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Catenary “Best Fit”

Catenary curves are often seen in architecture and in suspension bridges. In the following article, the process 

of “fi tting” a curve to the St. Louis arch is presented using dynamic geometry software (DGS) andTI-nspire 

graphing calculators.

Introduction

� e St. Louis Arch is the most well-
known example of a catenary curve that 
opens downward. However, to the general 
eye, and to most high school students, the 
St. Louis Arch looks like a parabola. Yet, 
catenary curves and parabolic curves are 
very di� erent (see Fig 1), and the catena-
ry curve is rarely discussed in high school 
mathematics classes. 

A catenary curve is a natural curve formed 
by holding the ends of a uniformly dense 
chain from equal height (Weisstein, 
2008a). � ey are often seen in architec-
ture and in suspension bridges. How can 
a student deduce whether or not a curve 
in a photograph is parabolic or catenary? 
High school students can address this ques-
tion by searching for a “best � t” curve for a 
photograph.

We will explore the process of “� tting” 

curves, particularly catenary curves, using 
dynamic geometry software (DGS) and the 
TI-nspire as our tools. First, we will explore 
how students can � nd a good � t catenary 
curve with DGS through the ‘eye-ball’ 
method. � en we will discuss error calcula-
tion with calculator-based regression using 
a linear example. Next, using a parabolic 
example, we will investigate the method of 
using a function’s inverse to � nd a “best � t” 
curve with the help of the TI-nspire. We 
will assume the calculator software does 
� nd the “best � t” equation. Finally, I will 
apply all of the above to � nd a “best � t” 
catenary curve for points plotted on a pho-
tograph of the St. Louis Arch.  

The Catenary Curve

A catenary curve has the equation 
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a constant and cosh is the hyperbolic cosine 
function (MathWorld, 2008a). A catenary 
curve opening up is plotted with DGS with 
constant a=1 can be seen in Fig 2. A cat-
enary curve opening down with constant 
a=-1 can also be seen in Fig 2.

Angela Wade, Miami University

Fig 1 Catenary curve, f(x), (solid) and para-

bolic curve, g(x), (dotted) on the same graph

Fig 2 Catenary with a=1 (left) and a=-1 (right)
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To test 
this

conjecture
students

can copy the 
picture into 
a DGS and 

superimpose
points along 

the Arch.

   

Error Calculations with 

Calculator-Based Regression

In order to � nd a “best � t” curve, it is 
important to understand error calculation 
and calculator-based regression. We will 
explore error calculation using linear data 
to demonstrate how the TI-nspire calcu-
lates a regression line. Students typically 
struggle to � nd a good � t line when con-
fronted with data such as the ordered pairs 
(1, 0.9), (2, 2.1), (3.2, 2.9) (3.9, 4.1), (5.1, 
5.1), (5.9, 6.2), (7, 6.9), (8.1, 8), (9.2, 8.9). 
� us, to � nd a good � t line we � rst can 
record the above points in a TI-nspire Lists

and Spreadsheet page by creating lists x and 

“Fitting the Curve” with 

Dynamic Geometry Software

In high school, students might look at 
a photograph and guess whether or not a 
curve is catenary or parabolic. Looking at a 
picture of the St. Louis Arch students might 
guess it is a catenary curve that opens down. 
To test this conjecture students can copy 
the picture into a DGS and superimpose 
points along the Arch (Fig 3). Once these 
points are in place, the picture can be de-
leted, or hidden, and students can alter the 

equation y
a

ee b
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a
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a
x

=- + +
-a ^k h (where 

a changes the width of the curve and b
changes the y-value of the curve) until the 
curve “� ts” using an eyeball approach. 

Using DGS, two distance sliders can be 
constructed, one for the value of a and one 
for the value of b. Students can start with a 
catenary curve that opens down, with a ≈1 

and b=0, that is y e e
2
1

0
x x

11=- + +
-a ^k h

which is shown in Fig 4. Students then 
widen the curve by changing the value of 
a to a larger number using the appropri-
ate slider.  Students continue to change the 
values of a and b until the curve looks like 
it � ts well � is approach produces a variety 
of di� erent “� t” curves; however, the ques-
tion remains: how can one � nd the “best 
� t” curve?
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Fig 3 Plotted points on the St. Louis Arch

Fig 4 The starting point, a 1, b=0

Fig 5 An “eyeball” good fi t curve, a=2.01, 

b=10.98
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culated to � nd the predicted (or � tted) y-
value: 

0.982656•3.2+0.054155=3.19866.
To � nd the residual the true y-value is sub-
tracted from the predicted y-value:

 2.9-3.19866=-0.298656.
� us, the residual for the point (3.2, 2.9) is 
-0.298656. Fig 7 highlights a graph of re-
siduals for the � rst three data points using 
the � t line y=x.

Coeffi cient of Correlation (r)

Given the data above, we want to � nd 
the line that minimizes the residuals, and 
“least squares is the most common method 
for � tting a regression line to data” (Moore, 
McCabe, Duckworth, & Sclove, 2003). 
� e TI-nspire calculates linear regressions 
using the least squares method. We will 
use this commonly accepted method to 
� nd the “best � t” equation for the catenary 
curve in Fig 3.

� e least square regression line is the “best 
� t” “line that makes the sum of the squares 
of the vertical distances of the data points 
from the line as small as possible” (Moore 
et al., 2003). � at is the line y=mx+b where 
m (slope) and b (y-intercept) are chosen 

such that y yi i

i

n

1

2-
=

^ hU/ is minimized where 
y is the true or actual value of y from the 
data set, and yU is the predicted value of y 
from the � tted line (Moore et al., 2003).

y in columns A and B respectively (Fig 6). 
� en, we can create a scatter plot of the 
points in a Graph and Geometry page. 

� e TI-nspire can perform a linear re-
gression on the data in the Lists and Spread-

sheet page. In this example the TI-nspire
“� ts” the line y=.982656x+.054155 to the 
data, which is very close to the line y=x, and 
this is graphed onto the scatter plot in Fig 
6. However, what makes this line “� t” and 
how does the calculator determine that this 
line is the “best � t”? First, we will look at 
the concept of residuals, and then we will 
explore two measures of � t, coe�  cient of 
correlation (r) and coe�  cient of determina-
tion (r2) which can be used to judge which, 
of multiple lines, produce a better � t.

    

Residuals

A residual is “the di� erence between the 
true and � tted y values for the points in the 
sample” (Dielman, 2001), that is the verti-
cal distance between a plotted or true point 
to the regression or � tted line. � e closer 
the residual is to 0, the better � t the point. 
In the previous example, using the point 
(3.2, 2.9), the x-value 3.2 can be plugged 
into the regression line the TI-nspire cal-

Fig 6 (Top) TI-nspire x and y lists; (Bottom) 

Plotted data and linear regression line

Fig 7 A graph of residuals for the fi rst three 

data points using the fi t line y=x
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will calculate y in column C, let us label 
this column yhat. Above, the TI-nspire cal-
culated the line y=.982656x+.054155 as 
the “best � t” line. Since y is the value of y
from the � tted line, we will type the equa-
tion =.982656x+.054155 into the formula 
bar of column C. In the equation x refers to 
the list x in column A (Fig 8). Next we can 
compute the sample mean in column D, 
let us label this ybar. We can type the for-
mula =mean(y) into the formula bar where 
y denotes the list y in column B (Fig 8).

Next we will � nd the numerator and 
denominator of the coe�  cient of deter-
mination formula by � rst subtracting yhat 
from ybar (Fig 9). We will use the formula  

c d1 1
2

-= ^ h  where c and d refer to col-
umns C and D, and then this formula can 
be � lled down to all nine data points. � is 
is column E in the Lists and Spreadsheets

page.  We label this column num. Next we 
subtract y from ybar in column F, labeled 
den. We use the formula b d1 1

2
-^ h , where 

b and d refer to columns B and D. Once 
again the formula can be � lled down for 
each data point (Fig 9).

� e coe�  cient of correlation (r) is one 
value the calculator computes to describe 
how well a line � ts a data sample. Corre-
lation measures the direction and strength 
of the straight-line (linear) relationship be-
tween two quantitative variables. � e coef-
� cient of correlation has a value between -1 
and 1, where -1 denotes a perfect negative 
relationship between variables, and 1 de-
notes a perfect positive relationship. A per-
fect � t means that the regression line passes 
through all true or plotted points (Moore 
et al., 2003).

Coeffi cient of Determination 

(r2)

� e second measure of � t is the squared 
correlation or the coe�  cient of determina-
tion (r2). We square the coe�  cient of corre-
lation so as to more heavily weigh the out-
liers while minimizing the error in points 
closest to the predicted value of the regres-
sion line. � e coe�  cient of determination 
is calculated through the formula:
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where yU  is the value of y from the � tted 
line, y is the true or actual value of y from 
the data set, and y  is the sample mean 
(Dielman, 2001). A perfect coe�  cient of 
determination is when r2=1. � is makes 
sense because any number divided by itself 
is 1, and thus when y y=U  the numerator 
and the denominator are the same, produc-
ing a value of 1.

Although the calculator automatically 
calculates the coe�  cient of determination 
every time it performs a linear regression, 
we can compute our own r2 value using a 
TI-nspire Lists and Spreadsheet page. Re-
turning to the Lists x and y in Fig 6, stu-
dents can use these lists to calculate the 
numerator and denominator of the coe�  -
cient of determination equation. First, we 

Fig 8 (Top) The lists x, y, and yhat; (Bottom) 

Finding sample mean in column D

We can 
compute our 
own r2 value 

using a 
TI-nspire
Lists and 

Spreadsheet
page.
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� nd a “best � t” curve, we will � rst explore a 
parabolic example. 

Given the following points (1, 1), (2, 4), 
(3, 9) (4, 16), (5, 25), (6, 36), (7, 49), (8, 
64), (9, 81) students create a list x and a list 
y in a new TI-nspire Lists and Spreadsheet 

page. In the same page, the TI-nspire can 
perform a quadratic regression on the data 
to produce the curve y=x2. Finally the stu-
dents can plot this data and the regression 
line in a TI-nspire Graphs and Geometry 

page (Fig 11). However, suppose the only 
tool available was a linear regression. � en 
the data must be linearized to use the linear 
regression function. � is means an inverse 
function needs to be calculated, that is a 
function of x must be solved to be a func-
tion of y. � e inverse of a quadratic model 
is calculated through the following steps:

y x

y

x y

x

2

2

=

=

=

� us, to linearize the data points, the 
square root of the values in list y must be 
calculated. � is column is labeled inverse 
in the TI-nspire Lists and Spreadsheet page 
(Fig 11). Students can then use the TI-
nspire to perform a linear regression on the 
new data, using lists x and inverse. 

Next, the linearized data can be plotted 
in a new Graphs and Geometry page using 
the columns (x, inverse). Students can then 
plot the linear regression line on the same 
graph. � e above data produces a linear re-
gression line of y=x (Fig 12). In order to � nd 
the quadratic regression curve, the original 
steps used to � nd the inverse of y=x2 must 
be reversed onto the linear regression line. 
Originally, the square root function was 
applied to the quadratic model to undo 
the right side of the equation (that is the x 
side). � us, to reverse this process, the right 
side of the equation (the x side) must be 
squared.

y=x
y=x2

Finally, students can create a new Calcu-

lator page to sum the numerator and de-
nominator. Students type in the following

( )
( )

sum den
sum num

and the TI-nspire will compute a value of 
0.994615 (Fig 10). � is r2 value is extreme-
ly close to the value that the linear regres-
sion produced above on lists x and y (Fig 
10). 

  

Using the TI-nspire for a “Best 

Fit” Parabolic Function

Linearizing Data: A parabolic example: 
“Catenary Regression” does not exist in 
the TI-nspire.  � us, we will use linear re-
gression and inverse functions to build our 
own regression for Catenary data. To dem-
onstrate how to use a function’s inverse to 

Fig 9 Column E (num) and column F (den).

Fig 10 (Top) r2 computed with Lists and 

Spreadsheet page and Calculator page; (Bot-

tom) The r2 produced by linear regression
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Next, we solve for x in terms of y. 
2
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� e above equation is a quadratic in 
ex, thus, using the quadratic equation, we 
solve for ex.
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Since 0,e e y y 1 or>
x x 2

= + -

lnx y y 1
2

= + -^ h. 
� us ( ) 1cosh lnx x x21

= + -
- ^ h for 

all real x>1 (Weisstein, 2008b; Bridgewa-
ter, 2008). Since the natural log must be 
positive, it is only possible to � nd the “best 
� t” equation for half of a catenary curve. 
However, a catenary curve is symmetrical 
and thus this will be su�  cient. Also, by the 
nature of a catenary curve opening down 
(for example the St. Louis Arch), that is 
catenary curves with the parent equation 

y
a

e e
2

a
x

a
x

=- +
-^ h, the inverse cannot be 

calculated. � is is because the inverse equa-
tion of a catenary curve opening down is 
ln x x 1

2
- + -^ hfor all real x>1, but this 

is not valid because a natural log cannot 
be negative and x>x2-1. In short, catenary 
curves opening down must be converted to 
catenary curves opening up; therefore, the 
St. Louis Arch must be rotated 180 degrees. 
For convenience, we will locate the lowest 
point of the Arch at (0, 1). 

With the St. Louis Arch is its new posi-
tion, students once again plot points along 
the “upside-down” photograph, and then 
the photograph can be hidden. I plotted 
twenty points for this example. We then 
use DGS to display the coordinates of the 

   

As it can be seen, by reverting the inverse 
process the curve y=x2 is produced, which is 
the same equation as the TI-nspire quadrat-
ic regression function calculated. Indeed, 
the line y=x is not just a good � t, it is a 
perfect � t because the r2 value is 1.

  

Linearizing Data to Construct 

a “Best Fit” Catenary Curve

� e concept of using inverse functions 
and error calculations can be applied to 
� nd the “best � t” catenary curve. We de-
scribe the calculation of the catenary curve’s 
inverse below. 

First, remember the catenary curve’s 
equation cosh(x) is equivalent to 

,y e e
2
1 x x

= +
-a ^k h  for a = 1

Fig 11 (Top) Quadratic regression on lists x 

and y; (Bottom) Lists x, y, and inverse

Fig 12 Linear regression line y=x graphed

superimposed on scatter plot of (x,inverse)

The
concept of 

using inverse 
functions and 

error
calcula-

tions can be 
applied to 

fi nd the “best 
fi t” catenary 

curve.
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plotted points (See Fig 13).

Next, students can transfer the ordered pairs into a new TI-nspire Lists and Spreadsheet 

page. I used the TI-nspire CAS Computer Software for convenience. Students label the 
x-values, xorignal, in column A, and the y-values, yoriginal, in column B. Similar to the 
quadratic example above, the data needs to be linearized in order to perform a regression. 
We recall from above that the inverse of the catenary equation is .lny x x 1

2
= + -^ h

� erefore, the y-values in column yoriginal need to be transformed. � is can be done in the 
same Spreadsheet page of the TI-nspire, in a column that I labeled yinverse. � e formula 

ln b b1 1 1
2

= + -^ h is typed into the � rst row of column C, where b represents column 
B. � e students � ll down the formula for all twenty rows or points (Fig 14). Next, students 
perform a linear regression on the lists (xoriginal, yinverse) in the Spreadsheet page. � e 
scatter plots of lists (xoriginal, yoriginal) and (xoriginal, yinverse) are plotted in Fig 14 in a 
Graphs and Geometry page. In this example, the TI-nspire calculated y=.61608189680621
x+.084672410614995 as the equation of the “best � t” line (Fig 15).

   

Now, we want to � nd the “best � t” catenary curve for the original points. � is process 
begins by reversing the original steps used to � nd the inverse of a catenary curve. � us, 

Fig 13 The St. Louis Arch rotated 180 degrees with plotted points. 
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Fig 14 (Left) Lists xoriginal, yoriginal and yinverse; (Right) The scatter plots (xoriginal, yorigi-

nal) and (xoriginal, yinverse).
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Now, we want to � nd the “best � t” cate-
nary curve for the original points. � is pro-
cess begins by reversing the original steps 
used to � nd the inverse of a catenary curve. 
� us, the regression line must be placed 
wherever there is an x in the parent catenary 
equation. Remember the parent equation 

for a catenary curve is y e e
2
1 x x

= +
-^ hfor 

a=1. Note, the equation for a=1 can be used 
because the center of the St. Louis Arch is 
located at (0, 1). Plugging in the linear re-
gression equation for x produces the equa-

tion y e
2
1 . .x0 61608189680621 084672410614995

= +
+

e
2
1 ( . . )x0 61608189680621 0 084672410614995- + . 
Letting  1( ) .61608189680621f x x= +

.084672410614995 in a new TI-nspire
Graphs and Geometry page, students can 
write the following equation in the formula 

bar of the page as y e e
2
1 1( ) ( 1( ))f x f x

= +
-  (See 

Fig 16).

A Symmetry Note

It is important to note that this regres-
sion formula only � ts the positive x-values 
of the St. Louis Arch data due to the nature 

Fig 15 Regression line y=.61608x+.08467 

graphed on lists (xoriginal, yinverse).

of the catenary curve’s inverse. � e positive 
half of the equation must be re� ected over 
the y-axis to produce the full Arch. � e “best 
� t” equation we just found is a full catenary 
curve, however, it is not a curve centered at 
(0, 1) anymore. � is is because the inverse 
method of � nding a “best � t” curve does 
not alter the value of a mentioned in the 
‘eye-ball’ approach, but instead the inverse 
method changes the exponent of e. � e y-
intercept of the linear regression line moves 
the curve slightly away from its center (0, 
1) to accommodate the hand plotted order 
pairs. � erefore, the curve should be used 
as the “best � t” for only positive x values, 
and a re� ection should be used to � nd the 
“best � t” for the negative x values.

Error Calculations for the 

“Best Fit” Catenary Curve

� e TI-nspire calculates the coe�  cient 
of determination (r2) when performing re-
gressions. In the St. Louis Arch example, 
the TI-nspire computed an r2 value of 
0.997795 for the linear regression above. 
� is suggests a very “good � t” (recall an r2 

value close to 1 is a good � t). � ere is no 
formula for the calculation of an r2 value 
for a catenary curve. However, by linear-
izing the data and applying a linear regres-
sion, students can deduce through the use 
of the r2 value of the linear regression that 
the curve above is a very “good � t.”

A Quadratic Note

Returning to the idea that many students 
might think a good � t curve is a quadratic 
curve; we can perform a quadratic regres-
sion on the lists xoriginal and yoriginal in the 
same Lists and Spreadsheets page of the TI-
nspire. � is regression produces a coe�  cient 
of determination (r2) value of 0.996405. 
Although this is a good � t, the above cat-
enary curve is a better � t, thus showing a 
quadratic equation is not the best option 
for the St. Louis Arch curve.

Fig 16 The “best fi t” catenary curve.

By
linearizing

the data and 
applying a 

linear
regression,
students

can deduce 
through the 

use of the r2 
value of the 

linear regres-
sion that the 
curve above is 

a very “good 
fi t.”
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Conclusion

� e catenary curve is a fascinating curve 
for students and practiced mathematicians 
to explore. � e TI-nspire does not have cat-
enary regression, but one can � nd a good � t 
equation for a photograph by � rst plotting 
points along the picture with DGS. Next, 
using the TI-nspire, one can linearize the 
ordered pairs using the catenary’s inverse 
function, plot the linear regression line, 
and then plug the regression line into the 
catenary equation for x. Finally the math-
ematician can use his or her knowledge of 
linear error calculations to deduce whether 
the catenary curve is a good � t. In short, 
for students, the catenary curve is another 
equation to learn how to manipulate, and 
for practiced mathematicians, the catenary 
curve opens the door to the use of inverse 
functions, linear regression and technology 
in order to � nd a “best � t” equation. X
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“Right after the destructive 

sound, astrocytes (one type of 

glial cell) begin to move into 

the synaptic nest, cupping their 

cellular hands around synapses 

tightly as if to shield them from 

the noise. … the astrocytes are 

responding to the overstimula-

tion of these acoustic neurons 

and sopping up the excitatory 

neurotransmitter, which in ex-

cess kills neurons from over-

stimulation. At the same time 

the astrocytes are releasing 

neurotrophic factors in an effort 

to prevent the neurons from dy-

ing. Failing against the damaging 

roar that causes these synapses 

to fi re beyond normal limits, the 

synapses and nerve endings be-

gin to wither and die.”

Fields, R. D. (2009). � e other brain, 102. Simon & 
Schuster, NY.

� ink About It!
Why Students Shouldn’t 
Listen to Loud Music




