] (also
called Sanger sequencing) was the most commonly used method for many years.

Sequencing machines can sequence DNA fragments only up to a certain length, e.g., Sanger
sequencing achieves a length of 800–1000 bp (base pairs). These DNA sequences are called
reads. In recent years, newer high-throughput sequencing (also next- or second-generation
sequencing) technologies such as Roche’s 454 or Illumina’s Genome Analyzer have been de-
veloped, which produce much more data at lower cost than traditional Sanger sequencing. A
drawback of these technologies is that they produce rather short reads (35 bp–400 bp) com-
pared to Sanger technology [110, 212].

The newest step in the evolution of DNA sequencers are the third-generation sequenc-
ing platforms. Most of these technologies are still under development and promise features
including “single-molecule templates, lower cost per base, easy sample preparation, signifi-
cantly faster run times and simplified primary data analysis”, while at the same time having
the potential to overcome the short read lengths of second-generation technologies [125]. The
exponential increase of data produced by the various DNA sequencing platforms in the last
30 years, depicted in Figure 1.3, has provided the capability to study new genomic aspects of
microbial and multi-cellular life.

Polymerase Chain Reaction

Another technique for the analysis of DNA is the polymerase chain reaction (PCR) [10]. It
was developed in 1983 to amplify specific pieces of DNA. The method is based on the use
of primers, which serve as anchors for amplification. Primers are short synthetic oligonu-
cleotides designed such that they show complementarity to specific regions up-stream and
down-stream of the piece of DNA to be amplified.
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1.2. Metagenomics

Figure 1.3: The rate of DNA sequencing over the past 30 years and into the future.
Reprinted by permission from Macmillan Publishers Ltd: Nature 458, 719–724, copyright
(2009) [188]

PCR starts with denaturation of the DNA at high temperatures such that complementary
strands of the DNA separate. Then, at lower temperatures, the primers bind to their specific
regions on the strands. In the next step, the annealed primers serve as starting points for
the Taq polymerase, a heat-stable DNA polymerase, which successively fills-up complemen-
tary nucleotides in order to synthesize the complementary strand. Repeating these two steps
several times thus allows to create million copies of a single DNA double strand [88].

Applications of PCR in metagenomics involve amplification of marker genes for the phy-
logenetic characterization of metagenomes as described in Section 1.2.1 and screening of
metagenomes for new genes from known gene families as discussed in Section 1.2.4.

1.2 Metagenomics

In traditional genomics, sequencing new microbial genomes requires the cultivation of mi-
crobes in a monoculture. It has been shown that only a very small fraction of the microbes in
an environment can be grown in a culture, and therefore most microbes are not accessible by
means of complete genome recovery [5]. Although new cultivation techniques for microbes
that were believed to be unculturable have been developed [79, 147], for the vast majority
of microbes it is still unknown how to cultivate them. As the term unculturable microbes is
misleading, we will refer to them as uncultured microbes.

Metagenomics, or environmental genomics, is a new field of research on natural micro-
bial communities containing uncultured microbes. Culture independent methods are used to
obtain information about the genetic diversity, population structure, and ecological roles of
members of the communities. These methods complement or even replace culture-based ap-
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Chapter 1. Introduction

Table 1.1: Milestones of (Meta-)genomics

Year Milestone Ref.

1977 Sanger et al. sequence bacteriophage Phi X 174 [163]
1977 Woese and Fox assess evolutionary relationships of organisms by

studying the 16S and 18S RNA
[216]

1983 Mullis introduces the polymerase chain reaction [29]
1984 Stahl et al. sequence clones from a 5S rRNA cDNA library from

a symbiontic community within the tube worm Riftia pachyptila
[182]

1985 Lane et al. describe a PCR protocol with universally applicable
primers to access 16S-rRNA sequences for phylogenetic charac-
terizations without isolation of the 16S-rRNA or cloning of its
gene

[96]

1985 Pace et al. suggest the concept of cloning DNA directly from the
environment

[133]

1987 Woese proposes a 16S-rRNA-based phylogeny [215]
1991 Schmidt et al. isolate and clone bulk DNA from seawater using

� phages and screen for 16S-rRNA genes
[170]

1992 Introduction of BAC and Fosmid cloning vectors
1995 Fleischmann et al. sequence a bacterial genome [50]
1996 Stein et al. sequence and reconstruct a 40 kb long fragment from

an uncultured marine archaeon using a fosmid library
[185]

1998 Handelsmann et al. coin the term “metagenome” [63]
2000 Béjà et al. construct first BAC library from marine environment

and sequence one BAC insert of size 60 kb
[22]

2000 Rondon et al. clone the soil metagenome using BACs [155]
2002 Breitbart et al. clone and sequence two uncultured marine viral

communities
[20]

2004 Venter et al. clone and sequence the metagenome of the Sargasso
Sea in large scale

[205]

2005 Margulies et al. introduce 454-sequencing technology [112]
2005 Uchiyama et al. introduce substrate-induced gene expression

screening (SIGEX)
[202]

2006 Edwards et al. use 454-technology to sequence a deep mine mi-
crobial community without cloning

[44]

proaches and bypass some of their limitations [177]. The term metagenome was coined in
1998 by Handelsmann et al. [63] in the context of soil as a microbial habitat and was defined
as “the collective genomes of soil microflora”. The term metagenome is also being used to
denote the in silico representation of a metagenome which usually is an incomplete repre-
sentation of the actual metagenome. Due to technical limitations of currently available high-
throughput sequencing (HTS) technologies, the sequences in an in silico metagenome repre-
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1.2. Metagenomics

sent only short randomly drawn fragments which also do not necessarily cover all genomes in
the metagenome. With the ongoing development of sequencing technologies, this discrepancy
will most likely become smaller.

A new perspective on microbial diversity was provided in 1977 by Carl Woese [216] who
used 16S and 18S ribosomal RNA to assess the evolutionary relationships of different organ-
isms. Based on this technique, he proposed the archaea as a separate group of prokaryotes
and introduced a separation of life into three domains: Archaea, bacteria and eukaryotes. This
was a departure from previous taxonomies that were based on the analysis and comparison
of phenotypic characteristics of organisms. Although highly controversial in the beginning,
nowadays the three-domain system of Carl Woese is widely accepted.

By suggesting the concept of cloning DNA directly from the environment in 1985, Pace et
al. [133] paved the way for the exploration of the diversity of uncultured microbes. Schmidt
et al. realized this concept six years later by isolating and subsequently cloning bulk DNA
from seawater, using a � phage library [170]. In such a clone library, each clone carries a
piece of environmental DNA. This transfer of DNA pieces from uncultured microbes into
culturable hosts made previously unaccessible DNA available for further analyses. Different
techniques can be used to screen the clones for functionally active environmental genes or
other sequences of interest, for example phylogenetic markers.

Although the usage of environmental clone libraries was the crucial step towards metage-
nomics, construction and screening of clone libraries remained laborious. Furthermore, the
clone libraries are known to exhibit significant bias [46, 195]. The introduction of HTS tech-
nologies like Roche’s 454-sequencing, ABI’s SOLiD or Illumina’s Genome Analyzer has
allowed for sequencing metagenomic samples without a prior cloning step. The first sequenc-
ing technology being used for shotgun sequencing of a metagenomic sample, similar to the
sequencing of whole genomes, was 454-sequencing. One of the first metagenomic samples
being sequenced was a deep mine microbial community in 2006 [44]. An overview of the
milestones of (meta-)genomics is given in Table 1.1.

Figure 1.4 depicts a schematic overview of possible steps in a metagenomic workflow.
Preparation steps, necessary for the extraction of DNA from a metagenomic sample, depend
on the sample and can require, for example, filtering steps for seawater or sieving steps for
soil. Given the extracted and purified DNA, three possible approaches are common: (a)
amplification with PCR, typically using 16S primers, followed by sequencing of the amplified
DNA, (b) the construction of a metagenomic library, or (c) direct shotgun sequencing. A more
detailed description for each of these variants is given in the following Sections 1.2.1 to 1.2.5.

1.2.1 16S-based PCR Amplification

For accurate assessment of the population structure of a microbial ecosystem, different gene
markers can be used. The most common and established marker is the 16S-rDNA in prokary-
otes, but mitochondrial and chloroplastic rRNA are also used [204, 123]. The 16S-rDNA is
a gene that encodes for the 16S-rRNA, a component of prokaryotic ribosomes. Ribosomes
are responsible for the translation of genes into proteins. They consist of different RNAs and
proteins, but the key catalytic activity is provided by the RNAs [24]. Due to their essential
function in all living cells, ribosomal RNAs are highly conserved. Carl Woese found that
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Chapter 1. Introduction

PCR amplification
e.g. with 16S-Primers

DNA extractionEnvironmental sample

PCR amplicon sequencing

Direct sequencing

Metagenomic Library

Clone sequencing

Screen for sequences

Screen for phenotypes

a)

c)

b)

Figure 1.4: Possible steps in a metagenomic workflow.

in particular the small subunit 16S ribosomal RNA is suited to serve as a genetic marker in
prokaryotes [216]. The 16S-rRNA consists of regions that are highly conserved between dif-
ferent bacterial and archaeal species, and regions that are highly variable. The former can be
used as anchors for the detection of the 16S-rDNA using universal primers in new phylogenet-
ically remote sequences. The latter, the highly variable regions, can provide species-specific
signature sequences.

16S-rDNA sequences can be obtained by sequencing of clones from a metagenomic library,
yet this approach requires significant manual labour, and only a few population constituents
can be phylogenetically characterized. Using next-generation sequencing technologies and
primer directed PCR amplification, it is possible to obtain 16S-rDNA sequences more di-
rectly. By focusing the sequence coverage on 16S-rDNA, especially the V6 hyper-variable
region [75, 77] — or theoretically any other suited genetic marker — it is possible to get a
much more detailed view of the phylogenetic diversity and low abundant species of highly
complex natural communities [179]. Another possibility is the random shotgun sequencing of
a metagenomic sample with next-generation sequencing technologies and successive screen-
ing for fragments that encode for 16S-rDNA, but the yield of 16S-rDNA can be below 0.5%
in this approach [94].

For taxonomic classification of complete and partial 16S-rDNA sequences, different meth-
ods are available. For an overview see Liu et al. [106]. One of the most commonly used
methods is the RDP classifier, a naïve Bayesian classification method [208]. It uses a feature
space consisting of all possible RNA sequences (words) of length eight. Words occurring in
the query sequence of unknown taxonomic origin are used to compute the probability of the
query sequence to be a member of a group of reference sequences from a certain taxonomic
clade. Within each taxonomic rank, the query is assigned to the clade that gives the highest
probability score.

The taxonomic classification of 16S-rDNA sequences is used for assessment of the micro-
bial diversity, evenness, and community structure. Rarefaction curves can be used to estimate
the completeness of a sample and the species richness of a microbial community [168]. For
example, Sogin et al. [179] pyrosequenced 16S-rRNA PCR amplicons of different microbial
communities from the North Atlantic and showed that the communties are one to two orders
of magnitude more complex than previously reported for any microbial environment. It was
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observed that the microbial communities consist of small numbers of dominating populations
and thousands of low-abundance populations that account for most of the phylogenetic diver-
sity, therefore termed by the authors as the “rare biosphere”. Subsequently, however, there
has been a controversy about the impact of sequencing errors that might have introduced an
overestimation of the species richness [95, 145].

Despite the known problems of primer bias [9, 76] and horizontal gene transfer [2], 16S-
rDNA-based metagenomics is still the method of choice for analyses with a sole focus on
taxonomic composition. On the other side, information about the functional potentials of
a microbial community can only be inferred by the assumption that species in the commu-
nity that are similar to already known (cultured) species also share most of their metabolic
functions [74, 134, 170].

1.2.2 Metagenomic Libraries

To analyse and sequence a DNA fragment, it needs to be isolated and amplified. This am-
plification step is also called cloning, either performed in vitro using PCR, or in vivo using
living cells. For the construction of a metagenomic library, the cell-based DNA cloning is
used which takes advantage of the natural propagation via cell division of unicellular organ-
isms like bacteria. A set of clones that carry a foreign DNA fragment is called a clone library.
A clone library that carries environmental DNA is called a metagenomic library, but other
names like environmental DNA library, zoolibrary, soil library, and many other names are
also used [153].

The cloning strategy consists of four steps. The first step is the construction of recombinant
DNA molecules by first cutting the DNA fragment and a replicon — a sequence where the
replication of DNA is initiated — with specific restriction endonucleases. Then, as the second
step, the DNA fragment and the replicon are ligated together using the enzyme DNA ligase.
Because the replicon serves as a carrier of the DNA fragment, it is also called vector. Common
vectors are bacteriophages, cosmids or bacterial artificial chromosomes (BACs). The latter
two allow the cloning of rather long fragments, 35-40 kb for cosmids and up to 200 kb for
BACs [76]. In the third step these recombinant molecules are transferred into the surrogate
host cells, typically into Escherichia coli via electroporation [68]. The transformed cells
are plated out by spreading over the surface of nutrient agar in a petri dish. Colonies grow
consisting of clones that are all identical to an ancestral single cell. Individual colonies are
picked from the plate for subsequent growth in liquid culture. In the last step, the transformed
and enriched cells are lysed and their DNA is extracted and purified. The differences between
the recombinant DNA and the host chromosomal DNA allow to distinguish between both,
and the recombinant DNA can finally be recovered [187].

Depending on the kind of habitat, the DNA extraction process often involves different
mechanical filtering steps. Seawater can be filtered such that bigger eukaryotic inhabitants
and smaller viral particles are discarded. This ensures that in the following DNA extraction
step mainly microbial DNA of interest is obtained. Also sieving of soil is often performed to
obtain enough DNA of the favored soil community [189].

The extraction of DNA from a natural environment can be a challenging task. For example,
polyphenolic compounds from decaying plant material, which are difficult to remove, often

9



Chapter 1. Introduction

contaminate the purified DNA from soil [189]. Another issue is the potential bias of the
DNA extraction protocol. It has been shown that different methods for the extraction lead to
different community compositions [113].

If a certain subpopulation with low abundance exhibits genes of interest, it is possible to
perform a pre-enrichment of the metagenomic sample, such that the metagenomic library
finally contains more of these genes. Different enrichment methods are reviewed for example
in [30].

Although the construction of a metagenomic library is quite laborious and only few se-
quences can be obtained compared to recent approaches of direct sequencing with HTS tech-
nologies like 454 or Illumina (Section 1.2.5), using metagenomic libraries has some advan-
tages. The obtainable sequence length is not limited by the read length since the metage-
nomic fragments in the library can be sequenced with the shotgun [6, 181] or chromosome-
walking [27] approach. Therefore, metagenomic libraries allow to sequence complete genes.
Still, large gene clusters or operons cannot be captured by this approach.

Besides sequencing of fragments from a metagenomic library, the search for interesting
genes and functions within such a library using highly automated function- and sequence-
based screening techniques are other applications of metagenomic libraries, which are also
described in the following subsections.

1.2.3 Function-Based Screening

A metagenomic library consists of host organisms that hold foreign metagenomic DNA frag-
ments. If a fragment contains a complete gene, it is possible that the gene is expressed.
Functional metagenomics takes advantage of this heterologous expression of metagenomic
genes. This allows to find completely new classes of genes in a metagenomic community,
also if the new genes exhibit no sequence similarity to any other previously known gene se-
quence [66, 149]. To find such new genes, individual clones from a metagenomic library are
searched for certain enzymes or other bioactivities [83].

The detection of novel gene products not only deepens our understanding of the biology
and biochemistry of the microbial community within its habitat, but novel gene products like
biocatalysts can also improve or enable applications in different industrial applications [83,
107]. Examples for the discovery of new gene products as a result of heterologous expression
in metagenomic libraries are antibiotics [56, 109] and antibiotic resistance genes [152].

Typically, only a few clones out of thousands in a library express the gene product that
is searched for [62]. To also find low abundant genes in a metagenome, sufficiently large
libraries have to be screened, which is often done with highly automated high-throughput
picking and pipetting robots. The function-based screening is also called enzyme-activity-
based or phenotype-based screening [69, 189]. To detect the expression of a certain function
in a clone, the following techniques are used.

(1) Heterologous complementation of host strains or mutants

In this approach, mutants are used as host organisms. These mutants do not grow under nor-
mal conditions, they require certain selective conditions. If a foreign gene compensates the
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inactive gene of the mutant, the mutant can also grow under normal conditions. An example
are E. coli mutants with a cold-sensitive mutation in a domain of the DNA polymerase I,
which is lethal at temperatures below 20 °C. By exposing a metagenomic library of mutant
clones to temperatures below this temperature, only such clones survive and thus indicate
a potentially novel gene which carry and express a metagenomic gene for the DNA poly-
merase I [178, 177].

(2) Direct detection of specific phenotypes of individual clones

Specific substrates or indicator dyes which can interact with the desired gene product are
incorporated into the growth medium. Clones that express the gene product can then be
detected in a screen due to a color change in the growth medium of the individual clones [62,
177]. An example using skim milk agar plate is depicted in Figure 1.5.

Fig. 1 

 

 

 

  

FIG. 1 Functional screening of metagenomic library for protease activity on skim milk agar 

plate. Metagenomic library consisting of 70,000 clones were screened on skim milk plate for 

protease activity. The positive clone showing zone of clearance in skim milk agar plate is 

indicated by an arrow. 

 

Protease 
positive clone 

Figure 1.5: Functional screening of a metagenomic library for protease activity on a skim
milk agar plate. The positive clone showing zone of clearance in skim milk agar plate is
indicated by an arrow. Source: [143]

(3) Substrate- and metabolite-induced gene expression screening methods

Substrate-induced gene expression screening (SIGEX) is a method for the detection of ca-
tabolic genes. The expression of catabolic genes is usually induced by certain substrates
or metabolites and is often controlled by regulatory elements (promoters) which are located
close to the catabolic genes. For the SIGEX method, an operon-trap expression vector is
used, which harbors the gene for a green fluorescent protein (gfp) but not a promoter. If a
substrate is added to growth medium of the metagenomic library, all clones are expressed that
carry a metagenomic catabolic gene with a promotor that is specific to the substrate. As the
green fluorescent protein is also located on the vector, it is subsequently coexpressed. Finally,
fluorescence activated cell sorting (FACS) is used to separate expressing from non-expressing
clones [202]. Another method is metabolite-regulated expression (METREX) which is able
to detect small molecules. It makes use of quorum sensing, a natural process used by many
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microbes for the cell-to-cell communication. Quorum sensing is mediated by small signal
molecules and allows the cells to determine their own cell density. In addition to the genome
and the vector for the metagenomic fragment, the host cells contain plasmids which serve
as biosensors that contain genes for the quorum sensing and the green fluorescent protein.
The E. coli host strain cells themselves do not produce detectable quorum-sensing inducing
compounds. When a metagenomic gene in a clone is expressed and its gene product produces
enough quorum-sensing inducing metabolites to reach the required quorum of the biosensor,
the green fluorescent protein also becomes expressed and the clone can be detected [214].

To a certain extent, metagenomic libraries can also be used to obtain a linking of functions
and phylogeny in metagenomes. Clones that express a metagenomic gene of interest can be
sequenced and searched for flanking phylogenetic anchors like rRNA genes. Another alterna-
tive is the usage of a 16S-rRNA gene library as follows. After sequencing and taxonomically
classifying the 16S-rRNA genes, it is possible to search in the sequences of a particular phy-
logenetic group for flanking genes that encode a function. In both cases, this approach has
the disadvantage that phylogenetic anchors and genes that encode for a certain function are
only occasionally located in proximity to each other [153, 155].

The detection of novel genes using functional metagenomics is often limited by the inabil-
ity of the hosts to express the metagenomic genes. Different promoter regions or different
codon usage keep the expression at a low level or may even inhibit the expression of the
metagenomic gene. Even if a metagenomic gene is transcribed and translated correctly, its
folding might be incorrect if required chaperones do not exist in the host cell. The same holds
for cofactors which might be absent in the host cell or cannot be correctly incorporated into
the final protein. Furthermore, if a function of interest is the result of a cascade of genes, it
cannot be detected because of the limited length of inserts in metagenomic libraries. Another
problem are metagenomic genes which are lethal for the host. These genes cannot be cloned.
Approaches to improve the expression of foreign genes in metagenomic libraries can either
be the enhancement of the capabilities of existing host strains like E. coli or the usage of
new host strains that are better suited for the expression of metagenomic genes from other
uncultured taxonomic clades [189].

1.2.4 Sequence-Based Screening

Sequence-based screening methods include sequencing of clones and different PCR- and
hybridization-based methods. Sequencing of clones will be discussed separately in the next
section. Both PCR- and hybridization-based methods use sequence similarity to known se-
quences to detect new sequences. Sequence-based screening has the advantage over func-
tional metagenomics of not requiring heterologous expression. Primers and hybridization
probes are designed such that they target conserved DNA regions, which will increase the
chance to find new members of the same gene family in the metagenome. The disadvantage
of these methods is that only members of known families can be detected [34, 177]. They are
described in the following two paragraphs.
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PCR-based methods The screening for 16S-rDNA genes using PCR, as already dis-
cussed in Section 1.2.1, is a special case of the sequence-based screening methods as it con-
centrates on the recovery of one specific marker gene and has become the standard method
for the phylogenetic characterization of metagenomes. Besides this, PCR can also be used to
discover function-encoding genes. Examples of newly discovered functional enzymes using
PCR are chitinases from aquatic environments [98], alcohol oxidoreductases [87], and diol
dehydratases [86], the latter two from various sample sites.

One of the disadvantages of the standard PCR method is that it usually amplifies only frag-
ments of limited length. To access full-length genes from metagenomes, there exist several
technically more involved variants of PCR. These include universal fast walking [126], pan-
handle PCR [118], random primed PCR [105], inverse PCR and adaptor ligation PCR [131],
pre-amplification inverse-PCR (PAI-PCR) [223], PCR with highly degenerated consensus
primers [11], and gene cassette PCR [186]. Some of these PCR variants also provide library-
independent approaches for the recovery of novel genes [30].

Besides the inherent limitation of PCR regarding the amplification and detection of com-
pletely novel gene familes, several studies have shown that primer bias [150, 191] and co-
amplification of homologous genes that generate chimeric sequences [207] reduce the quality
of PCR amplified sequences, and thus prevent full recognition of the microbial diversity [206].

Microarrays The microarray technology can also be used for the taxonomic and functional
characterization of metagenomes. For the taxonomic characterization of a metagenome, they
are created by arraying oligonucleotides on the microarray surface that are complementary to
16S-rRNA sequences. These oligonucleotides are derived from known 16S-rDNA of various
cultured and uncultured species. By specific hybridization of the 16S-rRNAs (the queries) in
a metagenome to their targets on the microarray, a taxonomic profile of the metagenome can
be obtained [61, 224]. Similarly, sequences of other known genes as targets can be used to
create a functional profile of the metagenome [220].

An alternative strategy involves the spotting of metagenomic fragments derived from clone
libraries onto the microarray. In contrast to the previous two settings, the metagenomic DNA
now serves as target, while DNA from different sources, e.g., metagenomic isolates, reference
strains, and complete communities, is used to probe the microarray. The different hybridiza-
tion patterns provide a characterization of the metagenomic clones. For example, fragments
on the microarray that show hybridization with multiple related species are likely to indicate
conserved genes [135, 175].

Although environmental microarrays allow for fast identification and characterization of
many clones, they have the disadvantage that the hybridization-based approach does not allow
for the detection of sequences from novel, distantly related species. In addition, compared to
PCR-based approaches, microarrays exhibit a 100 to 10 000-fold lower sensitivity for the
detection of gene sequences [34].

1.2.5 Shotgun Metagenomics

The development of BAC libraries has made it possible to isolate larger fragments of envi-
ronmental DNA from uncultured species for further investigation. In 2000, Béjà et al. [22]
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created a BAC library of a marine environment with insert sizes of up to 150 kb and suc-
cessively sequenced a 60 kb archaeal genome fragment. In the following years, decreasing
sequencing costs faciliated further studies involving the sequencing of random genomic DNA
fragments from natural microbial communities [20, 201]. In particular, the pioneering survey
of the Sargasso Sea in 2004 by Venter et al. [205], which included cloning and sequencing
of about two million DNA inserts, marked a new era in metagenomics, as this was the first
attempt to sequence the entire genomic content of an environmental community.

With the development of 454 pyrosequencing [112], it became possible to do “shotgun
metagenomics”, i.e., the sequencing of huge amounts of DNA directly from a microbial com-
munity without the need for prior laborious cloning steps [44]. With 454 and other more
recent HTS technologies that can sequence several orders of magnitude more DNA than the
Sanger technology at the same cost, shotgun metagenomics has become a standard technique
for the analysis of biological diversity in microbial communities and the underlying metabolic
pathways. In contrast to the 16S-rDNA-based studies, which use “universal” primers for the
rDNA genes for amplification and therefore are inherently biased [111], the shotgun sequenc-
ing is an undirected approach where primer-induced biases are avoided.

A limitation of the currently available HTS technologies is that they produce rather short
reads (35–400 bp) and thus cover genes only partly [110]. A common strategy to handle
the short reads is to assemble them into longer fragments in order to reconstruct full-length
genes. Since this approach is very limited in a metagenomic context and may lead to wrong
assemblies, one can try to infer information of a microbial community from the short reads
without prior assembly steps. Comparing the short metagenomic sequences with sequences
of known taxonomic origin and function allows to directly infer the taxonomic profile and the
functional potentials of the metagenome.

Therefore, one of the differences between shotgun metagenomics and traditional genomics
is that the analysis and annotation of a metagenome is performed on a set of short DNA se-
quences, rather than on complete genomic sequences. Higher-order genomic analyses beyond
the size of single fragments are not possible without knowledge of the gene order in a genome.

In the following, we will discuss strategies and limitations of the assembly of shotgun reads,
and the functional and taxonomic classification of assembled and unassembled metagenomic
fragments.

Assembly of Shotgun Reads

Reconstruction of complete genome sequences by assembling the metagenomic reads is usu-
ally not possible. One problem is that complex microbial communities with large species
richness require a huge sequencing depth in order to capture complete genomes of low-
abundant species with sufficient coverage. Even if enough reads of an uncultured genome
have been sequenced, the assembly process is hampered by the fact that often homologous
sequences from different species are so similar on the nucleotide level that reads from differ-
ent species are assembled together and chimeric contigs are produced [146]. Inserted phages
might also contribute to such chimeric assemblies [161]. This problem is further increased
by the problem that sequencing errors make it difficult to decide if two nearly perfect over-
lapping fragments represent two different species or only one species where the fragments
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differ in the overlapping regions because of sequencing errors. In addition, it has been shown
that a high frequency of polymorphisms and genome variations can be found even up to the
subspecies level [80, 146].

For metagenomes with a low biodiversity, it has been shown that it is possible to recon-
struct near-complete genomes of the dominant species. Tyson et al. recovered two near-
complete microbial genomes and three other genomes partially from an acid mine drainage
metagenome [201]. Over 100 000 reads with average length of 737 bp were obtained by
shotgun sequencing a small insert plasmid library. After assembly of the reads into longer
fragments, the fragments were assigned to the different species based on G+C content and
different sequence coverage. The resulting near-complete genomes were validated by com-
parison with closely related reference sequences.

If a particular uncultured species and not the whole metagenome is of interest, it might be
possible to grow the metagenomic community under controlled conditions and to adapt the
parameters such that the species of interest gets selectively enriched. This approach was fol-
lowed by Ettwig et al. [45] who enriched denitrifying methanotrophic bacteria, a population
of strains of a ditch sediment microbial community in a bioreactor. The enriched bacteria
were sequenced with Illumina sequencing, yielding over six million 32-nucleotide reads. Du-
tilh et al. [41] used these reads, mapped them against a related reference genome and then
assembled them into a consensus sequence. This assembly again served as a reference for a
second assembly step and the process was iteratively repeated a few times until convergence
of the consensus sequence was achieved. The advantage of this assembly strategy is that,
with each iteration, the assembly becomes less dependent on the reference genome. The final
assembly is a consensus of the multi-strain population. A similar approach has also been
described in [137].

Increasing fragment length in order to reconstruct highly abundant genes in metagenomes is
a common approach. In particular, genes that are shared by a large fraction of the individuals
within a microbial community are likely to have a sufficiently high sequencing coverage that
allows for an assembly. As this often holds for genes that encode functions which are specific
to this metagenome, this approach can provide insights into the microbial community and its
functions [70].

In the past, single genome assemblers have been used for the assembly of metagenomic
reads into longer contigs [101, 139, 226]. Since these assemblers are not designed to cope
with multiple species, they do not perform well on metagenomic data sets [115, 138]. Poly-
morphisms of genes that are shared by several species or strains and uneven species abun-
dance ratios hamper the construction of longer contigs. New metagenomic de novo assem-
blers produce longer contigs at accuracies similar to the single genome assemblers [97, 138].

Shotgun Reads – Gene detection

One of the important tasks in metagenomic sequencing projects is to find reads that encode
for proteins. This problem is closely related to the traditional gene detection problem in the
single genome scenario. Computational gene detection is typically performed either with a
homology search or with a de novo method. Homology-based methods, that use BLAST or
HMMER [4, 43, 91], work only for genes for which already known homologues with high
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sequence similarity exist. Since this is typically the case for only a fraction of the genes in
a metagenomic sample, de novo methods can be used that allow to find also novel genes.
De novo methods use extrinsic information like start and stop codons, and oligonucleotide
patterns combined with statistical models [17, 160]. Traditional microbial de novo gene find-
ers are not optimal in the context of unassembled short metagenomic reads as they expect
to find full-length ORFs including start and stop codons, whereas a metagenomic read can
only encode a fragment of an ORF due to its limited length. Recently, new de novo gene
detection methods like MetaGene [129], MetaGeneAnnotator [130], Orphelia [72] and Gen-
eMark.hmm [228] have been published that use adapted statistical models, and thus can also
detect incomplete ORFs and show a higher gene detection sensitivity and accuracy than pre-
vious traditional gene detection methods in the context of metagenomic data.

Shotgun Reads – Functional Classification

Since de novo gene detection methods usually do not provide a functional annotation of the
predicted genes, BLAST- or HMMER-based homology searches are mostly used to detect and
annotate genes [176]. For homology-based functional annotation, the unannotated sequence
is searched against a database of sequences with known functions. A sequence with unknown
function that shows a high similarity towards a database sequence with known function is then
considered to likely have the same or a very similar function as the database sequence [82].

This approach can in principle also be applied on unassembled metagenomic reads [53].
For bigger metagenomic datasets with hundreds of gigabases, the homology search can be-
come a computationally expensive or even intractable task [54]. A way to handle this problem
is to apply various data reduction methods, like assembly of reads into longer fragments, gene
detection with a de novo gene finder to detect ORFs, clustering of highly similar ORFs, and
translation of the non-redundant ORFs into protein sequences [70, 144]. Such procedures
can reduce the amount of sequences and therefore make a homology search computationally
feasible.

Shotgun Reads – Taxonomic Classification

One way to examine the phylogenetic diversity and to create a taxonomic profile of a shotgun
metagenome is to analyze special marker genes. Typically, 16S-rDNA genes, as discussed
in Section 1.2.1, but also other genetic markers [108], are used. Nevertheless, these genes
constitute only a small fraction of the total DNA within genomes. In an analysis that is based
on 16S-rDNA genes, only 0.07–0.3% of all metagenomic reads can finally be used for a
phylogenetic assignment [92, 205]. In contrast, composition-based taxonomic classification
methods try to classify all metagenomic reads. But similarly, they have the disadvantage of
not providing a direct linking between function and phylogeny. Therefore, another alternative
is the taxonomic classification of fragments that encode for proteins in a metagenome using
comparison-based methods. A high similarity between a metagenomic read and known DNA
or protein sequences can be used to infer some information about phylogeny of the metage-
nomic sequences. An overview of the various composition- and comparison-based methods
for the taxonomic classification of metagenomic sequences is given in Chapter 2.
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In contrast to most of these methods, that create taxonomic profiles by classifying individ-
ual sequencing reads, Taxy [119] uses the total oligonucleotide composition of a metagenome
to create a taxonomic profile.

Also closely related to the taxonomic classification is the clustering or binning of metage-
nomic sequences. Here the sequences are assigned into different bins, where each bin repre-
sents one species of the metagenome. In particular, if no closely related species is available
as reference, and taxonomic classification methods therefore only can make predictions at
higher taxonomic ranks, binning algorithms allow to estimate the species abundance in a
metagenome without knowledge of the actual taxonomy of the underlying species. In addi-
tion, species-specific bins may facilitate assembly of metagenomic sequences. Examples for
binning algorithms are LikelyBin [85], CompostBin [26], cBar [227], AbundanceBin [222],
and MetaCluster [99].

1.2.6 Metatranscriptomics & Metaproteomics

The methods employed in metagenomics allow to reveal the genetic potential of microbial
communities. They do not provide information about which genes are actually active at a
specific time and place, or how those activities change in response to different environmental
forces. In metatranscriptomics, this information can be obtained by investigating the abun-
dance of messenger RNA (mRNA) in the environmental sample.

The first step in the metatranscriptomic sequencing of a microbial community is the ex-
traction of RNA from the sample. Most of the extracted RNA consists of the more abundant
and stable rRNAs, which are often selectively removed from the total RNA pool in order to
increase the yield of sequenced mRNA later on. After the linear amplification of the mRNA
with PCR, the mRNA is converted to cDNA, which can then be directly sequenced with the
new pyrosequencing techniques.

Although this method is capable of detecting gene transcription activity in a microbial
sample, it has the problem that the abundance of mRNA is not a perfect indicator of protein
activity. Transcriptional regulation may prohibit translation of an mRNA into a protein and
the protein activity can also be regulated after translation.

Metaproteomics, which includes protein extraction, separation and identification of pro-
teins promises to overcome the restriction of the metatranscriptomic approach, but is still
considered to be a more onerous approach [124].

1.3 Overview of the Thesis

In this chapter we have given a general overview of different metagenomic methods. We have
shown that various PCR-based strategies, function and sequence-based screening methods
for metagenomic libraries, and shotgun sequencing of microbial communities can be used to
explore uncultured microbes. Since the main focus of this work is the taxonomic classification
of short microbial DNA fragments, we will review existing methods that are used for that
purpose in Chapter 2.
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The main part of this thesis consists of the presentation of a novel algorithm for the tax-
onomic classification of DNA fragments in Chapter 3. This algorithm has been realized in
CARMA3 and can also be used for the taxonomic classification of protein sequences and
16S-rDNA/RNA sequences.

In Chapter 4 we present WebCARMA, a web application that allows the usage of CARMA3
without the need for a local installation. Chapter 5 contains experiments for a comparative
evaluation of CARMA3 on simulated metagenomes. Furthermore, we analyze several real
metagenomes with CARMA3 and compare the results with 16S-rDNA based classifications.
In the last experiment we show that also very short reads can, in principle, be used to describe
the taxonomic content of a metagenome. Finally, the last chapter consists of a conclusion and
ideas for the further development of CARMA3.
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Chapter 2
Methods for Taxonomic Classification of
Metagenomic Reads

The most common taxonomy used to describe the origin of biological sequences is the NCBI
taxonomy [12, 167]. It is a phylogenetic taxonomy with a tree structure that approximates the
evolutionary relationships among organisms [116]. Leaves in the taxonomy tree usually refer
to living organisms. In many cases, internal nodes in the NCBI taxonomy are multifurcating
nodes indicating unresolved ancestral relationships. Each node is assigned a taxonomic rank,
representing their relative position in the taxonomic hierarchy. The most commonly used
ranks are superkingdom, phylum, class, order, family, genus, and species. Examples for taxa
at various taxonomic ranks of human and E. coli are given in Table 2.1.

The purpose of taxonomic classification of metagenomic sequences is to find the exact
species of origin. However, this is often not possible, in particular if this species has not
been sequenced before. Furthermore, species closely related to the species of origin are often
also not available as reference. In such a case, a taxonomic classification should make a
prediction at a higher taxonomic rank, corresponding to the lowest known ancestor of the
species of origin, and thus achieving highest possible sensitivity while avoiding false positives

Table 2.1: Taxa of human and the common bacterium E. coli at various taxonomic ranks
according to NCBI taxonomy.

Taxonomic rank Human E. coli

Superkingdom Eukaryota Bacteria
Phylum Chordata Proteobacteria
Class Mammalia Gammaproteobacteria
Order Primates Enterobacteriales
Family Hominidae Enterobacteriaceae
Genus Homo Escherichia
Species Homo sapiens Escherichia coli
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on lower taxonomic ranks. Sensitivity and specificity are measured for each taxonomic rank
independently. The definitions of these measures slightly differ from the normal definitions
since taxonomic classification is a multiclass classification problem in which a metagenomic
sequence can either be assigned to a taxon at a given taxonomic rank, or it can be assigned the
artificial taxon “unknown” [37]. In an evaluation each taxonomic assignment of a sequence
at a given rank is considered to be either a correct classification and counts as a True Positive
(TP), a wrong classification and counts as False Positive (FP), or it has been assigned the status
“unknown” and it counts as an Unknown (U). Thus, in context of metagenomic classification,
sensitivity and specificity are commonly given by:

Sensitivity =
TP

TP + FP + U
(2.1)

Specificity =
TP

TP + FP
(2.2)

In this section, we briefly review several methods for the taxonomic classification of meta-
genomic sequences. Further details on the various methods can be found in the corresponding
publications. A systematic comparison in terms of sensitivity and specificity is not given here
since the evaluations in the corresponding publications are usually not comparable. In general,
they are either done on real or on simulated metagenomes. In case of real metagenomes,
the predicted taxonomic profile is compared with a profile that has been obtained by other
means, e.g. 16S analysis. In contrast, the usage of simulated metagenomes has the advantage
that the taxonomic origin of each single sequence is known and can be compared with its
prediction. Evaluations with simulated metagenomes usually consist of a test set, i.e., the
simulated metagenomic sequences, and a training set, the reference dataset. A comparison of
different evaluations can be problematic, for example, because evaluation settings can differ
in the training sets, e.g., protein vs. genome sequences, or complete sequence databases vs.
smaller marker gene databases. In addition, the simulated shotgun reads in the test sets may
have different read lengths or were simulated under different error models.

Furthermore, evaluations can differ in how test and training sets are related to each other.
All-in experiments or various variants of cross-validation experiments are used, representing
different degrees of severity of the evaluation:

• All-in: The test set remains in the training set.

• Leave-one-out with strains: The test set is removed from the training set, but it is
chosen such that each member of the test set has at least n strains of the same species
in the training set. A typical value of n is 5.

• Leave-one-out: The test set is removed from the training set.

• Leave-one-species-out: The test set and all sequences that belong to the same species
as those in the test set are removed from training set.
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• Leave-one-clade-out: The test set and all sequences that belong to the same clade as
those in the test set are removed from training set. Here a clade is defined by the set of
all organisms that belong to the subtree induced by the ancestor of the test set member
at a certain taxonomic rank.

Since real metagenomes represent a composition of different species to which often no
closely related reference species is available, evaluation experiments should be designed in
leave-one-clade-out manner, performed for different taxonomic ranks, to cover this scenario.
This ensures that the evaluation provides a more realistic estimate on how a taxonomic clas-
sification method performs on real metagenomes in terms of sensitivity and specificity. Due
to the above mentioned differences in the evaluations we provide only an overview in this
chapter, rather than a systematic comparison.

In principle, two kinds of methods for the taxonomic classification of metagenomic shotgun
sequences can be distinguished. Composition-based methods first extract sequence features
and then perform a comparison on these features, whereas comparison-based methods com-
pare metagenomic sequences with the reference sequences directly at the sequence level. We
review these methods in the following two sections. An overview of these methods is given
in Table 2.2.

2.1 Composition-based Methods

Composition-based methods extract sequence features like GC content [51], codon
usage [129] or k-mer frequencies [117, 194], and compare them with features computed from
reference sequences with known taxonomic origin. In detail, different techniques like the cal-
culation of correlation coefficients between oligonucleotide patterns [194], Self-Organizing
Maps (SOMs) [1], or Support Vector Machines (SVMs) [37] can be used to classify the
metagenomic fragments. A disadvantage is that rather long sequences are required to obtain a
reasonable classification accuracy. One of the advantages of composition-based methods over
comparison-based method is that these methods usually are much faster because they do not
require a time consuming homology search. In the following we review several composition-
based methods.

2.1.1 TETRA (2004)

Tetranucleotide usage patterns can serve as species-specific intrinsic DNA-signatures in meta-
genomic fragments. TETRA [193, 194] uses the distribution of tetranucleotides of different
metagenomic fragments to compute pairwise correlation coefficients, which can be used as
an estimation for the likelihood that two metagenomic fragments originate from the same
genome. A comparison of sequences from a metagenome with the distribution of tetranu-
cleotide patterns of sequences with known taxonomic affiliations thus provides a taxonomic
characterization of the metagenome. The authors report that this method requires sequences
in the range of 40 kb to work well, while sequences below 1 kb are not suited for the analysis.

21



Chapter 2. Methods for Taxonomic Classification of Metagenomic Reads

Table 2.2: An overview of the various methods for taxonomic classification reviewed in this
chapter. Checkmarks indicate whether the methods are composition- or comparison-based
and if they use a Bayesian Classifier or Maximum Likelihood (ML).

Basis

Method Year Composition Comparison Bayesian ML Ref.

TETRA 2004 X [193, 194]
PhyloPythia 2007 X [117]
PhyloPythiaS 2011 X [136]
TACOA 2009 X [37]
RAIphy 2011 X [127]
NBC 2008 X X [156]
Phymm 2009 X X [19]
PhymmBL 2009 X X X [19]
GSTaxClassifier 2009 X X [225]
BLAST 1990 X [4, 57]
MG-RAST 2008 X [122]
MEGAN 2007 X [78]
CARMA1 2008 X [93]
AMPHORA 2008 X [221]
SOrt-ITEMS 2009 X [65]
Sphinx 2010 X X [64]
DiScRIBinATE 2010 X [55]
MetaPhyler 2010 X [104]
MARTA 2010 X [73]
EPA 2009 X X [15, 16]
Pplacer 2010 X X [114]
MLTreeMap 2010 X X [184]
Treephyler 2010 X X [173]

2.1.2 PhyloPythia (2007)

For each sequence, PhyloPythia [117] uses oligonucleotides of a certain length (typically
4–6 bp) to represent training sequences from reference genomes as vectors that contain the
abundance of each oligonucleotide, normalized by the total number of oligonucleotides in the
corresponing sequences. These vectors are used to train a collection of Support Vector Ma-
chines (SVMs) for each taxonomic rank and each clade that is represented by at least three
genomes. As the SVM is intrinsically a binary classifier, an all-versus-all technique is ap-
plied to perfom a multiclass classification for the different possible clades at each taxonomic
rank. Using a voting mechanism, metagenomic fragments are assigned to a clade, which is
re-evaluated with a classifier that has been trained to discriminate between training sequences
of this clade and all other training sequences (one-versus-all approach). The authors report
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that their method provides an accurate classification for longer metagenomic fragments, but
for fragments shorter than 3–5 kb the sensitivity decreases strongly.

PhyloPythiaS (2011)

PhyloPythiaS [136] is an improved successor of PhyloPythia that uses an ensemble of linear
models instead of multiclass SVMs. The parameters of the linear models are obtained using
the paradigm of SVMs with structured output spaces in order to represent composition-based
specifics of each clade in the taxonomic hierarchy.

The authors show that their algorithm can outperform the comparison-based algorithms
MEGAN (Section 2.2.2) and PhymmBL (Section 2.1.5) in a special scenario where 100 kb
fragments of the novel species are available in the training phase. Results for the usual sce-
nario without such additional information from 100 kb fragments are not given.

2.1.3 TACOA (2009)

TACOA [37] is based on the k-nearest neighbor (k-NN) approach combined with a Gaus-
sian kernel function. Each genomic sequence is represented as a vector that stores for each
oligonucleotide the ratio between its frequency and its expected frequency given the GC-
content of the sequence. These vectors are computed, once in a preprocessing step, for all
sequences from the set of reference genomes, and for each metagenomic sequence with un-
known taxonomic affiliation. Each metagenomic sequence is assigned to one taxon of each
taxonomic rank from superkingdom to genus. For each taxonomic rank, the taxon is chosen
for which a discriminant function provides the maximal value. If the taxon with the second
highest value of the discriminant function is too close to the highest value, the metagenomic
fragment is instead assigned to “unknown” at this taxonomic rank. The authors show that their
method is able to classify genomic fragments of length 800 bp to 1,000 bp with high accuracy
for rank class or higher. For longer sequences the method provides accurate predictions also
at lower taxonomic ranks like order or genus.

2.1.4 RAIphy (2011)

RAIphy [127] is a composition-based semisupervised binning algorithm which uses a so-
called Relative Abundance Index (RAI). This index is computed for each k-mer and indicates
the over- or underabundance of a k-mer within a taxon. It is computed using a sequence of
fixed-length Markov models and log-odds ratios between the observed and expected frequen-
cies of the k-mers in each taxon. To assign a metagenomic fragment to a taxon, the RAI is
computed for each k-mer in the metagenomic fragment and for each taxon. A taxon member-
ship score is then obtained for each taxon by summing up the values for all k-mers. Finally,
the metagenomic fragment is assigned to the taxon that yields the highest membership score.
An additional refinement phase can be used to further improve the taxonomic assignment. For
a leave-one-out cross-validation, the authors report a sensitivity of 38% to 81% for sequences
of length between 100 bp and 1,000 bp.
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2.1.5 Bayesian Classifiers

The general principle of using a Bayesian classifier in the context of taxonomic classifica-
tion of bacterial genomic sequences was first proposed and evaluated by Sandberg et al. in
2001 [162]. Their method was able to correctly classify 400 bp-long reads with a sensitivity
of 85%. In 2006, Dalevi et al. [32] presented a similar algorithm that combined the Bayesian
classifier with fixed higher order- and variable length Markov Models in order to predict hor-
izontal gene transfer. The RDP classifier, described in detail in Section 1.2.1, is also based on
this method.

NBC (2008)

NBC by Rosen et al. [156] is a naïve Bayesian classification method. To classify a metage-
nomic fragment, NBC compares the k-mer frequency profile of the metagenomic fragment
with all k-mer frequency profiles from the set of the microbial reference genomes. The naïve
Bayesian classifier is then used to calculate the posterior probability of each taxonomic clade.
The metagenomic fragment is finally assigned to the taxonomic clade with the highest prob-
ability. In addition, the NBC uses an optimized algorithm for efficiently counting k-mer
frequencies. The authors report that, in a cross-validation with each species represented by at
least four strains, their method achieves a species-sensitivity of 90% and more. NBC is also
available as a webserver [157].

Phymm and PhymmBL (2009)

Phymm [19] uses interpolated Markov models (IMMs) to compare variable-length oligonu-
cleotide usage patterns of the query sequence and the reference sequences. A Bayesian deci-
sion machine is used to compute the most likely taxonomic origin of the query. PhymmBL
is a variant of Phymm which additionally incorporates BLAST results by using a weighted
combination of scores from Phymm and the best BLAST hit. In a leave-one-clade-out evalu-
ation, Phymm performs similar to BLAST in terms of sensitivity, whereas the hybrid method
PhymmBL slightly outperforms both Phymm and BLAST. An interpretation of the results of
the evaluation is difficult because the authors do not report the specificity of the compared
methods. Furthermore, the numbers of wrong predictions at lower taxonomic ranks that have
been removed are not given.

GSTaxClassifier (2009)

The GSTaxClassifier [225] is a slightly modified variant of the Bayesian method proposed by
Sandberg et al. [162]. In a leave-one-out evaluation with bacterial 400 bp reads the authors
report a taxonomic assignment sensitivity of 63–95% at ranks order to kingdom.

2.2 Comparison-based Methods

In contrast to the composition-based methods, comparison-based methods rely on homology
information obtained by database searches. Databases used in this context can contain nu-
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cleotide sequences, e.g. complete genomes, or protein sequences with known taxonomic ori-
gin. Since protein sequences are more conserved than nucleotide sequences, they are better
suited for detection of remote homologies. Microbial communities mainly consist of uncul-
tured microbes. Therefore, a high sensitivity is required for most metagenomic sequences in
order to find the closest homologues. If protein sequences are used as references and metage-
nomic reads are found to encode for known proteins, they are called environmental gene tags
(EGTs) [198]. It is in principle possible to use reads much shorter than 100 bp, but then only
a small fraction of all reads actually provides information about their function and taxonomic
origin as shown in the experiment in Section 5.9.

Usage of protein sequences as reference has the disadvantage that, for metagenomic frag-
ments which contain only non-coding DNA, no homologies can be found. Nevertheless, in
practice only a small fraction of the bacterial and archaeal metagenomic sequences are af-
fected by this. This is discussed in more detail in the experiment described in Section 5.6.
Another disadvantage of protein references is that the metagenomic DNA fragments have to
be translated into all six reading frames, which increases computation time of the homology
search.

In general, comparison-based methods can be further subdivided into methods that are
based on Hidden Markov Model (HMM) homology searches [43] and those that are based
on BLAST homology searches [4, 57]. CARMA1 [93] and various maximum likelihood
methods detailed in Section 2.2.8 belong to the HMM-based methods. In contrast, algorithms
like MEGAN [78] and SOrt-ITEMS [65] use BLAST for the homology search. The method
CARMA2 [53] which we will introduce in Chapter 3 of this thesis is a HMM-based method.
CARMA3 [54] which we also introduce in the same Chapter is available in two variants, a
HMM-based variant and a BLAST-based variant.

2.2.1 Best BLAST Hit, MG-RAST (2008)

For the taxonomic classification of metagenomic reads, the most basic and widely
used method is probably BLAST [7, 31, 35, 197]. This approach is also followed in
MG-RAST [122]. The idea is to search for the best BLAST hit in a database of sequences
with known origin and to use the taxonomy of the sequence that produced the best hit as
reference for the metagenomic read. Since the evolutionary distance between the source or-
ganisms of the metagenomic fragment and the database sequence is unknown, a classification
result solely based on a best BLAST hit has to be interpreted carefully. In general, such
a classification is more reliable on higher taxonomic levels (e.g., superkingdom or phylum)
than on lower taxonomic levels (e.g., genus or species), but it is difficult to decide which
taxonomic level is reliable enough, as this strongly varies for each metagenomic fragment.
Usually only sequences that have BLAST hits with good (low) E-values are trusted. Other
homology search algorithms, like FASTA [103] or BLAT [84], can also be used in principle.

2.2.2 MEGAN (2007)

The program MEGAN [78] is based on the lowest common ancestor (LCA) approach: A
BLAST search is performed, and all BLAST hits that have a bit score equal or higher than
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90 % of the bit score of the best hit are collected. This percentage value is a parameter
that allows a trade-off between sensitivity and specificity. The metagenomic fragment is
then classified by computing the LCA of all species in this set. One of the reasons for the
improved classfication accuracy of this approach compared to using only the best BLAST hit
is that fragments with ambiguous hits are assigned at higher taxonomic levels. All-in and
leave-one-out evaluation experiments have been performed on simulated reads of different
lengths from two individual genomes. The authors conclude that their results demonstrate the
robustness of the LCA algorithm. The LCA-method has also been adopted in other analysis
scenarios, e.g. [33].

2.2.3 CARMA (2008)

Within the DNA reads that next-generation sequencing technologies produce, CARMA 1.2
by Krause et al. [93] detects those that encode for known proteins. These EGTs are then
assigned in a second step to taxa from six taxonomical ranks: superkingdom, phylum, class,
order, genus and species. The set of classified EGTs provides a taxonomical profile for the
microbial community.

In detail, BLASTx is used to search within the set of reads for candidate EGTs that en-
code for protein sequences contained in the Pfam database [49]. A rather relaxed E-value of
10 and frameshift option -w 15 are used. Each read that has a match to a protein family
member is translated according to BLASTx reading frame and frameshift predictions. The
final determination of EGTs is done by matching the candidate EGTs against their matching
protein families with the corresponding Pfam Hidden Markov Models [40]. For this purpose,
hmmpfam from the HMMER package [43] is used. Only candidate EGTs with an hmmpfam
E-value match of 0:01 or lower are accepted as EGTs.

After the EGTs are identified, they are taxonomically classified: Each EGT is aligned
against the multiple alignment of its family with hmmalign (also contained in the HMMER
package). From this new alignment, the pairwise sequence distance is computed for all pairs
of sequences, based on the fraction of identical amino acids. This produces a pairwise dis-
tance matrix which is then used to compute a phylogenetic tree with the neighbor-joining
method [159]. After this step, the EGT is classified depending on its position within this tree.
If the EGT is localized within a subtree of family members all sharing the same taxon, then
the EGT is classified with the same taxon. For example, if the EGT is localized in a subtree
with the three members Bacteria Cyanobacteria Synechococcales Prochlorococcus, Bacteria
Cyanobacteria Chroococcales Synechococcus and Bacteria Cyanobacteria Nostocales Nos-
toc, the EGT is classified as Bacteria Cyanobacteria. For a more formal definition and further
details, see [93].

CARMA is evaluated on a synthetic metagenome with 80–120 bp long reads in a leave-
one-species-out strategy. For taxonomic rank order the authors report a specificity of about
60% at a sensitivity of about 90%.

More recent versions of CARMA, notably CARMA2 and CARMA3, that also belong the
comparison-based methods, are introduced in Chapter 3.
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2.2.4 AMPHORA (2008)

AMPHORA [221] uses a set of 31 protein-encoding marker genes for the taxonomic char-
acterization of metagenomic samples. These marker genes are housekeeping genes, mostly
single-copy genes, that are universally distributed in bacteria. For each marker gene, the cor-
responding homologous protein sequences from a set of reference genomes are aligned using
CLUSTAL W [196]. The alignments are concatenated to obtain a long alignment which is
used to create a maximum likelihood tree with PHYML [60]. This tree serves as a reference
tree in the following. In addition, local profile Hidden Markov Models [43] are created for
each individual marker gene alignment. The Hidden Markov Models are used to search the
metagenomic sequences for those that encode for the marker genes, and to align them against
the marker gene multiple alignments. Using a maximum parsimony method of RAxML [183],
the metagenomic sequence is placed into the reference tree. For more robust results, a fur-
ther refinement is performed including additional bootstrap replicates leading to the final
taxonomic assignment. In a comparative evaluation against MEGAN, AMPHORA yields a
higher sensitivity at similar specificity.

2.2.5 SOrt-ITEMS (2009)

The SOrt-ITEMS [65] method extends the LCA method and uses additional techniques to
reduce the number of false positive predictions. One approach is the reduction of the number
of hits by using a reciprocal BLAST search step. Another technique used is the adaptation
of the taxonomic assignment level for all hits, based on different alignment parameters like
sequence similarity between the metagenomic fragment and the aligned database sequence.

SOrt-ITEMS was evaluated in a leave-one-clade-out manner, for taxonomic ranks species
and genus, with simulated 454 and Sanger reads. Results show that SOrt-ITEMS consistently
makes significantly fewer false predictions than MEGAN in all evaluation scenarios. The
numbers of false predictions at lower taxonomic ranks are not given.

In the following, two variants of SOrt-ITEMS are described.

Sphinx (2010)

Sphinx [64] is a binning algorithm that extends the above mentioned SOrt-ITEMS algo-
rithm by introducing a k-mer-based filter step and therefore combines composition- and
comparison-based strategies. In a pre-processing step, protein encoding sequences from mi-
crobial genomes are clustered based on their tetra-nucleotide frequencies with a k-means
clustering approach. For each cluster a centroid is computed and the sequences are translated
into protein sequences. The first step in the taxonomic classification consists of computing
the distance of the metagenomic fragment to all cluster centroids. The fragment is then as-
signed to the cluster whose centroid has the smallest distance. After a BLASTx search of
the metagenomic fragment against the translated sequences in this cluster, the SOrt-ITEMS
algorithm is used for the final classification. The authors report a significant improvement in
speed with little loss in sensitivity compared to SOrt-ITEMS.
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DiScRIBinATE (2010)

DiScRIBinATE [55] is another modified variant of SOrt-ITEMS. The method involves a re-
classification of reads that have been assigned to taxa with few assigned reads. An evaluation
shows a reduced running time and slightly higher sensitivity in comparison to SOrt-ITEMS.

2.2.6 MetaPhyler (2010)

MetaPhyler [104] restricts the taxonomic classification to 31 marker genes similar to those
of AMPHORA to create a phylogentic profile. It reduces the taxonomic assignment of the
best BLAST hit to a higher taxonomic level depending on parameters like the bit score and
length of the high-scoring segment pairs of the hit. The thresholds for the taxonomic level
are obtained in a preprocessing step from the reference database for each reference gene
individually. This approach is more flexible than a universal BLAST threshold as it takes
into account that some genes are more conserved than others. Conceptually, this approach
is similar to SOrt-ITEMS (or CARMA3, see Section 3.2) since it uses adapted thresholds to
reduce the level of the taxonomic assignment of the best BLAST hit. In a comparative leave-
one-out evaluation with MetaPhyler, MEGAN, and PhymmBL, MetaPhyler shows a higher
sensitivity at nearly the same specificity level compared to MEGAN or PhymmBL. A leave-
one-clade-out evaluation is also performed, but only for MetaPhyler. The results indicate
a high specificity for all taxonomic ranks, while sensitivity falls significantly if no closely
related species are available. Numbers for wrong classifications at lower taxonomic ranks are
not given.

2.2.7 MARTA (2010)

The taxonomic classification of MARTA [73] is based on the taxonomy of the best BLAST
hit and uses alignment parameters (e.g. percent identity) as thresholds to make assignments at
higher taxonomic ranks if necessary. MARTA can be used to classify metagenomic shotgun
sequences as well as 16S-rDNA sequences. In the evaluation on a set of reference 16S-rDNA
sequences, the authors compare their method with the RDP Classifier [208] and yield similar
results in terms of sensitivity and specificity. Notably, WebCARMA (CARMA2.1) also was
included in this evaluation, although it is a classifier for protein-encoding DNA sequences
rather than 16S-rDNA sequences.

2.2.8 Maximum Likelihood Methods

Maximum Likelihood is a commonly used approach for the reconstruction of phylogenetic
trees. Given a multiple alignment of sequences from different species, a model of evolution
and a tree topology, one can compute the likelihood that the multiple alignment was produced
under this model of evolution and tree topology. The idea is that a tree topology maximizing
this likelihood is at least a good approximation of the real phylogenetic tree [47].

This method of reconstructing phyogenetic trees can also be used to place a new metage-
nomic sequence with unknown taxonomy into a reference taxonomy. The metagenomic se-
quence is aligned against the corresponding reference alignment and for each possible loca-
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tion of the metagenomic sequence in the reference tree, the likelihood of the new tree topology
is computed. The placement of the metagenomic sequence that yields the highest likelihood
finally determines its taxonomic assignment. Four methods that are based on this principle
are introduced in the following.

EPA (2009, 2011)

The evolutionary placement algorithm (EPA) [15, 16] starts with a given reference tree and
reference alignment. Using RAxML [183] it optimizes the Maximum Likelihood model pa-
rameters and branch lengths. Then, for each query, the tree is traversed once. At each edge,
the likelihood score of the complete tree that is obtained by inserting the query into the current
edge is computed. The scores for all queries and all insertion points are stored in a table. A
heuristic is applied to optimize the edge lengths. Finally, for each query, the edge that yields
the best insertion score is assigned.

The authors perform a leave-one-out evaluation where for each query the node distance
between original taxon and assigned taxon is measured. The evaluation results show that
the EPA yields on average a significantly lower node distance than an assignment based on
BLAST.

Pplacer (2010)

Pplacer [114] can be run in Maximum Likelihood (ML) mode or in Bayesian mode to place
a query sequence into a reference tree. Unlike e.g. MEGAN, pplacer does not provide a
taxonomic labeling of individual metagenomic fragments. In ML mode, pplacer is conceptu-
ally quite similar to EPA. In an evaluation using 16S sequences, the authors show that their
algorithm performs similar to EPA regarding speed and sensitvity.

MLTreeMap (2010)

MLTreeMap [184] uses a set of 40 reference protein families as markers, similar to AM-
PHORA. In a first step, the metagenomic sequences are searched for marker genes using
BLASTx. Sequences that encode for marker genes are extracted and translated using Ge-
neWise and aligned against the reference protein families using hmmalign. Finally, the
metagenomic fragments are placed in their most likely position using RAxML.

The results of a leave-one-out evaluation show a slight advantage in sensitivity for the Max-
imum Likelihood approach of MLTreeMap compared to the Maximum Parsimony approach
of AMPHORA.

Treephyler (2010)

Treephyler [173] uses profile Hidden Markov Models to assign metagenomic sequences to
Pfam families. For each Pfam family and its assigned metagenomic sequences, a phylogenetic
tree is computed using FastTree, a minimum evolution heuristic with an sensitivity closely to
that of Maximum Likelihood methods [140]. The evaluation using a real dataset shows a high
consistency between the results of Treephyler and CARMA1.
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Chapter 3

CARMA2 and CARMA3

In Chapter 1, we have shown several metagenomic techniques that have been developed to
explore microbes that cannot be cultivated in a monoculture. Of these approaches, we are
particularly interested in computational methods for the taxonomic classification of metage-
nomic sequences. An overview of a variety of existing methods has been given in Chapter 2.

In this chapter, we present our contributions to the development of improved methods for
the taxonomic classification of metagenomic sequences. In the first section of this chapter, we
present CARMA2, a slightly improved version of CARMA1, which we also use to evaluate
the applicability of short reads in metagenomics. In the second section of this chapter, we
present CARMA3, our major contribution, which implements a novel method for the taxo-
nomic classification of different kinds of metagenomic sequences. Both versions of CARMA
can be downloaded from http://webcarma.cebitec.uni-bielefeld.de.
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3.1 CARMA2

As reported in Section 2.2, comparison-based methods can be subdivided into methods that
are based on Hidden Markov Model homology searches and those that are based on BLAST
homology searches. Version 1 of CARMA (reviewed in Section 2.2.3) belongs to the former
since it uses HMMER in combination with the Pfam database.

We have reimplemented large parts of CARMA1, including a faster construction of the
phylogenetic trees by caching the pairwise distances between Pfam family members. The
CARMA results now include for each EGT the corresponding hmmpfam E-values and a list of
GO-Ids (Gene Ontology Identifiers) [8] associated with the corresponding Pfam family. The
Gene Ontology provides a controlled vocabulary for gene products, distinguishing between
their associated biological processes, cellular components and molecular functions, and can
therefore be used to create a functional profile of the metagenome.

A major modification in CARMA2 is the usage of the NCBI taxonomy database [12, 167]
instead of the Pfam nomenclature. The NCBI taxonomy database currently indexes over
200,000 species [128], which are classified in a hierarchical tree structure. Each taxon from
the taxonomy is represented as a node in the tree with a unique identifier (tax_id) and its
taxonomic rank ranging from “superkingdom” to “subspecies”. For compatibility with other
applications and databases, the output files of CARMA contain for each classification the
taxon name and NCBI tax_id. A detailed description of the output formats is given in
Section A.1.2.

We have used CARMA2 to evaluate the applicability of short reads in a metagenomic
analysis. The experiments can be found in Section 5.9. Furthermore, CARMA2 was the initial
version that was taken as the back end for WebCARMA, a web application for the taxonomic
and functional classification of metagenomic DNA sequences, which we will introduce in
Chapter 4 of this thesis.

3.2 CARMA3

The method employed by CARMA3 can be seen as the result of an evolution of several
BLAST-based methods. As already pointed out in Section 2.2, the taxonomic assignment
provided by a best BLAST hit is less reliable on lower taxonomic ranks. The LCA method
of MEGAN from 2007 (Section 2.2.2) avoids many such false taxonomic predictions at low
ranks by assigning metagenomic fragments with ambiguous hits at higher taxonomic ranks.
In 2009, SOrt-ITEMS (Section 2.2.5) was developed by extending the LCA method. The in-
troduction of a reciprocal search step significantly decreased the number of wrong predictions
compared to MEGAN.

Inspired particularly by the reciprocal search step of SOrt-ITEMS, we have developed a
new algorithm that further improves the accuracy of the taxonomic classification. Our method
makes explicit use of the assumption of a model of evolution where different gene families
have different rates of mutation, but within each family this rate does not change too much.
It also accounts for variably conserved regions within genes, e.g. functional domains vs. evo-
lutionarily less conserved regions. In contrast to the previous CARMA versions 1 and 2 that
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Classification

BLASTp Pfam alignment BLASTn RDP alignment

Protein(NR) Pfam Nucleotide(NT) 16S-rRNA(RDP)

BLASTp BLASTx HMMER3 BLASTn BLASTn

16S-rDNAProtein DNA

Reciprocal search:

Database:

Homology search:

Input sequences:

Figure 3.1: Overview of the CARMA3 pipeline showing the possible processing paths for
different input sequences.

use HMMER2 for the homology search, we haved adapted CARMA3 to work with different
homology search methods, namely BLAST and HMMER3.

CARMA3 accepts protein sequences, protein-encoding DNA sequences and 16S-rDNA
sequences as input. Depending on the input sequences and the chosen reference database
for homology search, the CARMA3 pipeline uses different processing paths, as depicted in
Figure 3.1.

In the following we first introduce the BLASTx-based variant of our method, and then
we detail the adaptations necessary for the HMMER3 variant. The BLASTx-based variant
corresponds to the path “DNA ! BLASTx ! Protein(NR) ! BLASTp ! Classification”
in Figure 3.1, while the HMMER3 variant corresponds to the path “DNA ! HMMER3 !
Pfam ! Pfam alignment ! Classification”. After these two variants we also introduce the
other BLAST variants and the 16S variant.

Definitions

For a given BLAST hit h, let q(h) be the aligned query sequence without gap and frameshift
characters. In case of BLASTx, q(h) is a translated substring of the DNA query sequence.
Similarly, s(h) is the substring of the database sequence used in the alignment of h. Further-
more, score(h) is the bit score of the alignment of h and tax(h) is the taxonomic assignment
of the database sequence of h. Given two taxa a and b, lca(a; b) is the lowest common an-
cestor of a and b. Let RANKS be the set of the taxonomic levels {unknown, superkingdom,
phylum, class, order, family, genus, species}, with the underlying taxonomic ordering relation
unknown > superkingdom > : : : > species. For a given taxon a, rank(a) is the taxonomic
rank of taxon a. The lineage of some taxon a denotes the set of taxa on the path from the root
to a in the taxonomy tree. For a given rank k, ancestor(k; a) defines the taxon at rank k in
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the lineage of a. In the remainder of this section, let query q be an metagenomic sequence
with unknown taxonomic affiliation.

Reciprocal Search

The basic idea of using a reciprocal search in the context of the taxonomic classification of
metagenomic reads as described in the following goes back to SOrtITEMS (Section 2.2.5).
The first step of our method is to use BLASTx to search for homologs of q in the NCBI NR
protein database. BLASTx hits with taxonomic assignment Other or Unclassified and hits
without any taxonomic assignment are discarded. Furthermore, hits that have bit scores or
alignment lengths that are below certain thresholds, are also discarded. Let
B = fh1; : : : ; hjBjg be the set of BLAST hits of q with score(h1) � : : : � score(hjBj).
If B is empty, then q is classified as “unknown”. Otherwise, the next step is the construc-
tion of a new BLAST database consisting of fq(h1); s(h1); : : : ; s(hjBj)g. Then, BLASTp is
used to search for hits of s(h1) in the new database. The result of this reciprocal search
is (rquery; R), where rquery denotes the hit obtained by the alignment between s(h1) and
q(h1), and R = fr1; : : : ; rjRjg denotes the set of hits with known taxonomic affiliation with
score(r1) � : : : � score(rjRj). In addition, we require that, in case of co-optimal results
with the same highest score, r1 2 R denotes the hit obtained by the alignment of s(h1) with
itself. Let x = tax(rquery) and ti = tax(ri) for all ri 2 R. Determining x, the species of the
metagenomic fragment, is usually not possible if the species has not been sequenced before.
The purpose of this method is to approximate y = lca(x; t1), which is the best possible clas-
sification, assuming t1 is the phylogenetically closest known homolog of x. For each r 2 R,
p(r) = rank(lca(tax(r); t1)) denotes the projection of r onto the lineage of t1. For each
k 2 RANKS, let Pk = fr 2 R j p(r) = kg. If Pk 6= ;, let Pmink = minfscore(r) j r 2 Pkg
and Pmaxk = maxfscore(r) j r 2 Pkg, otherwise Pmink = Pmaxk = 0. Pmink and Pmaxk
define intervals for each taxonomic rank k.

Figure 3.2(a) depicts an example with projections of phylogenetic affiliations t2; : : : ; t8 of
reciprocal BLAST hits r2; : : : ; r8 onto the lineage of t1. Note that this tree is not a phylo-
genetic tree. For example, the species t8, t7 and t6 share a common ancestor at taxonomic
level “order” with t1, but this is not necessarily the last common ancestor of t8, t7 and t6.
The dashed edges represent the projections of the hitherto unknown phylogenetic affiliations
x and x0 of metagenomic sequences q and q0, respectively.

Figure 3.2(b) shows intervals defined by Pmink and Pmaxk that were obtained from the
reciprocal scores in Figure 3.2(a). For example, the species t8, t7 and t6 define the interval
(50; 75) at taxonomic rank “order” and “species”; t4 and t2 define the interval (95; 120) at
taxonomic rank “genus”.

Polishing

Under ideal conditions, one would expect reciprocal hits that are phylogenetically further
away from t1 having a lower bitscore. Thus, one would expect that for each taxonomic rank
k 2 RANKS n funknowng, Pmaxk � Pmaxk+1 holds. As this is not always the case for real
data, Pmaxk is set to zero for all ranks k with Pmaxk < Pmaxk+1.
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Figure 3.2: (a) Projections of BLAST hits obtained from reciprocal search onto the lineage of
t1. The dashed edges represent projections of unkown phylogenetic affiliations x and x0 of
metagenomic sequences q and q0, respectively. (b) Intervals given by Pmink and Pmaxk for
each taxonomic rank k and level assignments of x and x0 based on their score.

Values of Pmaxk that are zero, because there was no hit at this taxonomic rank or because
they have been set to zero in the previous step, can be approximated by a linearly interpolated
score if there exists at least one higher and one lower taxonomic rank for which Pmax is
non-zero. Note that there always exists some lower taxonomic rank with Pmax 6= 0 since r1
provides a lower bound at taxonomic rank “species”. Thus, if a higher taxonomic rank with
Pmax 6= 0 exists, the smallest rank kh > k with Pmaxkh 6= 0 and the largest rank kl < k with
Pmaxkl 6= 0 are used as anchors for the linear interpolation. If Pmink = 0, Pmink is set to
Pmaxk. If no kh exists, an interpolation is not possible.

Classification

Another formulation of the best possible classification y = lca(x; t1) is y = ancestor(k; t1),
assuming that rank k = rank(y) is given. Similarly, yapprox, an approximation of the best pos-
sible classification, can be obtained by ancestor(kapprox; t1) if rank kapprox is given. Therefore,
the goal of our method is to find such an approximation kapprox. This step requires that there
exists some reciprocal BLAST hit r 2 R with score(r) � score(rquery). If this is not the case,
a fall-back method, which is described below, will be used. Otherwise, we obtain kapprox by
minfk 2 RANKS j Pmink � score(rquery) and for all l > k : Pmaxl < score(rquery)g.
The algorithm for this works as follows: Starting at taxonomic rank k = “unknown”, k is
decreased until Pmaxk�1 � score(rquery). If k is above the taxonomic rank “species” and
score(rquery) � Pmink�1, then k will be decreased once again. The rank kapprox is then given
by k.

Two examples for the taxonomic classification are given in Figure 3.2(b). The metage-
nomic read q with unknown phylogenetic affiliation x has a reciprocal score of 90 and k is
decreased until Pmaxk�1 � 90. Since the interval at taxonomic rank “genus” contains a re-
ciprocal hit (t2) with a score of 120, which is higher than that of q, k is set to rank “family”.
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Because the score of q is also smaller than the lowest score Pmink�1 of any reciprocal hit in
the interval at rank “genus”, k remains at its last rank and kapprox is set to “family”. For the
metagenomic read q0 with reciprocal score of 105, k is similarly placed at taxonomic rank
“family” in the first phase, but in contrast to q, its score is higher than the lowest score in the
interval at taxonomic rank “genus”. Therefore kapprox is set to “genus” for metagenomic read
q0.

Fall-back

As mentioned before, the previous step will only work if there exists some reciprocal BLAST
hit r 2 R with score(r) � score(rquery). If there is no such r, the highest taxonomic rank
klow with Pklow 6= ; will only provide a lower bound for the approximation of y. As a fall-
back method for this case, the lower bound prediction klow will be combined with a technique
introduced in SOrt-ITEMS [65] that is based on the assumption of a uniform rate of evo-
lution. Different BLASTx alignment parameters, e.g. percent identity, are used to estimate
the taxonomic rank of the lowest common ancestor of the metagenomic sequence and the
database sequence. A high similarity between both sequences will result in the estimation of
a lower taxonomic rank and a lower similarity will result in a higher taxonomic rank, respec-
tively. For example, a metagenomic read with a BLAST hit h to some database sequence,
with length(q(h)) = 200 bp and percent identity = 60, is assigned at the taxonomic rank
“family” of the database sequence. In contrast, the same metagenomic read with an align-
ment with a percent identity of only 55 will be assigned at the higher taxonomic rank “order”,
as it is assumed to be evolutionarily further away from the database sequence. For reasons of
comparability, the thresholds for the alignment parameters used in this method are the same
as in SOrt-ITEMS. Let kuni be the taxonomic rank obtained by this technique using the align-
ment parameters of the best BLAST hit h1 from the initial BLAST search. Both predictions
are combined by taking the maximum, i.e., kmax = max(klow; kuni). The final classification
yapprox is then given by ancestor(kmax; t1).

Parameter p

Except for the homology search thresholds and the fall-back method, our classification algo-
rithm is parameter-free. For evaluation and comparison purposes, we introduce a parameter p
to trade off sensitivity against specificity of the taxonomic classification. It is used to arti-
ficially increase or decrease the score of the metagenomic sequence in the reciprocal phase,
i.e., scorenew(rquery) = min(p � score(rquery); score(r1)). For example, values of p > 1 will
increase sensitivity and decrease specificity of the classifications. The parameter is suited
only for small changes in the sensitivity-specificity trade-off because the fall-back method is
not affected by the parameter.

HMMER Variant

It is also possible to apply the same classification technique within the context of HMMER3-
based homology searches against the Pfam database [49].
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For convenience, some of the previous notations are reused. Let h be a pairwise alignment,
q(h), s(h) and tax(h) are defined analogously. The value score(h) is given by computing a
similarity score over the pairwise alignment with the BLOSUM62 score matrix [67]. The first
step is to translate all six reading frames of the metagenomic sequence into protein sequences
and to search them against Pfam-A using hmmscan. If there is no significant match, the
metagenomic sequence is classified as “unknown”. Otherwise, let q̂ be the aligned sequence
of the match with the lowest Pfam-HMM E-value. Then, q̂ is aligned against the full multiple
alignment of the Pfam family using hmmalign. Let q� be the alignment row corresponding
to q̂ and let F = ff1; : : : fjF jg be the set of alignment rows of the Pfam family members of
the full multiple alignment.

The next step is similar to the BLAST approach, where the closest homolog of the (trans-
lated) metagenomic sequence q̂ is searched for: For each pair in f(q�; f) j f 2 Fg, a pairwise
alignment is obtained where columns that correspond to leading and trailing gaps of q� as well
as columns in which both sequences have a gap are discarded. Pairwise alignments that are
too short or have too low a score will not be considered for further processing.

Let B = fh1; : : : ; hjBjg be the set of all these pairwise alignments, such that score(h1) �
: : : � score(hjBj). The reciprocal search is performed by computing the pairwise similarity
between s(h1) and all other Pfam family members. The following steps, the creation of
intervals and the classification are performed in the same way as for the BLAST variant. The
alignment parameters that are needed for the fall-back method can easily be computed by
counting the number of identities, positives and gaps in the alignment.

Since HMMER3 does not support DNA to Protein alignments yet, frameshifts cannot be
detected directly. This decreases both, the sensitivity of homology detection and the clas-
sification accuracy. In order to incorporate frameshifts, it is possible to add to the default
six reading frame translations the BLASTx-based translation q(h1) if available. In this case,
seven translations, instead of six, are searched against Pfam-A.

Functional Classification

An important feature of the HMMER variant is the functional classification of metagenomic
reads based on Gene Ontology Identifiers (GO-Ids) [8]. The Gene Ontology provides a con-
trolled vocabulary for gene products, distinguishing between their associated biological pro-
cesses, cellular components and molecular functions. A metagenomic sequence that has a
significant match to some Pfam family can then be classified by the set of GO-Ids that are
assigned to this Pfam family.

Taxonomic Classification using the NCBI-NT Database

The BLAST variant as described above can also be performed using the NCBI NT nucletoide
database instead of using the NCBI NR protein database. In this case, BLASTn is used for
the homology search as well as the reciprocal search. An advantage of this variant is that also
non-protein encoding metagenomic sequences can be classified if homologous sequences are
available as reference. This variant is indicated in Figure 3.1 as path “DNA ! BLASTn !
Nucleotide(NT) ! BLASTn ! Classification”.
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Taxonomic Classification of Amino Acid Sequences

Both, the BLAST and the HMMER variants of CARMA3 can also be used for the taxonomic
classification of amino acid sequences. In the case of the BLAST variant of CARMA3,
BLASTx is replaced by BLASTp. In the HMMER variant, the amino acid sequences are
passed directly to HMMER3, in contrast to DNA that first requires translation into six read-
ing frames. These variants are represented in Figure 3.1 by the paths “Protein ! BLASTp
! Protein(NR) ! BLASTp ! Classification” and “Protein ! HMMER3 ! Pfam ! Pfam
alignment ! Classification”.

Taxonomic Classification of 16S-rDNA Sequences

CARMA3 uses 16S-rRNA sequences from the Ribosomal Database Project (RDP) [76] as
reference for the taxonomic classification of 16S-rDNA and 16S-rRNA sequences. Similar
to the BLAST variant of CARMA3 for protein-encoding DNA sequences, the 16S-rDNA
query sequence is searched against the RDP database using BLASTn. The reciprocal search
step is conceptually the same, but a fall-back method is not available here. In addition to
the reciprocal search step via BLASTn, we have implemented a reciprocal search step that is
based on 16S-rRNA alignments provided by RDP. This is similar to the HMMER variant of
CARMA3, where pairwise distances between the most similar alignment sequence s(h1) and
all other sequences in the alignment are computed. The scores for a match (1), mismatch (-3),
gap opening (-1), and gap extension (-1) used for the computation of the pairwise distances
between the 16S-rDNA sequences are the same as the default scores used by BLASTn. These
two variants refer to the paths “16S-rDNA ! BLASTn ! 16S-rRNA(RDP) ! BLASTn
! Classification” and “16S-rDNA ! BLASTn ! 16S-rRNA(RDP) ! RDP alignment !
Classification” in Figure 3.1.

3.3 Conclusion

In this chapter, we have introduced CARMA2 and CARMA3. The complete source code of
CARMA2 (Perl) and CARMA3 (C/C++) has been released under the GPL and is available
for download at the WebCARMA homepage. CARMA3 is a novel method for the taxonomic
classification of metagenomic sequences and is used by WebCARMA, which is described in
the next chapter.

Our new method implemented in CARMA3 is inspired by techniques introduced by SOrt-
ITEMS, e.g., the reciprocal search step and the adaptation of the taxonomic assignment level
based on various BLAST alignment parameters. The evaluation experiments in Chapter 5
show that CARMA3 outperfoms SOrt-ITEMS regarding the accuracy of taxonomic classifi-
cations. The reason for this is that CARMA3 combines these techniques in a different way
than SOrt-ITEMS. We believe that our method works because reciprocal hits provide a rea-
sonable estimation of the last common ancestor of the metagenomic sequence and its best hit
in the sequence database. In contrast to SOrt-ITEMS and MEGAN, our method is not based
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on the LCA and therefore does not discard reciprocal hits that can provide valuable informa-
tion for the taxonomic classification. In addition, SOrt-ITEMS always applies the method
of adaptation of the taxonomic assignment level based on various BLAST alignment parame-
ters, although this is a method which does not make differences between highly conserved and
highly variable genes. Both, this method and the LCA method, limit the discriminative power
of the reciprocal search for finding a good taxonomic assignment. Nevertheless, we think that
the method of adaptation of the taxonomic assignment level of SOrt-ITEMS is justified in
cases where the reciprocal search is not able to make a taxonomic classification. Therefore
we have implemented this technique as a fall-back scenario in CARMA3.

In addition to the taxonomic classification of metagenomic shotgun sequences, we have
implemented two variants of CARMA3 for the taxonomic classification of 16S-rDNA/RNA
sequences. In both cases, we used RDP sequences as references, once as a BLAST database
and once as RDP alignments. First preliminary evaluation results indicate that the accuracy of
these variants do not differ much. A comparison of these variants of CARMA3 with the RDP
Classifier (Section 1.2.1) revealed that the latter achieves a significantly better performance
regarding accuracy of the taxonomic classifications. We manually compared several individ-
ual taxonomic assignments of CARMA3 and the RDP Classifier and found that in most cases
the prediction of the RDP Classifier was much closer to the nearest neighbor of the query
sequence than the taxonomy of the best BLAST hit, or in case of the alignment variant, the
taxonomy of the most similar alignment sequence.

It is known that the best BLAST hit is often not necessarily the nearest neighbor [89]. To
our knowledge, the extent of this has not been evaluated for highly conserved sequences like
16S-rDNA. On these data, the RDP Classifier seems to perform better than BLAST, probably
due to the k-mer strategy that makes genus assignments based on an averaged k-mer usage of
individual species within one genus.

For the future, we can imagine to use a novel homology search step in CARMA3 for 16S-
rDNA sequences that is based on a similar concept as used by the RDP Classifier. Given such
a homology search step in CARMA3 which performs as accurately as the genus assignment
of the RDP Classifier, we believe it is possible that the reciprocal search step, and thus the
final taxonomic assignment, is competitive to or better than the Bayesian Classifier method
used by the RDP Classifier.
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Chapter 4

WebCARMA

A local installation of CARMA3 requires several bioinformatics tools, like BLASTX or the
HMMER3 package. Because of these, CARMA3 has high computational demands which
make the usage of a high-performance grid inevitable. Therefore, we introduce WebCARMA,
a platform-independent web application for the taxonomic and functional classification of
unassembled and assembled metagenomic DNA sequences that makes CARMA3
easily accessible to the scientific community.

4.1 Implementation

Originally, WebCARMA was published using CARMA2 as back end. Along with the publi-
cation of CARMA3, WebCARMA has been updated to this new version.

The WebCARMA website is built upon an Apache Web Server using Perl and CGI. The
CARMA3 pipeline is executed on the compute cluster of the Bielefeld University Bioinfor-
matics Resource Facility at the Center for Biotechnology (CeBiTec) using Sun Grid Engine
http://gridengine.sunsource.net/.

As depicted in Figure 4.1, the WebCARMA pipeline takes a FASTA file as input and
successively calls the BLASTx and HMMER variants of CARMA3. The output files of
CARMA3 are further processed and the results are visualized as histograms using
gnuplot [213]. Finally, all output files are collected for download in a compressed archive
file. The output files as well as the processing scripts are described in the next section.
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Input

CARMA3-BLASTx CARMA3-HMMER3

blastx_result.tax hmm_result.tax result.egt

taxonomic_profile.tsv functional_profile.tsv

functional_profile.pdf

superkingdom.pdf

phylum.pdf

class.pdf

order.pdf

family.pdf

genus.pdf

species.pdf

getTaxonomicProfile.pl getFunctionalProfile.pl

gnuplot
gnuplot

Figure 4.1: Overview of the WebCARMA pipeline.

Figure 4.2: Screenshot of the WebCARMA upload form.

4.2 Usage of WebCARMA

In order to use WebCARMA and to upload metagenomic sequences, a user has to register
with his e-mail address. An upload form allows to upload the metagenomic sequences (see
Figure 4.2). After the uploads are finished, CARMA3 starts with the search for EGTs and the
taxonomical classification. By the time the jobs are completed, the user receives an e-mail
with a download address pointing to the results.
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We provide several data formats that allow the user to explore the results in different ways:

• The translated EGTs with additional information about the name of the original metage-
nomic sequence, reading frame, Pfam family, HMMER3 E-value and a list of Gene
Ontology Identifiers.

• A Gene Ontology term profile in two variants, as a text data file and visualized as a
histogram in PDF format.

• The taxonomic classification results of the BLAST and HMMER variants as text data
files.

• A taxonomic profile based on the BLAST variant of CARMA3, once as a text data file
and once visualized by histograms for each taxonomic rank in PDF format.

The profile data files as well as the classification results are provided in TSV-format (Tab
Separated Values), which makes it easy to import the data into other programs (e.g. spread-
sheet) for different visualization types or any other further processing. The functional and
taxonomic profiles are available in text format and as histograms. More details on the input
and output files are given in Appendix A.1.

4.3 Availability

WebCARMA is available under http://webcarma.cebitec.uni-bielefeld.de.
There are no restrictions to use by non-academics. The upload is restricted to a maximum of
30 MB of FASTA file per user per month.

To date, over 400 users from all over the world have registered at the WebCARMA site and
have uploaded over 1,000 metagenomic data sets.
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Chapter 5
Experiments

In this chapter we present experiments we have performed to evaluate CARMA3 and the
applicability of short reads in metagenomics. In the following, CARMA3BLASTx denotes the
BLASTx variant and CARMA3HMMER3 denotes the HMMER3 variant of CARMA3.

In the first experiment we use simulated metagenomes to compare CARMA3BLASTx,
CARMA3HMMER3 and their predecessor CARMA2.1HMMER2 to each other, in the second
experiment CARMA3BLASTx, SOrt-ITEMS [65] and MEGAN [78]. In these first two ex-
periments we perform different leave-one-clade-out evaluations (see Chapter 2). In the third
and fourth experiment we use different kinds of real metagenomes to evaluate CARMA3. In
the fifth experiment we evaluate the applicability of short metagenomic reads for taxonomic
classification.

5.1 Evaluation Measures

The taxonomic classification methods assign to a metagenomic sequence one taxon and there-
fore also one taxonomic rank. This taxon implicitly provides a taxonomic classification also
for the higher taxonomic ranks. For example, the taxon Gammaproteobacteria at the taxo-
nomic rank class, implicitly provides the taxonomic classification Bacteria at the taxonomic
rank superkingdom. The taxonomic ranks below the predicted taxon can be considered to be
classified as “unknown”. Therefore, for each taxonomic rank a metagenomic sequence can
either be correctly classified and counts as a true positive (TP), can be wrongly classified and
counts as a false positive (FP), or it is not classified and counts as unknown (U).

In a leave-one-clade-out evaluation, where species below a certain taxonomic rank have
been filtered away, it is not possible to obtain true positives below this taxonomic rank. The
specificity measure, as described in Chapter 2, is always zero for these ranks and thus cannot
be used to measure the ability of a method to avoid false positives. Therefore, we report the
raw numbers, TP and FP, instead of the measures sensitivity and specificity in the results of
our experiments. As for each taxonomic rank the numbers TP, FP and U sum up to the total
number N of reads used in the evaluation, and thus U equals N�TP�FP, U will not explicitly
be given in the results.
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5.2 Metagenomes

For the evaluation of CARMA3 a synthetic and two real data sets were used. The syn-
thetic metagenome (see Appendix Section A.2, Table A.1) was constructed consisting of
25 randomly chosen bacterial genomes from the NCBI ftp site (ftp://ftp.ncbi.nih.
gov/genomes/Bacteria/). N = 25; 000 metagenomic reads were simulated using
MetaSim [151] with the default 454 sequencing error model resulting in an average read
length of 265 bp. The real data set used in Experiment 3 consists of over 600,000 unassem-
bled reads from a biogas plant microbial community [169]. The reads were sequenced with
the 454 Genome Sequencer FLX system (Roche Applied Science) and have an average length
of 230 bp. The real data set used in Experiment 4 consists of 3.3 million non-redundant mi-
crobial genes of the gene catalogue of the human gut microbiome [42]. Faecal samples from
different individuals were sequenced with the Illumina Genome Analyser (GA) which yielded
576.7 Gb of sequence. The reads were assembled into longer contigs and a gene finder was
used to detect open reading frames (ORFs). Similar ORFs were clustered to obtain the final
non-redundant gene set. We downloaded this gene set and translated the ORFs into protein
sequences using the NCBI Genetic Code 11. The simulated metagenomes and the results
of the CARMA3 analyses of the real metagenomes used in the evaluation are available for
download at the WebCARMA homepage.

In order to evaluate the applicability of short and ultra-short reads (� 35 bp) in metage-
nomics in Experiment 5, we used the 454 real data set from the biogas plant microbial com-
munity described above to create several realistically simulated data sets. In detail, we simu-
lated the short and ultra-short reads by clipping off suffixes of the 454-reads to get the desired
read lengths. We generated nine data sets, each consisting of reads of one of the lengths 35 bp,
40 bp, 50 bp, 60 bp, 70 bp, 100 bp, 150 bp, 200 bp, and 250 bp, respectively.

5.3 Databases

To evaluate the different BLAST-based methods regarding their ability to classify sequences
of unknown source organism, three BLAST NR protein databases were created: “order fil-
tered”, without sequences from species that share the same order as any of the species from
the synthetic metagenome, “species filtered”, without sequences from species in the synthetic
metagenome, and “all”, the complete NR database.

Similarly, for CARMA3HMMER3, the curated Pfam-A database from Pfam 24.0 was used
to create the three databases, “order filtered”, “species filtered” and “all”, by removing corre-
sponding sequences from the full multiple alignments.

5.4 Parameter Settings

The BLASTx runs for CARMA3BLASTx, SOrt-ITEMS and MEGAN were performed with
default E-value threshold (-e 10), soft sequence masking (-F "m S"), and frameshift
penalty 15 (-w 15). To ensure comparability, CARMA3BLASTx used the same thresholds
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5.5. Experiment 1: CARMA3BLASTx vs CARMA3HMMER3

as SOrt-ITEMS regarding the BLASTx hits, a minimal bit score of 35 and a minimal align-
ment length of 25. For our first experiment, the CARMA3 parameter p was set to 1. For
the second experiment, p was set differently for each of the three databases, since for p = 1,
CARMA3BLASTx has fewer true positives and fewer false positives than SOrt-ITEMS (except
for taxonomic rank superkingdom). In order to be comparable, p was chosen for the order
and the species filtered databases such that CARMA3BLASTx had about the same number of
true positives as SOrt-ITEMS on the lowest taxonomic rank that had not been filtered. For the
unfiltered database (all), SOrt-ITEMS gave no classifications on the taxonomic rank species.
Therefore p was chosen with respect to the taxonomic rank genus. The values of p were 1:024
for order filtered, 1:033 for species filtered and 1:15 for the unfiltered database.

The parameter for the minimal number of reads that are required to report a taxon in SOrt-
ITEMS and MEGAN was set to 1 in all experiments. To ensure comparability of MEGAN
with the other two BLAST-based methods, the top percent parameter was increased from
10 (default) to 15 resulting in more conservative predictions.

CARMA3HMMER3 was run with an E-value of 0:1 for hmmscan, a minimal alignment
length of 25 and a minimal score of 30 for the pairwise alignments. In Experiment 1
CARMA2.1HMMER2 was run with an E-value of 0:0001 for hmmpfam, whereas in Experi-
ment 5 it was run with the default E-value of 0:1 to ensure a high sensitivity for the ultra-short
reads.

5.5 Experiment 1: CARMA3BLASTx vs CARMA3HMMER3

In the first experiment CARMA3BLASTx and CARMA3HMMER3 were compared with each
other in order to see which of both variants provides better taxonomic classification results
(Table 5.1). As a third variant the older version CARMA2.1HMMER2 was also included in the
comparison.

For the order filtered database, CARMA3BLASTx has more true positives but also more
false positives than CARMA3HMMER3 at all taxonomic ranks. In the species filtered
database, CARMA3BLASTx has more true positives than CARMA3HMMER3 as before, but
this time it also has fewer false positives than CARMA3HMMER3. Similar results are pro-
vided for the unfiltered database: CARMA3BLASTx has significantly more true positives and
at the same time considerably fewer false positives than CARMA3HMMER3 at all taxonomic
ranks. While for the order filtered database it is not obvious which variant should be pre-
ferred over the other, for the species filtered and unfiltered databases CARMA3BLASTx clearly
outperforms CARMA3HMMER3.

The comparison of CARMA3HMMER3 and CARMA2.1HMMER2 using the unfiltered
database shows that CARMA3HMMER3 is superior to CARMA2.1HMMER2 on all taxonomic
ranks from class to genus.

Fraction of fall-back method on the overall classification About 10 � 20% of all
metagenomic reads that have been classified with CARMA3BLASTx were classified using the
fall-back method (see Table 5.2). Of these, about one half of the reads were classified with
the fall-back method because they had only one BLAST hit in the corresponding database.
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Table 5.2: The total number of reads (“total”) classified with CARMA3BLASTx and the number
of reads classified with the fall-back method (“fall-back”). “single” represents the number
of metagenomic reads that had only one BLAST hit and “multiple” represents the number
of reads with two or more BLAST hits.

total fall-back fall-back

single multiple

order filtered 13081 2668 1397 1271
species filtered 20172 1907 878 1029
all 22756 2203 1159 1044

Performance on different read lengths The performance of CARMA3BLASTx was
also evaluated for other read lengths and different error models. To simulate a metagenome
sequenced with 454 GS FLX Titanium, reads were created with the default 454 error model of
MetaSim with an average read length of 400 bp. For the 454-GS20 and Illumina sequencing
technology, reads of length 80 bp were simulated. The error model for the Illumina reads
(errormodel-80bp.mconf) was downloaded separately from the MetaSim homepage.
As no error model for Illumina reads longer than 80 bp was available, the 454-GS20 reads
were adapted to this length. Each of the three simulated metagenomes (454-400 bp, 454-80 bp
and Illumina-80 bp) was analysed using the order-, species- and unfiltered protein databases.
The results are given in Appendix Section A.3.

In general, the 400 bp reads provide more classifications than the 265 bp. In addition,
in many cases the 400 bp reads account for more true positives and fewer false positives
than the 265 bp reads. This is the case in the species-filtered database at taxonomic ranks
class to family, but also for the unfiltered database at taxonomic ranks superkingdom, family
and genus. As expected, the shorter 454-80 bp reads perform worse than the 454-265 bp
reads. This is clearly shown for the species-filtered database at taxonomic rank family and
the unfiltered database at taxonomic ranks phylum to family.

The comparison of the 454-80 bp and Illumina-80 bp reads shows that Illumina reads are
about twice as often classified as the 454 reads for all databases. For the species filtered
database at taxonomic rank superkingdom and the unfiltered database at taxonomic ranks
superkingdom to genus the Illumina error model clearly outperfoms the 454 error model in
terms of accuracy. A comparison of the simulated reads revealed that the 454 error model has
produced many more base substitutions than the Illumina error model. In addition, the 454
error model accounts for insertions and deletions, which the Illumina error model does not.
It is unclear to the authors how representative the MetaSim default error models are for the
currently available sequencers by 454 and Illumina. Therefore, rather than as a comparison
of two different sequencing technologies, the comparison of both error models should be
understood as a demonstration of the influence of sequencing errors on the accuracy of the
taxonomic classification.
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5.6 Experiment 2: CARMA3 vs SOrtITEMS vs MEGAN

In the second experiment our new method CARMA3BLASTx was compared to the two other
BLASTx-based methods, SOrt-ITEMS and MEGAN (Table 5.3).

While for the order filtered database CARMA3 performs better than SOrt-ITEMS at rank
class, for the ranks superkingdom and phylum it is not clear which method is better. At the
taxonomic ranks order to genus, where the metagenomic sequences have been filtered away,
CARMA3 has much fewer (� 37% � 74%) false positives than SOrt-ITEMS. CARMA3
has better results than MEGAN at all taxonomic ranks, while SOrt-ITEMS has better results
than MEGAN at all taxonomic ranks below superkingdom. For the species filtered database
CARMA3 has better results than SOrt-ITEMS and MEGAN at taxonomic rank genus. For the
other taxonomic ranks the results of CARMA3 and SOrt-ITEMS are not comparable, since
SOrt-ITEMS has more true positives and more false positives. Only at taxonomic rank species
CARMA3 has false positives which SOrt-ITEMS does not have. The reason for this is that
SOrt-ITEMS requires a minimal alignment length of 550 bp in order to make classifications
at the taxonomic rank species, but the simulated metagenome contains only reads with an
average length of 265 bp. The advantage of avoiding false positives at rank species in the
order and species filtered databases is traded off against the disadvantage of not detecting
species in the unfiltered database. CARMA3 performs better than MEGAN at all taxonomic
ranks, except superkingdom, where the results are not comparable. To provide comparability
between the methods also for the unfiltered database we tried to increase the number of true
positives of CARMA3 at the taxonomic rank genus. We were able to increase the number
of true positives by 4,405 from 16,025 (Table 5.1) to 20,430, but not higher. The reason
for this is that classifications of reads from the fall-back method can not be changed with
the parameter p. Although CARMA3 performs worse than SOrt-ITEMS at three taxonomic
ranks (superkingdom, order and family) in the unfiltered data set, the corresponding TP and
FP numbers at each taxonomic rank except species are quite similar. CARMA3 is able to
detect many species where SOrt-ITEMS does not detect any. On all taxonomic ranks, except
ranks genus and species, CARMA3 and SOrt-ITEMS perform better than MEGAN.

Non-protein coding sequences Assuming that about 10% to 20% of microbial
genomes are non-protein coding sequences [154], it is clear that many of the metagenomic
reads can not be classified using protein homology information. But because many of these
reads do overlap at least partly with a coding region, it can be observed that 92% to 96% of the
reads are correctly assigned to bacteria by the BLASTx based methods using the unfiltered
database.

Overlap Figure 5.1 shows Venn diagrams for the overlap of (a) correct and (b) wrong clas-
sifications for the order-filtered data set at taxonomic rank class. Although each method has
about 3,600-4,000 correct classifications, only about 2,100 reads have been correctly classi-
fied by every method. In this particular case each of the three compared methods correctly
classifies a significant proportion of the reads, which the other methods do not. However,
for higher taxonomic ranks and the species- and unfiltered data set the overlap of correct
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Figure 5.1: Overlap of 25,000 simulated metagenomic reads classified by CARMA3, SOrt-
ITEMS and MEGAN for the order-filtered data set at taxonomic rank class.
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Figure 5.2: Venn diagrams for a biogas plant metagenome with over 600,000 reads. The
subset sizes depict the numbers of reads being classified with CARMA3, SOrt-ITEMS and
MEGAN at taxonomic ranks superkingdom and class.

classifications is much higher and therefore the differences between the methods are smaller.
Figure 5.1(b) shows that the overlap of wrong classifications is relatively smaller than that of
the correct classifications. As expected, a high number of wrong classifications are unique to
MEGAN. For the Venn diagrams of the other taxonomic ranks and data sets see Appendix
Sections A.4–A.6.

5.7 Experiment 3: CARMA3 on 454 Biogas Metagenome

For the evaluation on a real data set of unassembled 454 reads, the metagenome of a biogas
plant microbial community was analysed with CARMA3BLASTx, SOrt-ITEMS and MEGAN.
Figure 5.2 shows Venn diagrams for the number of reads being classified at taxonomic ranks
superkingdom and class (see Appendix Section A.7 for the other ranks). Reads that are classi-
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Figure 5.3: Comparative taxonomic profile of a biogas plant metagenome analysed with
CARMA3, SOrt-ITEMS and MEGAN at taxonomic rank class.

fied by two or all methods are not necessarily assigned to the same taxon. The Venn diagrams
show that the fraction of reads that are classified by all methods is bigger at higher taxonomic
ranks than on lower taxonomic ranks. For a qualitative comparison of the taxonomic classi-
fications of the three methods, comparative taxonomic profiles for each taxonomic rank have
been created. Figure 5.3 shows the profile for taxonomic rank class, Appendix Section A.8
contains the full set of profiles. In order to restrict the number of taxa in the taxonomic pro-
files to the most abundant ones, all taxa with a relative abundance smaller than 0.01 were
discarded. Taxa for which any of the classification methods predicted an abundance of 0.01
or higher were not discarded. After this threshold was applied, the remaining taxa were nor-
malised such that the relative abundances sum up to one for each of the methods ensuring
comparability between the methods. In contrast to the profiles of the other taxonomic ranks,
the profile of taxonomic rank superkingdom includes the relative abundance of reads that have
been classified as “unknown”.

The comparative taxonomic profiles reveal a strong consistency between the compared
methods regarding the relative abundances of the most abundant taxa. Only at taxonomic
ranks genus and species, bigger differences can be found: CARMA3 predicts more Clostridia,
SOrt-ITEMS more Methanocullei and MEGAN predicts more Cloacamonas. The reason for
the high consistency between the three methods above taxonomic rank genus is that low
abundant species have been filtered away. Filtering of low abundant taxa provides a trade-
off between filtering noise produced by false positives and the detection of low abundant true
positive taxa. Table A.5 in Appendix Section A.8 shows how many reads of each method have
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Table 5.4: Running times for the homology searches (BLASTx and HMMER3) and the taxo-
nomic classifications with CARMA3, SOrt-ITEMS and MEGAN.

CARMA3 SOrt-ITEMS MEGAN

BLASTx 54 h 15 min 54 h 15 min 54 h 15 min
-classification 52 min 22 s 12 min 36 s 3 min 4 s
HMMER3 6 h 20 min - -
-classification 41 min 8 s - -

been filtered away. For example at taxonomic rank order, about 7% of all reads classified by
CARMA3, 11% of all reads classified by SOrt-ITEMS and about 28% of all reads classified
by MEGAN have been filtered away. This effect and the differences between the methods are
even stronger at lower taxonomic ranks. The results of the evaluation in Experiment 2, show-
ing that SOrt-ITEMS and in particular MEGAN produce more false positives than CARMA3,
are an indication that most of the filtered taxa in this data set are actually wrong predictions
rather than truly low abundant taxa.

This biogas plant metagenome has formerly been analysed using two different approaches,
(a) construction of bacterial and archaeal 16S-rDNA amplicon libraries and (b) screening for
reads in the 454 data set that encode for 16S-rDNAs [94]. Both 16S-rDNA approaches and
our results coincide in the identification of the main abundant taxa. For example at taxonomic
rank order, the archaea Methanomicrobiales and the bacteria Clostridiales and Bacteroidales
have by all approaches been predicted as the main abundant taxa. Apart from these consis-
tent predictions, the differences in the relative abundances of the other taxa might also be
explained by various biases that are inherent to the compared methods. For example, the
database reference sequences come mainly from culturable species and therefore are biased
towards certain bacterial phyla [76]. On the other side, the oligonucleotide primers that are
used to amplify the 16S-rDNA can exhibit substantial variations in their specificity towards
different clades [9]. Considering these potential biases, the taxonomic classifications of the
BLASTx-based methods show a high consistency with the results of the 16S-rDNA analyses.

Running times To determine the running time of our method 10,000 metagenomic reads
from the biogas plant metagenome with the complete CARMA3 pipeline were analysed. For
comparative purposes, the running times of SOrt-ITEMS and MEGAN were also measured.
The computation was conducted on a 2.5 GHz Intel Core 2 Duo processor with 8 GB RAM,
running Linux (64-bit Ubuntu 10.04, kernel version 2.6.35.23). The observed running times,
measured with the GNU time command (user+sys), are given in Table 5.4.

The results show that for the BLAST-based classifications, the BLAST homology search
accounts for more than 98% of the total running time. Among the three BLAST-based classi-
fication methods, MEGAN is the fastest method, more than 4 times faster than SOrt-ITEMS.
SOrt-ITEMS in turn is about 4 times faster than CARMA3BLASTx. In contrast to MEGAN,
CARMA3BLASTx and SOrt-ITEMS spend additional time on performing reciprocal BLAST
searches and therefore are slower. CARMA3BLASTx is slower than SOrt-ITEMS because it
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does not use a top-percent filter and therefore creates bigger BLAST databases in the recip-
rocal search step.

To measure the time needed to run BLASTx on shorter Illumina reads, 10,000 75 bp-reads
sequenced with Illumina Genome Analyser (GA) from a human gut microbial community
[144] were searched against the full NR protein database. The running time of about 14.5
hours for the BLASTx run is in terms of bases per second quite similar to the running time
of the BLASTx analysis of the 454 data. While a BLASTx analysis of a complete 454 run
is feasible on a compute cluster in the order of hours or a few days, this approach seems to
be less practical for the analysis of all unassembled reads produced by a complete run of an
Illumina sequencing machine that produces one to two orders of magnitudes more bases in
total than a 454 sequencing machine in a single run. The usage of data reduction techniques,
as shown in Experiment 4, can be a way to overcome this limitation.

5.8 Experiment 4: CARMA3 on Assembled Illumina Data

Data reduction techniques are a common method to handle the amount of data produced by
Illumina sequencing machines [144, 70]. Typical steps involve the assembly of reads into
longer fragments, gene detection with a gene finder to detect open reading frames (ORF),
clustering of highly similar ORFs, and translation of the non-redundant ORFs into protein
sequences. Such a metaproteome has, in contrast to the full set of unassembled Illumina
reads, a size that makes the analysis with the BLASTp variant of CARMA3 possible on a
compute cluster in the order of hours or a few days.

To evaluate the applicability of CARMA3 on amino acid sequences derived from assembled
Illumina reads, the BLASTp variant of CARMA3 was used to analyse the gene catalogue of
the human gut microbiome [144]. Figure 5.4 shows the results of this analysis at taxonomic
rank genus. The profiles of the other taxonomic ranks can be found in Appendix Section A.9,
Figures A.16–A.22. These results were compared to the taxonomic classification of another
study of the human intestinal microbial flora based on 13,355 prokaryotic 16S ribosomal RNA
gene sequences [42].

Both methods, the 16S-rDNA analysis and CARMA3, identify Firmicutes and
Bacteroidetes as the most abundant phyla, followed by Proteobacteria, Actinobacteria, Verru-
comicrobia, and Fusobacteria. Also, in both analyses the phylum Firmicutes consists mainly
of the class Clostrida. Nearly all genera of the Clostridia that have been predicted by the
16S-rDNA analysis, like Eubacterium, Ruminococcus, Dorea, Butyrivibrio, and Coprococ-
cus, have also been predicted by CARMA3 (Appendix Figure A.23). Also most of the species
of Clostridia like E. rectale, E. hallii, R. torques, R. gnavus, F. prausnitzii, D. formicigener-
ans, and D. longicatena that are found by the 16S-rDNA analysis could be confirmed by
CARMA3 (Appendix Figure A.24). However, the species E. hadrum and R. callidus that
have been found by 16S-rDNA were not found by CARMA3. The genus Clostridium which
is the taxon found by CARMA3 to have the highest abundance in the class Clostrida is not re-
ported by the 16S-rDNA analysis. The reason for this might be that the 16S-rDNA sequence
of Clostridium bartlettii, which mostly contributes to the genus Clostridium and is known to
be found in human faeces, might not have been available at the time of the 16S-rDNA analy-
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Figure 5.4: The 20 most abundant taxa of the human gut microbial gene catalogue at taxo-
nomic rank genus.

sis [180]. Also the species R. inulinivorans and R. intestinalis of the genus Roseburia, which
are found by CARMA3 but not by the 16S-rDNA analysis, are known to occur in human
faeces [174, 39]. For the second most abundant phylum, the Bacteroidetes, the authors of the
16S-rDNA analysis report a high variability in the distribution of phylotypes in samples from
different subjects. Nevertheless, all phylotypes reported by the authors of the 16S-rDNA anal-
ysis, B. vulgatus, Prevotellaceae, B. thetaiotaomicron, B. caccae, and B. fragilis, were among
the 11 or, in case of B. putredinis, among the 22 most abundant taxa predicted by CARMA3
(Appendix Figures A.25 and A.26).

The comparison of the taxonomic predictions of the 16S-rDNA analysis and CARMA3 has
revealed a high consistency in the results of both methods. This shows that CARMA3 can also
be used for the taxonomic classification of amino acid sequences obtained from assembled
Illumina reads.

5.9 Experiment 5: Applicability of Short Reads for
Taxonomic Classification

A special challenge in metagenomics is the fact that the new sequencing techniques produce
short (100-500 bp with 454) and ultra-short (35 bp with SOLiD, 35-100 bp with Illumina,
30-35 bp with Helicos [142]) reads. New bioinformatic tools have to be developed that can
cope with both, the huge amount of data and the short read lengths. Especially the short read
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lengths have been considered the main bottleneck for the usage of ultra-short reads in metage-
nomics. Recent analyses, based on BLAST-searches, indicated a low prediction quality for
short reads < 400 bp [217]. In contrast, Krause et al. [93] showed on a synthetic metagenome
that even with reads as short as around 100 bp, high accuracy predictions with an average
false positive rate of 0.1 to 2.5 percent are possible.

In this experiment we simulated short and ultra-short reads, as described in Section 5.2, to
evaluate if reads, as short as 35 bp, can be used for taxonomic classification of a metagenome
with CARMA2. It is known that some sequencing techniques exhibit correlations between
read coverage and GC content [13, 38, 158]. By using simulated reads instead of real metage-
nomic reads we can be sure that any differences we see in the classification results between
the data sets are only due to the different read lengths. If there is a bias in the 454 data, then
we also have the same bias in the simulated data sets and our comparison should not be much
affected by this.

First, we analyze the number and lengths of the EGTs obtained for each data set, then we
compare the taxonomic classification results for the different read lengths.

As shown in Table 5.5, the number of reads in each data set decreases with increasing read
length. This is because the 454 data set contains reads of different lengths and some of the
reads are already too short to serve as a template for all simulated data sets. The relative
amount of EGTs that is found in each data set increases with read length. Figure 5.5 shows
the EGT length distribution in each data set as a function of read length. Shown are the
minimum, 25% quantile, median, 75% quantile and the maximum.

Our results show that the median EGT length does not scale linearly with the read length.
The length of Pfam families and domains poses an upper bound on the possible length of local
alignments between translated reads and Pfam families. The longer a read is, the higher is
the probability that parts of the reads lie outside of the matching gene and can not contribute
to the EGT. In rare cases, it happens that an EGT is one amino acid longer than its read
length divided by three. For example, in the set of EGTs produced from the 150 bp-reads data
set, the longest EGTs are 51 amino acids long. This can occur when BLASTx predicts two
frameshifts in one read.

For our analysis of the applicability of ultra-short reads with CARMA2, we considered
seven different taxonomic ranks: superkingdom, phylum, class, order, family, genus and
species. A first relative abundance for each taxon is obtained by dividing the absolute number
of EGTs that predict this taxon by the total number of EGTs at the same taxonomic rank. The
latter do not include EGTs that were assigned the taxonomic status “unknown”. We consider
taxa with a relative abundance below the threshold 0:015 in all data sets, to be false positives.
Therefore they are classified as “other”.

After applying the threshold we recompute the relative abundances for each taxon, this
time subtracting both, “unknown” and “other” from the total number of EGTs at the same
taxonomic rank. With this, we have normalized the relative abundances for the taxa such that
they sum up to 1 and therefore ensured comparability between the data sets.

For scaling reasons, the fractions of “unknown” and “other” EGTs are not shown in the
histograms (except “unknown” on superkingdom level). This data is given in Tables 5.6
and 5.7.
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Figure 5.5: EGT length distribution in each data set as a function of read length. Shown are
the minimum, 25% quantile, median, 75% quantile and maximum.

Table 5.6: Rate of “Unknown” EGTs that could not be classified further from the complete set
of EGTs.

Rea
d Len

gth

Sup
erk

ing
do

m

Phy
lum

Clas
s

Orde
r

Fam
ily

Gen
us

Spe
cie

s

35 0.09 0.31 0.38 0.45 0.52 0.53 0.59
40 0.09 0.26 0.37 0.43 0.51 0.52 0.57
50 0.09 0.27 0.38 0.43 0.51 0.52 0.58
60 0.09 0.28 0.39 0.45 0.53 0.54 0.61
70 0.09 0.29 0.4 0.46 0.54 0.56 0.63
100 0.1 0.32 0.43 0.49 0.58 0.6 0.68
150 0.11 0.33 0.44 0.52 0.6 0.62 0.71
200 0.11 0.34 0.45 0.52 0.61 0.63 0.73
250 0.11 0.32 0.44 0.51 0.6 0.63 0.73
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Table 5.7: “Other” are EGT’s with a relative abundance below the threshold 0:015 and are
not shown in the histograms. Here we show the rates of “Other” EGTs relative to the total
number of classified EGTs for each taxonomic rank and data set.

Rea
d Len

gth

Sup
erk

ing
do

m

Phy
lum

Clas
s

Orde
r

Fam
ily

Gen
us

Spe
cie

s

35 0.0011 0.0671 0.1651 0.2816 0.4057 0.4554 0.6776
40 0.0011 0.0678 0.1691 0.2901 0.4388 0.5056 0.7340
50 0.0019 0.0667 0.1609 0.2954 0.4591 0.5292 0.7606
60 0.0024 0.0619 0.1552 0.2864 0.4637 0.5302 0.7663
70 0.0023 0.0617 0.1554 0.2954 0.4535 0.5221 0.7505
100 0.0035 0.0655 0.1539 0.2891 0.4456 0.4978 0.7172
150 0.0071 0.0692 0.1565 0.2964 0.4555 0.5006 0.6756
200 0.0100 0.0651 0.1467 0.2938 0.4500 0.4954 0.6658
250 0.0137 0.0542 0.1377 0.2849 0.4317 0.4693 0.6364

Even though the taxonomic predictions on lower taxonomic ranks (order, family, genus and
species) are known to be imprecise, we included them in our experiment in order to study the
effect of using (ultra-)short reads compared to longer ones at all taxonomic ranks.

Figure 5.6 shows the results at taxonomic rank species. The complete set of figures for
the evaluation at all taxonomic ranks can be found in Appendix Section A.10. The results
show that CARMA2 predicts for all data sets and all taxonomic ranks the same taxa. For
higher taxonomic ranks, even the relative abundance levels are similar between the different
data sets. Deviations of 35 bp-reads for example can be seen on the level of order, where
significantly more of Thermotogales and Haemosporida, and less of Thermoanaerobacterales
are predicted. The 40 bp data set does not show these differences. Even more deviations can
be found on lower taxonomic ranks, for example species.

Furthermore, as expected, the rate of EGTs that are not classified increases for lower tax-
onomic ranks for all data sets (Table 5.6). Interestingly, the rate of unclassified EGTs is
smaller for shorter reads than for longer reads. This might be due to the circumstance that
shorter EGTs need to have more sequence similarity to the Pfam families than longer EGTs,
in order to achieve the same E-value threshold.
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Figure 5.6: Taxonomic results on the level of species. Only taxa with an abundance of 0:015
or higher are shown.
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Chapter 6
Conclusion and Outlook

Metagenomics is a relatively new field of research on natural microbial communities contain-
ing uncultured microbes. New methods that involve construction of metagenomic libraries
and shotgun sequencing of whole metagenomes have helped to improve understanding the
microbial world. Understanding microbes is not only important because they affect our health
and can be used in industrial applications, microbes also have the potential to contribute to
economically feasible and socially desirable alternatives for energy production and resource
usage to solve the environmental and economical problems mankind faces.

In recent years, metagenomics has been spurred by the development of next-generation
sequencing technologies. Despite its success in the analysis of microbial communities, there
still remain many quality problems: DNA extraction, filtering, the sequencing protocol, and
final sequencing produce various kinds of biases [38, 71, 113, 171]. Computational analyses
that are based on comparisons with known sequences are intrinsically biased due to the fact
that sequence databases contain mainly sequences from cultured species. The vast amount
of data and short read lengths produced by sequencing technologies pose a challenge for the
management and computational analysis.

In this thesis we have mainly been interested in computational methods to determine the
taxonomic origin of metagenomic DNA sequences. Several existing methods have been re-
viewed in Chapter 2. The most critical issues of these methods are speed and accuracy of the
taxonomic classification. Our main contribution in this field is the development of a novel
method that is more accurate than other comparable methods while achieving competitive
running times if the BLAST search is included in the time measurement.

With CARMA3 we have introduced a new method for the taxonomic classification of as-
sembled as well as unassembled metagenomic sequences that can be used in combination
with BLAST- and HMMER-based homology searches. Our method is able to classify protein-
encoding DNA sequences, protein sequences and 16S-rDNA/RNA sequences. Except for the
homology search and the fall-back scenario, our method is parameter-free. In addition, for the
HMMER-based variant, our method also provides a functional classification of metagenomic
sequences and therefore allows for the characterization of species composition and genetic
potential of microbial samples.
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Typically, a metagenomic sample contains many novel species that have not been se-
quenced before. We have simulated such a scenario with the order filtered database and have
shown that in most cases CARMA3 not only performs better than existing BLAST-based
methods, but most strikingly, it is better at avoiding false positive predictions on lower taxo-
nomic ranks when only remote homologs are available for the classification of novel species.

As already pointed out in Section 3.3, we think that our method outperforms the other
BLAST-based methods because reciprocal hits provide a reasonable estimation of the last
common ancestor of the metagenomic sequence and its best hit in the sequence database. In
contrast to the other methods, CARMA3 is not based on the LCA and therefore does not
discard reciprocal hits that can provide valuable information for the taxonomic classification.

CARMA3 uses both, BLAST and HMMER3 for the taxonomic classification of metage-
nomic reads. One of the reasons we developed the HMMER3 variant was the idea that we
could improve the speed of the reciprocal search by first finding the corresponding protein
family with HMMER3 and then restricting the search of reciprocal hits to this smaller set of
sequences from the same family. Indeed, for the future we plan to further increase the speed
of CARMA3HMMER3 by using BLASTp to search for the reciprocal hits within the protein
family instead of computing the pairwise alignments for every Pfam family member. How-
ever, in nearly all cases the BLASTx-based variant classified significantly more reads than
the HMMER3-based variant. In many cases it also had fewer false positives. Therefore we
think that the BLASTx-based variant in our current setting is the preferable method for the
taxonomic classification. The computational bottleneck of the CARMA3 pipeline is the ho-
mology search, in particular the BLAST search. In our evaluation the initial BLAST search
accounted for over 98 % of the total running time. However, this is a problem shared with all
BLAST-based approaches. Furthermore, we have shown in our evaluation that this problem
can be dealt with by the use of data reduction strategies which include assembly and gene
detection steps.

One of the reasons that the HMMER3-based variant does not perform as well as the
BLASTx-based variant might be that the Pfam-A database contains less sequence information
than the NR protein database. In our evaluation the NR protein database contained 3.55 Gaa
(billion amino acids) while Pfam-A contained only 0.77 Gaa. The Pfam database also pro-
vides multiple alignments that have been created by aligning NCBI GenPept sequences [166]
against Pfam-A. Since this additional sequence information might increase the classification
accuracy we are planning to incorporate these alignments into the HMMER-based variant of
CARMA3. Also, we are considering to include the Pfam-B database in the homology search
as this should increase the fraction of metagenomic reads being classified.

Currently available biological sequence databases are known to be biased because they
mainly contain sequences of species that are culturable. Although we have tried to minimize
the effect of this bias on the results of our evaluation by creating the order filtered database,
this bias has to be kept in mind when generalizing our evaluation results to metagenomic
reads from uncultured species.

In our experiments we have shown that CARMA3 can also be used to taxonomically clas-
sify protein sequences derived from metagenomes like the human gut metagenome. We also
have shown that the application of several data reduction strategies is a reasonable approach
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to handle the enormous amounts of data produced by recent sequencing technologies like
Illumina.

In addition to CARMA3 we also have presented the web application WebCARMA, which
makes metagenomic analyses of protein-encoding DNA sequences with CARMA3 easily ac-
cessible to the scientifc community. WebCARMA provides taxonomic and functional classi-
fications in common data formats as well as basic visualizations of the profiles.

In an additional experiment we were able to show that ultra-short reads, as short as 35 bp,
can be used for the taxonomic classification of a metagenome. The biogas data set we have
used in the analysis is a low complexity data set with only a few prevalent species. Therefore,
our results do not necessarily apply to data sets of higher complexity. Still, we think we
have shown that ultra-short reads can indeed, in principle, be used for reliable taxonomic
classification of a microbial community if the coverage is high enough.

6.1 Future Directions

Metagenomics with CARMA3 still leaves some room for improvements. Proper statistics
to assess the significance of functional and taxonomic predictions based on short reads are
still missing [90]. The abundance levels of the classification results have to be read with
care. Species with larger genomes or more genes than other species will be overrepresented
in the taxonomic profiles because more EGTs can be found. Therefore, more accurate results
might be achieved by weighting EGTs using additional information like the genome size of
the closest known relative.

CARMA3 has a better specificity than other methods which means that predictions of low
abundant species are also more reliable. Still, CARMA3 makes many wrong predictions,
many of which can be filtered away by using a simple abundance threshold. This threshold
provides a trade-off between the ability to detect low abundant species and the ability to
discard wrong predictions. A systematic evaluation that would allow for more conscious use
of this threshold should be helpful.

Some predictions of CARMA3 are more reliable than others. For example, a taxonomic
classification that is based on only one reference sequence should be considered less reliable
than a classification based on a set of reference sequences representing a gene family. It also
could be observed that classifications based on less significant BLAST hits are more likely to
produce wrong predictions. Incorporating some kind of reliability measure therefore should
help in interpreting the final taxonomic classification results.

CARMA3 was designed to detect protein-encoding DNA fragments. Longer fragments,
like contigs or the complete genome, contain more than one gene. Currently, CARMA3 will
only use the gene that obtains the highest BLAST bitscore to determine the taxonomic origin
of the metagenomic fragment. Combining predictions based on each gene on such a fragment
should lead to more robust and reliable predictions.

It is also possible to detect viral or plasmid genes using CARMA3. If such a gene is shared
between a virus and a genome, or a plasmid and a genome in the reference database, it is likely
that it will be assigned the taxonomic status “unknown” by CARMA3. The reason for this is
that the structure of the NCBI taxonomy places entities like plasmids and viruses at the same
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taxonomic level like Archaea, Bacteria and Eukaryota. Any metagenomic fragment with two
similarly significant BLAST hits to different entities will be assigned to the LCA of these
entities, which is the root node of NCBI taxonomy tree. A future version of CARMA3 could
account for this by restricting the reciprocal search to one entity and flagging the metagenomic
sequence as putatively of viral or plasmid origin.

In Section 3.3 we discussed the problem that the best BLAST hit is often not necessar-
ily the nearest neighbor. We have developed the BLAST variant of CARMA3 based on the
assumption that the best BLAST hit is the nearest neighbor, or at least close to it. Our experi-
ence with the 16S-rDNA/RNA variant of CARMA3 confirmed that BLAST is not necessarily
always the best choice to find the nearest neighbor. While noticing that 16S-rDNA sequences
are a special case, because their sequence is highly conserved among different species, it still
raises the question if there are better alternatives to BLAST also for our BLASTx-based vari-
ant of CARMA3. Nevertheless, a k-mer based approach like that of the RDP Classifier will
not be able to provide the high sensitivity in homology detection of BLAST that is required
for metagenomic protein-encoding DNA sequences.

Considering the speed of development of high-throughput sequencing technologies in the
last years, it is likely that shotgun metagenomics will benefit from increasing read lengths
and lower error rates. New developments like single-cell sequencing [219] even justify the
hope that the ability to sequence near-complete or complete genomes of uncultured microbes
will become a standard tool in metagenomics in the future. Such sequencing efforts are likely
to help decreasing the current bias in sequence databases towards cultured species. Finally,
we think that novel sequencing technologies and computational methods, like the one we
have introduced in this work, will further help in shedding light on the still largely unknown
microbial world.
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Appendix A

Appendix

A.1 WebCARMA Data Formats

In the following we describe the input and output file formats of WebCARMA.

A.1.1 Input Requirements

WebCARMA accepts as input a FASTA file containing metagenomic DNA sequences. Op-
tionally, this file can be uploaded as a compressed file, either as zip, gzip or tgz archive.
An additional requirement is that the FASTA description lines contain unique names.

The taxonomic classification of protein or 16S-rDNA sequences is not yet supported, al-
though this functionality is now implemented in CARMA3. A new version of WebCARMA,
which is currently under development, will support the upload and analysis of this kind of
sequence data.

Users should note that WebCARMA performs no quality check on the sequences, e.g.,
duplicates or low-quality sequences are not removed. CARMA was designed to analyze bac-
terial and archaeal DNA, but it is also possible to analyse eukaryotic DNA. These sequences
consist mainly of non-coding DNA, to which BLASTx and HMMER3 cannot find homolo-
gous protein references. In our experience, the homology search often still reports many low
quality matches to the reference protein sequences. Therefore, the result should be interpreted
with care in this case.
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A.1.2 Description of WebCARMA Output Files

The output of WebCARMA is a tgz-compressed archive file that contains the following files:

result.egt superkingdom.pdf
blastx_result.tax phylum.pdf
hmm_result.tax class.pdf
functional_profile.tsv order.pdf
taxonomic_profile.tsv family.pdf
functional_profile.pdf genus.pdf

species.pdf

Text lines in the examples below that were too long to fit on the page, were broken and
marked with the “7!”-symbol at each line break.

EGTs – result.egt

This file contains the environmental gene tags (EGTs) that were obtained by aligning the
translated reads against their Pfam family in the HMMER variant of CARMA3. The FASTA
description line contains information about matching Pfam family, read identifier, HMMER3
E-value, and a list of Gene Ontology identifiers with individual fields being separated by the
sequence “=+=”. This format was introduced by CARMA1 and for compatibility reasons
we adopted it in the subsequent versions of CARMA. The box below shows one exemplary
FASTA entry consisting of a description line and an EGT protein sequence.

>PF04961.4=+=HWI-EAS217_1_2013P:1:1:383:736 7!
=+=3.2e-07=+={GO:0044237,GO:0003824}

LPKKTDEEKAARKAAI

Taxonomic Classifications – blastx_result.tax and hmm_result.tax

Below is an exemplaric line of a hmm_result.tax file. Each line consists of a tab sep-
arated list of values, where columns contain information about read identifier, Pfam family,
list of Gene Ontology identifiers (GO-Id), NCBI taxon identifier, prettyprint taxon name and
E-value. The format of blastx_result.tax differs from hmm_result.tax in that
the entry of Pfam family is not used. In case of hmm_result.tax, the E-value refers to
the HMMER3 E-value, whereas in case of blastx_result.tax, it refers to the E-value
of the best BLAST hit.

072343_1987_0335<tab>PF01312<tab> 7!
{GO:0016020,GO:0009306}<tab>68295<tab> 7!
Bacteria(superkingdom)!Firmicutes(phylum)!Clost... 7!
<tab>7e-30
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For further processing of these data, we recommend to use the NCBI taxon identifier in-
stead of the prettyprint taxon name.

Functional Profile – functional_profile.tsv

The example below shows three lines from a functional_profile.tsv file. Each
GO-Id is represented by one line that shows the corresponding Gene Ontology term with its
category in round brackets, as well as number of EGTs in result.egt that have this GO-Id
assigned.

GO:0051287<tab>"NAD or NADH binding (molecular_function)" 7!
<tab>molecular_function<tab>105

GO:0005737<tab>"cytoplasm (cellular_component)"<tab> 7!
cellular_component<tab>103

GO:0046168<tab>"glycerol-3-phosphate catabolic process 7!
(biological_process)"<tab>biological_process<tab>101

Taxonomic Profile – taxonomic_profile.tsv

CARMA does not directly create taxonomic profiles, it just tells for each EGT, which gene
it encodes and from which taxon it most likely originates. To get a better overview of the
metagenomic content of a sample, one needs to have a histogram that states for each taxon
how many supporting metagenomic sequences have been found in the sample. This infor-
mation is provided by the file taxonomic_profile.tsv. It contains for each taxon the
number of metagenomic sequences that have been assigned to this taxon by the BLAST vari-
ant of CARMA3. The first column shows the taxonomic rank of the taxon.

order<tab>"Poales"<tab>165
order<tab>"Clostridiales"<tab>39
class<tab>"Liliopsida"<tab>180
class<tab>"Clostridia"<tab>40

Functional Profile – functional_profile.pdf

The file functional_profile.pdf provides a visualization of the functional profile
that is given by functional_profile.tsv. It shows for the 40 most abundant GO-
terms the numbers of metagenomic sequences that support the corresponding GO-terms. An
example of such a functional profile of a complete metagenomic 454 data set from a bio-
gas plant microbial community produced with WebCARMA is depicted in Figure A.1. The
underlying data set is described in Section 5.2.

Taxonomic Profiles – {superkingdom.pdf,...,species.pdf}

The files superkingdom.pdf, phylum.pdf, class.pdf, order.pdf,
family.pdf, genus.pdf, and species.pdf are visualizations of the file
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Figure A.1: Example of a functional profile: 40 most abundant GO-terms in the metagenome
of an agricultural biogas reactor.

taxonomic_profile.tsv. For each taxonomic rank, only the 40 most abundant taxa
are shown. In addition, taxa with a relative abundance below 0.01 have been discarded. Ex-
amples of these files can be found in Appendix A.9.

A.1.3 Tools

The profiles WebCARMA provides by default have been created using certain parameters
which a user might want to change, like the cut-off threshold for the relative abundance of
taxa. Therefore, we provide Perl scripts for download that can easily be used as templates for
own data processing pipelines. In the following, we give a short overview of these scripts. A
manual with more detailed explanations can be found on the WebCARMA site.

getFunctionalProfile.pl

This script takes result.egt as input and creates taxonomic_profile.tsv.

getTaxonomicProfile.pl

Taking blastx_result.tax as input, the file taxonomic_profile.tsv is created.
This script can alternatively be used to generate a taxonomic profile from
hmm_result.tax.
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getComparativeTaxonomicProfile.pl

To compare two or more metagenomic data sets, that have been analyzed with CARMA, it is
possible to create a comparative taxonomic profile with this script. Examples of visualizations
of such a comparative profile can be found in Appendix Sections A.8 and A.10.
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A.2 Simulated Metagenome

Table A.1: The 25 genomes from NCBI used to simulate the metagenomic reads. The number
of reads refers to the simulated metagenome with average read length 265 bp.

Genome taxonomy id # reads

Aliivibrio salmonicida LFI1238 316275 1205
Bdellovibrio bacteriovorus HD100 264462 967
Brucella melitensis biovar Abortus 2308 359391 856
Burkholderia mallei SAVP1 320388 1297
Burkholderia multivorans ATCC 17616 395019 1789
Chlamydia trachomatis D/UW-3/CX 272561 253
Clostridium phytofermentans ISDg 357809 1276
Colwellia psychrerythraea 34H 167879 1377
Cyanothece sp. ATCC 51142 43989 1307
Escherichia coli B str. REL606 413997 1123
Haemophilus parasuis SH0165 557723 598
Helicobacter pylori B38 592205 404
Mycobacterium abscessus ATCC 19977 561007 1305
Orientia tsutsugamushi str. Ikeda 334380 499
Pseudomonas aeruginosa PA7 381754 1714
Rhodopseudomonas palustris BisB5 316057 1224
Shigella boydii CDC 3083-94 344609 1202
Sinorhizobium meliloti 1021 266834 973
Staphylococcus aureus subsp. aureus Mu50 158878 736
Staphylococcus epidermidis ATCC 12228 176280 684
Streptococcus pneumoniae G54 512566 534
Sulfurovum sp. NBC37-1 387093 681
Synechococcus sp. CC9605 110662 650
Vibrio cholerae M66-2 579112 1020
Vibrio parahaemolyticus RIMD 2210633 223926 1326

Total 25000
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A.3 Evaluation of CARMA3 on Reads of Different Lengths

Table A.2: Reads simulated using the MetaSim 454 error model with 400 bp read length.

order filtered species filtered all

TP FP TP FP TP FP

superkingdom 14190 1175 21238 151 23010 19
phylum 9905 1153 20034 201 22919 28
class 4307 1289 16723 269 20826 30
order – 2082 15851 246 21456 31
family – 959 11696 213 18805 25
genus – 151 7078 452 16357 99
species – 2 – 49 417 17

Table A.3: Reads simulated using the MetaSim 454 error model with 80 bp read length.

order filtered species filtered all

TP FP TP FP TP FP

superkingdom 3174 174 8558 39 12411 14
phylum 2208 531 8107 146 12218 41
class 884 564 6517 174 10745 47
order – 1114 6469 251 11062 76
family – 665 4916 299 9526 73
genus – 190 2854 354 8597 90
species – 42 – 485 2724 44
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Table A.4: Reads simulated using the MetaSim Illumina error model with 80 bp read length.

order filtered species filtered all

TP FP TP FP TP FP

superkingdom 7112 335 15692 34 20305 6
phylum 5139 904 15012 182 20157 22
class 2223 1021 12483 226 18331 24
order – 2143 12291 342 18809 37
family – 1320 9769 439 16736 38
genus – 363 6420 672 15759 82
species – 99 – 1190 6773 114

A.4 Overlap of Classifications for Order-Filtered Data Set
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Figure A.2: True positives overlap of CARMA3, SOrt-ITEMS and MEGAN for the order-
filtered data set at taxonomic ranks superkingdom to class.
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Figure A.3: False positives overlap of CARMA3, SOrt-ITEMS and MEGAN for the order-
filtered data set at taxonomic ranks superkingdom to species.
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A.5 Overlap of Classifications for Species-Filtered Data Set
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Figure A.4: True positives overlap of CARMA3, SOrt-ITEMS and MEGAN for the species-
filtered data set at taxonomic ranks superkingdom to genus.
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Figure A.5: False positives overlap of CARMA3, SOrt-ITEMS and MEGAN for the species-
filtered data set at taxonomic ranks superkingdom to species.
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A.6 Overlap of Classifications for Unfiltered Data Set
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Figure A.6: True positives overlap of CARMA3, SOrt-ITEMS and MEGAN for the unfiltered
data set at taxonomic ranks superkingdom to species.
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Figure A.7: False positives overlap of CARMA3, SOrt-ITEMS and MEGAN for the unfiltered
data set at taxonomic ranks superkingdom to species.

99



Appendix A. Appendix

A.7 Biogas Plant Microbial Community – Overlap
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Figure A.8: Number of reads classified by each method at the corresponding taxonomic rank.
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A.8 Biogas Plant Microbial Community – Comparative
Taxonomic Profile

Table A.5: Fraction of reads that have been discarded from the comparative taxonomic profile
due to the cut-off threshold 0:01.

CARMA3 SOrt-ITEMS MEGAN

superkingdom 0 0 0
phylum 0.045 0.054 0.073
class 0.036 0.054 0.120
order 0.065 0.106 0.277
family 0.087 0.142 0.456
genus 0.091 0.090 0.495
species 0.267 – 0.689
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Figure A.9: Comparative taxonomic profile of a biogas plant microbial community at taxo-
nomic rank superkingdom.
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Figure A.10: Comparative taxonomic profile of a biogas plant microbial community at taxo-
nomic rank phylum.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

C
lostridia

M
ethanom

icrobia

Bacteroidia

Bacilli

D
eltaproteobacteria

G
am

m
aproteobacteria

Actinobacteria (class)

Alphaproteobacteria

Therm
otogae (class)

M
am

m
alia

Insecta

R
e
la

ti
v
e
 A

b
u
n
d
a
n
c
e

Taxonomic Profile - Class

CARMA3
SOrt-ITEMS

MEGAN

Figure A.11: Comparative taxonomic profile of a biogas plant microbial community at taxo-
nomic rank class.
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Figure A.12: Comparative taxonomic profile of a biogas plant microbial community at taxo-
nomic rank order.
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Figure A.13: Comparative taxonomic profile of a biogas plant microbial community at taxo-
nomic rank family.
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Figure A.14: Comparative taxonomic profile of a biogas plant microbial community at taxo-
nomic rank genus.
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Figure A.15: Comparative taxonomic profile of a biogas plant microbial community at taxo-
nomic rank species. Note that SOrt-ITEMS does not make predictions at taxonomic rank
species.
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A.9. Taxonomic Profile of the Human Gut Microbial Gene Catalogue

A.9 Taxonomic Profile of the Human Gut Microbial Gene
Catalogue
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Figure A.16: All taxa of the human gut microbial gene catalogue at taxonomic rank superk-
ingdom.
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Figure A.17: The 20 most abundant taxa of the human gut microbial gene catalogue at taxo-
nomic rank phylum.
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Figure A.18: The 20 most abundant taxa of the human gut microbial gene catalogue at taxo-
nomic rank class.
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Figure A.19: The 20 most abundant taxa of the human gut microbial gene catalogue at taxo-
nomic rank order.
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Figure A.20: The 20 most abundant taxa of the human gut microbial gene catalogue at taxo-
nomic rank family.
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Figure A.21: The 20 most abundant taxa of the human gut microbial gene catalogue at taxo-
nomic rank genus.
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Figure A.22: The 20 most abundant taxa of the human gut microbial gene catalogue at taxo-
nomic rank species.
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Figure A.23: All genera from the class Clostridia in the human gut microbial gene catalogue.
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Figure A.24: The 40 most abundant species from the class Clostridia in the human gut mi-
crobial gene catalogue.
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Figure A.25: All families from the phylum Bacteroidetes in the human gut microbial gene
catalogue.
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Figure A.26: The 40 most abundant species from the phylum Bacteroidetes in the human gut
microbial gene catalogue.
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A.10 Applicability of Short Reads for Taxonomic
Classification
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Figure A.27: Taxonomic results on the level of superkingdom.
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Figure A.28: Taxonomic results on the level of phylum. Only taxa with an abundance of
0:015 or higher are shown.
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Figure A.29: Taxonomic results on the level of class. Only taxa with an abundance of 0:015
or higher are shown.
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Figure A.30: Taxonomic results on the level of order. Only taxa with an abundance of 0:015
or higher are shown.
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Figure A.31: Taxonomic results on the level of family. Only taxa with an abundance of 0:015
or higher are shown.
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Figure A.32: Taxonomic results on the level of genus. Only taxa with an abundance of 0:015
or higher are shown.
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Figure A.33: Taxonomic results on the level of species. Only taxa with an abundance of 0:015
or higher are shown.
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