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ABSTRACT 

The regulation of energy homeostasis involves a balance between food intake and 

energy expenditure. The hypothalamus is a crucial regulator for energy balance and consists of 

several discrete nuclei, including the arcuate (ARC), ventromedial (VMH), dorsomedial (DMH), 

and paraventricular (PVH) hypothalamus. Brain-derived neurotrophic factor (BDNF) expressed 

in hypothalamic nuclei is significant in regulating energy homeostasis. Our studies 

demonstrated that an enriched environment (EE), a complex housing with social and physical 

stimulation, upregulated BDNF expression in the ARC and VMH/DMH leading to an anti-obesity 

and anti-tumor phenotype. Moreover, the EE anti-obesity phenotype can be mimicked by 

overexpression of ARC and VMH/DMH Bdnf. While studies have shown diet- and genetic-

induced obesity can be reversed by transferring the Bdnf gene to ARC and VMH/DMH, the roles 

of other nuclei in mediating the EE phenotype is not known. Research has shown that PVH 

BDNF has a strong and lasting impact on suppressing food intake and increasing energy 

expenditure, and the deletion of Bdnf in the PVH leads to hyperphagia and severe obesity. Thus, 

we hypothesized PVH Bdnf is upregulated by EE. Our results did not demonstrate significant 

upregulation of Bdnf expression in PVH or ARC after EE exposure. However, we observed a 

markedly increase of Vgf (non-acronymic) expression in PVH of EE mice, suggesting Vgf can 

be our next target gene of interest to study EE’s anti-obesity effects. 

 

INTRODUCTION 

Obesity is one of the leading health problems in the U.S., with a prevalence of more than 

78.6 million adults and more than one-third of children and adolescents (Ogden, Carroll, Kit, & 

Flegal, 2014; Ogden et al., 2016). Obesity is associated with increased risk of cardiovascular 

diseases, depression and cancers (Skinner, Perrin, Moss, & Skelton, 2015; Wong, Janssen, & 

Ross, 2003). The economic burden of obesity is greater than one-fifth of all annual medical 

expenses, with a $14.1 billion obese-related medical expenditure simply on children and 
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adolescents (Hammond & Levine, 2010; Trasande & Chatterjee, 2009). Therefore, finding 

effective treatments for obesity is in urgent need. Obesity is generally resulted from excess 

energy intake or few energy expenditures. The energy homeostasis is controlled by genetic and 

environmental factors. One of the genetic components that control energy balance is the 

hypothalamus. The hypothalamus is a crucial regulator for energy balance. Several discrete 

nuclei in the hypothalamus are involved in energy balance control circuits: arcuate nucleus 

(ARC), ventromedial hypothalamus (VMH), dorsomedial hypothalamus (DMH), and 

paraventricular hypothalamus (PVH). Moreover, many studies found that brain-derived 

neurotrophic factor (BDNF), a widely-expressed member of the neurotrophin family related to 

growth factors in the brain, is highly involved in hypothalamic energy control circuits. The 

deletion of Bdnf and its receptor tyrosine kinase receptor B (trkB/Ntrk2) in the hypothalamus can 

induce severe obesity phenotypes (Gray et al., 2006). Studies also demonstrated that Bdnf 

knockout in hypothalamic nuclei can induce obesity phenotypes, whereas Bdnf overexpression 

can rescue the mutant obese phenotype (Abizaid, Gao, & Horvath, 2006; Liao et al., 2012; Xu et 

al., 2003). Nevertheless, our group is approaching this association between BDNF and 

hypothalamic energy homeostasis circuits from the environmental aspect. Our study showed 

that an enriched environment (EE), -a complex housing supplemented with physical, social, and 

cognitive stimuli, induced resistance to diet-induced obesity and improved metabolism in obese 

mice (Cao et al., 2011). EE upregulates Bdnf expression in ARC, DMH, and VMH; 

overexpression of Bdnf in these nuclei mimics the EE anti-obesity and anti-cancer phenotype 

(Cao et al., 2009; 2010; Xiao et al., 2016). However, Bdnf expression in other hypothalamic 

nuclei and their association to EE effects are poorly investigated. A recent study showed  Bdnf 

deletion in PVH induced hyperphagia and resulted in severe obesity (An, Liao, Kinney, 

Sahibzada, & Xu, 2015), suggesting PVH can be our candidate for obesity therapeutic target in 

EE. Thus, in this study we hypothesized that EE upregulates Bdnf expression in PVH. 
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METHODS 

Environmental Enrichment. 

Male 3-week-old C57BL/6 mice (from Charles 

River) were randomly assigned to control housing (HC) 

and enriched environment (EE) (n=10 per group). Ten 

mice were housed in two medium enriched bins of 73 

cm × 41 cm × 46 cm (n=5 per bin). Enriched bins were 

supplemented with running wheels, tunnels, igloos, huts, 

and nesting material in addition to standard lab chow 

and water (Andrew M Slater, 2015) (Figure 1). Control 

mice were housed under standard laboratory conditions 

with five mice per cage. Food and water were changed 

weekly and provided to all mice ad libitum. Housing 

cages and static wires in both control and enrichment groups were cleaned every week. 

Rearrangement of enrichment devices were conducted weekly and all toys were cleaned each 

week. Measurement of body weight and food intake was recorded every week. All mice were 

housed in their respective environments for four weeks before being sacrificed. 

 

Cryosectioning. 

Mice were perfused with 4% paraformaldehyde (Sigma). Fixed brains were kept in 

phosphate-buffered saline (PBS) overnight at 4 ºC and were subsequently switched to PBS with 

30% sucrose. Brains were placed in whole brain cryomolds filled with optimal cutting 

temperature (OCT) compound. Cryomolds were placed in dry ice until frozen, at which point 

brains were removed from the mold and sectioned on a ThermoFisher cryostat at -20 °C into 15 

μm slices. Sections were collected on slides and stored at -80 °C until staining. 

 

Figure 1. Top-down view of EE 
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Histology and Microscopy. 

Slides were dried at room temperature for two hours before staining. The section was 

treated with xylene for 5 min, dehydrated with 95% ethanol, then 70%, washed with deionized 

water, treated with cresyl violet solution for 10 min (at 60°C), washed with distilled water, 

rehydrated with 70% ethanol, 95%, then 100%, treated with xylene for 5 min, and coverslipped 

using cytoseal. A 10x imaging of the section was captured on a Zeiss Axio Imager M1 

microscope. 

 

Tissue Collection. 

Brain and adipose tissue were collected four weeks post housing. PVH and ARC nuclei 

were microdissected immediately upon isolation from skulls. The following adipose tissue 

depots were collected and weighed: brown adipose tissue (BAT), epididymal adipose tissue 

(EAT), inguinal adipose tissue (IAT), and retroperitoneal adipose tissue (RAT). 

 

Hypothalamic Microdissection. 

Brains were quickly isolated on ice. The slices containing PVH and ARC were sectioned 

from three 1-mm-thick coronal sections (-0.58 to -3.58 mm from bregma) with a mouse brain 

matrix. PVH and ARC were both microdissected with a 30° microsurgical knife (OASIS) under a 

dissection scope. PVH was dissected from an inverted triangular section 0.75 mm downwards 

from the ventral tip of the third ventricle and 0.75 mm bilateral from midline in the first slice. ARC 

was dissected from a rectangular section on the second and third slices. The height of the 

rectangular section was 0.50 mm upwards from the dorsal edge of hypothalamus, whereas the 

width was 0.75 mm and 0.50 mm bilateral from midline respectively. In the second slice, it 

contained a small portion of VMH, but this would be addressed as ARC as the majority was 

from ARC nucleus. Tissues were snap-frozen on dry ice and stored at -80 °C until further 

analysis. 
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RNA Isolation and cDNA Synthesis. 

QIAGEN RNeasy Micro Kit was used to extract RNA from PVH and ARC of selected HC 

and EE mice (n=5 per group). All procedures were conducted according to the manufacturer’s 

protocol. The extracted RNA was eluted with 28 μL RNase-free water to attain a 26 μL RNA 

sample. A spectrophotometer (NanoDrop1000) was used to determine RNA quantity and quality. 

All RNA samples were used with 0.1 μg for cDNA synthesis with TaqMan Reverse Transcription 

Reagent (Applied Biosystems). 

 

Real-time Quantitative Polymerase Chain Reaction (qPCR). 

Real-time qPCR was carried out using StepOnePlus System (Applied Biosystem) with 

the Power SYBR Green PCR Master Mix (Applied Biosystems). Primers were designed to 

detect the following genes in the PVH cDNA: Bdnf, Crh, Crhr1, cFos, Ghrh, Mc4r, Ntrk2, Oxt, 

Sst, Th, Trh, Vgf. The following genes were detected in the ARC cDNA: AgRP, Bdnf, Npy, Ntrk2, 

Vgf. Sequences of primers are available upon requests. Data were calibrated to endogenous 

control Hprt1 and the relative gene expression was quantified using the 2-
ΔΔ

CT method. 

 

Statistical Analysis. 

Data were expressed as means ± SEM. We used Student’s t test (two tails, unpaired) to 

analyze the food intake, body weight, adiposity and gene expression in HC and EE group, as 

well as in the relative gene expression in PVH and ARC, with a p-value < 0.05 considered 

statistically significant. 
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RESULTS 

PVH and ARC Microdissection. 

Our previous study used laser capture microdissection (LCM) for hypothalamic nuclei 

dissection (Cao et al., 2010; 2011). However, LCM required highly-skilled operators and is 

expensive in training and operating. For this study, we used microsurgical knife to dissect PVH 

and ARC. Firstly, we tested our accuracy of dissecting PVH and ARC with a mouse brain matrix 

and a microsurgical knife. We conducted Nissl-stained histology to learn the location of PVH in 

the hypothalamus on a separate group of 8- or 9-week-old spare mice. All mice brain histology 

sections were collected using a cryostat. The histology showed a dense nuclei population 

located bilaterally adjacent to the ventral tip of the third ventricle which is one of the landmark 

for PVH (Figure 2A), suggesting our result is consistent with the staining presented in the mice 

stereotaxic atlas. Thus, we were confident of dissecting the correct slice containing PVH. 

Secondly, to test the accuracy of our microdissection of PVH and ARC with stab knife, 

we ran real-time qPCR to examine the relative gene expressions in these two regions. Two of 

the major neuropeptidergic populations in PVH are corticotrophin-releasing hormone (CRH) and 
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Figure 2. Mice Brain Section Histology and Gene Expression Levels of PVH and ARC in Spare Mice. 
(A) Representative Nissl-stained histology of mice brain section. 
(B) Relative CRH and TRH expression levels in PVH and ARC (n=3). 
(C) Relative AGRP and NPY expression levels in PVH and ARC (n=3; *p < 0.05; **p <0.01)  
Values are mean ± SEM. 
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thyrotropin-releasing hormone (TRH) (Biag et al., 2011). CRH and TRH were used as gene 

markers for PVH, and we expected higher Crh and Trh expressions in PVH than in ARC. The 

gene markers we used for ARC were neuropeptide Y (NPY) and agouti-gene related protein 

(AGRP). NPY mRNA has the highest expression in ARC and Agrp is almost exclusively 

expressed in ARC (Chronwall, Chase, & O'Donohue, 1984; Parker & Bloom, 2012). Our results 

showed that expression of Agrp and Npy were drastically higher in ARC than in PVH (Figure 2B; 

*p <0.05; **p<0.01). The Crh and Trh expressions in PVH were approximately 6-fold higher than 

in ARC (Figure 2C). The qPCR results indicated that using microdissection stab knife could give 

us enough accuracy for our further analysis, and therefore we could start our enrichment 
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Figure 3. EE Increased Food Intakes Without Changing the Body Weight. (A). EE increases 
food intake at 3 weeks and 4 weeks (*p value< 0.05). (B). Average food intake of per animal per day. (* p 
value < 0.05).  (C). Average body weight showed no change in EE. (D) The average of the total weight 
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experiment confidently. 

EE Increases Food Intake without Changing the Body Weight. 

Twenty 3-week-old male C57BL/6 mice were randomized into control housing cages 

(HC) or mid-size enriched bins (EE) (n=5 per cage) for four weeks. Standard laboratory chow 

and water were provided to all mice ad libitum. Food intake was recorded from four cages 

weekly. At 3 weeks and 4 weeks, EE groups showed significantly increased food consumption 

compared to HC groups (Figure 3A; p <0.05). The average daily food intake for each EE mice 

was higher compared to their HC littermates (Figure 3B; p <0.05). Nevertheless, EE mice did 

not show difference in either weekly body weight or total weight gain than HC group (Figure 3C 

& 3D). The results suggested that EE induced more energy expenditure but not suppressed 

food intake. 

 

EE Decreases Adiposity in EE Mice. 

All mice were sacrificed after four-week’s exposure to their respective housing 

environment. The adipose and 

brain tissues of the mice were 

collected. We measured the 

weight of the adipose tissue, and 

calibrated fat pad mass to body 

weight. Our results demonstrated 

that EE decreased adiposity, with 

a drastic reduction in BAT 

(p<0.05), EAT and RAT (p<0.01) 

(Figure 4). Thus, we can confirm 

that EE reduced adiposity even 

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

BAT IAT EAT RAT

Fa
t P

ad
 W

ei
gh

 / 
Bo

dy
 W

ei
gh

t

HC EE

* 
** 

** 

Figure 4. EE Decreases Adiposity in Mice. 
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with an increasing food intake. This result is consistent with our previous study, in which large-

size enriched bins were used (Cao et al., 2011), suggesting a mid-size enrichment bin can 

induce EE phenotype. 

 

ARC and PVH Gene Expression Profile 

In our previous studies, EE induced upregulation of Bdnf expression in ARC and 

VMH/DMH (Cao et al., 2010; 2011). In this study, we examined the relative expression of Bdnf 

and its receptor Ntrk2 together with genes expressed in ARC and PVH. One of the gene we 

examined in both ARC and PVH was Vgf, a nerve growth factor-inducible transcript. Our recent 

study suggested that VGF was acting downstream of hypothalamic BDNF and was involved in 

the melanocortin central pathway (Foglesong et al., 2016). The melanocortin pathway integrates 

central hormonal and neuronal signals to control energy balance (Balthasar et al., 2005; 

Garfield, Lam, Marston, Przydzial, & Heisler, 2009). One of the melanocortin receptor, 

melanocortin receptor 4 (Mc4r), is highly expressed in PVH; PVH receives direct melanocortin 
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Figure 5. Gene Expression Profile in ARC. 
Values are mean ± SEM.  
*p <0.05; **p <0.07 (n=5 per group). 



11 
 

0

0.5

1

1.5

2

2.5

3

Bdnf Crh cFos Crhr1 Ghrh Mc4R Ntrk2 Oxt Sst Th Trh Vgf

R
el

at
iv

e 
m

R
N

A 
Le

ve
ls

HC EE

*

Figure 6. Gene Expression Profile in PVH.  
Values are mean ± SEM. *p <0.01. 
For Bdnf, Crh, Th, Vgf, n=4 (HC), n=5 (EE) 

 

input and is downstream of ARC nucleus (Sutton, Myers, & Olson, 2016). Thus, Vgf expression 

in ARC and PVH may reveal some unknown association along the melanocortin pathway. 

AGRP and NPY were used as gene markers for ARC, both of which  are neuropeptides 

involved in promoting feeding behavior (Krashes et al., 2014; Morton, Meek, & Schwartz, 2014). 

In ARC gene profile, an upregulation of Npy (p <0.05) and a trend of increasing Agrp (p <0.07) 

were observed (Figure 5), which was consistent with the observed increasing food intake in EE 

mice. Nevertheless, the upregulation of Bdnf expression in ARC was not observed, and no 

change was found in Vgf expression either (Figure 5). 

We examined the expression of Bdnf and its receptor Ntrk2 with some genes of interests 

in PVH, including Crh and one of its receptor Chrh1, c-Fos, Trh, growth hormone-releasing 

hormone (Ghrh), Mc4r, oxytocin (Oxt), somatostatin (Sst), tyrosine hydroxylase (Th) (An et al., 

2015; Bali & Kovacs, 2003). Our qPCR showed no change of PVH Bdnf expression in EE mice. 
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Among the genes examined, only Vgf showed significant upregulation in PVH of EE mice, 

suggesting PVH VGF might play a role in EE-associated metabolic change. 

 

DISCUSSION 

Our results demonstrate that modified enriched environment in mid-size bin markedly 

decreased adiposity even with increased food intake, and induced upregulation in Npy and Agrp 

expression after 4-weeks of EE exposure. This result suggests our mid-size enrichment induced 

similar EE effects to what we observed in large-size bin with a larger group of mice in our 

previous study (Cao et al., 2010). However, EE-induced upregulation of Bdnf expression in ARC 

was not observed in this study. One possible explanation is that the mid-size EE setting induced 

ARC Bdnf upregulation at an earlier time point, but this upregulation was not sustained at 4 

weeks. Our previous study showed that EE upregulated ARC Bdnf at 2 weeks and sustained at 

4 weeks, but the upregulation was not significant at 9 weeks (Cao et al., 2010), suggesting Bdnf 

upregulation was an early event responding to EE. Our animal group-size is smaller than the 

one in the previous study, which could lead to a weaker EE effect. Moreover, compared to our 

previous study used laser capture microdissection to dissect ARC nuclei, the limited accuracy of 

the microsurgical knife may also lead to an insignificant result. 

The EE effect on PVH gene expression was limited based on our study, and our 

hypothesized EE-induced PVH Bdnf regulation was not observed. One recent study 

demonstrates that Bdnf deletion in anterior PVH leads to hyperphagia, whereas the medial and 

posterior PVH BDNF is more involved in thermogenesis than food intake (An et al., 2015). Our 

previous data showed EE led to a slight but significant increase in the body temperature in diet-

induced obese mouse model as well as an elevation of adipose thermogenesis (Cao et al., 

2011). Therefore, EE might upregulate Bdnf in medial/posterior PVH but not in the anterior part. 

Our dissection was not accurate enough to separate the anterior and posterior PVH, and thus 

the possible EE-induced upregulation of Bdnf in medial/posterior PVH was not observed. 
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Moreover, our PVH gene profile showed an upregulation of VGF in EE mice. VGF is thought to 

be downstream of BDNF, which suggests PVH Bdnf could be upregulated at an earlier time 

point.  

Our results showed reduced adiposity and upregulated Npy and Agrp expression in ARC, 

suggesting an EE anti-obesity effect. In order to test whether PVH and ARC Bdnf upregulation 

occurs at an earlier time point in the mid-size enrichment, we can design an experiment to 

investigate EE effects at two week’s point in mid-size bin. Moreover, we can employ laser 

caption microdissection to collect anterior and medial/posterior PVH to explore if the Bdnf 

expression levels in the two regions are differentially regulated in EE. Finally, we can examine 

VGF’s sufficiency and necessity in EE effects, and thus to evaluate the potentiality of VGF as a 

therapeutic gene for obesity. 
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