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Maximizing Wealth and Happiness: 

Improving Investor Decisions Through Improved Affective Forecasting 

Karthik Easwar 

 

Given the economic crisis of the past few years and the plummeting value of individuals‟ 

retirement funds, the issue of consumer investment and savings has become crucial to consumer 

welfare. People have been forced to remain in jobs longer to attain their savings goals and seeing 

quarterly statements that show no growth has become the norm. With the economy finally 

showing signs of turning, it is important that consumers also make smart investment decisions 

that enable them to recover from this period of economic crisis and put them back on the path to 

attaining their savings goals.  

 A 2009 study concluded that average investors failed to achieve market index returns. 

From 1988-2008, the S&P 500 averaged an 8.4% return per year while the typical investor only 

achieved 1.9%, less than the inflation rate of 3% (Dalbar 2009). Why, if long term gains are the 

goal, do we see this „irrational‟ behavior and what can be done to improve this circumstance?   

We examine how experience and explicit feedback can reduce two of the main 

impediments to successful investor decision-making: loss aversion and myopia. Poor affective 

forecasting is believed to undermine investor decision making by fueling loss aversion which 

results in more myopic and suboptimal decision making. Improved affective forecasting frees 

investors to choose investments that are in their long-term best interest.     

Using a simulated market environment, we are able to demonstrate that providing 

consistent outcome feedback that illustrates the gap between an individual‟s forecasted affective 

response to the outcome of an investment decision and the actual affective response reduces 
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affective forecasting errors. Once investors become better forecasters of their own reactions, they 

are less inclined to fear a temporary setback, thereby reducing their loss aversion. In other words, 

by improving affective forecasting, we can help consumers maximize both their wealth and their 

happiness. 

 After a brief review of the relevant literature and discussion of our model and predictions, 

we describe our experiment where a simulated investment market is used to enable both 

experienced and naive investors to make a series of investment decisions and receive explicit 

feedback regarding their affective forecasting errors over a relatively short time period. We then 

present the findings obtained from our model and end with a discussion of the implications of 

these results. 

 

AFFECTIVE FORECASTING AND LOSS AVERSION 

 

Much research on investment decisions has shown that consumers tend to be both myopic 

and loss averse (Benartzi and Thaler 1995; Shiv et al. 2005; Thaler et al. 1997;). Two commonly 

observed and troubling findings support these shortcomings in investor behavior. The first of 

these being the well known “equity premium puzzle” which questions why, given the empirical 

fact that stocks have outperformed bonds over the last century by a surprisingly large margin, 

people are still willing to hold bonds. The second, referred to as “the disposition effect,” finds 

that investors are overly anxious to sell their winners and reluctant to sell their losers, resulting in 

reduced earnings (Shefrin and Statman, 1985). To a large extent, these shortcomings exist 

because of loss aversion.  
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 The term loss aversion means that people are more sensitive in the region of losses than 

in the region of gains (i.e. Value(X) < |Value(-X)|). For example, a loss of $100 is evaluated 

more negatively (larger in magnitude) than a gain of $100 is evaluated positively. In Kahneman 

and Tversky‟s (1979) words, “losses loom larger than gains.”  This implies that a loss of equal 

magnitude to a gain will have a larger magnitude of negative feeling than the positive feeling of 

the gain. Ariely, Huber, and Wertenbroch (2005) highlighted an important point about loss 

aversion; specifically, that it is reference dependent. In other words, losses and gains do not exist 

in a vacuum but rather only take on meaning in reference to some initial state. Imagine a child 

getting a piece of chocolate after dinner. The value of that chocolate would be much more the 

day before Halloween as compared to Halloween itself, when the child is already inundated with 

treats. To the extent that investors have goals, or expectations regarding expected earnings, these 

goals may serve as reference points for evaluating earning performance (Heath, Larrick, and Wu 

1999).  So, if two investors have different expectations for a stock‟s performance, one hoping to 

see a 12% return and the other expecting 8%, we would expect quite different reactions to a 10% 

earnings report.    

In the context of affective forecasting, the loss aversion coefficient can be computed by 

calculating the ratio of the negative emotion realized by falling short of a goal by x to the 

positive emotion associated with exceeding the same goal by x. This is illustrated in equation (1) 

where  nV x denotes the marginal decrease in the value function evaluated in the loss domain 

(i.e., where realized performance x is below the goal) and  pV x  is the marginal increase in the 

value function evaluated in the domain of gains. Ho, Lim and Camerer (2006) report loss 

aversion coefficients generally fall in the range of 1.3 – 2.7 and Heath, Larrick, and Wu (1999) 



4 

 

report the coefficient to be between two and four. 
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Kermer et al. (2006) note that loss aversion results from an affective forecasting error. 

Affective forecasting is what consumers engage in when they attempt to predict their affective 

responses to various outcomes. This is implicitly what individuals do when they face a decision, 

especially regarding something new. In other words, we only make decisions based on our 

forecast of what the experience will be. For example, before deciding whether to go on vacation 

to China or Italy, one may attempt to forecast which food would provide the most pleasure and 

then factor this into their decision. Kahneman and Snell (1992) were the first to make the 

distinction between decision utility, experienced utility, and predicted utility laying the 

groundwork for studying consumer‟s ability to forecast experienced utility. In their studies 

people were asked to make predictions of what it would be like to consume ice cream or yogurt 

and music every day for a week. While the modal prediction was decreased liking, their actual 

experience revealed the opposite.  

 The affective forecasting error (AFE) states that we are actually quite poor at forecasting 

how it will feel to experience an outcome. When asked to predict how they will feel if they lost a 

job or spouse, if they flunk an exam or if their team loses a game, people consistently 

overestimate the magnitude of their negative feelings and lottery winners often report levels of 

happiness identical to non-winners after just five years (Brickman, Coates, and Janoff-Bulman 
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1978; Gilbert, Driver-Linn, and Wilson 2002; Loewenstein, O‟Donoghue and Rabin 2003; 

Mellers and McGraw 2001; Wilson and Gilbert 2003).  

These examples illustrate poor affective forecasting in complex contexts but, Kermer et 

al. (2006) demonstrate how difficult we find forecasting even in the simplest of tasks. Their 

research studied peoples‟ response to the outcome of a coin flip. In one study, participants were 

given the following gamble. If the experimenter flipped heads, they would win $5; if he flipped 

tails, they lost $3. They were then asked to forecast their happiness after either outcome. The 

experimenter then flipped the coin, one outcome was realized and participants reported their 

affect. Even in this simple example, with only two outcomes, the same participant, and less than 

a few minutes separating the forecast from the actual affective response, participants showed 

poor calibration. They regularly overestimated the negative impact of losing $3 with tails and, 

while less drastically, even overestimated the positive effect of winning with heads.  

 Kermer et al. (2006) point out that people show aversion to losses because they expect 

losses to have a larger magnitude of affective impact than equal sized gains. This suggests that, 

in fact, the asymmetry highlighted by the phrase “losses loom larger than gains” is not one of 

affective experience but of affective forecasting. Therefore, a more accurate statement might be 

that forecasted losses loom larger than forecasted gains, while actual losses are quickly and 

easily dealt with through psychological defense mechanisms.  

Unfortunately, it is very difficult for people to correct their forecasting flaws without 

explicit education. Because many coping mechanisms occur automatically or nonconsciously, 

people often fail to anticipate how they are able to psychologically alter negative experiences 

(Gilbert et al. 1998). Furthermore, it is difficult to remember back to when a forecast was made 

and compare it to the actual affective response and, often, there is also no motivation to do so 
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(Einhorn and Hogarth 1982). Finally, there are often distorted memories of the forecasts. Upon 

meeting a colleague, one‟s first impression may be of distaste, but with more interaction, they 

end up being a close friend. Looking back, we may remember that we always liked him and 

knew he would be a great friend. With these psychological obstacles, people find it hard to learn 

that they are poor affective forecasters and, if we have no idea that we are poor forecasters, we 

have no reason or motivation to improve our forecasting skills. 

But what if people did improve their affective forecasts?  Could it change the manner in 

which they chased their goals?  People invest conservatively because they are afraid of the 

affective cost of failure. By learning how to make better affective forecasts, they should find that 

failure is not as affectively costly as initially predicted and that the negative affect fades quickly, 

resulting in lowered loss aversion. Without this aversion to failure, people can make decisions 

that are less myopic and more wealth maximizing.    

The issue, then, is what can be done to enable investors to improve their affective 

forecasts. In order for people to improve, they need specific, explicit feedback on their 

performance. Without explicit feedback, the learner will likely believe that their predictions were 

correct and affirm misconceptions about the quality of their prediction (Brosvic et al. 2005). 

Most forms of feedback are an effective tool to aid learning, continuous feedback is one of the 

most effective learning aids (Hembrooke et al. 2005). Most importantly to the current research, 

the most valuable feedback is on incorrect, rather than correct, answers (Pashler et al. 2005). 

Getting feedback about a correct answer (in our case, forecast) does not have a significant effect 

on retention. However, receiving feedback about an incorrect assessment significantly improves 

information retention, which should enable people to incorporate this newly learned knowledge 

into future tasks.  
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Specific feedback eliminates many of the causes for poor forecasting stated above. With 

feedback explicitly informing people that their forecasts are incorrect, we eliminate lack of 

motivation as a hindrance to learning. This also eliminates the possibility of misconstrual and 

motivated distortions. Feedback of the nature, “You predicted x but actually felt y” is 

incontrovertible and confronts the person with undeniable evidence of their inaccurate 

forecasting. 

To conclude, loss aversion is, in part, due to poor affective forecasting and leads us to 

maximize neither objective nor emotional outcomes. Our aim is to examine whether explicit 

individual feedback regarding the direction and size of affective forecasting error can improve 

calibration. We believe that if affective forecasting is improved, loss aversion will be reduced, 

enabling consumers to improve both their wealth and their happiness. 

 

MODEL 

 

As discussed, theory suggests that people evaluate outcomes using their goals as a 

reference point that divides outcomes into successes and failures. These evaluations also exhibit 

properties of the prospect theory value function, most importantly, loss aversion. Therefore, 

using an appropriate model to estimate the value function should allow us to make inferences 

about loss aversion using parameter estimates from the model. We model the value function 

using the following form: 
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In equation (2),
ity  denotes either the affective forecast or actual response to a particular 

rate of return (ROR) denoted by 
itr  for individual i in investment scenario t and ref

iy represents 

the affective forecast/response evaluated at the reference return, refr . The dependent variable in 

this analysis is operationalized as the difference between 
ity

 
and ref

iy . Differencing 
ity  by ref

iy
 

centers each participant‟s affective forecasts/responses at 0. This eases the interpretation of 

estimated model parameters and allows us to control, in part, for individual differences in scale 

usage.  

Individual differences in scale usage are also captured through the inclusion of ic . The 

logistic form of the value function yields an s-shaped curve with individual-specific, asymptotic 

upper and lower boundaries, ic . These upper and lower boundaries are computed, respectively, 

as a deterministic function of the maximum and minimum observed responses, ity , and the 

reference response, ref

iy .  

 The critical parameter of interest in this equation is   which controls the curvature of the 

value function. As   increases, the value function becomes increasingly steep (i.e., the affective 

response to slight departures from the reference point is more extreme). Like ic , we allow   to 

assume different values above and below the reference point denoted by n  in the loss domain 

and p  in the gain domain. By allowing   to differ above and below the reference point, we 
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can capture the theoretical, asymmetric shape of the value function. If loss aversion exists, we 

would expect to see a value 
n that is larger than p . Note that the non-linear nature of the value 

function prohibits us from directly computing the loss aversion coefficient by examining the 

ratio of 
n  

to p , as presented in equation (1). We can, however, use evaluations of the value 

function to compute the implied loss aversion coefficient for each realized return, 
itr . Consistent 

with prospect theory, non-linearity in the value function implies that the magnitude of loss 

aversion will decrease as realized returns, 
itr , move further away from the reference point, refr .  

 The basic form of the value function in equation (2) can be modified to test for 

differences between experimental conditions of interest (i.e., feedback, experience, etc.). This is 

accomplished by re-expressing   as follows:  
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where ,0p  and ,0n  denote the average curvature parameters across individuals in the study in 

the gain and loss domains, respectively. Equation (3) allows each given experimental condition, 

kz , to alter these average curvature parameters through the estimated parameter, k . For 

example, if kz =1 (treated condition) and ,p k > 0 then the value function would become steeper 

in the domain of gains (i.e., p  would be larger). By examining the sign and statistical 

significance of k , we can determine the efficacy of our experimental manipulations and their 
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effect on the shape of the value function. These estimates, in addition to the estimates of ,0p and

,0n , provide a basis for testing the following predictions.   

 

PREDICTIONS 

 

We expect that people learn from experience; in this case, learning would include both 

better affective forecasting and less myopic decision making. Therefore, more experienced 

investors are expected to be better calibrated in their affective forecasts given they have had 

numerous opportunities to make investment decisions and experience the outcomes of these 

decisions. For this reason, we believe that:  

 

H1: Experienced investors will make smaller affective forecasting errors than naive 

investors. 

 

Though experience provides an implicit opportunity to improve affective forecasting, it is 

not the most efficient manner in which to do so. Providing explicit individual feedback, 

regarding the direction and size of affective forecasting errors enables people to become better 

calibrated. They need not expend cognitive energy to pull together this comparison themselves, 

nor is there room for rationalizations or memory distortions that can hinder learning. To this end, 

we hypothesize that: 

 

H2: Providing explicit feedback will improve investor calibration resulting in smaller 

affective forecasting errors 
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While feedback can be an effective learning tool, it need not be equally effective for all 

investors. Feedback should have its greatest impact on those who have learned the least to date. 

These people have the most room for improvement and, due to their lack of experience, a dearth 

of tools and knowledge to improve on their own. Therefore, explicit feedback about affective 

forecasting errors should be more effective for naive than for experienced investors.  

 

H3: Providing explicit feedback will reduce the size of affective forecasting errors more 

for naive than for experienced investors 

 

As discussed earlier, there is evidence to indicate that loss aversion is actually driven by 

the affective forecasting error (see Kermer et al. 2006). Therefore, we believe that improved 

affective forecasting will reduce loss aversion. In accordance, we hypothesize that: 

 

H4: Providing explicit feedback will reduce the size of the loss aversion coefficient of the 

forecasting value function 

Once again, the effect of feedback should be more pronounced on investors who have 

less experience. Therefore, these people should show the largest improvements in affective 

forecasting. If they improve their forecasts the most, they should reduce their loss aversion the 

most as well. Therefore: 

 

H5: Providing explicit feedback will reduce the loss aversion coefficient of the 

forecasting value function more for naive than for experienced investors 
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The hypotheses presented so far claim that feedback and previous experience both will 

have an impact on the size of affective forecasting errors and, therefore, loss aversion 

coefficients. However, what is the value of reducing loss aversion?  Consumer investment is 

plagued with myopia and fear of failure. Partly due to these two obstacles, armchair investors 

struggle to make the correct long-term investments. This aversion to short-term losses keeps 

people from making investments that would actually help them maximize their wealth in the long 

term. Providing feedback, by lowering loss aversion, should help investors make decision 

focusing on long-term returns. Therefore, we hypothesize that: 

 

H6: Providing explicit feedback will lead to less myopic investment decisions that 

maximize long-term expected returns rather than short-term gains 

 

  



13 

 

INVESTMENT SIMULATION STUDY 

 

Method and Participants 

We developed a simulated investment environment in which we could test our 

hypotheses regarding feedback and experience. The only factor directly manipulated was the 

presence or absence of explicit feedback regarding the size of an individual‟s affective 

forecasting error. Level of investment experience is the second factor examined. This factor was 

measured rather than manipulated using self-report. In order to ensure that participants had a 

range of investment experience, both undergraduate business students (n = 213) and MBA (n = 

46) students were recruited to participate. MBA students were included because of their 

likelihood of having more experience making investment decisions.  

 

Procedure 

Participants entering the study were told they would spend approximately 45 minutes 

making investments in a simulated environment (see Figure 1). They were either given $10 

(MBA students) or class credit (undergraduate students) to participate. To ensure cognitive and 

affective involvement, participants were also told that the three people whose investments earned 

the most over the course of the experiment could be paid up to $120 over and above their 

participation payment. Our interest is in participants‟ affective responses to investment earnings 

and not their investing prowess, therefore, the probabilistic incentive was provided so that 

participants would be involved in the study and experience strong emotions upon seeing the 

results of their investment decisions. The computer-based experiment was divided into two 

phases, referred to as the learning phase and application phase, respectively.    
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Learning Phase 

In the learning phase, all participants were told that the long term return on investment of 

mutual funds averaged 10% and, therefore, their goal was to make investment decisions that 

returned more than 10%. Participants in the “no feedback” condition were instructed to make 

investment decisions for 14 periods. In each period, these participants were given a set of nine 

possible funds in which to invest (see Appendix A) and asked to select one of the nine funds. 

Detailed information about each fund was provided and participants had an unlimited amount of 

time to study the information before making each investment decision. After selecting a fund, 

participants were presented with the fund‟s performance in that period. The return rates ranged 

from 6% below the goal to 6% above the goal. This information was presented as both a 

percentage return and an absolute monetary return (i.e. your investment produced a 5% return 

that lead to a $50 gain). Before continuing on to the next period, participants were asked to rate 

how they felt about the outcome of their investment decision on a scale ranging from 0-100.  

While participants were told that their choice of fund mattered, in actuality, it had no 

bearing on their investment outcomes. Each participant experienced the same rates of return for 

their 14 periods of investment decisions. For each participant, the order of the return rates across 

the fourteen investment periods was randomly determined by the simulation to ensure that there 

was no confound between order and return rate. 

Participants in the “explicit feedback” condition were first asked to make seven affective 

forecasts which were followed by seven investment decisions identical to the decisions made by 

participants in the “no feedback” condition. The seven affective forecasts were presented as 

hypothetical outcomes. During this affective forecasting task, individuals were not presented 
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with fund information, nor given the opportunity to select a fund. Instead, these participants were 

asked to imagine and report how they would feel if they had made an investment that received a 

specified rate of return. Consistent with the range of return rates used for the “no feedback” 

group, each participant in the “explicit feedback” condition was presented with the same return 

rates (6% below the goal to 6% above) about which they had to make their affective forecast. 

Again, the presentation order was randomly assigned by the computer. The same 0-100 scale that 

was described earlier was also used to assess participants‟ affective forecasts.  

After completing the series of seven affective forecasts, the “explicit feedback” condition 

participants engaged in seven actual investment decisions. The seven investment decisions were 

identical in nature to the ones made by the “no feedback” condition participants. Participants in 

the “explicit feedback” condition saw nine funds, chose one, saw the return on their investment, 

and evaluated it on the 1-100 affect scale.  However, after making this evaluation, participants 

were presented with feedback comparing their affective forecast to their actual affective 

response. The rates of return of the actual investment decisions were matched with the returns 

imagined in the affective forecasting task to enable individualized feedback comparing predicted 

and actual affective responses at the same rate of return for each participant.  

 

Application Phase 

Following the learning phase, participants were notified that a second round of the study 

was about to commence. In the application phase, participants from both the “no feedback” and 

“explicit feedback” conditions proceeded through the experimental procedure identically. 

Supposedly, five years had passed, and the participant had continued to invest on a regular basis; 

however, the market conditions had changed and the average long term return on the mutual 
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funds available to them was now 8%. Therefore, their goal was to make investment decisions 

that returned more than 8%. Each person was asked to make seven affective forecasts followed 

by seven investment decisions that were identical to the procedure in the learning phase for the 

“explicit feedback” condition. However, there were two critical changes: (1) the return rates 

were adjusted to reflect the change in the reference point (goal) which shifted from 10% to 8%, 

and (2) no feedback was provided following each investment decision. The data from the 

application phase allows for examination of affective forecasting errors, value functions, loss 

aversion and the degree of myopia in fund selection exhibited by each participant across 

feedback conditions and experience.  

Finally, after completing the application phase, participants were asked questions to 

assess their level of investment experience, including a self-report measure, which is used in the 

following analyses as a measure of investment experience. They were also asked standard 

demographic questions such as gender, major, race and age.  

 

 

 

RESULTS 

 

To test our hypotheses, we fit a variety of permutations of the value function presented in 

equation (2) using different operationalizations of the dependent variable (i.e., different subsets 

of respondents, different phases of the experiment, etc.) and different experimental conditions. 

To aid exposition, we present our results in both tabular and graphical form. Model parameters 
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for the value function are estimated using non-linear least squares. In the following sub-sections 

we describe each analysis and map its results back to our hypotheses. 

  

Investment Experience and Affective Forecasting Errors 

 Our objectives in this initial analysis are to first assess the degree to which affective 

forecasting errors are present in our sample. Second, if participants do make affective forecasting 

errors, we would like to determine if the magnitude of those errors differ for experienced 

investors vs. naive investors (hypothesis 1). Therefore, we specify equation (3) to be 

 0 1 2 31 Actual Experience Actual×Experience        .  

Analysis proceeds by fitting the value function in equation (1) to the affective ratings data 

(both forecasted and actual) and evaluating the resulting parameter estimates. Conditions tested 

through the specification described in equations (3) include Actual vs. Forecast, Experience, and 

the interaction of the two. The first condition allows us to determine if the shape of the value 

function differs for ratings based upon actual vs. forecasted results. If the estimated parameters (

1 and
3 ) are equal to zero, this implies the two curves have identical slopes, indicating that 

participants do not make errors in their affective forecasts. The same logic holds for the 

Experience variable. If the estimated parameters ( 2 and 3 ) are 0, all investors make the same 

degree of affective forecasting errors, irrespective of the level of experience.  

In this first analysis we only use learning phase data from the “explicit feedback” 

condition. The “no feedback” participants made no forecasts; therefore, we can make no 

inferences about their forecasting errors. During this phase of the experiment, participants have 

not yet been influenced by explicit feedback on their affective forecasts. Therefore, we can 
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assess the impact of investor experience of forecasting errors, without worrying about the 

potential confounding influence of feedback.  

 Results of this analysis are presented in Table 1 and reveal a number of interesting 

findings. First, we observe that the baseline curvature parameters, ,0p  and ,0n , are greater than 

zero. This implies that participant‟s affective ratings are increasing in the rate of return (i.e., 

higher returns make people happier). We also observe that the curvature parameter in the loss 

domain, ,0n , is greater than the corresponding parameter in the gain domain, ,0p . These 

estimates produce a curve that is consistent with the prospect theory value function. (i.e., the 

value function is steeper in the loss vs. gain domain with a kink at the reference point).  

 We also find that ,1n  is negative and statistically significant. This implies that the value 

function is flatter for actual ratings vs. forecasted ratings, indicating that participants 

overestimate the extremity of pain associated with losses. Interestingly, ,1p  is not statistically 

different from zero, suggesting that participants in our study make smaller affective forecasting 

errors in the domain of gains.  

 Finally, we observe that the estimated parameter for Experience, ,2n , is negative and 

significant, indicating that experienced investors value curves are flatter than those of naive 

investors, and suggesting that experienced investors are better affective forecasters than naive 

investors. This result is presented graphically in Figures 2 and 3, where it is possible to view how 

the discrepancy between the actual and forecasted curves (and by extension, affective errors) 

differ across these two types of investors. This is direct support in favor of hypothesis 1.      

      

   

 [Insert Table 1 about here] 
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[Insert Figure 2 about here] 

[Insert Figure 3 about here] 

 

Impact of Feedback and Experience on Affective Forecasting Errors (Between Subjects) 

In this second analysis, we attempt to determine if participants can learn to make better 

affective forecasts by receiving explicit feedback (hypothesis 2). Furthermore, we would like to 

determine if the benefit of feedback is attenuated by a respondent‟s degree of investment 

experience (hypothesis 3). We would also like to know how both feedback and experience 

influence the degree of loss aversion manifest in our participants (hypotheses 4 and 5). 

Therefore, we specify equation (3) to be 

 0 1 2 31 Feedback Experience Feedback×Experience        . 

 We test these hypotheses by fitting the value function in equation (2) to both the forecast 

and actual rating data collected in the application phase (Phase 2) of the study.  Conditions in this 

analysis that can influence the slope of the value function include whether or not participants 

received feedback in the learning phase of the study (Phase 1), their degree of investment 

experience, and the interaction of the two. Once again, we test the validity of our hypothesis by 

contrasting estimates of the   coefficients described in equation (3). If hypothesis 2 holds, we 

would expect 
1  to be both negative and significant (i.e., respondents in the feedback condition 

are better calibrated as affective forecasters). If hypothesis 3 holds, we would also expect to 

observe a coefficient for the interaction of feedback and experience, 3 , that is positive and 

smaller than the estimated coefficient for feedback, 1 .  

 

[Insert Table 2 about here] 
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[Insert Table 3 about here] 

[Insert Figure 4 about here] 

 

 Results of this analysis are presented in Table 2. We do find that ,1n  is negative and 

significant, indicating that participants that received feedback in learning phase have a flatter 

value function in the domain of losses. Comparing Tables 2 and 3 allows us to claim that 

feedback leads to more accurate forecasts (see Figure 4). This is direct support for hypothesis 2 

and suggests that it is possible for individuals to learn to be better affective forecasters. We also 

find that ,2p  and ,2n  are both significantly negative, indicating that experienced investors are 

better affective forecasters in both the loss and gain domains, providing further support for 

hypothesis 1. Finally, we find that ,3n  is significantly positive and is smaller than ,1n . This 

implies that experienced investors learn less from feedback than naive investors. Naive investors 

that received feedback make smaller affective forecasting errors than naive investors that did not, 

especially in the domain of losses. Feedback for experienced investors has little, if any, impact 

on their affective forecasting ability.    

 We test the impact of feedback and experience on loss aversion by contrasting the 

estimated loss aversion function for each condition. As noted above, non-linearity in our value 

function precludes us from directly computing the loss aversion coefficient as the ratio of slope 

parameters in the loss and gain domains as presented in equation (1). Therefore, we compute the 

loss aversion coefficient (and by extension, function) according to equation (4), as the ratio of 

the value function in the negative domain relative to the positive domain evaluated for a 

particular rate of return.  

 



21 

 

(4)   
,0 ,

,0 ,

2
1

1 exp 1

2
1

1 exp 1

n

ref

n n k k

kref

p

ref

p p k k

k

c

z r r

r r

c

z r r

 



 

 
 
 
   
       

   
 

 
 
 
   
       

   





  

 

Because our value function is non-linear, the loss aversion coefficient,  , differs as the 

rate of return, r , moves further away from the reference point. As such, we can compute 
 
for a 

variety of values of r  and plot the resulting loss aversion curve as a function of the rate of 

return. A plot of the loss aversion functions appears in Figure 5. We show in the Appendix B that 

statistical differences in these curves can be formally assessed by testing the significance of 

estimated values of  . If any of the estimated values of 
 
are statistically different from zero, 

the loss aversion functions must also be statistically different. Since Figure 5 is constructed using 

only statistically significant coefficients, if the observed curves differ we can conclude that the 

loss aversion functions are also different. 

As shown in Table 2, the estimated coefficient of ,1n  is statistically different from 0 

indicating that feedback reduces loss aversion. This is support in favor of hypothesis 4. This 

same concept is presented graphically in Figure 5. Both naive and experienced investors who 

receive feedback are less loss averse than the counterparts that did not receive feedback. In Table 

2, we also observe that ,3n  is significant indicating that feedback is more effective at reducing 

loss aversion for naive relative to experienced investors. This is also shown graphically in Figure 
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5. The magnitude of the decrease in loss aversion for individuals in the feedback condition is 

much larger for naive than experienced investors. 

 

 [Insert Table 3 about here] 

[Insert Figure 5 about here] 

 

Impact of Feedback and Experience on Affective Forecasting Errors (Within Subjects) 

Support for hypotheses 2 and 3 in the previous section is achieved through a between-

subjects analysis. In this section we conduct a within-subjects analysis in order to further provide 

evidence that individuals can be taught to be better affective forecasters by using explicit 

feedback. To accomplish this, we fit the value function to data from the application phase (Phase 

2) of the study for participants in the “explicit feedback” condition. Recall that we found 

evidence of affective forecasting errors in Phase 1 of the study for these same participants (see 

Table 1). By contrasting the estimated coefficients from these two models, we can determine if 

affective forecasting errors still exist after the learning phase of the study for participants in the 

feedback condition.  

 As shown in Table 4, we find that estimates of ,1p  
and

 ,1n  
are not statistically 

significant, indicating that the forecasting and actual curves are not different. On average, 

participants in the “explicit feedback” condition do not make affective forecasting errors in either 

the gain or loss domain. This result provides further support for hypothesis 2. Support for 

hypothesis 3 is shown in Figure 6 where we examine the value functions for naive and 

experienced investors in both the learning and application phases of the experiment. Affective 

forecasting errors for naive investors are substantially reduced as a result of feedback. Affective 
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forecasting errors are also reduced for experienced investors, but not to the extent of naive 

investors. 

 

[Insert Figure 6 about here] 

[Insert Table 4 about here] 

 

Investment Myopia 

We test hypothesis 6 by observing how fund selection behavior differs for participants in 

the two feedback conditions. As described in the experimental procedure section, in each 

investment period, participants are asked to pick one of nine funds in which to invest. Basic 

information about each fund is provided, including the type of fund (i.e., Small Cap, Large Cap, 

etc.), a description of the funds basic investment strategy, and the average annualized returns 

reported for the past year, past three years, past five years, and since the fund‟s inception. 

Returns on these funds have been designed in such a way that the maximum historical 

annualized return occurs either in the previous 1-year period (short-term), or during the past 5 

years (long-term). All funds exhibit substantial variability in returns over their lifetime, such that 

no single fund exists that would be the obvious choice for all investment scenarios. 

By observing each respondent‟s investment behavior, we can infer the time frame (short 

or long) upon which they are basing their investment decisions. For example, if a participant 

selected a fund whose prior 1-year return was 10% and annualized 5-year return was 6% instead 

of a fund with a 1-year return of 5% and an annualized 5-year return of 12%, we can conclude 

that the fund was selected based upon the short-term criterion. We view this type of behavior as 

evidence of investment myopia: focusing on short term gains at the expense of long term gains.   
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We test the impact of feedback on investment myopia by first recoding our data set so 

that at each fund selection decision we can see if investors selected the fund that would 

maximize the short-term criterion (i.e., 1-year return) or the long-term criterion (i.e., annualized 

5+ year return). We then compute the average number of times the long-term criterion was used 

in both learning and application phases. By taking the difference of these two we can examine 

how individual behavior evolves throughout the course of the experiment. If diminished loss 

aversion (through improved affective forecasting) leads investors to be less myopic in their 

investment decisions (hypothesis 6), we would expect this difference to be greater for individuals 

in the “explicit feedback” condition.  

In a separate series of analyses, we recode the data so we can compute the expected 

short-term and long-term return. This is done by examining the fund that was selected and 

imputing the expected return for each decision criterion (short-term and long-term). For example, 

if an investor picked the fund described above with the 10% return in the past year and 6% 

annualized 5-year return, we would impute a value of 10% for the short-term expected gain and a 

value of 6% for the 5 year gain. This process is repeated for all funds and an average is computed 

for the learning and experience phases of the study (imputed separately for the 1 year and 5 year 

criterion). By differencing the expected returns across phases of the experiment we can observe 

how the expected returns change as a result of explicit feedback (or the lack thereof). If feedback 

reduces investment myopia, we would expect to see the change in expected short-term return to 

be less and the expected return for the long-term to be greater for respondents in the feedback 

condition.         

In support of hypothesis 6, we find that respondents that receive feedback are 

approximately 5% more likely to select funds with a long-term maximal return (p<.05) while 
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there was no significant change in investment behavior for individuals in the untreated group. 

Furthermore, the expected return based upon the short-term criterion decreases by -0.5% (p<.05) 

for individuals in the feedback condition and does not change for the remainder of the sample. 

Likewise, the expected return based on the long-term criterion increases by 0.23% (p<.05) for 

participants in the feedback group while the expected return remains unchanged for the untreated 

group. Neither experience nor the interaction of experience and feedback were statistically 

significant predictors of fund selection.  

 

GENERAL DISCUSSION 

 

The results of our experiment and analysis support our general claim that improving 

affective forecasting can improve investment decisions by reducing loss aversion and myopia. 

We demonstrate that explicit feedback about affective forecasting errors significantly improve 

forecasting accuracy, especially for naive investors. We also provide evidence that this feedback 

reduces loss aversion and helps investors make investment decision that focus on long-term 

outcomes. 

 Hypothesis 6 predicted that explicit feedback, through reducing loss aversion, should 

reduce investment myopia. This hypothesis was supported by the data; however, a possible 

alternative explanation would be that multiple encounters with negative outcomes can sensitize 

people to losses and actually make them more loss averse (Thaler et al. 1997). Therefore, it could 

be that participants in the “no feedback” condition actually became more loss averse over the 

course of the experiment, due to the extra seven periods of investment in which they engaged. 

However, we see that loss aversion for these participants is actually reduced, rather than 
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increased, confirming that it is the reduction in loss aversion from feedback that drives the 

decrease in myopia. 

 Another interesting, and somewhat unexpected, result from our study is that experienced 

investors actually underpredicted (in magnitude) the size of the affective reactions. In other 

words, they did not think that a loss would be as bad as they actually felt. This finding is 

different from the finding for naive investors, who overpredicted, in magnitude, the size of their 

affective reactions to losses. Though this result is not focused on in this research, it is one of 

possible interest. Much literature has shown that experience and expertise often cause people to 

be overconfident. In this same vein, experienced investors may be overconfident in their ability 

to emotionally withstand losses. This may explain why they are able to remain active as investors 

even after making poor investment decisions. In the context of gambling, this might also explain 

why some people, even though they regularly lose money at the casinos, continue to return. 

When considering what to do with their weekend, for example, they underpredict the emotional 

toll that losing at the casino will take on their psyche. Therefore, they head to the casino, 

unafraid of the likely outcome of losing. 

 While our research has focused on how people react to investments that either surpass or 

fall short of their investment goals, all our rates of return remained in the domain of absolute 

gains. Of course, absolute gains and losses should lead to affective responses that also conform 

to prospect theory. In fact, zero is a very natural reference point and the pain of experiencing an 

absolute loss might be worse than just falling short of a goal, but still making an absolute gain. 

Therefore, it would be of value to also examine the role of feedback and experience on affective 

forecasting of real gains and real losses. 
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 Finally, one very exciting implication of this work is that people are able to learn to make 

better investment decisions through explicit and continuous feedback about their poor affective 

forecasts. This would suggest that, simply by taking the time to explicitly record one‟s forecasted 

affective response to investment outcomes and then comparing them to their feelings upon 

seeing their real earnings could enable investors be make better decisions. This type of 

forecasting diary would be similar, in vein, to diet diaries that make people acutely aware of the 

discrepancy between what they should be eating and what they are eating. Given the success of 

diet diaries and the growth of websites such as myfooddiary.com providing these diaries as a 

consumer service, it would be a very interesting business venture to develop similar affective 

diaries for investors. Companies like etrade could ask people to explicitly make affective 

forecasts before making real investments. They would then be able to provide, not just earning 

information, but forecasting information to their consumers. Over time, these forecasting diaries, 

by providing continuous and explicit feedback, could improve consumer ability to make their 

best investment decisions. If this were to happen, much they way diet diaries help people 

improve their health, the forecasting diary would help investors maximize both their wealth and 

happiness. 
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Table 1 

Learning Phase Forecasting and Actual Value Functions 

(Feedback Condition Only) 

  Gain Loss 

  Estimate Std Error Estimate Std Error 

Baseline Curvature 0        0.444** 0.052     0.643** 0.048 

Actual 1  -0.152 0.126   -0.556** 0.063 

Experience 2    0.113 0.063 -0.056* 0.026 

Actual*Experience 3  -0.136 0.072     0.171** 0.033 

 *p<.05 

**p<.01 
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Table 2 

Impact of Feedback and Experience on the Forecasting Value Function 

  Gain Loss 

  Estimate Std Error Estimate Std Error 

Baseline Curvature 0        0.633** 0.064  1.049** 0.059 

Feedback 1  -0.100 0.120 -0.306** 0.057 

InvExp 2    -0.067* 0.030 -0.112** 0.013 

Feedback*InvExp 3    0.063 0.044   0.067** 0.021 

 *p<.05 

**p<.01 
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Table 3 

 Impact of Feedback and Experience on the Actual Value Function 

  Gain Loss 

  Estimate Std Error Estimate Std Error 

Baseline Curvature 0        0.509** 0.053     0.881** 0.058 

Feedback 1  -0.002 0.134 -0.165* 0.073 

InvExp 2   0.002 0.038   -0.082** 0.018 

Feedback*InvExp 3   0.009 0.050 0.025 0.027 

 *p<.05 

**p<.01 
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Table 4 

Application Phase Forecasting and Actual Value Functions 

(Feedback Condition Only) 

  Gain Loss 

  Estimate Std Error Estimate Std Error 

Baseline Curvature 0        0.569** 0.052      0.727** 0.045 

Actual 1  -0.155 0.110 -0.077 0.081 

InvExp 2  -0.005 0.036     -0.064** 0.019 

Actual*InvExp 3    0.003 0.047   0.003 0.030 

**p<.01 
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Figure 1 

Experimental Procedure 
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Figure 2 

Forecasting and Actual Value Functions  

(Learning Phase, Explicit Feedback Condition)  
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Figure 3 

Affective Forecasting Error  

(Learning Phase, Explicit Feedback Condition)  
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Figure 4 

Between Subjects AFE Comparison (Application Phase) 
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Figure 5 

Loss Aversion Coeff. (Application Phase) 
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Figure 6 

Within Subjects AFE Comparison (Feedback Condition) 
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Appendix A 

Sample Fund Information 

AFEAX 

Category: Large Growth 

Fund Characteristic:  
The investment seeks long-term capital growth. The fund normally invests at least 80% of assets 

in the common stocks of large capitalization companies excess $5 billion. 

Morningstar Rating: 

 

  Overall   440 Funds 

   3 Year   440 Funds 

   5 Year   394 Funds 

 

Average Annual Returns:  
 1 Year  3 Year  5 Year Inception 

+13.12%  +4.41%  +7.58%   +10.81% 

 

Fund Details: 

 

 

Top Holdings: 

 

4.44%     International Business Machines 

4.13%     Monsanto Company 

4.10%     Catepillar Inc. 

4.10%     Apple Inc. 

3.57%     Gilead Sciences, Inc. 
 

Top 5 holdings total 20.34% as of 5/31/2008 

  

Net Expense Ratio 1.53% 

Gross Expense Ratio 1.92% 

Total Net Assets $832.8 K 

Fund Inception 9/24/01 
 

  

Availability Open  

Initial Investment $1,000 

Transaction Fee None 

Sales Charge None 
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Appendix B 

Statistical Testing of the Difference between Two Loss Aversion Curves 

We model the value function using the following form: 
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Therefore, the loss aversion coefficient is 
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To test if 
1z  significantly changes the loss aversion coefficient, we must reject the null 

hypothesis that the two loss aversion curves (
1 10 . 1z vs z  ) are identical: 
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This null hypothesis can be restated as follows: 
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Consequently, if either ,1 ,1,p n   is significantly different from 0, the two loss aversion curves are 

also significantly different from each other. In other words, testing for a significant difference 

between the two loss aversion curves is equivalent to the significance of the parameters that 

differentiate the two curves. 

 

 


