
Integrated
Multiple Sequence

Alignment

PhD Thesis
Michael Sammeth

INTEGRATED MULTIPLE SEQUENCE ALIGNMENT

By

Michael Sammeth

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR RERUM NATURALIUM

AT

TECHNICAL FACULTY

BIELEFELD UNIVERSITY

BIELEFELD, GERMANY

SEPTEMBER 2005

ii

Salud, dinero y amor.

iii

Table of Contents

Table of Contents iv

Abstract vii

Preamble viii

Acknowledgements ix

1 Introduction 1

1.1 Summary . 1

1.2 Overview . 3

1.3 Biological Background . 4

1.3.1 Biochemical Preliminaries . 4

1.3.2 History of Genetics . 6

1.4 Sequence Analysis . 8

1.4.1 Biological Sequences . 8

1.4.2 Sequence Evolution . 10

1.4.3 Macro Alphabets . 14

2 Multiple Sequence Alignment 17

2.1 Sequence Alignment . 17

2.2 Scoring Alignments . 18

2.3 Multiple Alignment Problem . 20

2.4 Global Alignment Techniques . 21

2.5 Alignment Benchmarking . 31

2.5.1 Benchmarks based on expert knowledge 32

2.5.2 Randomized Data Tests . 34

2.6 Distance-based Phylogenetic Trees . 35

iv

3 Contributions 37

3.1 Graphical Framework . 38

3.2 Hybrid Algorithms . 41

3.3 Motifs and Repeats . 48

3.4 Spa Typing . 52

4 Conclusion and Future Aspects 59

Bibliography 63

Acronyms 75

Papers

I QAlign:quality-based multiple alignments with dynamic phylogenetic

analysis . 77

II Divide-and-conquer multiple alignment with segment-based constraints 79

III Global multiple sequence alignment with repeats 86

IV Comparing Tandem Repeats with Duplications and Excisions of Vari-

able Degree . 98

v

vi

Abstract

The thesis presents enhancements for automated and manual multiple sequence align-

ment: existing alignment algorithms are made more easily accessible and new algo-

rithms are designed for difficult cases.

Firstly, we introduce the QAlign framework, a graphical user interface for multiple

sequence alignment. It comprises several state-of-the-art algorithms and supports

their parameters by convenient dialogs. An alignment viewer with guided editing

functionality can also highlight or print regions of the alignment. Also phylogenetic

features are provided, e.g., distance-based tree reconstruction methods, corrections

for multiple substitutions and a tree viewer. The modular concept and the platform-

independent implementation guarantee an easy extensibility.

Further, we develop a constrained version of the divide-and-conquer alignment

such that it can be restricted by anchors found earlier with local alignments. It can

be shown that this method shares attributes of both, local and global aligners, in

the quality of results as well as in the computation time. We further modify the

local alignment step to work on bipartite (or even multipartite) sets for sequences

where repeats overshadow valuable sequence information. In the end a technique is

established that can accurately align sequences containing eventually repeated motifs.

Finally, another algorithm is presented that allows to compare tandem repeat

sequences by aligning them with respect to their possible repeat histories. We describe

an evolutionary model including tandem duplications and excisions, and give an exact

algorithm to compare two sequences under this model.

vii

Preamble

It was a dark night in Barcelona (yes, also in the City of Sun there are dark nights). I

was returning home from a larger night session with some problems that are presented

in this thesis as Paper IV. My brain felt like spaghetti and my mind still was iterating

some recursions with which I hoped to get relations on cascaded duplication histories

of tandem repeats. Unaware of my environment, I crossed the tiny alleys of Born,

passing the crowded place in front of the Santa Maria del Mar and finally I reached

the carrer princesa.

When I arrived home, my flatmate was in front of the TV. From a look in my face

he realized that I had been working hard.

– Everything alright? – he asked me.While getting a beer, I mumbled something

about sequences, repeats and NP-hard problems.

– What do you mean by NP-hard? – my flatmate wanted to know. He was

studying architecture, so probably he never had heard of problem complexity classes

before. Sipping my beer I tried to outline what is a polynomial time complexity and

that non-polynomial algorithms mostly often do not terminate within a reasonable

time. I concluded that the design of solutions for NP-hard problems is extremely

difficult since every little step that is too much can make the time effort explode.

– Come down, Micha! – he said. – NP-problems is by far not the worst thing that

can happen to you. You can desperate one day you find a NPI-problem!

I told him that I never in my life had heard of a problem class called NPI.

– I tell you.– my flatmate explained with a content expression on his face. – NPI

are the problems that are so big, that you have ni puta idea how to solve them.

viii

Acknowledgements

First and foremost I would like to thank Professor Jens Stoye, my supervisor, who

always had an ear for my problems and a valuable hint on how to solve them. With

his patient guidance and infinite seeming knowledge he demonstrated what it is that

makes a doctoral father. Moreover, he is a scientist by heart and one can be always

sure of his full support especially when because of approaching deadlines work is going

for the nights. Also in private life he is a very nice person and I exemplary want to

thank him for his aid in the how-to-get-my-bed-to-Spain problem. I am sure that our

collaboration will not stop with the defense of this thesis.

I am also very thankful to Professor Dag Harmsen from the Universitary Hospital

in Münster who supported my work with creative suggestions in countless phone

calls; luckily now SkypeTM has been invented – a program to phone for free over the

internet. In joined projects he showed humor and patience with my sometimes chaotic

time schedules whenever I had too many projects running simultaneously. On many

conferences in Europe or the U.S.A. he introduced me to interesting people and on

social events he always knew how to combine good science with a good beer.

Furthermore, I thank Professor Jaap Heringa from the Vrije Universiteit for his

ideas during my research period in Amsterdam. Further thanks go to Professor

Burkhard Morgenstern from the University of Göttingen for answering all my ques-

tions concerning Dialign. He also kindly offered help in an accident with the financing

plan at the beginning of the thesis. For the same reason I also would like to thank

Professor Ellen Baake from the Bielefeld University. And of course I am very thankful

to the Ernst Schering Research Foundation for the doctoral fellowship they gave me.

Especially I want to thank Dr. Monika Lessl and Ines Stöhr who also got in contact

with the chaos of my tight time plan.

Next, I address some thanks to my research group, the Genome Informatics and

our junior resarch group Informatics for Mass Spectronomy in Bielefeld: Heike Samuel

ix

x

for all organizational help during the thesis; Conni Bannert, Kim Rasmussen and

Klaus Schürmann, who are like me longest with the group, for the first German-

Danish beer contest and for many funny evenings afterwards; Dr. Sebastian Böcker for

good explanations during phylogenetic projects and for demonstrating (together with

Dr. Sven Rahmann, Dr. Zsusa Lipták and Mick Kaltenbach) that mathematicians

are very funny people; finally I thank all newer members for keeping up the good

spirit of the group. Further thanks go to the staff of the Bielefeld University, to the

HelpDesk (exemplary Achim Neumann and Peter Serocka) for technical support, to

the administration staff of the Technical Faculty (especially to Elke Grütz and to

Anke Weinberger), to Folker Meyer for an interesting collaboration, to the Genome

Research group (especially Martin Sagasser and Bernd Weisshaar) for providing an

eMac while developing the core of QAlign2 and to Thasso Griebel, Malte Brinkmeyer

and Felix Tille for productive joined programming.

I thank the groups I visited and the staff of the host universities. People from

the Centre for Integrative Bioinformatics at the Vrije Universiteit: Ilse Thomson (for

organizing housing and opening my office when I forgot my key), the people from the

HelpDesk, Radek Szklarczyk (for being a funny office mate), Victor Simossis (for the

funny poker evening) and Jens Kleinjung (for his couch when I still did not have a

room in Amsterdam).

From the Genome Bioinformatics Laboratory of the IMIM/CRG/UPF in Barcelona:

Maite Cebrián and Alicia de la Vega Gómez (for getting me set up here), Oscar

Gonzáles Blanco and Alfons Gonzáles Pauner (for not getting upset when I was do-

ing chaotic things with their systems), Dr. Eduardo Eyras and Professor Roderic

Guigó (for the patience with the interrupts in my work for our project), Dr. Tyler

Alioto (for writing me a German evaluation of my English), Dr. France Denoeud

(especially for last minute corrections on this manuscript), Dr. Jan-Jaap Wesselink

(for having a different but still quite good taste of beer), Julien Lagarde (for being

French), Dr. Sylvain Foissac (for the 1001 jokes he told), Francisco Cámara Ferreira

(for funny evenings), Dr. Josep Abril Fernando (for technical support while printing

a poster) and Dr. Mar Albà (for fruitful discussions).

Finally, I wish to thank the following: Laura (for being like she is), my family

(especially my mother), my former fellow students from Würzburg: Alex, Alexa, Ali,

Andi, Anna, Claudius, Dirk, Dorle, Jordi, Kerstin, Kori, Ruppi, Tobi (for ongoing nice

chats and visits), friends from Bielefeld (Arnau, Astrid, Defne, Diego, Elena, Esra,

Fernando, Eva, Jorge, Juan, Luis, Laura, Martin, Nana, Pippi, Roberto, Serena,

xi

Silke, Soraya, Las Tapas, Tero), from Amsterdam (Anjali, Anna, Bernat, Christina,

Francesco, Jean-Lucca, Jose, Julia, Luis, Marie, Maxie, Nacho, Paz, Pep, Sergio,

Steve) and from Barcelona (Alfonso, Bet, Charles, Enrique, Jorge, Montse, Miguel,

Pat, Pep, Ramon, Roberto, Rut, els WEKEs).

Barcelona, Catalunya Michael Sammeth

August 25, 2005

xii

Chapter 1

Introduction

1.1 Summary

In this thesis, we focus on sequence analysis in general and multiple sequence align-

ment in particular. Multiple sequence alignment – although already investigated for

over 20 years now – is still a central subject of sequence comparison. Most problems

in multiple alignment can be reduced to the fact that the multiple alignment problem

is known to be NP hard (Section 2.3). Therefore, a series of heuristical methods have

been developed, a hand full of which are included in the current list of state-of-the-

art algorithms, e.g. [58] [81] [65] (Section 2.4). However, benchmarks demonstrated

efficiently that even these algorithms fail to align certain problems correctly [92] [47]

[74] [68] (Section 2.5).

One major problem that we tackle in this thesis is the lack of a free and open

graphical environment for sequence analysis. Although many bioinformatical tech-

niques to compare and analyze sequences have been elaborated, the biological ex-

pert often is prevented from using them by technical problems. We implemented

the QAlign package that primarily is designed as a graphical platform for align-

ment generation, modification and comparison [75]. The package provides a series

of visualization features and recently also tools to perform phylogenetic analyzes

have been added. QAlign is written in system-independent and object-oriented Java

and the modular structure guarantees an easy extensibility. The program is freely

1

2

available over the internet and we are in the process to make it also open source

(http://gi.cebitec.uni-bielfeld.de/QAlign).

Further, it is a well known fact that the strengths of alignment techniques currently

available differ substantially [47] [74] [68]. This is a consequence of how the prob-

lem of the input is met by the respective objective function and heuristic shortcuts

of the algorithms. However, methods combining the benefits of different alignment

methods are highly desirable. Two totally different techniques to create global multi-

ple alignment are the divide-and-conquer alignment and the Dialign algorithm. The

divide-and-conquer method, based on a branch-and-bound technique with exponen-

tial effort w.r.t. the number of input sequences, is constructing an alignment that is

(close to) the mathematically optimal sum-of-pair score. On the other hand, Dialign

integrates a greedy optimization over local alignments and therefore is more suited

for sequences with less global similarity (e.g., data sets with big indels). We worked

out a hybrid algorithm and demonstrate it to combine the benefits of global and local

as well as heuristic and exact multiple alignment (Paper II).

Another problem known to confuse all existing alignment methods is the presence

of repeated elements in the sequence set. We aggregate that problem with an al-

gorithm that differentially evaluates sequence similarities in repeated sequence areas

and in substrings that are not repeated. In the end, similarities found in both parts

are merged according to scores assigned by a modified Dialign objective function. In

the repeat-sensitive alignment method, repeats can no longer disturb the alignment of

information carrying patterns and vice versa (Paper III).

In contrast, sometimes repeats are adding information to the sequence of let-

ters. Sequences that consist of exclusively tandem repeats, for instance, often carry

a phylogenetic signal within the micro-variation in the evolution of the repeat copies.

Such evolutions are known for a tandem repeat cluster in Staphylococcus aureus, a

bacterium with growing importance in molecular biomedicine. We describe an evolu-

tionary model with the possibility of taking into account the duplication and excision

of tandem repeat copies and present a high-dimensional alignment method to align

3

tandem repeats w.r.t. their possible repeat histories. In the end, a distance measure

can be derived from the alignment score that additionally considers the evolution of

the repeat copies (Paper IV).

1.2 Overview

The remainder of this thesis is organized as follows. This chapter further introduces

the biological background (Section 1.3) and gives basic definitions of sequence analysis

(Section 1.4). In Chapter 2 we introduce a notation for the alignment methods

discussed later on. Furthermore, we summarize some popular and state-of-the-art

methods for multiple sequence alignment.

Chapter 3 describes the single projects that are part of the thesis. For each

project, detailed information about preliminary work in the field is summarized and

specific biological backgrounds are introduced as required. In the end, possibilities

for improving or refining the developed methods are given.

First we describe the QAlign software, a graphical framework we set up for se-

quence analysis, especially for multiple alignment and phylogenetic analysis (Paper

I). Additionally to a description of the features included in the program, we present

some novel features of a recently finished new version QAlign2. Next, we focus on

two special alignment algorithms. The first one (Paper II) is a mixture of global sum-

of-pairs (divide-and-conquer) alignment and anchors found by segment-to-segment

alignment (Dialign). We demonstrate that it shares time characteristics and quality

attributes of both underlying methods and thus is suited for data sets with high global

affinity and sequences that are more locally related. In addition to information from

the publication, an algorithm is given describing how to constrain the divide step to

the anchors.

The other alignment algorithm we present is sensitive to repeat boundaries that

are submitted with the input (Paper III). A special strategy to collect anchors is

applied in order to evaluate the repeated sequence information separately from the

4

not-repeated substrings. We briefly discuss the optimization for noisy signals. Pa-

per IV finally describes a high-dimensional alignment method that is used to get

phylogenetic distances sensitive to duplication histories of tandem repeats. Hitherto

we describe also an evolutionary model with in total four operations: excisions, du-

plications, substitutions and indels. The thesis gives extended information about

calculating exact costs for cascaded duplication events.

Chapter 4 puts all contributions in common context and emphasizes parallels as

well as differences in intersecting applications. It includes a draft survey of the future

applications of contributions as far as we can estimate the time this thesis has been

elaborated. Finally we reproduce the papers in chronological order and in the layout

of the respective journals.

1.3 Biological Background

This chapter gives a brief overview of the biochemical and genetical mechanisms that

are fundamental for sequence analysis as described within this thesis. The terminology

used will be introduced in a self-containing but condensed way and the interested

reader may get extended information from standard literature such as [85] or [51].

1.3.1 Biochemical Preliminaries

The manual of life is concealed in the chemical composition of information carrying

biopolymers. The DNA (desoxyribonucleic acid) being the most famous of those,

contains the blueprints of many organisms conserving these information in time while

they are passed from generation to generation. A polymerized backbone of sugars

joined by phosphates stores the information in nucleotides, desoxyribose rings that

differ in the base substituent: adenine (A), cytosine (C), guanine (G), and thymine (T).

A and G are chemically purines (R), while C and T carry a pyrimidin ring (Y). According

to the number of hydrogen bonds formed when composing the helix structure, G and

C are strong (S) with three H-bonds, whereas A and T are weak (W) bases joined by

just two H-bonds. Finally, the side-chains on the bases separate the amino (M) bases

5

Figure 1.1: Biochemical attributes of the four DNA bases: the 6-edged pyrimidine ring
and the purine ring system with 9 edges, the name-giving amino and ketone groups
(grey shaded) and the number of H-bonds between respective base pairs (dashed
lines).

A and C from the keto bases G and T (Figure 1.1).

Throughout the DNA molecule there are protein-coding genes, functional units

that give rise to the chemically totally different (poly-)peptides or proteins. The latter

are responsible for the majority of structural or enzymatic (i.e., chemically catalyt-

ical) functions in a cell. Proteins are composed of (L-)amino acids, of which about

20 different are known to be used by nature1. When transforming the information

encoded in genes into proteins (expression), RNA (ribonucleic acid) polymers are

used as intermediate products. RNA is chemically very similar to DNA, but uses ri-

bose sugars which due to the additional hydroxygen group cannot form such compact

and stable helical structures as DNA. Moreover, in RNA uracil (U) is used instead of

thymine.

The process of copying DNA to RNA is called transcription, and the transforma-

tion from RNA to proteins is called translation. The complete way of information

from DNA over RNA to proteins is often called the genetic flow of information. Trans-

lation can be understood as mapping from nucleotides to amino acids. The rules for

mapping nucleotides to amino acids is known as the genetic code. Nature uses sets of

1Classical genetics knows exactly 20 amino acids. However, there is a growing interest in seleno-
cysteine, a modification of cysteine which sometimes is counted as the 21st amino acid.

6

Second Codon Position
U C A G

F
ir

st
C

o
d
o
n

P
o
si

ti
o
n

U

UUU Phe UCU Ser UAU Tyr UGU Cys U

T
h
ir

d
C

o
d
o
n

P
o
si

ti
o
n

UUC Phe UCC Ser UAC Tyr UGC Cys C

UUA Leu UCA Ser UAA Stop UGA Stop A

UUG Leu UCG Ser UAG Stop UGG Trp G

C

CUU Leu CCU Pro CAU His CGU Arg U

CUC Leu CCC Pro CAC His CGC Arg C

CUA Leu CCA Pro CAA Gln CGA Arg A

CUG Leu CCG Pro CAG Gln CGG Arg G

A

AUU Ile ACU Thr AAU Asn AGU Ser U

AUC Ile ACC Thr AAC Asn AGC Ser C

AUA Ile ACA Thr AAA Lys AGA Arg A

AUG Met ACG Thr AAG Lys AGG Arg G

G

GUU Val GCU Ala GAU Asp GGU Gly U

GUC Val GCC Ala GAC Asp GGC Gly C

GUA Val GCA Ala GAA Glu GGA Gly A

GUG Val GCG Ala GAG Glu GGG Gly G

Table 1.1: The standard genetic code used by most organisms of ourdays environment.
The first (left), second (top) and third (right) codon position determine a nucleotide
triplet that encodes a specific amino acid given in the three-letter-code (body).

three nucleotides to encode the 20 amino acids. Three is the minimum number neces-

sary, since with the encoding capability of four states (i.e., A, C, G, T respectively U), a

set of two nucleotides can only cover 42 = 16 amino acids. However, since nucleotide

triplets can cover in total 43 = 64 codes, the genetic code is redundant (Table 1.1).

1.3.2 History of Genetics

Although today the genetic flow of information is well understood and part of the

basic training in molecular biology, the way to its discovery was hard. It started when

in 1869 Friedrich Miescher [56], a physiologist from Basel in Switzerland, firstly

isolated DNA. However, it took more than seventy more years (until 1944) before

Oswald Avery, Colin MacLeod and Maclyn McCarty identified DNA as the carrier of

the genetic information [5]. They triggered a world-wide competition for the closer

7

investigation of the DNA biopolymer that found its climax in the discovery of the

double helix structure by James Watson and Francis Crick in 1953 [100]. However,

a lot of supplementary work by others was necessary to make this discovery possible.

For instance very difficult X-ray photos of DNA structures (with lense opening times

of more than a hundred hours) by Rosalind Franklin are likely to have given a crucial

hint [52]. Other observations in the 1930s reported short-living RNA-forms in the cell

nucleus, and the in-depth investigation of RNA viruses (e.g., the tobacco mosaic virus)

by the american biochemist Wendell Stanley (crystallization in 1935 [80]) finally led

in 1958 to the formulation of the hypothesis for the genetic flow of information by

Francis Crick. Today, this hypothesis is accepted and known as the central dogma of

molecular biology.

By the discovery of the genetic flow, the sequence composition of proteins already

was known since the British biochemist Fred Sanger had investigated the sequence

of insulin in 1954. However, there still were enough open questions about the tran-

scription and translation processes. A central point was the genetic code revealed

independently by Marshall Nirenberg [63] and Kar Khorana [43] in the early 60ies.

By experiments with RNA chains consisting of unique nucleotides (e.g., UUUUUUUU)

in 1961 they discovered the first triplets responsible to encode a specific amino acid;

the rest of the genetic code followed until 19652.

Raising interest to investigate genes and their expression then required the devel-

opment of efficient technical methods. In the seventies (1975–1977) first sequencing

techniques for DNA molecules were developed by Frederick Sanger [77] as well as Al-

lan Maxam and Walter Gilbert [54]. While Maxam and Gilbert chemically break the

DNA strand at the positions of certain nucleotides, Sanger’s method is based on pro-

ducing several copies with controlled polymerization stops after certain nucleotides.

In both instances, the fragments whose marginal base is known are then ordered ac-

cording to their size, allowing to directly derive the base sequence. Although Sanger’s

2Obviously these in vitro translation experiments were only possible with a high salt concentra-
tion. Under physiological conditions poly-U easily form quadruple helices or other wicked tertiary
structures that are impossible to translate.

8

termination method is still used, today more sophisticated sequencing methods have

been established (e.g., Pyrosequencing [66]).

Finally by the mid-eighties another important technique, the polymerase chain

reaction PCR, was developed by Kary Mullins [71, 60]. The PCR amplifies a certain

area of the DNA molecule, yielding hundreds of copies of the target region. By

multiplicating the quantity, it is possible to give visual evidence of reactions that

cannot be recognized with one or just a few copies. The method is prune to errors,

so not all of the generated copies are necessarily identical: since copying the DNA

is a thermodynamic process, it sometimes happens that the polymerase enzyme just

“falls off” the DNA, causing a shorter replicate. Another source of differences is the

natural error rate of the enzyme (Section 1.4.2). For a detailed description of PCR

protocols used to today see [20].

1.4 Sequence Analysis

This section introduces the terminology necessary for sequence analysis in order to

describe the algorithms presented in the thesis. We show a basic notation for stringol-

ogy and biological sequence analysis. Then, we describe events of sequence evolution

and assign them mathematically defined operations.

1.4.1 Biological Sequences

In sequence analysis, biopolymers like DNA, RNA or proteins are in general reduced

to the sequence of their monomer components. Hitherto, in general a capital letter

is assigned to each of the monomers of the respective chemical alphabet, e.g. A, C,

G, T for DNA (Section 1.3.1). The alphabet Σ of a sequence hence is a finite set of

letters that normally contains four letters in case of DNA or RNA, or twenty letters

for proteins.

Table 1.2 summarizes the extended IUPAC (international union of pure and

applied chemistry) notation that knows some additional letters, so called ambiguities.

For nucleic acids, each pairwise combination of bases is given a symbol according to a

9

S
y
m

b
ol

M
ea

n
in

g
O

ri
gi

n
of

d
es

ig
n
at

io
n

S
y
m

b
ol

3-
le

tt
er

co
d
e

A
m

in
o

ac
id

Nucleotidecodes

A
{A
}

ad
en

in
e

A
A

la
al

an
in

e

Aminoacidcodes

C
{C
}

cy
to

si
n
e

C
C

y
s

cy
st

ei
n
e

G
{G
}

gu
an

in
e

D
A

sp
as

p
ar

ta
te

T
{T
}

th
y
m

in
e

E
G

lu
gl

u
ta

m
in

e
U

{U
}

u
ra

ci
l

F
P

h
e

p
h
en

y
la

la
n
in

e
G

G
ly

gl
y
ci

n
e

R
{A

,G
}

p
u
r i

n
e

H
H

is
h
is

ti
d
in

e
Y

{C
,T

,U
}

p
y
ri

m
id

in
e

I
Il
e

is
ol

eu
ci

n
e

M
{A

,C
}

am
in

o
K

L
y
s

ly
si

n
e

K
{G

,T
,U
}

k
et

o
L

L
eu

le
u
ci

n
e

S
{C

,G
}

st
ro

n
g

in
te

ra
ct

io
n

N
A

sn
as

p
ar

ag
in

e
W

{A
,T

,U
}

w
ea

k
in

te
ra

ct
io

n
P

P
ro

p
ro

li
n
e

Q
G

ln
gl

u
ta

m
in

e
B

{C
,G

,T
,U
}

n
ot

-A
Q

G
ln

gl
u
ta

m
in

e
D

{A
,G

,T
,U
}

n
ot

-C
S

S
er

se
ri

n
e

H
{A

,C
,T

,U
}

n
ot

-G
T

T
h
r

th
re

on
in

e
V

{A
,C

,G
}

n
ot

-T
,
n
ot

-U
V

V
al

v
al

in
e

W
T
rp

tr
y
p
to

p
h
an

e
N

{A
,C

,G
,T

,U
}

an
y

Y
T

y
r

ty
ro

si
n
e

X
an

y
am

in
o

ac
id

T
ab

le
1.

2:
S
u
m

m
ar

y
of

si
n
gl

e-
le

tt
er

co
d
e

re
co

m
m

en
d
at

io
n
s

ac
co

rd
in

g
to

th
e

IU
P
A

C
st

an
d
ar

d
.

10

common chemical attribute (R,Y,S,W,M,K, Section 1.3.1). Additionally, codes for all

combinations of three letters from Σ are introduced, i.e., B stands for all bases but A,

D for non-C bases, H for non-G, and V for non-T or non-U nucleotides. A N symbol like

a wildcard represents all four bases, and correspondingly a X stands for one of the 20

amino acids of a protein. The ambiguity codes normally are inserted wherever due

to technical shortcomings during the sequencing process (Section 1.3.2) a monomer

could not be identified uniquely. Note that Σ may also consist of letters defined

for other sequence attributes as described later when introducing macro alphabets

(Section 1.4.3).

Formally, a string s of letters from Σ is called a sequence over Σ. Sequences in a

common set are numbered consecutively S = {s1, s2, .., sk} and in pairwise compar-

isons two arbitrary sequences from S are denoted by sp and sq. However, in instances

where there are only two sequences present in a set, we sometimes shortly call them

s and t. The length of a sequence s, i.e., the number of characters it contains, is

denoted by |s|. A sequence of length zero is denoted by the empty string symbol ε,

and (Σ)+ denotes the set of all nonempty strings over the alphabet Σ. Substrings

of consecutive letters s[x, y] are defined by a start position x and an end position

y within s, 1 ≤ x ≤ y ≤ |s|. If only a single position is included in the interval

(i.e., x = y), the simplified notion s[x] is used instead. Special substrings are prefixes

(x = 1) or suffixes (y = |s|).

1.4.2 Sequence Evolution

DNA is subject to evolution meaning that due to errors during the replication the

sequence information is changed (mutation). During the process of evolution, the

accumulation of mutations often leads to new variants of a molecule with modified

attributes and functionality. However, mutations differ substantially in target, molec-

ular mechanism and size of the affected sequence areas. In order to describe them

formally, each mutation is assigned a mathematical operation called edit operation

11

by which an original sequence s is transformed into a sequence t, s → t. The subse-

quent overview groups mutation events according to the size of the mutated sequence:

Point mutations are changes restricted to a size of up to a few nucleotides. In

most instances these errors occur during the replication of the DNA: the copying en-

zyme is adding a wrong monomer in the thermodynamical process while synthesizing

another strand along the parent sequence – in mammal cells this happens normally

for about every 10000th position. However, there are other molecular mechanisms

that lead to point mutations, like desamination or alkylation of nucleotides and DNA

repair mechanisms [85].

Substitutions: formally a letter from the sequence is substituted by another letter

from Σ, e.g. ACTAA↔ ACTGA. Substitution operations are treated bidirectionally since

we normally do not know which symbol was the original one. Due to differences in the

molecular mechanisms, for DNA these mutations are further subdivided into transi-

tions (substitutions between chemically equal monomers, purines or pyrimidines) and

transversions (substitutions of a purine with a pyrimidine or vice versa).

Indels: one or more consecutive letters are inserted into or deleted from the se-

quence, for instance AGCGA↔ AA. Since insertion and deletion are directed but inverse

operations, the choice depends on the point of view when comparing two sequences

and we pool them in a bidirectional operation called indel.

Once the sequence information of the DNA has been changed by a point muta-

tion, the RNA copied from it and possibly also the sequence of translated proteins

are altered by the flow of genetic information (Section 1.3.1). However, due to the

redundancy in the genetic code (Section 1.3.1), point mutations in the nucleic acids

12

do not always cause mutations in the derived amino acid sequences. A substitution

that is not effecting a change in the translated protein is called a silent mutation,

wheras all other point mutations are called effective mutations.

Rearrangements, in contrast, deal with larger areas of the sequence. If a pat-

tern of the rearranged substrings is known, rearrangements can be limited to the

corresponding sequence areas and the operation is of fixed boundaries. Otherwise, the

boundaries of the operation are free, and the rearranged string may start (and end)

anywhere within the sequence. Common reasons for rearrangements are splipped-

strand mispairing, gene conversion and – in the presence of a multichromosomal

genome – unequal recombination (a.k.a. unequal crossing over), but there are also

enzyme mediated mechanisms (e.g., transposase-mediated dislocations). Effects of

rearrangements can sometimes be quite severe regarding the fact that genes can be

dislocated or torn apart.

Duplications result in a duplicate of a substring. Commonly the tandem duplica-

tion is addressed, where duplicated strings are located directly next to the original:

AGTCAA → AGTCGTCAA. Duplications can range from a few bases like in the example

(micro-satellites, short tandem repeats) over mini-satellites (10 bp to 100 bp) to large

satellites.

Excision: although this term is used for a very heterogeneous group of operations,

we use it here for the deletion of an area longer than one position AGTCAA → AAA.

Note that usually excisions comprise bigger substrings than shown in the example

and therefore are very different from indels. They can be distinguished from large

duplications by no similarity between the excised substring and the flanking sequence

areas. In coding regions the effects of excisions can be quite severe, e.g., to provoke

the illness cystic fibrosis, it suffices to cut out one codon from a gene to corrupt the

encoded chloride transporter [25].

13

Inversions: a substrings is excised and afterwards reinserted in the same genomic

place, but in the reverse direction AGTCAA→ GGTCAG (the inversed substring usually is

larger). Due to chemical attributes, the double stranded DNA fragment is rotated as

whole, and thus the sequence is turned into its reverse complement. Some inversions

on the human chromosome X are known to provoke hemophilia type A.

Dislocations: are products of moving a mobile element within the DNA rather

than the result of a strand mispairing. AGTCAA → AAGTCA. Also here the mobile

string normally is larger, e.g., 100-400 bp for short interspersed or about 900 bp for

long interspersed elements in human. These events are subdivided in transpositions,

the re-insertion of the element in the same chromosome, and translocations, where

parts of different chromosomes are exchanged. In contrast to other types of rearrange-

ments, transposable or mobile elements (e.g., L1, Alu) need a special structure and

the presence of enzymes to change position. Depending on the gene and the position

the substring is moved to, effects of dislocations can vary up to carcinomes, muscle

distrophia and leukemia.

To describe a certain evolution of a gene or genome, all mutations observed in

nature (i.e., accepted muations [21]), more correctly their corresponding edit opera-

tions, are combined in an evolutionary model. The evolutionary model most sequence

comparisons are based on includes only point mutations and therefore is known as the

SI model (for substions and indels). More recently developed techniques sometimes

additionally take into account the possibility of tandem duplications and are therefore

based on a DSI model (duplictations, substions and indels).

14

1.4.3 Macro Alphabets

As shown in the overview of the different types of mutations (Section 1.4.2), a large

part of them is based on substrings rather than on single positions. The mutated

sequences can range from a few basepairs up to changes of more than a megabase. To

facilitate formal descriptions on techniques, we assign symbols to these substrings.

The same symbols can be used to describe substrings with a special function, like

motives, regulatory elements, protein domains and repeats. We call the set of all

these symbols a macro alphabet Σ′, since each symbol is actually comprising a range

of positions. For Σ′ as for Σ holds the attribute of finiteness.

In general we denote a substring with additional information by a motif f of its

supersequence s, and we denote this relation by f ⊂ s. It is defined by a corresponding

start b, an end position e and an additional parameter τ that is capturing the type

of the fragment f = (b, e, τ) with 1 ≤ b < e ≤ |s|. As for sequences we designate by

|f | := e − b + 1 the length of the substring that fragment f occupies on sequences.

Throughout this thesis, different types τ will be used. They will be assigned capital

letters (Figure 1.2) and in sequences we use a slanted font (A,B,C,.., Z) to distinguish

them from regular protein or nucleotide sequences.

In some classifications of molecular biology, it is necessary to specify subtypes [79],

[6]. In these instances indices are added to the corresponding types (e.g., A1, A2, ...).

Whenever just the type of a motif f is important, the letter assigned to τ is used as

shorthand notation for f , omitting the positional information. Subsequent fragments,

e.g. when describing tandem repeats, are annotated as a macro sequence s′ over Σ′.

15

trka_metma 1 MKAVIIGAGEVGYHIAKALSPKNDVVIIDKDEEAAKRADELDVLVIEGNGANAEILS
Q9UXR7 1 MKAVVIGAGEVGYHIAKFLSLTHDVIVVEKDEEVARRADELDVQVLEGNGANADILT
o29420 1 MRIVIAGAGEVGYHLAMSLAPNHDVIIIEKDVSRFERVSELDVVAINGNAANMKVLR

trka_metma 57 RV-LQNADLLVAVTGVDEVNIVACMTAKLIMKNKNGWKDTKTIARVSNPDYIDSPVT
Q9UXR7 57 SI-LHDADILIAVTGVDEVNIVACMTAKLILRSHPGWKETKTIARVSNPDYIDVPVT
o29420 57 DAGVERADVFLAVTGNDEVNLLSGLAAKKVG-------AKNVIVRVENPEYVDRPIV

trka_metma 113 SRAQVGVDLMICPELALASEVADILSSPSAIDAEMFAEGKVRMTEFAISPESKLVGK
Q9UXR7 113 SRAQVGVDIMICPELALASEVAEVLSSPSAIDAQVFAEGKVQMTEFAISPESKLVGK
o29420 107 KEHPLGYDVLICPQLSLAQEAARLIGIPGAIEVVTFSGGKVEMIELQVMEGSKADGK

 **
trka_metma 170 HMQDLKLADCCIVSAVFREDQIIIPHGDDLIKANDHMVVVGKPESMEDLESVFGSKV
Q9UXR7 170 QMQDLKLADCCIVSAVFRDHRIFIPHGSDVIKANDHVVVVGKPEAMESLSSIFGNEV
o29420 164 AIADLYLPQNVVIASIYRNGHIEIPRGDTVLRAGDRVAIVSKTEDVEMLKGIFGPPV

 **
trka_metma 226 SHRTRILLIGCGIVGMYLAKLIDKEENADLRIIEHSKSRCIEVAEILENALVLNGDG
Q9UXR7 226 HHKNRVLIIGCGIVGFYLAKLISKEENVDLKIIEHRKDRCIEVAETLEGVLILNGDG
o29420 220 T--RRVTIFGAGTIGSYTAKILAKGMT-SVKLIESSMERCEALSGELEGVRIVCGDA

trka_metma 265 TDVSLLREENIEDMDVVVAVTDSDEKNLLCSLLAKQLGAKKVIARADRSDYLPLFEM
Q9UXR7 265 TDLNLLKEENIEDMDVVIAVTDSDEKNLLCALLAKQLGAKKVIARADRSDYLPLFEM
o29420 276 TDIEFLIEEEIGKSDAVLAATESDEKNLLISLLSKNLGARIAIAKVEKREYVKLFEA

trka_metma 339 VGIDMAVSPREATVNEVLKLTMGRGIQTLTTIEGERAEIIEYTASEKSRIVGKPLNK
Q9UXR7 339 VGIDMAVSPREATVNEVLKLTMGRGIQTLTTIEGEKAEIIEYTASESSKIVGRPLSK
o29420 329 VGVDVALNPRSVTYNEVSKLLRTMRIETLAEIEG--TAVVEVVVR-NTRLVGKALKD

trka_metma 396 VKFPKGAP--
Q9UXR7 396 VKF---
o29420 383 LPLPKDAIIGAIVRGNECLIPRGDTTIEYEDRLLVFAKWDEIEKIEEIFR

F
1 223

F
231 407

F
1 223

F
231 402

F
1 217

F
223 435

trka_metma

Q9UXR7

o29420

a)

b)

Figure 1.2: Example of reducing the TrkA potassium uptake protein (trka metma)
with two other proteins, each one containing also a KTN NAD-binding domain of
type F. (a) shows the alignment of the three amino acid sequences where areas of
domains are marked with asterisks. In (b) the condensed schematic representation is
given, reducing the protein sequences to their domains (boxes marked with a letter
according to the respective τ) and intervening sequences (lines). The example is taken
from BAliBase group 6-1a (Section 2.5).

16

Chapter 2

Multiple Sequence Alignment

In this chapter, we introduce the notation and background relevant for multiple align-

ment. The alignment problem is presented and we show some state-of-the-art methods

to solve it. To compare our work with other alignment methods, we give an overview

of how to compare the results with existing benchmarks. Finally, phylogenetic ana-

lyzes based on multiple alignments are briefly outlined.

2.1 Sequence Alignment

Alignments are a traditional method to compare sequences and to analyze the dif-

ferences. They compare two (pairwise alignment) or more (multiple alignment) se-

quences by searching for a series of individual characters or character patterns that

are in the same order in the sequences: identical (matches) or similar characters (mis-

matches) are placed in a column, whereas for non-similar positions spacing characters

(indels, ’-’) are inserted. The latter are artificially introduced symbols to stretch the

sequences in order to model indels and to force related characters in the same column.

Therefore, alignments extend the alphabet of the input sequences to Σ̄ = Σ ∪ {-}.
Motivated by notations common in stringology, we denote the length of an alignment

A by |A| and specify any column of the alignment by A[i], 1 ≤ i ≤ |A|. Obviously,

|A| ≥ max|si|, 1 ≤ i ≤ k.

A global alignment of a family of k sequences S = (s1, s2, . . . , sk) over a finite

17

18

alphabet Σ can be represented as a k × |A| matrix

AS =

a1[1] a1[2] . . . a1[|A|]
a2[1] a2[2] . . . a2[|A|]
. . .

ak[1] ak[2] . . . ak[|A|]

with entries in the extended alphabet Σ̄, such that ignoring the spacing characters

the pth row reproduces sequence sp and there is no column consisting exclusively of

spacings. A maximal run of adjacent spacing characters is called a gap.

Local alignments in contrast align only fragments of the input sequences and are

more suitable when comparing sequences that are related in some areas but dissim-

ilar in others. Formally, a local alignment Af1,f2,...,fk
is the alignment of fragments

{f1, f2, . . . , fk} of the input sequences, where |f1 ⊂ s1, f2 ⊂ s2, . . . , fk ⊂ sk. In spe-

cial cases two fragments fp = (bp, ep, τp) and fq = (bq, eq, τq) are aligned gapless. Such

relations are called anchors that can be characterized by Afp,fq = (bp, bq, |f |), with

alignment length |f | = |fp| = |fq|. Note that whenever not further specified, the term

alignment will refer to global alignment throughout this thesis.

2.2 Scoring Alignments

We denote the set of all alignments possible for a data set S by the alignment space

ΩS. In an optimal alignment, however, nonidentical characters and gaps are placed

to bring as many identical or similar characters as possible into vertical register.

To measure similarity between characters, scoring schemes have been set up, which

roughly can be divided into two groups, cost or similarity scoring schemes. Both define

functions that return a numerical value for the atomary comparison of two charac-

ters of the alphabet: costs impose penalties according to the degree of dissimilarity

(cost(c1, c2) : (Σ̄)2 → R+
0), whereas similarity values can either be positive, negative

or zero (sim(c1, c2) : (Σ̄)2 → R). Both sorts of scoring schemes can be transformed

into each other under certain conditions [78], however, due to some algorithmical

advantages we will use exclusively cost schemes throughout this work.

19

Most cost schemes comply with the attributes of a metric (Section 2.6). The most

simple cost scheme is the so called unit cost, where each match between two charac-

ters (c1, c2) ∈ Σ̄ is assigned no cost (cost(c1, c2) = 0 iff c1 = c2) and mismatches or

indels all are assigned the same cost of a positive unit u > 0. More elaborated scoring

schemes take into account biological observations, e.g. nucleotide matrices that distin-

guish between transitions and transversions or the PAM (percent accepted mutation)

[21, 37] or BLOSUM (blocks substitution matrix) [37] matrices for proteins. They

have been extracted from the substitution rates observed in alignments of different

sequence sets. PAM values are derived from global alignments of one evolutionary dis-

tance and then extrapolated for other distances, while BLOSUM matrices stem from

local alignments of proteins with different evolutionary distances (Blocks database).

Definition 2.2.1 (SP score). The sum-of-pairs (SP) score for a multiple alignment
AS is composed of the scores for each pair of sequences in the alignment. Such a
pairwise alignment Asp,sq is composed of the scores for each character tuple of its
columns:

cost(Asp,sq) =

|A|∑
i=1

cost(ap[i], aq[i])

Note that cost(Asp,sq sometimes also is called the distance between the aligned se-
quences sp and sq. The score of AS is then the sum for all character tuples (pairwise
projections):

cost(AS) =
∑
p<q

|A|∑
i=1

cost(ap[i], aq[i])

Another issue are gap costs: due to definition of a gap (Section 2.1), the adjacent

spacing characters should be treated together in the scoring scheme. The linear gap

costs scheme just sums up the penalties for each spacing character in a gap ap[x, y],

not taking into account the gap as a whole.

cost(ap[x, y],′ -- . . . -′) =

y∑
i=x

cost(ap[i], -), ap[i] 6=′ -′

On the other hand, there is a strategy to add an additional penalty once a gap

is initiated to contribute to the mechanism of a deletion (Section 1.4.2), called affine

20

gap costs. These are therefore defined by two parameters, the gap open go and the

gap extension score cost(-, c), c 6=′ −′, with the convention that go > 0. The cost of

a substring ap[x, y] aligned with a gap is then

cost(ap[x, y]) = go +

y∑
i=x

cost(-, aq[i])

Finally, due to technical limitations of the sequencing process (Section 1.3.2),

marginal gaps are often treated different from internal gaps. Marginal gaps, indicat-

ing that one of the compared sequences is shorter than the other(s), are often technical

artefacts (Section 1.3.2). Therefore they are assigned less costs than internal gaps,

commonly marginal gaps are not even penalized at all.

2.3 Multiple Alignment Problem

With the definition of cost schemes and assuming the commonly accepted parsimony

principle for nature [17][30], the multiple alignment problem can be described as an op-

timization problem. Modelling the evolution for a set of sequences S = {s1, s2, . . . , sk}
with a cost function cost(), we search in the alignment space Ωs1,s2,...,sk

for the align-

ment that minimizes the costs of the aligned characters.

Â := argmin{cost(A) | A ∈ Ωs1,s2,...,sk
}

The multiple alignment problem has been proven to be NP-complete in three

different methods. Wang and Jiang [96] use the SP scoring scheme (Section 2.2) and

define the Sum-of-Pairs Multiple Alignment (SPMA) problem. They prove the SPMA

problem to be NP-complete by reduction from the Shortest Common Supersequence

Problem [32]. Later on we will see that it corresponds to the shortest-path problem

in a high dimensional DP matrix spanned by the input sequences S (Section 2.4).

A more general description has already been given by Kececioglu in 1993 [42]. He

formulates the problem as the Maximum Weight Trace (MWT) alignment problem

in a graph G = (V, E). The letters of the input strings sp[i] ∈ S are vertices V of

21

the graph. Every edge e ∈ E of the graph has a positive weight we and connects two

vertices (letters) that belong to different strings. In an alignment A these two letters

connected by e would be placed in the same column. The set of edges incorporated

in an alignment A is called the trace of A. The maximum weight trace problem is

defined as the problem to maximize the sum of weights we of all edges realized by A.

Kececioglu proves that the MWT problem contains the SPMA problem and that the

MWT problem is NP-complete by reduction from the Feedback Arc Set Problem [32].

2.4 Global Alignment Techniques

It is a hard task to find an optimal alignment, the possibilities grow rapidly even

for only a pair of sequences: considering all possible matches and indels, for proteins

of length 300, about 1088 comparisons have to be computed in an exhaustive search

[97]1.

Dynamic Programming: The crucial point is when naively iterating all align-

ments in Ω, the same comparisons have to be performed exponentially many times.

However, there are only quadratically many subproblems when comparing each letter

from sp with a letter from sq. Dynamic programming is a general technique in com-

puter science that circumvents the problem of multiply solving the same subproblem

by iteratively solving the subproblems sorted by increasing size. Proceeding in the

iteration, each subproblem is solved only once, cutting down the necessary compar-

isons to the number of subproblems. The essence of dynamic programming is Richard

Bellman’s Principle of Optimality :

An optimal policy has the property that whatever the initial state and the initial

decisions are, the remaining decisions must constitute an optimal policy with regard

to the state resulting from the first decision.

1The exact number of alignments between to sequences of length n is given by
(

2n
n

)
= (2n)!

(n!)2 '
22n
√

πn
[98].

22

This is a self-evident principle in the sense that a proof by contradiction is imme-

diate. Rutherford Aris restates the principle in more colloquial terms:

If you don’t do the best with what you have happened to have got, you will never

do the best with what you should have had.

In other words, according to Bellman’s Principle the subproblems can be derived

from each other, and each optimal partial solution contains partial sub-solutions which

on their turn are optimal. Therefore, the subproblems for dynamic programming are

to be sorted in recursively iterable cascade. For the pairwise alignment problem of

two sequences s and t, these cascaded intervals are for instance partially aligned

prefixes s[1, i] and t[1, j] for all i = 1, .., |s| and j = 1, . . . , |t| respectively. To store all

partial results, we use as data structure an alignment matrix Ms,t over the compared

sequence pair, including an additional row and column for alignment of ε:

Ms,t := (Ms,t[i, j]) where Ms,t[i, j] = cost(Â∫ [∞,〉],t[∞,|]) for all (i, j), 0 ≤ i ≤ |s|, 0 ≤ j ≤ |t|

For linear gap costs, this matrix can be filled straightforwardly by the well-known

recurrence usually attributed to Needleman and Wunsch2 [62] (Figure 2.1). Note that

with a slight modification the recurrence can also be used for local alignment [99].

Ms,t[i, j] := min

Ms,t[i− 1, j − 1] +cost(s[i], t[j])

Ms,t[i− 1, j] +cost(s[i], -)

Ms,t[i, j − 1] +cost(-, t[j])

(2.4.1)

Obviously, the row and column representing the empty string have to be initialized

with multiples of the respective gap costs:

Ms,t[0, 0] := 0

Ms,t[i, 0] := Ms,t[i− 1, 0] + cost(s[i], -)

Ms,t[0, j] := Ms,t[0, j − 1] + cost(-, t[j])

2Actually the original recursion presented by Needleman and Wunsch was cubic in time
complexity.

23

|s|

|t|

1

1
ε ε

j

i

Figure 2.1: A DP matrix for the sequence pair (s, t). Note that the first column and
the first row correspond to the empty string ε of each sequence. Highlighted are the
source cell (upper-left corner) and the sink cell (lower-right corner). An example for
an arbitrary sequence pair shows the dependencies when calculating the best score
for cell (i, j).

Additionally, we store a pointer from each cell (i, j) in Ms,t to the cell(s) that

participate immediately (i, j) in the optimal partial alignment(s) As[1,i],t[1,j]. By this,

successively an alignment graph is constructed, traversing the matrix from the source

cell (0, 0) towards the sink (|s|, |t|). Iterating the recursion over i and j, the matrix

is filled with values. Note that at the same time it is assured that for each recursion

depth (i, j) the necessary values of preceding cells (i−1, j), (i, j−1) and (i−1, j−1)

are already computed. Once the value for the sink cell (|s|, |t|) has been computed,

the algorithm terminates with reconstructing the complete alignment graph(s) of the

optimal alignment(s) by tracing back the backpointers until the source cell. Obviously

the number of problems to be computed by the algorithm are O(|s||t|), or with n

denoting the length of the longest sequence O(n2).

Another problem is the calculation of affine gap costs when using the dynamic

programming technique. Due to the difference between gap open and gap extension

costs, when inserting a gap at (i, j), the minimum cost cannot be determined exactly

by just taking into account the positions (i − 1, j) and (i, j − 1). Since for these

24

Bellman’s Principle of Optimality is violated, basically one would have to reconsider

for each (i, j) all alignment paths that end with a gap, i.e., paths from cells in the

ith row until column j− 1 and from cells in the jth column until row i− 1. However,

Gotoh introduced another method for keeping the time complexity of O(n2), but

investing three times more memory [33]. His method bases on history matrices of

the same size as M , that additionally store the values and backpointers of all prefix

alignments that end with a gap.

The dynamic procedure can straightforwardly be extended to multiple align-

ments of k sequences. For these instances, the alignment matrix M{s1,s2,...,sk} cor-

respondingly has more dimensions. The effort to fill these hyperspace cubes grows

exponentially with the number of sequences, generally for k sequences and n =

max{|s1|, |s2|, . . . , |sk|}, O(2knk) steps have to be computed. To be specific, nk par-

tial alignments are to be calculated and for each one 2k − 1 originating cells are to be

considered. Since the multiple alignment problem is known to be NP-hard (Section

2.3) and dynamic programming retrieves an optimal solution, the exponential effort

is inevitable.

However, for affine gap costs the effort of multiple sequence alignment raises to

O(2knkkn). Saving history matrices to preserve the time effort is a bad option,

since memory consumption explodes exponentially [3]. In contrast a heuristic on the

computation of affine gap costs is used that just considers only the last alignment

steps in the hypercube. Altschul demonstrated that the differences between these

quasi-natural gap costs and the correctly calculated gap costs are marginal [3].

For the exponential costs of multiple sequence alignment, many methods use

heuristics, shortcuts to compute the result faster. The used heuristics are very het-

erogeneous and, according to the quality of the results, they are further subdivided in

exact methods that still guarantee to retrieve the optimal result and heuristic meth-

ods where this guarantee cannot be given anymore. Here, we show some multiple

alignment techniques that are important for the presented work.

25

Progressive alignments break down the multiple alignment problem to a series

of pairwise alignments. Here, iteratively two sequences are aligned until all sequences

are aligned. It can easily be seen, that to do so, it is necessary to align a sequence

(say t) with a set of already aligned sequences, e.g., As1,s2,...,sp . For these so-called

profile alignments, the cost function is adapted to match each position t[j] against

all characters in As1,s2,...,sp [i] by taking the arithmetic average of the different scores

yielded (Equation 2.4.2). The concept is straightforward extendable to the profile

alignment of two alignments A{s1,s2,...,sp} and A{t1,t2,...,tq}.

cost(A{s1,s2,...,sp}[i], t[j]) =

∑p
u=1(cost(au[i], t[j]))

p
(2.4.2)

A very crucial point in the progressive alignment strategy is the order in which

the sequences are added to the solution. The greedy process never assures to find the

optimal result (strong heuristic) and the quality of the result may vary substantially

with the alignment order. When difficult alignments are carried out in early stages,

the whole method is prune to errors since there is not a lot of sequence information

available and misdecisions are easily taken. Difficult alignments here are generally

alignments of distant sequences where many gaps and mismatches have to be tolerated

to match the sequences. To evade this danger, it is a common technique to compute

a quick phylogenetic tree (Section 2.6), a dendrogram, to guide the alignment order

and align the most related sequences first (Figure 2.2).

Various versions of this basic strategy have been developed. Clustal [90] is one

of these strategies that are called tree alignments, in contrast to naive progressive

methods like star alignments that align each sequence against a common consensus

sequence. Note that the current version, ClustalW, contains many more algorithmical

refinements, e.g., sequence weighting, position-specific gap penalties and it has been

trained for the BAliBase benchmark set (Section 2.5, Des Higgins personal commu-

nication).

Multiple sequence alignment (MSA) is the slightly unlucky name of a very

26

s1

s2

s3s4

s5

s4,s5 ,s4,s5

s1,s2

,ss1,s2 3,ss1,s2 3

Figure 2.2: A phylogenetic dendrogram to guide the progressive alignment. The input
sequences {s1, s2, s3, s4, s5} are distributed across the leaves of the tree, and internal
nodes represent alignments of respective subsets. Guiding trees are usually unrooted
and a further progressive step is necessary to align the partial alignments A{s1,s2,s3}
and A{s4,s5}.

efficient implementation for exact multiple alignment [35]. With exponential effort,

here the multi dimensional matrix M{s1,s2,...,sk} is computed, speeding up the proce-

dure by two exact heuristics.

(i) the Carrillo-Lipman heuristic [18]: takes advantage of the score yielded by a

quick (i.e., a progressive) alignmentA{s1,s2,...,sk} that is precomputed on the sequences.

Afterwards, all alignment paths containing cells with a score exceeding the score of

the precomputed alignment are excluded from further computations. Obviously the

technique can be applied, since cost(Âs1[1,i1],s2[1,i2],...,sk[1,ik]) can never decrease with

growing values (i1, i2, . . . , ik).

(ii) homing costs additionally estimate a lower bound for the alignment costs from

the currently computed cell (s1[i1], s2[i2], . . . , sk[ik]) to the sink from the sum of op-

timal suffix alignments in all pairwise projections,
∑

p<q cost(Âsp[ip,|sp|],sq [iq ,|sq |]). A

cell (i1, i2, . . . , ik) for which the homing cost and the sum between the cost of the

aligned prefixes cost(Âs1[1,i1],s2[1,i2],...,sk[1,ik]) together exceed the cost of the heuristic

pre-alignment are omitted.

27

Figure 2.3: In the example the Carrillo-Lipman heuristics and the homing costs cut
down the original 3D alignment matrix (grey cube). Only cells that comply with
both conditions (i.e., cells within the blue pipe) are regarded for computation of the
optimal alignment. Picture rendered by W. Esser.

Figure 2.3 shows how the initial search space is narrowed by omitting regions of

the alignment graph with edges that fail to pass condition (i) or (ii). Cells of the

search space for ÂS are stored in a heap structure and further iterated according to

the costs assigned to them. Although Gupta et al. could not give a proof, they ob-

served that (i) and (ii) omit an overlapping but not necessarily identical set of edges.

Without going into details, it is worthwhile knowing that these consistency conditions

have been further refined by the A*Algorithm [50].

Divide-and-conquer alignment (DCA) [93, 81] is a breaks down the lengths

of the aligned sequences. In its common implementation it is used to make the MSA

algorithm (conquer step) more efficient: according to a user defined string length L,

the algorithm recursively cuts the k input sequences in two parts (Figure 2.4).

28

Figure 2.4: Recursively the divide step cuts down the search space of three sequences
(grey cube) to subspaces (red boxes). The conquer step then is performed on the
subsequences along the borders of these subspaces. Note that the dividing procedure
forces the optimal alignment path to contain the cells at the junction points of the
subspaces (i.e., where the corners of the red boxes touch each other). Picture rendered
by P. Serocka.

Of course, the choice of the cut positions Ĉ = {ĉ1, ĉ2, . . . , ĉk} is critical for the

success of the DCA procedure, and inadequate cut positions in an early division step

can deteriorate the whole alignment. Stoye showed that the heuristics of minimal

additional costs of pairwise alignment paths in all projected Msp,sq yields very good,

in many cases optimal cut positions [81]. Hence, this method is often treated as an

exact method.

Dialign [58] is a technique to construct multiple alignments from anchors (Section

2.1), which gave the name to the method since in dotplots these anchors appear as

diagonals. Possible anchors are collected from the sequence pairs and scored in two

29

pf

qf
vf

wf

wf

pf'

'

sa

sb

sc

Figure 2.5: Example of two overlapping anchors Afp,fq and Afv ,fw (light grey links)
on three sequences sa, sb and sc. By the transitive link between positions of sa and
sc effected by the overlapping area (shadowed dark grey), a third anchor Afp′ ,fw′ is
induced.

steps: first they are assigned a weight w(Afp,fq) according to the probability that the

corresponding anchor with length |fp| = |fq| and similarity score sim(fp, fq) has been

found by chance in the input sequences S. To calculate sim(fp, fq), for proteins the

Blosum62 table is used. An error probability P (Afp,fq) that the corresponding anchor

has been found by chance is empirically assigned from random sequence experiments.

Motivated by objective functions in statistical mechanics the negative logarithm is

assigned as weight w:

wAfp,fq
= −log(P (fp, fq)).

Later on [57], the scoring function w() has been refined. In a heuristical solution to

the multiple alignment problem (Section 2.3), the weights of all overlapping anchors

are combined. Two anchors Afp,fq and Afv ,fw are considered as overlapping if they

share overlapping fragments on the same sequence while the other fragment is situated

on different sequences (i.e., fq, fv ⊂ sb, fp ⊂ sa, fw ⊂ sc). In the overlapping region,

the character tuples aligned by both anchors are linked transitively (Figure 2.5). This

transitive correlation implies a third anchor between two hitherto unaligned fragments

of the sequences sp and sq. The weight of the implied anchor is then used to upweight

w(Afp,fq) and w(Afv ,fw) to yield the overlapping weight olw():

olw(Afp,fq) = w(Afp,fq) + w(Af ′
q ,f ′

u
)

olw(Afu,fv) = w(Afu,fv) + w(Af ′
q ,f ′

u
)

30

s1
7 8 9 101 2 3 4 5 6

s2
71 2 3 4 5 6

s1
7 8 9 101 2 3 4 5 6

s3
7 8 91 2 3 4 5 6

s2
71 2 3 4 5 6

s3
7 8 91 2 3 4 5 6

s2
71 2 3 4 5 6

s3
7 8 91 2 3 4 5 6

s1
7 8 9 101 2 3 4 5 6

a) b)

Figure 2.6: Example of the triple comparison for three sequences: (a) the pairwise
global alignments for all pairs of s1, s2 and s3; (b) the triple comparison of s1 against s3

through s2. Only positions that are linked in all three sequences receive the combined
weight of both pairwise alignments As1,s2 and As2,s3 .

In the end, a greedy selection adds the anchors one after another to the final so-

lution, as long as they are consistent with each other. Consistency here refers to the

partial order each anchor imposes on the order of positions in the global alignmentAS.

T-Coffee is another method that incorporates local relationships into global

alignment. In the beginning, all pairs of sequences are aligned globally, and ad-

ditionally the best ten local alignments are collected. Each aligned character pair

(ap[i], aq[j]), ap[i], aq[j] 6=′ -′, is assigned the score sim(sp, sq) or sim(fp, fq) score

according to the alignment(s) Asp,sq , Afp,fq that contained it (primary library).

Then these scores are refined w.r.t. the context of the multiple sequences. In

another heuristic solution of the multiple alignment problem, here so called triple

comparisons are performed. To be specific, each set of three sequences is regarded,

say a sequence pair sp and sq is investigated “through” sequence su. If character

tuples between sp and sq are transitively connected through common alignments with

positions in sequence su, their signals are enhanced by adding the corresponding

alignment scores (Figure 2.6).

Finally, all tuple scores are turned into position specific scoring matrices (PSSMs)

31

that score the alignment of positions rather than of characters, i.e. cost(sp[i], sq[j]).

In the final alignment procedure, a progressive tree alignment, the PSSMs are used

instead of the general substitution matrices. Therefore, the method has a tremendous

gain in sensitivity for the input sequences.

2.5 Alignment Benchmarking

Since the beginning of multiple alignment research, methods to compare and evaluate

alignments have been developed. There are high demands on a good benchmarking

method:

Biological significance: the measure of the comparison has to be a biologi-

cally meaningful relation of the sequences. In other words, we need the “true”

alignment to compare it again the test alignments. Providing gold standards

Â for such comparisons is rather difficult since expert knowledge and in detail

analysis of data sets is needed and neither of them can be generated automati-

cally.

Objectivity: the measurement of the comparison should evaluate the align-

ment methods neutrally and independent of their respective objective function.

However, this requires theoretically to develop a new scoring system for every

comparison with respect to the OFs used in the compared alignment methods

(e.g., SP, maximum likelihood, minimum entropy, star, consensus, etc. [34]).

In practice, mostly the popular SP-system based comparisons are used. But

we want to stress the fact that this comparison biases slightly against methods

not using a SP system to add the signals over multiple sequences. Moreover,

it could be demonstrated that some manually elaborated alignments do not

optimize the score of any SP scoring scheme [47].

Generality: an ideal benchmark should cover the complete spectrum of align-

ment problems. Obviously, this is an utopic goal since a finite set including

32

all alignment problems has not yet been defined. To come closer to statistical

stability of the benchmark, experiments have been performed including artifi-

cially generated sequences [82, 47]. However, such artificial test sets contradict

the requirement for biological significance. In general, alignments are tested

with a series of data sets that try to cover a wide range of problems. Another

problem that may arise when including too many or too big test sets is that

computationally expensive methods may not terminate with generating the nec-

essary alignments in a reasonable time. In practice, there exist two options for

these instances: the test data set has to be reduced or the respective alignment

algorithms are to be excluded from the benchmark.

2.5.1 Benchmarks based on expert knowledge

McClure. One of the first benchmarks for multiple protein alignment was developed

already in 1994 by McClure et al. [55]. They composed four data sets of biologically

investigated proteins, i.e., data sets of twelve globins, twelve aspartate proteases,

twelve kinases and of twelve ribonucleases H. Furthermore, subfamilies of ten respec-

tively six sequences of each data set were defined and benchmarking is performed

across all these twelve data sets.

To compare the alignment layouts, the SP scoring system was used and character

tuples were scored according to their occurrence in the reference alignment Â: a

character tuple of the test alignment that is also present in the reference is empirically

assigned a score of 1; otherwise it is assigned a score of 0. Note that the comparisons

are based on positions rather than on characters. The sum over all position tuples

then forms the SP-score (Section 2.2).

SPÂ(A) =
∑

p<q,1≤i≤|sp|,1≤j≤|sq |

(
1 iff A and Â align position i in sp with j in sq

0 otherwise

Since not all positions from a sequence are equally conserved, McClure used the

biological background knowledge to restrict the evaluation to functional sequence

positions, the so-called core of the sequences. Here, the alignment of the positions

33

is clearly identified and can be given as a reference gold standard. The results then

may be given as absolute SP scores over all core positions or as a relative fraction of

correctly aligned core positions from the reference.

BAliBase. Five years later, another protein benchmark test called BAliBase

(benchmark alignment database) was presented [91]. BAliBase provides more data

sets than the McClure tests, in the first version a total of 142 sequence sets were

included, sorted into five groups according to the following characteristics: sequences

with an overall high (group 1), average (group 2) or low (group 3) similarity, sequence

sets with N/C-terminal extensions (group 4) and with internal indels (group 5). This

first version of BAliBase has been extended later on in a second version [6] where

three additional groups have been added: proteins with repeats (group 6), circular

permutations (group 7) and transmembrane proteins (group 8).

The big benefit of this method is the high efforts that have been put in the

generation of biologically correct reference alignments: protein structures have been

superimposed on the alignments. Furthermore, core regions of the reference were

defined. Additionally to the SP scheme comparison with the reference, Thompson

et al. introduced a column score CS. This more sensitive method assigns a score of

1 whenever the complete column of two compared alignments are identical, and 0

otherwise.

CS(a1[i], a2[i], . . . , ak[i]) =

1 iff ∃ j such that

|(â1[j], â2[j], . . . , âk[j]) = (a1[i], a2[i], . . . , ak[i])

0 otherwise

Although well concepted, BAliBase suffers from serious technical problems in prac-

tice. Parts of the provided data sets are incomplete, e.g., reference alignments or

annotation files storing the core regions are missing. BAliBase 2 sometimes does not

provide global reference alignments at all (group 6). Moreover, the program to com-

pare test alignments with the reference (baliscore) is not working correctly. Finally,

it has to be stated that BAliBase is not the only source of structure-based alignments.

Homstrad is a database freely available over the Internet with more structure align-

ments available but without manually assigned core regions. It was also used already

34

for benchmarking [95].

2.5.2 Randomized Data Tests

In 2002 a Swedish research group presented a benchmark for multiple alignments

based on artificially generated sequences [47]. They used the BAliBase references

together with Rose [82], a program simulating evolution of sequences using a proba-

bilistic model. A tree guides the simulated evolution starting from a common ancestor

and using operations of the SI model to generate new sequences. As all events in the

history of the generated sequences are known, the ’true’ alignment of the artificially

evolved sequences can be reconstructed. Furthermore, the insertion of more or less

random sequences by Rose is stated to compensate for the BAliBase bias for global

alignment methods [47]. Applying the protocol as described, many data sets of se-

quences with different lengths and different evolutionary distances have been gener-

ated for alignment benchmarking. A similar method has recently been used to test

the ability of alignment methods to align functional noncoding DNA [68].

Lassmann and Sonnhammer also introduced a new score for alignment comparison,

the so-called overlap score3. Here, the number of correctly aligned character tuples

is not compared to the number of total tuples in the reference alignment but to the

average number of tuples in the reference and in the test alignment. The percentage

value expressed by the overlap score therefore also captures the length of the test

alignment: for longer alignments with more gaps and therefore less aligned tuples,

the average number of aligned tuples decreases and the percent of correctly aligned

positions is comparatively high.

3Here, the overlap score refers to the overlap of aligned character tuples between reference align-
ment and test alignment. It must not be confused with the equally named score for overlapping
diagonals in the Dialign method (Section 2.4)

35

2.6 Distance-based Phylogenetic Trees

Phylogenetic analyzes reconstruct the ancestral relationship between taxa that in

molecular biology often are represented by the sequences of genes or proteins. A sim-

ple group of phylogenetic techniques, the so called distance based methods, are based

on pairwise distance measures d(sp, sq) derived from the sequences. Distances can

easily be derived from a multiple alignment by counting the mismatching positions.

Afterwards, most often a correction for multiple substitutions is applied. These differ

in the assumptions made on the distribution of characters from Σ, and popular sta-

tistical correction models have been developed by Jukes and Cantor [41], Felsenstein

[27] and Kimura [44]. In general, the pairwise distances follow the rules of a metric.

(i) d(sp, sq) > 0 ∀sp 6= sq

(ii) d(sp, sq) = 0 ∀sp = sq

(iii) d(sp, sq) = d(sq, sp) ∀sp, sq ∈ S

(iv) d(sp, sq) ≤ d(sp, su) + d(su, sq) ∀sp, sq, su ∈ S

All pairwise distances are stored in a so called distance matrix from which distance

based algorithms infer phylogenetic trees. An additive metrices has to additionally

satisfy the four-point condition of Buneman [16]:

d(sp, sq) + d(su, sv) ≤ d(sp, su) + d(sq, sv) = d(sp, sv) + d(sq, su).

An even harder condition is the three-point condition required for ultrametric

distances :

d(sp, sq) ≤ d(sp, su) + d(su, sq).

Some algorithms (e.g., un/weighted pair group method using arithmetic averages

UPGMA/WPGMA and agglomerative clustering) assume ultrametric distances, while

others work on roughly additive metrics (e.g., the Neighbor Joining method [72]).

Both iteratively join two taxa sp, sq with minimal distances into a hypothetical com-

mon ancestor u. Without going into detail, the differences are in the calculation of

36

the distances d(sv, u), v 6= p, q from the original distances d(sv, sp) and d(sv, sq). Ob-

viously all methods require k(k−1)
2

= O(k2) space since quadratically many distance

measures are stored. The time complexity of the methods based on ultrametric data

is about O(k2 log k), depending on the data structure used to sort the distances after

computation. The neighbor joining method additionally comprises a correction step,

to force the distances in a more additive metric (i.e., to find a neighbor pair that

minimizes the branch-length sum of the resulting tree). The additional step for the

rate correction fixes the lower bound for the computation time to O(k3) [86, 15].

Chapter 3

Contributions

After the “golden age” of biological sequence analysis in the 1980s and early 1990s,

there still remain several unsolved problems. Next to algorithmic refinements, se-

quence analysis ourdays is also moving away from the classical per-character basis to

investigations of functional or structural subunits like genes, domains or repeats. This

chapter gives an overview of the contributions to the field of alignment and sequence

comparison presented in this thesis. The following papers are included:

Paper I: Michael Sammeth, Jörg Rothgänger, Wolfram Esser, Jürgen Albert,

Jens Stoye, and Dag Harmsen (2003) QAlign - Quality Based Alignments with

Dynamic Phylogenetic Analysis. Bioinformatics, 19, 1592–1593.

Paper II: Michael Sammeth, Burkhard Morgenstern and Jens Stoye (2003)

Divide-and-Conquer Alignment with Segment-Based Constraints. Proceedings

of ECCB 2003, Bioinformatics, 19, II189–II195.

Paper III: Michael Sammeth and Jaap Heringa (2006) Global Multiple Se-

quence Alignment with Repeats. Proteins: Structure, Function, and Bioinfor-

matics, 64, 263–274.

Paper IV: Michael Sammeth and Jens Stoye (2006) Comparing Tandem Re-

peats with Duplications and Excisions of Variable Degree. IEEE/ACM Trans-

actions on Computational Biology and Bioinformatics (TCBB), in press.

37

38

Paper IV is a long version of the paper published in the Proceedings of WABI

2005 [76]. Additionally to the papers, related work by others that has not been intro-

duced sufficiently due to space limitations in the publications, extended descriptions

of the methodology, developments after publication and possible enhancements of the

respective techniques are given.

3.1 Graphical Framework

When looking at the implementation of state of the art multiple alignment algorithms,

a tragical observation is inevitable: most of them lack executable files for graphic

based platforms such as Windows or Macintosh (e.g., [65, 57]). While this is no

problem for using them in automated pipelines running on a UNIX clone operating

system, it efficiently prevents these techniques from being used by many experts in

the biological lab to find good alignments on sequences to be analyzed.

Focussing on phylogenetic analysis tools, the situation only improves at the first

glance. Freely available programs either lack algorithms or graphical capabilities.

For instance, the free Phylip package written by Joe Felsenstein [28] is still one of

the most elaborated packages. It includes distance-based, Parsimony and Maximum

Likelihood algorithms. However, often a chain of programs has to be used in order

to perform one phylogenetic analysis. Not rarely the file based interfaces between

two modules are making problems, even more if data is imported from an external

program. Finally, to plot the data another program is required, since Phylip only

outputs trees in the flat file Newick format.

BioEdit is a visual interface for Windows platforms and has been developed at

the North Carolina State University. It bundels a series of external programs, e.g.,

ClustalW [90] and Blast [2] and some programs from the PHYLIP package [28] to

calculate distance-based and parsimony trees. BioEdit provides a graphical interface

with an alignment viewer with highlighting and editor capabilities. However, since all

programs are attached externally via command line interfaces (CLI), the communi-

cation with the algorithms is not very flexible, i.e., it does not support all parameters

39

and results of computation. Although the software provides the possibility to include

other programs, these are also limited to the CLI and the problem of getting an

executable Windows code of a respective add-on program is delegated to the user.

Finally, it is impossible to port the main user interface to another platform since the

C source code is not available.

MEGA (molecular evolutionary genetics analysis) is another visual interface for

the Microsoft Windows platform. The software also includes the ClustalW align-

ment program but focusses on the phylogenetic and evolutionary analysis. For the

alignment and the original trace files an editor is provided. The phylogenetic module

includes many statistical methods to test and to evaluate the tree inference. But

also this program is provided as is – with only one automatic alignment algorithm

and no platform portability, i.e., users of Macintosh are encouraged to use virtual PC

emulators.

Here the idea of QAlign was initiated: basically a graphical tool has been created

in system-independent JAVA to unite different state-of-the-art techniques for multiple

alignment and at the same time incorporate methods for phylogenetic analysis. In

order to control the quality of the results, visualizations guide in the comparison. The

goals that have been set for the first version are:

• alignment algorithms based on different state of the art methods

• algorithms to infer phylogenetic trees

• an intuitive user interface

• guided editing functionality of multiple alignment layouts

• flexible import and export capabilities for alignments and phylogenetic trees

• multiple platform support, especially versions for Windows and Macintosh sys-

tems

40

Paper I describing the first version of QAlign was published in 2003, and since then

it draws the attention of an ever increasing circle of users in microbiology and related

fields. Until today nearly 2000 users from all around world have registered for using

QAlign, especially in the USA, where subsequent to its publication the journal The

Scientist included an article about QAlign [39]. The large international resonance

has demonstrated the need for such a tool. In a second version we have developed,

the concept has been extended towards a general tool for sequence analysis:

• sequence viewers are enhanced to support large sequence sets (e.g., strings on

a genomic scale)

• a workspace has been set up to administrate several projects on different se-

quence sets

• the modular program structure is now easily extensible by plug-in technology

Figure 3.1 and Figure 3.2 show screenshots from the pre-release of QAlign2 panta

rhei, introduced in June 2005 on the 105th General Meeting of the American Soci-

ety of Microbiology (ASM) [73]. QAlign2 provides a flexible framework for sequence

analysis, primarily multiple alignment and phylogentic reconstruction. Panta rhei in-

cludes different algorithms for multiple alignment of which MSA and DCA have been

re-implemented in JAVA and ClustalW is attached with a native interface to the

original C-code (Figure 3.1). Therefore, both are totally integrated in the graphical

framework. T-Coffee and Dialign have been recompiled for the Microsoft Windows

and the MacOSX platform, but support many CLI options graphically. The align-

ments can be viewed, and interesting regions may be highlighted. Moreover, a flexible

editing function allows guided editing (Figure 3.1). Distances can be extracted from

the alignments, and statistical corrections for multiple substitutions are available, i.e.,

Jukes-Cantor, Kimura and Felsentsteins model. Different methods for tree inferring

(i.e., UPGMA, WPGMA, Agglomerative Clustering and NJ, Figure 3.2) can be used

to test and evaluate evolutionary hypotheses. The resulting trees can be browsed,

41

Figure 3.1: The panta rhei framework. In the new version of QAlign users can ad-
ministrate different projects in the workspace (left), each of them may contain various
alignments and phylogenetic trees. To generate alignments, a suitable algorithm and
corresponding settings may be chosen from a list (bottom-right). A flexible editing
functionality allows to move marked blocks within the alignment layout (top-right).

zoomed and nodes may be flipped in order to compare them graphically (Figure 3.2).

We are in the process of making the source code publicly available and a second

publication on this is currently in preparation.

3.2 Hybrid Algorithms

A well known fact is that the strengths of existing multiple alignment methods differ

substantially [92, 47, 68, 95]. This is primarily due to the already mentioned fact

that the techniques used are based on different heuristics (Section 2.4). However,

also the strategy of looking for similarities (e.g., local vs. global alignment), the ob-

jective function and the characteristics of the input data play a role. A recent study

42

Figure 3.2: To infer trees with QAlign2 the distance matrix can be corrected for
multiple substitution before submitting as input to one of the distance-based tree
reconstruction methods (bottom-left). Different trees can be generated on the same
data set to compare them visually with each other (background). At every time, trees
may be exported to a graphic file (bottom-right).

by Lassmann and Sonnhammer [47] demonstrated the effective differences between

popular methods like ClustalW [90], Dialign [57], POA [48] and T-Coffee [65]. They

performed a series of randomized sequence alignments with the four techniques, arti-

ficially varying sequence length and similarity (Section 2.5). Summarizing the results,

T-Coffee is more suited for sequence sets with a rather high similarity, while Dialign

outperforms the other methods on data sets with low similarity. POA produces over-

all alignments of good quality, while ClustalW in contrast performs poorer in these

tests (Figure 3.3).

These facts make clear that the question for the best alignment algorithm can only

43

Figure 3.3: Color coded matrix showing which method performed best for each pair-
combination of conditions: average sequence length (x-axis) and average evolutionary
distance (y-axis). The methods shown are Poa (green), Dialign (yellow), T-Coffee
(blue) and ClustalW (red). Picture taken from [47].

be answered if the characteristics of the respective input set are known. However,

for the average user a method uniting the strengths of different alignment strategies

is highly desirable. Two alignment techniques that are very divergent from the ba-

sic strategy are the global divide-and-conquer alignment and Dialign, based on local

alignments (Section 2.4). We have developed a hybrid algorithm of the two meth-

ods where we use anchors found by Dialign to constrain global divide-and-conquer

alignment.

The idea of constrained multiple alignments has been investigated before. Myers

et al. [61] constrained already in 1996 the progressive alignment, yielding an algorithm

44

with quadratic time effort concerning the number of input sequences as well as their

length: O(k2n2 + k2|C|))), where k is the number of sequences whose total length is

n and |C| is the number of constraints in the collection C = {C1, C2, . . . , C|C|}.
In contrast to the work of Myers where constraints are set by the user to force cer-

tain positions of the input sequences into alignment, the so-called CMSA (constrained

multiple sequence alignment) method has been suggested by Tang et al. in 2002 [89].

It treats a slightly different problem since the constraints are set on letters from Σ

rather than for sequence positions. The biological background for this assumes the

presence of a common motif that has to be found in all of the input sequences (e.g.,

the katalytic triade in RNAses). For a collection of constraints C = {C1, C2, . . . , C|C|},
the original progressive approach by Tang et al. used O(|C|kn4) time and O(n4) mem-

ory [89]. In this first version the constraints only consisted of a single nucleotide or

amino acid, |Ci| := 1 for all Ci ∈ C. Here, all constraints Ci ∈ C correspond to a

single letter. Later, this result was improved to O(αk2n2) time and O(αn2) space,

where α :=
∑

C(|C|) denotes the lengths sum of all constraints that now can comprise

fragments of several nucleotides/amino acids [19]. For some applications, biologists

may further expect that some mismatches are allowed among the columns requested

to be aligned. Hence, Tsai et al. (2004) studied such a kind of constrained sequence

alignment and designed an algorithm of same time and space requirement as Chin

et al. [94]. Finally, Lu et al. [94] improved the technique for linear memory require-

ment O(αn) by applying techniques developed for the divide-and-conquer alignment

[83, 84].

Paper II describes our method and its benefits. In an outline, the algorithm

applies the Dialign strategy to greedily collect a set of consistent anchors down to a

certain user set threshold T . Anchors with an olw-score lower than T are not regarded

as significant and thus omitted from the constraints. In a second step, an adapted

DCA protocol to accept these anchors is used to align the sequences globally. The

modification of DCA comprises two major changes, one in the divide (Theorem 3.2.1)

and one in the conquer step (Theorem 3.2.2).

45

Theorem 3.2.1 (constrained divide step). If and only if the cut points are consistent
with the constraints, substrings can be aligned w.r.t. the sequences.

Theorem 3.2.1 becomes clear, when imaging as constraint a position tuple of two

sequences that are to be aligned with each other. If by the divide step the two

positions are separated, they can not be aligned in the conquer step. To avoid such

inconsistent cutting, we have to restrict the cut positions to sets that are consistent

with the constraints. We use a data structure introduced by Abdeddäım that stores all

constraints [1]. It allows to derive in constant time the so-called transitivity frontiers,

an upper (lower) bounds ub(p, i, q) (lb(p, i, q)) that are indices of the left-most (right-

most) characters in sequence sq that are to the right (left) of i with respect to the

constraints.

Algorithm 1 describes how to collect a set of cut positions {ĉ2, . . . , ĉk} consistent

with the constraints for a given cut position ĉ1. The algorithm successively “locks”

the cut positions ĉi on all sequences and narrows the according transitivity areas of

sequences, where still no cut position has been defined on.

Algorithm 1. Locking Loop (sequence {s1, s2, . . . , sk}, integer ĉ1, 1 ≤ ĉ1 ≤ |s1|)

lb1 = ub1 = ĉ1

for all 2 ≤ p ≤ k do
lbp = 1
ubp = |sp|

end for
for all 2 ≤ p ≤ k do

ĉp = ubp − bubp−lbp

2
c

if ubp > (lbp + 1) then
for all p < q ≤ k do

lbq = max(lbq, lb(ĉp, q))
ubq = min(ubq, ub(ĉp, q))

end for
end if

end for

end

46

s1

s2

s3

s4

7 8

1 2

4 5

9 10 11

6 7 8

12 13

9 10

3 4 5 6 7

14 15 161 2 3

1 2 3

4 5 6 17 18 19 20 21

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

]

]

]

]]

[

[[[

]
lbc1 ubc1

ubc1

lbc2

lbc2

ubc2
ubc2

ubc1

ubc3

lbc1

lbc1
lbc3

[

Figure 3.4: Four sequences (horizontal lines) in a constrained dividing step. When
finding a set of consistent cut points {c1, c2, c3, c4} (grey positions): a given cut po-
sition c1 on s1 sets the transitivity frontiers in s2, s3 and s4. In the middle of these
bounds iteratively cut points are chosen for the rest of the sequences, which on their
turn can further narrow the transitivity interval. Shown are the transitivity frontiers
lbcx and ubcx induced by every cut point cx. Note that in case of an empty transitiv-
ity interval, arbitrarily the position to the right is taken as a cut point (c2), but its
transitivity frontiers are not respected when narrowing the intervals (lbc2 , ubc2).

A special case is the selection of a cut position when the transitivity frontiers

include an empty interval. Here, one of the adjacent positions has to be chosen as

cut point, and we arbitrarily use the position to the right of the interval. However,

since this position is not part of the interval, transitivity frontiers implied by it are

not respected when narrowing the intervals of other sequences (Figure 3.4).

Additionally, the framework of anchors imposes constraints on the selection of

cut points and on the possible alignment paths in the multi-dimensional DP matrix

of the conquer step. The proof for Theorem 3.2.2 is straightforward since the final

divide-and-conquer alignment is a concatenation of the aligned substrings.

Theorem 3.2.2 (constrained conquer step). The constraints are respected in the final
alignment, if and only if they are respected by all subalignments in the conquer step.

The method was tested applying the BAliBase (v.1) test sequences. In compari-

son, the results of DCA, Dialign, ClustalW and T-Coffee are shown. The strengths

of different methods are clearly separated, as exclusively global aligners (ClustalW

and DCA) create high resoluting alignments where sequence similarity is fairly high

(group 1), while algorithms integrating local similarities (Dialign and T-Coffee) are

47

dominating for input sets with big indels (group 4 and group 5). In all test groups

the hybrid method shows characteristics of both underlying techniques, i.e., raising

parameter T the attribute of the generated alignment changed from Dialign to DCA

(Paper II, Table 1). Also the running time on a certain input set performs accord-

ing to setting of parameter T (Paper II, Table 2) which we summarize in Theorem

3.2.3. Obviously, although additional time is consumed for the consistency checks,

the number of cells omitted in the DP matrix grows with the number of constraints.

Theorem 3.2.3 (speed up). Constraints speed up the computation of an optimal
alignment with the DCA method.

Selecting the correct T the hybrid method produces results close to the ones

yielded with the T-Coffee method, another efficient combination of global and local

alignment. However, since the test results are arithmetic averages across a set of

very heterogenous data sets, it has to be stressed that in individual instances the

hybrid method of Dialign and DCA surely can outperform T-Coffee as demonstrated

in Paper II, Table 3.

In future refinements of the method an automatic choice of T according to the

attributes of the input would be highly desirable. However, it is quite difficult to

find a OF for the automatical analysis of such attributes. Another possibility to

circumvent the problem is to change the way the algorithm scores are merged: instead

of accepting and discarding anchors by a threshold value, one could think about a

weighting scheme similar to the T-Coffee OF [65]. Dialign anchors then positively

bias for certain edges in the hyperspace alignment while they penalize other ones,

according to the matches of the local alignments. It is only to speculate about the

attributes of such a technique, but we expect a quality higher than regular divide-

and-conquer, whereas the computation time is likely to be much higher than for the

hybrid algorithm presented here.

Another comfortable extension concerns the possibly exponential steps of (i) find-

ing optimal cut points and (ii) aligning the substrings optimally. Although in general

both steps are drastically sped up by the constraining anchors found beforehand, no

48

upper bound for the heuristic can be given since the quality of the anchors relies on

similarities of the input sequences. Therefore, there also exist cases where also the

hybrid algorithm takes very long to terminate as shown in the publication (Paper II,

Table 2). However, both steps (i) and (ii) can be replaced by polynomial time heuris-

tics [81, 35]. These heuristics surely drop the quality of the result, but the speed up

also makes the method better comparable in automated benchmarks, e.g. [95].

3.3 Motifs and Repeats

Assigned to patriarchal poetry too sue sue sue shall sue sell and mag-

nificent can as coming let the same shall shall shall let it share is share is

share shall shall shall shall shell shell shall share is share shell can shell

be shell be shell moving in in in inner moving move inner in in inner in

meant meant might might may collect collected recollected to refuse what

it is is it. - Patriarchal Poetry, Gertrude Stein

From the poem it should become clear, how repeats confuse us while trying to

interprate a sense into the words of the frase. Similar problems arise when aligning

proteins containing multiple copies of the same motif (or even of a complete domain),

that additionally may be re-ordered and shuffled. “Repeated sequences (in tandem

or not) are renowned for confusing all existing MSA methods.”[64] stated a recent

survey. However, repeats cannot be removed from the sequences since the loss of

sequence information and of the pattern of repeats omits vital information. Although

automated repeat detection [38, 46, 36, 88] has already been investigated for some

time, integration of these results with multiple alignment methods has not found

much attention until recently [69, 59].

Standard alignment methods (e.g. Dialign and T-Coffee) that are not aware of re-

peats, often are prune to the strong local similarities between the repeated substrings

(Paper III, Table 2). Parts of the repeated motifs are torn apart while aligning them

to different repeats of another sequence or they are aligned with random similari-

ties in non-repetetive sequence areas (Paper III, Figure 7 and Figure 8). Although

49

often the correct alignment has not yet been defined on a certain sequence set, the

mentioned misalignments are biologically false, regardless of the mathematical score

yielded. Therefore, Definition 3.3.1 is the basis for the measure we use to evaluate

our method.

Definition 3.3.1. A biologically meaningful alignment of sequences S = {s1, s2, . . . , sk}
with repeated motifs {f1, f2, . . . , fl} must not align any position x of fv, 1 ≤ v ≤ l
with a position y of fw, 1 ≤ w ≤ l, w 6= v or a position z that is not part of any motif.

To solve the problem, Raphael et al. [69] redefine the representation of a multiple

alignment. In contrast to the normal row/column matrix MS, they visualize align-

ments as directed, possibly cyclic graphs amongst sequence motifs (so-called A-Bruijn

graphs). On the one hand this representation efficiently displays all relations within

sequence motifs of the input data set, but on the other hand, no preferred alignment

is resolved.

More or less at the same time, Morgenstern et al. modified the Dialign protocol to

provide the input of user-defined constraints (such as motifs or repeats). However, the

method is only semi-automated, since the user has to resolve the correct alignment

of repeated or shuffled motifs on his own. Moreover, each of the constraints (i.e., the

anchors enforced) has to be assigned a weight that is compared to the olw(Afx,fy)

scores of the anchors found by local alignment when selecting greedily a subset of

consistent anchors. But without knowledge about the Dialign OF and the weights of

the anchors automatically found in the data set, the assignment of reasonable weights

to the user constraints is fairly difficult.

Paper III describes an automated alignment method we have developed that ad-

ditionally allows to input a set of eventually repeated motifs. This has been realized

by a flexible input parameter that models substrings of the input sequences as motifs

f = (b, e, τ). Optionally global alignments of fragments with the same type τ may

be submitted, or they are generated automatically by a DCA alignment. Next, our

algorithm extracts anchors from these alignments and scores them according to the

Dialign OF. Obviously, this requires that the true relationship of repeated motifs is

indicated by the character similarity as expressed by Assumption 3.3.1.

50

Assumption 3.3.1. In the case of repeats, the most similar motifs are the pair
of evolutionarily corresponding ones. They can sometimes be identified by synteny
conditions of similarities in flanking substrings.

Some modifications are to be performed due to limitations of the original Dialign

scoring scheme, where an anchor can contain no more than 40 positions, a limitation

due to the lack of empiric error probabilities. To this end, we break longer anchors

in parts of a maximum length of 40 and multiply the error probabilities, i.e., we add

their logarithms for obtaining a weight w. The values obtained approximate the real

error probabilities quite good (Morgenstern, pers. communication). Further anchors

are added by analyzing separatively those parts of the input sequences not containing

fragments. Like in the Dialign procedure, a global alignment is resolved by greedily

filtering out a high scoring consistent subset of anchors (Figure 3.5).

In addition, a modification of the algorithm has been developed for noisy signals

such as uncertain fragment boundaries (e.g., results of predictions). The extension

also comprises a step in which crossreferencing anchors between fragments and non-

fragment areas are collected.

In order to evaluate our method, we developed a novel measurement, the sepa-

ration index SI. It reduces the parameters true/false positives/negatives commonly

used for sensitivity and selectivity tests to correctly aligned positions and misalign-

ments, where misaligned positions are biologically wrong according to Definition 3.3.1.

To be specific, if both aligned positions come from a designated motif or repeat (of

the same type) or both are located in non-motif/non-repeat areas, the alignment

is considered biologically correct, otherwise not (misalignment). In benchmarks on

the BAliBase repeat group, it could be demonstrated that plain sequence alignment

methods (i.e., Dialign and T-Coffee) often misalign positions of motifs with regular

substrings and vice versa (Dialign for about 13% of the sequence positions and T-

Coffee for about 28%, Table 3.1). In contrast, the motif-constrained method cannot

generate such misalignments. The drawback is, however, that erroneous fragment

boundaries easily mislead the method. In these cases a slight recovery is still possible

when relaxing the constraints (Paper III, Table III).

51

19858 158114113
A AB

57 159 197 234

122

236

236

206173

19415912058

168

168

58 120 159 194

173 206

122

23419715957
A

113 114 15858 198 233

A

A

A

167123

267237205174
EB

B

B
19316011959

AB
59 119 160 193

B E
174 205 237 267

123 167
A

233

s1

s2

s3

s4

s1

s2

s3

s4

s1

s2

s3

s4

s1

s2

s3

s4

(a)

(b)

(c)

Figure 3.5: Basic outline of finding local similarities in the intervening sequences: (a)
Initially, all repeat areas are filtered out, concatenating the intervening sequences at
the ‖ marked positions. (b) Next, anchors (grey shadowed links between substrings
of sequences) are found by applying the standard Dialign protocol on the non-repeat
sequences. (c) Finally, the repeat subsequences are re-inserted and the weight of all
anchors found is re-calculated. Some of the grey links (alignments) are broken up
upon re-insertion of the motifs.

SPrepeats SPxalign SI[%]
total (99)

T-Coffee 2,155,984 (2,526,975) 520,622 (703,130) 72.43 (71.50)
Dialign 2,327,404 (2,763,917) 335,598 (429,170) 87.75 (86.96)
RepeatAlign 2,644,668 (3,271,138) 0 (0) 100.00 (100.00)

Table 3.1: Comparison of the novel method (RepeatAlign) with standard alignment
methods (T-Coffee, Dialign). In total 99 alignments are comprised in this summary
of BAliBase group 6. The correctly aligned repeat tuples (SPrep) and the misaligned
tuples (SPxaln) are shown for the core regions and in parentheses for all of the repeat
areas (core regions and positions with no structural information). Finally, the sep-
aration index SI is given, for the core regions of the repeats and for all the repeat
areas in parentheses, respectively.

52

One possibility for future improvement could be the enhancement for noisy signals.

However, preliminary analyzes show that the loss of quality is mostly due to the greedy

selection of the anchors. Changing the selection to find optimal sets of fragments

would raise the time complexity to an exponential effort [49].

3.4 Spa Typing

Staphylococcus aureus is the predominating cause of nosocomial infections [87], and

it is responsible for a wide range of human diseases, including endocarditis, food

poisoning, toxic shock syndrome, septicemia, skin infections, soft tissue infections,

and bone infections, as well as bovine and ovine mastitis. The recent emergence

of community-associated methicillin-resistant S. aureus (MRSA) strains [67] further

heighten the public health concerns. Thus, understanding the spread of S. aureus in

hospital in community settings is now of paramount importance.

S. aureus is a heterogenous (polymorphic) species [31] that was recently found

to have a clonal population structure [26]. Therefore, it is believed that S. aureus

does not undergo extensive recombination and diversifies largely by nucleotide mu-

tations. In order to distinguish strains, highly discriminating genetic markers that

accumulate rapidly are required. For many years multilocus enzyme electrophoresis

and, recently, multilocus sequence typing have been effectively used for this purpose

[53, 24]. The latter combines the discriminatory power of seven housekeeping genes

encoding surface proteins (sasA, sasB, sasD, sasE, sasF, sasH, and sasI).

However, in preliminary work a single technique had been clearly shown to be

efficient due to the requirements for rates of accumulating genetic variation: the

protein A gene has a rapidly evolving repeat region that is suitable to discriminate

species (spa typing) [45]. But up to now no automated comparison has been developed

for the 24-bp variable-number tandem repeats (VNTR) within the 3’ coding region

of this gene. The lack of an algorithm mainly stems from the fact that the VNTR

evolution also includes complex operations like tandem duplications and excisions of

repeat copies.

53

Other work in the field of tandem repeats focussed on extending the regular SI

model (for substitution and indels) to a DSI model additionally comprising the evo-

lutionary step of tandem duplication. Benson [10] developed already in 1997 an

algorithm to compare sequences under the DSI model. His method is based on a

modification of the general DP procedure, called wraparound dynamic programming.

The wraparound diagonal additionally connects each cell (i, 1) of the matrix with the

last cell of the previous row (i − 1, |s2|). Therefore, the sequence of s2 may be used

multiple times for alignment, the essential trick to align duplicated tandem repeats

in a DP matrix.

Bérard and Rivals [11] focussed on the comparison of mini-satellites, repetitive

sequences that are between 10 bp and 100 bp. They formulated an evolutionary

model that allows substitution, indels, tandem duplication and tandem deletion and

developed a DP recurrence to find the optimal alignment of two minisatellite maps in

O(n4) time and O(n3) space. This effort has been improved by Behzadi to quadratic

memory and cubic time [8], that then further has been reduced to cubic complexity

on run-length encoded maps [9]. However, the models are constrained to single-copy

single-step and cannot easily be extended to multi-copy duplications.

Other work [40, 23, 22, 12, 13] concentrates on finding the minimum cost tandem

repeat history, a problem firstly described by Fitch [29] that is known to be NP-hard

[40, 70]. Elemento and Gascuel [22] have proposed exact algorithms based on the

Most Parsimonious Tree problem. Without going into detail, heuristics are set up by

either restricting the problem [40] or the search for an optimal history tree [23, 12, 13].

But all these works do not consider the algorithmical advantages of a second repeat

sequence that is to be compared to.

Consequently, in Paper IV we have described the EDSI model that in addition

to point mutations and tandem duplications also allows the excision of one or more

repeat copies (multi-copy, single-step). The duplications and excisions are fixed to

the repeat boundaries such that we can replace the nucleotide sequence of the input

by a sequence over the macro alphabet Σ′ of the tandem repeats (Section 1.4.3). In

54

case of S. aureus the already established Kreiswirth notation [45] to identify repeats

is used. Once an input sequence s has been transformed to a string s′ of letters

from Σ′, we define the costs of the four edit operations of the EDSI model. In

order to get a well-defined computational problem, all costs are obliged to fulfill

the requirements of a metric and excision costs have to be greater than zero: with

zero cost excisions one easily could create an identity relation between two arbitrary

sequences by concatenating both into a common ancestor string from which each of

the two sequences can be derived by an excision event.

Mutation (including substitutions and indels): costs between different repeats,

i.e., different characters of the macro alphabet, are assigned according to a

global alignment of all repeats.

Duplication: the costs for producing a exact copy of a substring. Note that

costs for mutation events that change the one or the other repeat copy after

duplication can be additionally imposed.

Excision: the costs of deleting one or more repeat copies from the sequence.

According to biological observations these costs are generally independent of

the length of the deleted string.

Using the EDSI model of evolution, we set up an exhaustive algorithm to compare

all possible ancestor strings of two given VNTR clusters. The technique uses an high-

dimensional DP procedure that is taking into account also submatrices spanned by

possible ancestors. A main result of this paper is a theorem proving the finiteness of

the search space in our formulation of the EDSI alignment problem: Theorem 3.4.1

(finiteness; Theorem 1 in Paper IV). The excisions under EDSI allow to theoretically

generate an unlimited number of possible ancestors for a certain sequence. To be

specific, between each two adjacent repeats (and at the beginning and the end of

the sequence respectively) an unlimited number of repeats can be inserted which

hypothetically have been removed by an excision event. However, since our algorithm

aims at finding a minimum distance for a compared sequence pair, the number of

55

ancestors to be regarded can be limited to not redundant ancestors. The latter

are ancestors where a shorter distance between the sequences is given by another

duplication history, e.g. ancestors with inserted substrings that are related to neither

of the compared sequences.

Theorem 3.4.1 (finiteness). The edit operations under EDSI evolution and their
unrestricted order basically force us to explore an infinite search space of possible
ancestor sequences. However, the space of operation sets to be explored in order to
find the minimal distance between two sequences d(s′, t′) is finite.

Our method is based on contramers, geometrical constructs that capture a dupli-

cation with possible mutations. They are defined by C = (s′, b, m, e,A) and represent

a contraction, the inverse operation of a duplication, of the two substrings s′[b, (m−1)]

and s′[m, e]. Corresponding positions are described by the alignment A of these sub-

strings. Each contramer is also assigned a cost, for the duplication operation and

mutations captured by A. In a first step we exhaustively collect all contramers on s′

and t′, the two sequences to be compared (primary library). Then, these contramers

are merged to yield cascaded duplication events until all possible tandem repeat his-

tories are generated (secondary library). In a high-dimensional alignment, s′ and t′

are aligned regarding their possible repeat histories that give the minimum distance

between the sequence pair (Figure 3.6).

A difficult part is the assignment of the minimum costs for merged contramers.

As pointed out, we assume commutativity on the order of merging overlapping du-

plication events (Theorem 3 of Paper IV). Moreover, there are multiple ways for the

transitive relation of repeats joined by a deletion (Paper IV, Figure 4) and we take

the possibility producing the least cost when comparing with the other sequence. To

do so, we apply a version of the exact MSA algorithm, where the cost function was

modified to meet the requirements of the contramers. The difficulty lies in the fact

that the ancestor repeat and the time a certain mutation did happen, i.e. before or

after duplication, is not given by the contramers. Hence, we try exaustively all po-

sitions of a column as ancestor and compare the mutation costs w.r.t. the compared

sequence (Figure 3.7).

56

1

1
2
3
4
5
6
7
8
9
10
11
12
13

2 3 4 5 6 7 8 9 10 11 12 13

C1

C5

C6C7C8 C2

C3

C4

C5

Figure 3.6: An example for an alternative submatrix within a DP matrix Ms′,t′ .
During the DP process paths within the original and within the submatrix are taken
into account when determining the optimum of the cells in column 12. Note that
only contramers of one possible repeat history are depicted here, but all cascaded
duplication events of the secondary library are investigated.

57

A X A Y B X Bs=

C =(s,1,3,4,A)1 1

C =(s,4,6,7,A)
2 2

'

'

'

(a) (b)

(c)
A2

A1
A X

A

A X

A

X

X Y

X

X

X Y

X

Y B

X B

Y B

X B

Y X

Y

Y X

Y X

Y

Y X

*

*

*

X

Y

X

X

Y

X

*

A X BA X B

*
A X

A

A X

A X B

X B

X B

X B

t

s

'

'

A Y BA Y B
*A Y

A

A Y

A Y B

Y B

Y B

Y B

t

s

'

'

A Y BA Y B

*
A X

A

A X

A X B

X B

X B

X B

t

s

'

'
*

cost = 1

cost = 2 cost = 2

A X BA X B
*A Y

A

A Y

A Y B

Y B

Y B

Y B

t

s

'

'
*

cost = 3

A X BA X B
*A X

A

A X

A Y B

X B

Y B

X B

t

s

'

'
*

cost = 2

A Y BA Y B
*A X

A

A X

A Y B

X B

Y B

X B

t

s

'

'
*

cost = 2
*

1 3/

2 3/

Figure 3.7: Depicted is the scoring function on one ambiguous column of two merged
contramers. (a) Since the true ancestor repeat is unknown, all non-identical adjacent
positions are considered as possible ancestors (arrows) and the number of muta-
tions (asterisk) is counted when changing the respective position before and after
duplication. Note that for completely overlapping contramers, more combinations
are possible, since jumps are allowed between the rows (Paper IV, Figure 9c). (b)
and (c) demonstrate how the costs also depend on the compared sequence string. All
three possible histories of (a) are shown when comparing against the respective target
sequence t′.

The time and memory efforts of the method are exponential, due to the size of the

exhaustively treated Tandem History Problem [40]. Future developments will focus

on speeding up the computation, e.g. by introducing a bounding step in the search for

contramers. Specifically, we want to exclude the computation of contramers where

the contraction and mutation costs do exceed the costs of an already found alignment.

Obviously, such a branch-and-bound version will still retrieve the minimum distance.

58

Chapter 4

Conclusion and Future Aspects

The results of this thesis successfully have tackled a series of severe problems for

multiple sequence alignment. One main part of the thesis has investigated the pos-

sibilities of multiple alignment with constraints. These alignments are taking into

account restrictions on the alignment of certain positions of the input sequences. In a

first step, we have constrained the global divide-and-conquer alignment to respect as

constraints high-scoring anchors found before by Dialign. We have demonstrated that

the constrained (hybrid) alignment shares attributes of both underlying techniques.

In other words, anchors from local alignments have efficiently been integrated into

a global alignment procedure making it more sensitive to weak local signals in the

sequence set. Additionally, we have shown how anchors reduce the computation of

hyperspace alignments (Section 3.2 and Paper II).

In an extension, we have modified the algorithm to be suitable for aligning se-

quences containing repeats. Here, we have used extended information of repeated

sequence motifs to cluster the positions from the input sequences into two groups, re-

peats and intervening sequence areas. According to the respective stringency mode,

the algorithm allows cross-relations or separately investigates both groups for an-

chors. The anchors then are weighted using the Dialign OF, but the overlapping

weight function is changed to not bias the repeat signal (Section 3.3). Finally, the

constrained divide-and-conquer alignment reconstructs a global alignment with the

59

60

repeat-sensitive anchors as constraints. Paper III shows how we constrain the align-

ment for proteins with multiple, eventually repeating, motifs and match corresponding

motifs to produce biologically more correct results.

Constrained alignment methods are grow more and more important. The num-

ber of sequences in databases where additional information to the bare sequence is

available, grows nearly every day, e.g. protein family sets (Pfam [7]) and genomes

with predicted or manually annotated gene borders (Ensembl [14]). In the future one

could think of a wider spectrum for the constraints, e.g., superimposed structural

elements and pre-aligned motifs on proteins. In these terms, an interesting point is

the application of the technique to DNA. Probably it could enhance the alignment

of genes, when the structure of exons (corresponding to the motifs) and introns is

known. With modifications it will be possible to use the OF also on a genomic scale

where it could be used to gain hints on orthologous (aligned) and paralogous (un-

aligned) genes. Obviously, it may happen that information overlaps and signals from

different sources have to be added. In the so-called post-genomic area where more

and more genomic sequences become freely available with predicted or manually an-

notated information. Surely the constrained alignment method can flexibly be used

to integrate expert knowledge into the alignment construction process.

However, in some instances repeats are not disturbing but adding valuable infor-

mation for sequence comparison. As demonstrated for spa typing, the discriminatory

power of alignments can generate sensitive distances to create new distance-based evo-

lutionary measures (Section 3.4 and Paper IV). Here a high-dimensional alignment

has been developed to take into account alignment alternatives (repeat histories) when

determining the minimum distance (i.e., the optimal alignment) between a compared

sequence pair. These measures surely can be used to infer phylogenetic relations,

such as trees. In future efforts we will biologically analyze the resolution ability of

the 3’-VNTR cluster of S. aureus by the distances produced as described in Paper

IV. However, regarding the already mentioned availability of genomic data, it would

also be interesting to apply our method to other mini- (19–40 bp) or micro-satellite

61

(2–6 bp) sets. These tandem repeats occuring in higher organisms also carry a sen-

sitive phylogenetic signal, and were already used to investigate the Out-Of-Africa

hypothesis of human origin [4].

Finally, a chapter becoming more and more important for reasonable sequence

analysis is the visualization. On the one hand the ever growing data masses can

hardly be overviewed, on the other hand also more compact data sets often require

special visualization features that highlight sequence characteristics such as repeats.

We have introduced QAlign, a flexible and convenient graphical framework for se-

quence analysis (Section 3.1) and provide it freely on the internet. It is designed to

integrate tools for all areas of sequence analysis. QAlign especially focusses on mul-

tiple alignment and phylogenetic reconstruction, including characteristic evaluation

and context or relation visualization. The second version panta rhei provides many

plug-in interfaces and viewers for long genomic sequences. Future efforts have to be

spent to include genome browser capabilities and other visualizations, e.g. alternative

alignment representations like the ABA-graphs introduced by [69].

62

Bibliography

[1] S. Abdeddäım, Incremental computation of transitive closure and greedy align-

ment, Proc. CPM 1997, LNCS, vol. 1264, 1997, pp. 167–179.

[2] F.W. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman, Basic local

alignment search tool, J. Mol. Biol. 215 (1990), 403–410.

[3] S.F. Altschul, Gap costs for multiple sequence alignment, J. theor. Biol. 138

(1989), 297–309.

[4] J.A. Armour, T. Anttinen, C.A. May, E.E. Vega, A. Sajantila, J.R. Kidd, K.K.

Kidd, J. Bertranpetit, S. Pääbo, and A.J. Jeffreys, Minisatellite diversity sup-

ports a recent african origin for modern humans, Nat. Genetics 13 (1996), 154–

160.

[5] O.T. Avery, C.M. MacLeod, and M. McCarty, Studies on the chemical nature

of the substance inducing transformation of pneumococcal types: induction of

transformation by a desoxyribonucleic acid fraction isolated from pneumococcus

type iii, J. Exp. Med. 79 (1944), 137–158.

[6] A. Bahr, J.D. Thompson, J.-C. Thierry, and O. Poch, BAliBase (benchmark

alignment database): enhancements for repeats, transmembrane sequences and

circular permutations, Nucleic Acids Research 29 (2001), 323–326.

[7] A. Bateman, L. Coin, R. Durbin, R.D. Finn, V. Hollich, S. Griffiths-Jones,

A. Khanna, M. Marshall, S. Moxon, E.L.L. Sonnhammer, D.J. Studholme,

63

64

C. Yeats, and S.R. Eddy, The pfam protein families database, Nucl. Acids Res.

32 (2004), D138–D141.

[8] B. Behzadi and J.-M. Steyaert, An improved algorithm for the generalized com-

parison of minisatellites, Proc. CPM 2003, LNCS, vol. 2676, 2003, pp. 32–41.

[9] B. Behzadi and J.-M. Steyaert, The minisatellite transformational problem re-

visted, Proc. WABI 2004, LNCS, vol. 3240, 2004, pp. 310–320.

[10] G. Benson, Sequence alignment with tandem duplication, Journal of Comput.

Biol. 4 (1997), 351–367.

[11] S. Bérard and E. Rivals, Comparison of minisatellites, RECOMB 2002 (2002),

67–76.

[12] D. Bertrand and O. Gascuel, Topological rearrangements and local search

method for tandem duplication trees, WABI (2004), 374–387.

[13] D. Bertrand and O. Gascuel, Topological rearrangements and local search

method for tandem duplication trees, Transactions on computational biology

and bioinformatics 2 (2005), 1–13.

[14] E. Birney, T.D. Andrews, P. Bevan, M. Caccamo, Y. Chen, L. Clarke, G. Coates,

J. Cuff, V. Curwen, T. Cutts, T. Down, E. Eyras, X.M. Fernandez-Suarez,

P. Gane, and B. et al. Gibbins, Overview of ensembl, Genome Res. 14 (2004),

925–928.

[15] G.S. Brodal, R. Fagerberg, T. Mailund, C.N. Pedersen, and D. Phillips, Speeding

up neighbour-joining tree construction, Technical Report (2003), ALCOMFT–

TR–03–102.

[16] P. Buneman, The recovery of trees from measures of dissimilarity, Mathemat-

ics and the archeological and historical sciences (J.H. et al., ed.), Edinburgh

University Press, 1971.

65

[17] J.H. Camin and R.R. Sokal, A method for deducing branching sequences in

phylogeny, Evolution 19 (1965), 311–326.

[18] H. Carrillo and D. Lipman, The multiple sequence alignment problem in biology,

SIAM J. Applied Math. 48 (1988), 1073–1082.

[19] F.Y.L. Chin, N.L. Ho, T.W. Lam, P.W.H. Wong, and M.Y. Chan, Efficient con-

strained multiple sequence alignment with performance guarantee, Proc. CSB’03,

IEEE, 2003, pp. 337–346.

[20] V.E. Coyne, M.D. James, S.J. Reid, and E.P. Rybicki, Standard pcr protocol,

Molecular Biology Techniques Manual, http://www.mcb.uct.ac.za/manual/

MolBiolManual.htm, 1994.

[21] M.O. Dayhoff, R.M. Schwartz, and B.C. Orcutt, A model of evolutionary change

in proteins, Atlas Prot. Seq. Struct. 5 (1978), 345–352.

[22] O. Elemento and O. Gascuel, An efficient and accurate distance based algorithm

to reconstruct tandem duplication trees, Bioinformatics 18 (2002), S92–S99.

[23] O. Elemento, O. Gascuel, and M.-P. Lefranc, Reconstructing the duplication

history of tandemly repeated genes, Mol. Biol. Evol. 19 (2002), 278–288.

[24] M.C. Enright, N.P. Day, C.E. Davies, S.J. Peacock, and B.G. Spratt, Multilo-

cus sequence typing for characterization of methicillin-resistant and methicillin-

susceptible clones of Staphylococcus aureus, J. Clin. Microbiol. (2000), 1008–

1015.

[25] X. Estivill, M. Chillon, T. Casals, A. Bosch, N. Morral, V. Nunes, P. Gasparini,

A. Seia, P.F. Pignatti, G. Novelli, and et. al., Delta f508 gene deletion in cystic

fibrosis in southern europe, Lancet (1989), 1404.

[26] E.J. Feil, J.E. Cooper, H. Grundmann, D.A. Robinson, M.C. Enright,

T. Berendt, S.J. Peacock, J.M. Smith, M. Murphy, B.G. Spratt, C.E. Moore,

66

and N.P. Day, How clonal is Staphylococcus aureus?, J. Bacteriol. 185 (2003),

3307–3316.

[27] J. Felsenstein, Evolutionary trees from dna sequences: a maximum likelihood

approach, J. Mol. Evol. 17 (1981), 368–376.

[28] J. Felsenstein, PHYLIP (phylogeny interface package), Department of Genetics,

University of Washington, Seattle, 1993.

[29] W. Fitch, Phylogenies constrained by cross-over process as illustrated by human

hemoglobins in a thirteen-cycle, eleven amino-acid repeat in human apolipopro-

tein a-i, Genetics 86 (1977), 623–644.

[30] W.M. Fitch and E. Margoliash, Construction of phylogenetic trees, Science 155

(1967), 279–284.

[31] J.R. Fitzgerald, D.E. Sturdevant, S.M. Mackie, S.R. Gill, and J.M. Musser,

Evolutionary genomics of Staphylococcus aureus: insights into the origin of

methicillin-resistant strains and the toxic shock syndrome epidemic, Proc. Natl.

Acad. Sci. USA, vol. 98, 2001, pp. 8821–8826.

[32] M. Garey and D. Johnson, Computers and intractability: a guide to the theory

of np-completeness, W.H. Freeman and Company, New York-San Francisco,

1979.

[33] O. Gotoh, An improved algorithm for matching biological sequences, J. Mol.

Biol. 162 (1982), 705–708.

[34] O. Gotoh, Multiple sequence alignment: algorithms and applications, Adv. Bio-

phys. 39 (1999), 159–206.

[35] S. Gupta, J. Kececioglu, and A. Schäffer, Improving the practical space and

time efficiency of the shortest-paths approach to sum-of-pairs multiple sequence

alignment, J. Comp. Biol. 2 (1995), 459–472.

67

[36] J. Heger and L. Holm, A method to recognise distant repeats in protein se-

quences, Proteins: Structure, Function and Genetics 17 (1993), 391–411.

[37] S. Henikoff and J.G. Henikoff, Amino acid substitution matrices from protein

blocks, PNAS 89 (1992), 10915–10919.

[38] A. Heringa and P. Argos, Rapid automatic detection and alignment of repeats

in protein sequences, Proteins 41 (2000), 224–237.

[39] S. Jaffe, Putting a pretty face on multiple alignment, The Scientist (2003).

[40] D. Jaitly, P.K., G.-H. Lin, and B. Ma, Reconstructing the duplication history of

tandemly repeated genes, Journal of Computer and System Sciences 65 (2002),

494–507.

[41] T.H. Jukes and C.R. Cantor, Evolution of protein molecules, Academic Press,

New York, 1969.

[42] J. Kececioglu, The maximum weight trace problem in multiple sequence align-

ment, Proc. CPM 1993, LNCS, vol. 684, 1993, pp. 106–119.

[43] H.G. Khorana, H. Buchi, H. Ghosh, N. Gupta, T.M. Jacob, H. Kossel, R. Mor-

gan, S.A. Narang, E. Ohtsuka, and R.D. Wells, Polynucleotide synthesis and

the genetic code, Cold Spring Harb. Symp. Quant. Biol. 31 (1966), 39–49.

[44] M. Kimura and T. Ohta, On the stochastic model for estimation of mutational

distance between homologous proteins, J. Mol. Evol. 2 (1972), 87–90.

[45] L. Koreen, S.V. Ramaswamy, E.A. Graviss, S. Naidich, J.M. Musser, and B.N.

Kreiswirth, Spa typing method for discriminating among staphylococcus aureus

isolates: implications for use of a single marker to detect genetic micro- and

macrovariation, J Clin. Microbiol. 42 (2004), 792–799.

[46] S. Kurtz and C. Schleiermacher, REPuter: fast computation of maximal repeats

in complete genomes, Bioinformatics 15 (1999), 426–427.

68

[47] T. Lassmann and E. Sonnhammer, Quality assessment of multiple alignment

programs, FEBS Lett. 529 (2002), 126–130.

[48] C. Lee, C. Grasso, and M.F. Sharlow, Multiple sequence alignment using partial

order graphs, Am. J. Infect. Control 18 (2002), 452–464.

[49] H.-P. Lenhof, B. Morgenstern, and K. Reinert, An exact solution for the

segment-to-segment multiple sequence alignment problem, Proc. GCB’98, 1998.

[50] M. Lermen and K. Reinert, The practical use of the A*-algorithm for exact

multiple sequence alignment, J. Comp. Biol. 7 (1997), 655–671.

[51] B. Lewin, Genes iv, Oxford Univ. Pr., 1997.

[52] B. Maddox, Rosalind franklin the dark lady of dna, HarperCollins, New York,

2002.

[53] M.C. Maiden, J.A. Bygraves, E. Feil, G. Morelli, J.E. Russell, R. Urwin,

Q. Zhang, J. Zhou, K. Zurth, D.A. Caugant, I.M. Feavers, M. Achtman, and

B.G. Spratt, Multilocus sequence typing: a portable approach to the identifi-

cation of clones within populations of pathogenic microorganisms, Proc. Natl.

Acad. Sci. USA, vol. 95, 1998, pp. 3140–3145.

[54] A.M. Maxam and W. Gilbert, A new method for sequencing dna, Proc. Natl.

Acad. Sci. USA, vol. 74, 1977, pp. 560–564.

[55] M.A. McClure, T.K. Vasi, and W.M. Fitch, Comparative analysis of multiple

protein-sequence alignment methods, Mol. Biol. Evol. 11 (1994), 571–592.

[56] F. Miescher, Die histochemischen und physiologischen arbeiten, gesammelt und

herausgegeben von seinen freunden, Verlag von F.C.W. Vogel, Leipzig, 1897.

[57] B. Morgenstern, DIALIGN 2: improvement of the segment-to-segment approach

to multiple sequence alignment, Bioinformatics 15 (1999), 211–218.

69

[58] B. Morgenstern, A. Dress, and T. Werner, Multiple DNA and protein sequence

alignment based on segment-to-segment comparison, Proc. Natl. Acad. Sci. USA,

vol. 93, 1996, pp. 12098–12103.

[59] B. Morgenstern, S.J. Prohaska, N. Werner, J. Weyer-Menkhoff, I. Schneider,

A.R. Subramanian, and P.F. Stadler, Multiple sequence alignment with user-

defined constraints, German Conference on Bioinformatics, Lecture Notes in

Informatics, 2004.

[60] K.B. Mullis, The unusual origin of the polymerase chain reaction, Scientific

American 262 (1990), 56–65.

[61] G. Myers, S. Selznick, Z. Zhang, and W. Miller, Progressive multiple alignment

with constraints, J. Comp. Biol. 3 (1996), 563–572.

[62] S.B. Needleman and C.D. Wunsch, A general method applicable to the search

for similarities in the amino acid sequence of two proteins, J. Mol. Biol. 48

(1970), 443–453.

[63] M.W. Nirenberg and H.J. Matthaei, The dependence of cell-free protein syn-

thesis in e. coli upon naturally occurring or synthetic polyribonucleotides, Proc.

Natl. Acad. Sci. USA, vol. 47, 1961, p. 1589.

[64] C. Notredame, Recent progress in multiple sequence alignment: a survey, Phar-

macogenomics 3 (2002), 131–144.

[65] C. Notredame, D. Higgins, and J. Heringa, T-COFFEE: a novel method for fast

and accurate multiple sequence alignment, J. Mol. Biol. 302 (2000), 205–217.

[66] P. Nyrén and A. Lundin, Enzymatic method for continous monitoring of inor-

ganic pyrophosphatase synthesis, Anal. Biochem. 151 (1985), 504–509.

[67] K. Okuma, K. Iwakawa, J.D. Turnidge, W.B. Grubb, J.M. Bell, F.G. O’Brien,

G.W. Coombs, J.W. Pearman, F.C. Tenover, M. Kapi, C.Tiensasitorn, T. Ito,

70

and K. Hiramatsu, Dissemination of new methicillin-resistant Staphylococcus

aureus: identification of two ancestral genetic backgrounds and the associated

mec elements, Microb. Drug Resist. 7 (2002), 349–361.

[68] D.A. Pollard, C.M. Bergman, J. Stoye, S.E. Celniker, and M.B. Eisen, Bench-

marking tools for the alignment of functional noncoding dna, BMC Bioinfor-

matics 5 (2004), http://www.biomedcentral.com/1471--2105/5/6.

[69] B. Raphael, D. Zhi, H. Tang, and P. Pevzner, A novel method for multiple

alignment of sequences with repeated and shuffled elements, Genome Research

14 (2004), 2336–2346.

[70] E. Rivals, A survey on algorithmic aspects of tandem repeats evolution, Inter-

national Journal of Foundations of Computer Science 15 (2004), 225–257.

[71] R.K. Saiki, S. Scharf, F. Faloona, K.B. Mullis, G.T. Horn, H.A. Ehrlich, and

N. Arnheim, Enzymatic amplification of beta-globin genomic sequences and re-

striction site analysis for diagnosis of sickle cell anemia, Science 230 (1985),

1350–1354.

[72] N. Saitou and M. Nei, The neighbor-joining method: a new method for recon-

structing phylogenetic trees, Mol. Biol. Evol. 4 (1987), 406–425.

[73] M. Sammeth, J.T. Griebel, F. Tille, and J. Stoye, Qalign2: Panta rhei, 105th

General Meeting of the American Society of Microbiology, 2005.

[74] M. Sammeth, B. Morgenstern, and J. Stoye, Divide-and-conquer alignment with

segment-based constraints, Bioinformatics 19 (2003), ii189–ii195.

[75] M. Sammeth, J. Rothgänger, W. Esser, J. Albert, J. Stoye, and D. Harmsen,

Qalign - quality based alignments with dynamic phylogenetic analysis, Bioinfor-

matics 19 (2003), 1592–1593.

71

[76] M. Sammeth, T. Weniger, D. Harmsen, and J. Stoye, Alignment of tandem

repeats with excision, duplication, substitution and indels (edsi), LNBI (Pro-

ceedings of WABI 2005) 3692 (2005), 276–290.

[77] F. Sanger, S. Nicklen, and A.R. Coulson, Dna sequencing with chain-

terminating inhibitors, Proc. Natl. Acad. Sci. USA, vol. 74, 1977, pp. 5463–

5467.

[78] P.H. Sellers, On the theory and computation of evolutionary distances, SIAM J.

Appl. Math. 26 (1974), 787–793.

[79] B. Shopsin, M. Gomez, O. Montgomery, D.H. Smith, M. Waddington, D.E.

Dodge, D.A. Bost, M. Riehman, S. Naidich, and B.N. Kreiswirth, Evaluation

of protein a gene polymorphic region dna sequencing for typing of staphylococcus

aureus strains, J. Clin. Microbiol. 37 (1999), 3556–3563.

[80] W.B. Stanley, Isolation of a crystalline protein possessing the properties of

tobacco-mosaic virus, Science 81 (1935), 644–645.

[81] J. Stoye, Multiple sequence alignment with the divide-and-conquer method, Gene

211 (1998), GC45–GC56.

[82] J. Stoye, D. Evers, and F. Meyer, Rose: generating sequence families, Bioinfor-

matics 14 (1998), 157–163.

[83] J. Stoye, V. Moulton, and A.W.M. Dress, DCA: an efficient implementation of

the divide-and-conquer approach to simultaneous multiple sequence alignment,

Comput. Appl. Biosci. 13 (1997), 625–626.

[84] J. Stoye, S.W. Perrey, and A.W.M. Dress, Improving the divide-and-conquer

approach to sum-of-pairs multiple sequence alignment, Appl. Math. Lett. 10

(1997), 67–73.

[85] L. Stryer, Biochemie, Spektrum Akademischer Verlag, 1996.

72

[86] J.A. Studier and K.J. Keppler, A note on the neighbor-joining method of saitou

and nei, Mol. Biol. Evol. 5 (1988), 729–731.

[87] National Nosocomial Infections Surveillance System, National nosocomial in-

fections surveillance (nnis) system report, data summary from january 1990 –

may 1999, issued june 1999, Am. J. Infect. Control 27 (1999), 520–532.

[88] R. Szklarczyk and J. Heringa, Tracking repeats using significance and transitiv-

ity, Bioinformatics, Suppl. 1 20 (2004), I311–I317.

[89] C.Y. Tang, C.L. Lu, M.D.-T. Chang, Y.-T. Tsai, Y.-J. Sun, K.-M. Chao, J.-

M. Chang, Y.-H. Chiou, C.-M. Wu, H.-T. Chang, and W.-I. Chou, Constrained

multiple sequence alignment tool development and its application to rnase family

alignment, Proc. 1st IEEE CSB Conference, 2002, pp. 127–137.

[90] J. Thompson, D. Higgins, and T. Gibson, CLUSTAL W: improving the sen-

sitivity of progressive multiple sequence alignment through sequence weighting,

position-specific gap penalties and weight matrix choice, Nucl. Acids Res. 22

(1994), 4673–4680.

[91] J. Thompson, F. Plewniak, and O. Poch, BAliBase: a benchmark alignment

database for the evaluation of multiple alignment programs, Bioinformatics 15

(1999), 87–88.

[92] J. Thompson, F. Plewniak, and O. Poch, A comprehensive comparison of mul-

tiple sequence alignment programs, Nucl. Acids Res. 27 (1999), 2682–2690.

[93] U. Tönges, S. Perrey, J. Stoye, and A. Dress, A general method for fast multiple

sequence alignment, Gene 172 (1996), GC33–GC41.

[94] Y.-T. Tsai, Y.P. Huang, C.T. Yu, and C.L. Lu, Music: a tool for multiple

sequence alignment with constraints, Bioinformatics 20 (2004), 2309–2311.

[95] I.M. Wallace, O. O’Sullivan, and D.G. Higgins, Evaluation of iterative alignment

algorithms for multiple alignment, Bioinformatics 21 (2005), 1408–1414.

73

[96] L. Wang and T. Jiang, On the complexity of multiple sequence alignment, J.

Comput. Biol. 1 (1994), 337–348.

[97] M.S. Waterman, Sequence alignments, Mathematical methods for DNA se-

quences, CRC Press, Boca Raton, Florida, 1989.

[98] M.S. Waterman, Introduction to computational biology: Maps, sequences, and

genomes, CRC Press, 1995.

[99] M.S. Waterman, T.F. Smith, and W.A. Beyer, Some biological sequence metrics,

Adv. Math. 20 (1976), 367–387.

[100] J.D. Watson and F.H.C. Crick, Molecular structure of nucleic acids, Nature

171 (1953), 737–738.

74

75

Acronyms

CLI: comnmand line interface. The

program and parameters a program call

provides from the command line (e.g., in

a shell).

Dialign: diagonal alignment. A me-

thod to construct global alignments by

greedily selecting a consistent set of pair-

wise gapless local alignments (anchors).

These anchors appear in a dot plot as di-

agonals.

DCA: divide-and-conquer alignment.

A framework to recursively cut down the

sequences to be aligned such that an (near

to) optimal alignment path can be found

when concatenating the alignments of the

substrings. The heuristic is very elabo-

rated such that the algorithm in general

is still treated as exact.

MSA: multiple sequence alignment.

The efficient implementation of the ex-

act multiple alignment with the Carrillo-

Lipman heuristics has the same name.

NJ: Neighbor-Joining. A method to in-

fer phylogenetic trees from distances that

come close to a metric. An additional step

has to be performed to rate-correct the

distance matrix before in each round the

pair of neighbors can be identified.

NP-hard: Non-Polynomial. NP-hard

is a complexity class for problems for

which a solution cannot be found by a

polynomial time algorithm. The Na-

tional Institute of Standards and Tech-

nology (NIST) gives the more formal def-

inition: “The complexity class of decision

problems that are intrinsically harder than

those that can be solved by a nondetermin-

istic Turing machine in polynomial time.”

OF: objective function. A function that

assigns scores which then are optimized

by an algorithm. Multiple alignment al-

gorithms use objective functions that cap-

ture the similarity of the aligned strings or

substrings.

76

SP: sum-of-pairs method. Sums up the

substitution scores of all possible pair-

wise combinations of sequence characters

in one column of a multiple alignment.

T-Coffee: tree-based consistency ob-

jective function for alignment evaluation

and errr. An alignment strategy that

combines global and local alignment in a

weighting scheme.

UPGMA: unweighted pair group

method using arithmetic averages.

A distance-based tree reconstruction

method that assumes ultrametric dis-

tances. When fusing two nodes to a com-

mon ancestor, the newly calculated dis-

tances are the arithmetic average which

is corrected for size of the subtree each

joined node spans.

WPGMA: weighted pair group me-

thod using arithmetic averages. A

distance-based tree reconstruction

method that assumes ultrametric dis-

tances. When fusing two nodes to a

common ancestor, the newly calculated

distances are the arithmetic average.

BIOINFORMATICS APPLICATIONS NOTE Vol. 19 no. 12 2003, pages 1592–1593
DOI: 10.1093/bioinformatics/btg197

QAlign: quality-based multiple alignments with
dynamic phylogenetic analysis

M. Sammeth 1, 2, 3,∗,†, J. Rothgänger 4, W. Esser 1, J. Albert 1,
J. Stoye 3 and D. Harmsen 5

1Department of Computer Science II, University of Würzburg, 97074 Würzburg,
Germany, 2International Graduate School of Bioinformatics, Bielefeld University,
33594 Bielefeld, Germany, 3Genome Informatics, Department of Technology,
Bielefeld University, 33594 Bielefeld, Germany, 4RIDOM bioinformatics, 97082
Würzburg, Germany and 5Institute for Hygiene, University of Münster, 48149
Münster, Germany

Received on December 11, 2002; revised on February 12, 2003; accepted on March 4, 2003

ABSTRACT
Summary: Integrating different alignment strategies, a
layout editor and tools deriving phylogenetic trees in
a ‘multiple alignment environment’ helps to investigate
and enhance results of multiple sequence alignment by
hand. QAlign combines algorithms for fast progressive and
accurate simultaneous multiple alignment with a versatile
editor and a dynamic phylogenetic analysis in a convenient
graphical user interface.
Availability: QAlign is freely available over the internet
at http://www.ridom.de/qalign/. The platform-independent
JAVA technology used provides distributions for various
operating systems and hardware architectures.
Contact: qalign@ridom.de

INTRODUCTION
The correct alignment of multiple DNA and protein
sequences is a fundamental problem in computational
biology. Results produced by the commonly used progres-
sive multiple alignment methods can be obtained rapidly
but they are highly dependent on the degree of similarity
of the input. Simultaneous alignment algorithms syn-
chronize the information in all sequences to construct
the multiple alignment and are therefore more sensitive.
However, even these optimal alignment layouts may need
some manual editing. Furthermore, downstream analyses
(e.g. methods to derive phylogenetic trees) are linked
dynamically to the multiple alignment. Thus, a stronger
interaction between the creation of the alignment and the
phylogenetic analysis enables evolutionary trees of high
quality to be found.

∗To whom correspondence should be addressed.
† Present address: Genome Informatics, Department of Technology,
Bielefeld University, 33594 Bielefeld, Germany.

IMPLEMENTATION
Due to its modular and layered structure, our program
QAlign may easily be extended to support additional
algorithms for both, multiple alignment and phylogenetic
reconstruction. Herein we outline the features included in
the current version.

Multiple alignment algorithms
QAlign is a new graphical environment integrating multi-
ple features in the construction of the best multiple align-
ment for a specific set of sequences (FASTA and MSF
sequence format supported). The algorithm monitor con-
trols the construction of the multiple alignment where a
fast progressive or a more accurate simultaneous approach
may be chosen to align the sequences or parts of them
(see Fig. 1 right). The heuristics used in the progressive
approach (QAlign uses the variant of the MSA protocol,
Guptaet al., 1995) of global multiple sequence alignment
allow the alignment of even very large data sets. However,
the drawback is that the resulting alignment is a fast ap-
proximation of the solution (McClureet al., 1994; Hick-
sonet al., 2000).

In addition, QAlign contains an efficient and stable re-
implementation of the NCBI’s MSA (multiple sequence
alignment) program (Guptaet al., 1995). This is based on
the simultaneous alignment strategy, an exact algorithm
capable of finding the optimal mathematical solution. In
addition to the optimizations used in MSA, the divide-
and-conquer algorithm DCA (T̈ongeset al., 1996; Stoyeet
al., 1997) was used to achieve the simultaneous alignment
of larger data sets. The desired quality-time tradeoff ratio
for simultaneous alignment construction can be balanced
by a slider. Both the progressive and the simultaneous
alignment strategy may be used in a complementary
manner on the same alignment layout.

1592 Bioinformatics 19(12) c© Oxford University Press 2003; all rights reserved.

77

QAlign

Fig. 1. The graphical user interface of QAlign: the neightbour joining tree is updated dynamically (top) different algorithms and their
parameters are accessible by the algorithm monitor (centre-right) and context menus support the editing functions for each block (bottom).

Alignment editor features
After aligning the sequences, the graphical editor of
QAlign provides features to analyse the result and modify
the multiple alignment layout (as in Fig. 1, bottom).
Gaps may be inserted or deleted and marked blocks
may be moved within the alignment providing that the
aligned sequences have the same length. An immediately
updated consensus sequence with coloured bars shows
the matching ratio of each column. These bars represent
the conservation of different clusters across the alignment
layout. They are also displayed as a bird’s eye view under-
neath a scrollbar thus allowing easy navigation to areas of
low similarity. A secondary view is provided which may
be used to extend the editor capabilities on one alignment
or to compare two different multiple alignment layouts.

Dynamic phylogenetic analysis
A dynamic phylogenetic tree view makes visible the con-
sequences of a change in the alignment with regard to the
phylogenetic relationship (see Fig. 1, top) where branch
lengths may change and nodes may swap according to
the neighbour-joining method (Saitou and Nei, 1987). The
tree may also be bootstrapped at any time to reveal its cur-
rent stability. Thus, a phylogenetic reflection of the dy-
namics of the multiple alignment layout is obtained.

A variety of visual rearrangements is provided for
the tree (e.g. subtrees may be collapsed or rearranged).
Finally, the phylogenetic tree may be exported, either to
a vectorial data format for drawing tools (SVG) or to a
common format used by tree plotters (Newick).

CONCLUSION
QAlign provides a practical solution for the creation of
refined multiple alignments: layouts produced by various
algorithms may be used as a starting-point for changes
done by hand, while the phylogenetic consequences are
visualised on the fly. Furthermore, the comparison of
multiple alignments is made easier because of the two
alignment views integrated in the user interface of QAlign.

REFERENCES
Gupta,S.K., Kececioglu,J.D. and Schäffer,A.A. (1995) Improving

the practical space and time efficiency of the shortest-paths
approach to sum-of-pairs multiple sequence alignment.J. Comp.
Biol., 2, 459–472.

Hickson,R.E., Simon,C. and Perrey,S.W. (2000) The performance
of several multiple-sequence alignment programs in relation to
secondary-structure features for an rRNA sequence.Mol. Biol.
Evol., 17, 530–539.

McClure,M.A., Vasi,T.K. and Fitch,W.M. (1994) Comparative anal-
ysis of multiple protein-sequence alignment methods.Mol. Biol.
Evol., 11, 571–592.

Saitou,N. and Nei,M. (1987) The neighbor-joining method: a new
method for reconstructing phylogenetic trees.Mol. Biol. Evol.,
4, 406–425.

Stoye,J., Moulton,V. and Dress,A.W. (1997) DCA: an efficient im-
plementation of the divide-and-conquer approach to simultane-
ous multiple sequence alignment.Comput. Appl. Biosci., 13,
625–626.

Tönges,U., Perrey,S.W., Stoye,J. and Dress,A.W.M. (1996) A
general method for fast multiple sequence alignment.Gene, 172,
GC33–GC41.

1593

78

BIOINFORMATICS Vol. 19 Suppl. 2 2003, pages ii189–ii195
DOI: 10.1093/bioinformatics/btg1077

Divide-and-conquer multiple alignment with
segment-based constraints

Michael Sammeth 1,∗, Burkhard Morgenstern 2 and Jens Stoye 1

1Bielefeld University, Department of Genome Informatics, Technical Faculty, P.O. 10
01 31, 33594 Bielefeld, Germany and 2University of Göttingen, Department of
Bioinformatics, Institute of Microbiology and Genetics, Goldschmidtstr. 1, 37077
Göttingen, Germany

Received on March 17, 2003; accepted on June 9, 2003

ABSTRACT
A large number of methods for multiple sequence align-
ment are currenty available. Recent benchmarking tests
demonstrated that strengths and drawbacks of these
methods differ substantially. Global strategies can be
outperformed by approaches based on local similarities
and vice versa, depending on the characteristics of the
input sequences. In recent years, mixed approaches
that include both global and local features have shown
promising results. Herein, we introduce a new algorithm
for multiple sequence alignment that integrates the global
divide-and-conquer approach with the local segment-
based approach, thereby combining the strengths of those
two strategies.
Contact: micha@sammeth.net

1 INTRODUCTION
Automatic generation of multiple alignments is a central
task of computational biology. Although diverse methods
are now available, no final solution applicable in all
possible alignment situations has been found Notredame
(2002). Traditionally, there exist two opposed strategies
of alignment construction, one creating global alignments
and the other one detecting local similarities among the
input sequences.

For global alignment, simultaneous approaches create
alignments by synchronising the information of all
input sequences in a k-dimensional lattice. Although
highly elaborated algorithms have been developed to
narrow regions of interest within this lattice Gupta
(1995); Tönges et al. (1996), these approaches are
computationally expensive so that their application is
limited. For this reason, alternative approaches have
been developed where the multiple alignment problem is
reduced to a series of pairwise profile alignments Feng
and Doolittle (1987); Higgins and Sharp (1988); Taylor

∗To whom correspondence should be addressed.

(1988); the most popular of these progressive methods is
CLUSTAL W Thompson et al. (1994). However, a serious
drawback of this technique is that the resulting multiple
alignments crucially depend on the order in which the
profile alignments are carried out.

To cope with more locally related sequence sets, a
number of alternative approaches have been proposed
that focus on locally related segments of the sequences
Depiereux et al. (1997); Morgenstern et al. (1996);
Schuler et al. (1991); Vingron and Argos (1991). These
approaches are superior to more traditional strategies in
situations where large gaps need to be inserted into the
alignment and for data sets that are evolutionarily distantly
related. However, they may be outperformed by global
methods where sequence sets are related over their entire
length Lassmann and Sonnhammer (2002); Thompson et
al. (1999).

Obviously, it is highly desirable to have alignment
algorithms performing well on both, globally and locally
related sequences. Notredame et al. proposed an approach
where both, local and global alignment information, is
pairwisely preprocessed and extended to the multiple
context in a heuristic solution of the maximum weight
trace problem Kececioglu (1993). Biasing those pre-
processed similarities improved the results of standard
progressive alignment, and the resulting procedure has
been implemented in the program T-COFFEE Notredame
et al. (2000). Moreover, Myers et al. developed an algo-
rithm for progressive multiple alignment with constraints
Myers et al. (1996). Herein, we introduce an algorithm
that performs simultaneous multiple alignment under
constraints given by pre-calculated local sequence sim-
ilarities. In our implementation, we combine the global
divide-and-conquer algorithm DCA Stoye (1998) with
the local segment-based program DIALIGN Morgenstern
(1999). We evaluate this mixed method and compare
its results to both of the native protocols and to other
successfull alignment methods (i.e. T-COFFEE and
CLUSTAL W).

Bioinformatics 19(Suppl. 2) c© Oxford University Press 2003; all rights reserved. ii189

79

M.Sammeth et al.

2 TECHNICAL BACKGROUND
A global alignment of a family of k sequences S =
(s1, s2, . . . , sk) over a finite alphabet � can be defined as
a k × m matrix A with entries in an extended alphabet
�∗ = � ∪ {−}, such that ignoring the blank characters,
the pth row reproduces sequence sp and there is no
column consisting exclusively of blanks. A maximal run
of adjacent blank characters in a row is called a gap.
Further, an alignment A can be represented as a source-
to-sink path in a k-dimensional alignment graph.

In contrast, a local alignment aligns only substrings of
the input sequences. Most frequently, local alignments
are used in pairwise sequence comparison (k = 2),
especially for database searching. A special type of local
alignments is the gap-free pairwise alignment, by which
two substrings of equal length are matched. Note that
these substrings are usually expected to share a certain
degree of similarity but, in general, they are not required
to be identical. Ungapped local alignments between two
sequences are sometimes called fragments or diagonals.
Moreover, such gap-free pairwise alignments are also used
in the context of multiple sequence comparison. Here,
a fragment f is uniquely determined by the involved
sequences sp and sq , the starting points i and j of the
substrings and the fragment length �. Therefore, we will
use the shorthand notation f = ([p, i], [q, j], �).

Before we will introduce our new fragment-based
divide-and-conquer global alignment algorithm, we
outline both of the strategies involved, multiple align-
ment construction based on pairwise fragments and the
divide-and-conquer algorithm for simultaneous multiple
alignment.

2.1 Segment-based multiple alignment
In the segment-based program DIALIGN, a weighting
function is defined on the set of all possible fragments,
and the program tries to find a consistent collection
of fragments with maximum total weight Morgenstern
(1999). A set F of fragments is called consistent if there
exists a global alignment AF such that all segment pairs
f ∈ F are aligned by AF ; in this case, we say that AF
realizes F . A non-consistent set of fragments is shown in
Figure 1.

For multiple alignment, DIALIGN integrates fragments
greedily into a consistent set F that defines an alignment
of the input sequences. To check if a fragment f can be
included into F , the algorithm uses so-called transitivity
frontiers, a data structure first introduced by Abdeddaïm
Abdeddaı̈m (1997). Let us consider the set X of all
positions x in a sequence family S = (s1, s2, . . . , sk)

where position x = [p, i] corresponds to the i th character
in sequence sp. A collection F of fragments induces
a quasi-partial order relation �F on the set X where
x �F y means that x is to the left-hand side or in the

same column as y in every alignment AF that realizes F .
Formally, the transitivity frontiers are defined as

PredF (x, p) = max{ j : [p, j] �F x},
SuccF (x, p) = min{ j : x �F [p, j]}.

In other words, PredF (x, p) (SuccF (x, p)) is the in-
dex of the right-most (left-most) character in sequence sp
that is to the left (right) of x with respect to the relation
�F . These frontiers can be used to decide which residues
of the sequences are still alignable without leading to in-
consistencies with F Abdeddaı̈m and Morgenstern (2001),
see Figure 2. If the referred set of fragments is obvious, we
will drop the index F in PredF (x, p) and SuccF (x, p).

2.2 Divide-and-conquer hyperspace alignment
For a given family of input sequences S = (s1, s2, . . . , sk),
the divide-and-conquer approach to simultaneous multi-
ple sequence alignment (DCA) Tönges et al. (1996) firstly
splits each sequence sp ∈ S at a cut position cp. In or-
der to obtain good cut positions, Tönges et al. Tönges et
al. (1996) suggest to use pairwise matrices C p,q for all
sp, sq ∈ S that store for each cell (i, j) of the dynamic-
programming matrix the additional alignment costs that
are incurred if the alignment graph is forced to leave the
optimum and pass the cell (i, j). These matrices are cal-
culated using standard dynamic programming procedures.
Different heuristics have been described to find families
of cut positions (c1, c2, . . . , ck) that minimise the addi-
tional costs in all sequence pairs Stoye (1998). The cut-
ting procedure is recurred until a certain stop size of the
cut sequences is no longer exceeded. Then, the obtained
atomic subsequences are aligned optimally and the results
are concatenated to form a complete global alignment A.

Within the DCA protocol, the optimal alignment of
the atomic sets of subsequences is achieved by applying
the simultaneous alignment strategy as described for
the MSA algorithm Gupta (1995). The latter applies
a simultaneous alignment algorithm which basically
conquers a k-dimensional (hyperspace) lattice using the
forward dynamic programming technique concurrently on
all sequences in S to find an optimal multiple alignment
according to the scoring function. However, heuristics are
used to reduce the search effort, e.g. the Carrillo-Lipman
heuristics Carrillo and Lipman (1988): a progressive
alignment is pre-computed for the input set to derive
an upper bound on the alignment costs in all projected
sequence pairs. Afterwards, pairwise matrices of total
alignment costs Dp,q , which are again calculated by
dynamic programming procedures, are applied to exclude
projections of hyperspace cells from the optimal solution.
The final dynamic programming procedure conquering
the hyperspace lattice then is sped up by a branch-and-
bound procedure skipping all cells which contain an
excluded pairwise projection.

ii190

80

Divide-and-conquer multiple alignment with segment-based constraints

7

7

7

8

8

8

9

9

9

10

10

10

11

11

11

12

12

12

13

13

13

14

14

14

15

15

15

16

16

161

1

1

2

2

2

3

3

3

4

4

4

5

5

5 6

6

6 17

17 18

18

s2

s3

s1

Fig. 1. A set of fragments f1, . . . , fN may be inconsistent, i.e., it may not be possible to include all fragments simultaneously in a single
multiple alignment. In our example, the three fragments f1 = ([1, 5], [2, 3], 5), f2 = ([2, 6], [3, 11], 4) and f3 = ([1, 10], [3, 10], 3), shown
as lines between the aligned indices, would lead to contradicting alignment of the positions marked in grey in a global multiple alignment.

7

7

7

8

8

8 9

9

9

10

10

10 11

11

11

12

12

12

13

13

13

14

14

14 15

15

15

16

16

16

1

1

1 2

2

2

3

3

3

4

4

4

5

5

5

6

6

6 17

17

18

18

s2

s3

s1

f1

f2 f3

Fig. 2. Example for transitivity frontiers of position [1,9] (marked grey) enforced by the set of fragments F = { f1, f2, f3} with
f1 = ([1, 6], [2, 4], 6), f2 = ([2, 3], [3, 3], 4), f3 = ([1, 13], [3, 13], 5). For s3, Pred([1, 9], 3) = 6 and Succ([1, 9], 3) = 13 are
induced. In the special case of aligned positions, transitivity frontiers coincide, for example in s2, a single position is specified by
Pred([1, 9], 2) = Succ([1, 9], 2) = 7.

3 THE ALGORITHM
On a high level, our algorithm proceeds as follows: in a
first step, we apply the segment-based alignment in order
to obtain a consistent set F of fragments representing a
framework for further refinement. These fragments—or
a suitable subset of them—are used as constraints in the
second step of the algorithm. Here, we apply the divide-
and-conquer method to complete the alignment for those
regions that are not aligned by the fragments in F . More
precisely, divide-and-conquer computes a (near-)optimal
multiple alignment A under the additional constraint that
A realises the set F . To control the influence of the
fragments in F on the final alignment, we apply a cutoff
threshold T and accept only those fragments f ∈ F that
have overlap weights exceeding T (see Morgenstern et
al. (1996) for a definition of these overlap weights). With
T = 0, the entire set F is used as constraints, and the
final alignment is therefore just a minor modification of
the DIALIGN alignment. With higher cutoff values, the
influence of the segments is reduced, and the resulting
output alignments are more similar to what the original
divide-and-conquer algorithm would return. If T is large
enough to exclude all fragments f ∈ F , we obtain exactly
the DCA alignment.

While the computation of the fragments can be per-
formed exactly as in the DIALIGN algorithm (or any other

procedure that computes consistent local similarities from
a family of sequences), three modifications to the divide-
and-conquer algorithm are necessary: (1) in the divide
step, the cut positions selected to divide the sequences
need to be in accordance with our fragment-induced
constraints; and in each conquer step, (2a) the heuristic
multiple alignment used to calculate the Carrillo-Lipman
bounds and (2b) the simultaneous multiple alignment
procedure carried out to compute an alignment AF within
these bounds must respect the constraints given by F .
These modifications are detailed in the following two
subsections.

3.1 The divide step with constraints
Our first modification to the original DCA algorithm
concerns the way we compute the additional-cost matrices
that are used to determine cut positions for the sub-
alignments. The consistency constraints prevent certain
pairs of residues from being aligned to each other. The
corresponding graphs in the alignment matrices must
therefore be masked. To this end, we simply assign
infinite additional costs to those edges. Given a sequence
pair (sp, sq), we need to know those positions j in sq
that are alignable with position [p, i] without leading to
inconsistencies; this information must be available for
each position [p, i] in sequence sp and vice versa for each
position [q, j] in sequence sq .

ii191

81

M.Sammeth et al.

There are two possible scenarios (cf. Figs 2 and 3): the
first scenario is that position [p, i] is already (directly
or indirectly) aligned with some position [q, j] by the
fragments in F . This is the case if and only if we
have Pred([p, i], q) = Succ([p, i], q) = j . In this
case, there is only one possible edge in the respective
pairwise alignment matrix leading to cell (i, j), namely
the diagonal edge coming from position (i − 1, j − 1),
see Figure 3, left. The two edges coming from (i − 1, j)
and (i, j − 1) have to be excluded—together with all
edges to the left and above this edge, as they would
correspond to a gap character aligned to position [p, i],
in contradiction to the given fragments that impose that
[p, i] is aligned with [q, j]. The second scenario is
that [p, i] and [q, j] are not (yet) aligned, which is the
case if and only if Pred([p, i], q) < Succ([p, i], q)

holds (Fig. 3, center). In this case, all positions between
Pred([p, i], q) + 1 and Succ([p, i], q) − 1 can be
aligned with [p, i] without leading to inconsistencies.
For Pred([p, i], q) + 1 ≤ j ≤ Succ([p, i], q) − 1
(Fig. 3, right), the cell (i, j) in the dynamic programming
matrix can be reached from all three possible positions.
In addition, cell (i, Pred([p, i], q)) can be reached from
above (but not from the left or from the top-left) and cell
(i, Succ([p, i], q)) can be reached from the left (but not
from above or from the top-left), see Figure 3, center and
right. After this masking procedure, the original procedure
used in DCA can be employed to identify suitable cut
positions for the divide step.

3.2 The conquer step with constraints
In the Carrillo-Lipman approach, all optimal pairwise
alignments as well as a heuristic multiple alignment of
the input sequences are computed in order to determine
boundaries for the pairwise projections of an optimal
multiple alignment to the respective pairwise comparison
matrices Carrillo and Lipman (1988). In our constrained
scenario, we need to impose the consistency constraints
both to the optimal pairwise alignments and to the
heuristic multiple alignment. The pairwise alignments are
calculated as explained in Section 3.1. For the heuristic
multiple alignment, where we use a progressive approach
with profile alignments described in Gupta (1995), in
addition to alignments of individual sequences, a very
similar consistency-constrained approach can be applied,
too. To determine which positions are alignable between
two profiles, the transitivity frontiers of all involved
sequence pairs are considered. The alignable regions for
the profiles are then given as the intersections of the
alignable regions for the individual sequence pairs.

Once the pairwise alignments and the heuristic multiple
alignment are computed, restrictions for the projections
of an optimal multiple alignment to all pairwise com-
parison matrices can be calculated. In our approach, we

have additional constraints derived from our transitivity
frontiers. The regions allowed for the projections to the
pairwise matrices are simply given as the intersections
between the regions calculated using the Carrillo-Lipman
boundaries and the regions defined by our transitivity
frontiers. An optimal multiple alignment realising F is
finally computed in the space that is defined by these
combined pairwise restrictions, similar to the original
Carrillo-Lipman approach.

4 RESULTS AND DISCUSSION
To evaluate the performance of our new algorithm, we
benchmarked it against DIALIGN, DCA, CLUSTAL W
and T-COFFEE. For DCA, we used a re-implementation
that employs a more stable version of MSA. For all pro-
grams, we used their default parameter settings together
with the BLOSUM-62 substitution matrix. Our algorithm
was implemented in JAVA and the program was tested
with a hotspot capable runtime environment (JDK1.4.1
with a maximum of 3 GB heap memory). The main
benchmarks were performed on a SUN workstation (SUN
Fire 880, 750 MHz, 32 GB main memory). Data for
benchmarking was derived from the reference alignments
in BAliBASE, version 1 Thompson et al. (1999), where
reference alignments are sorted into five groups according
to the characteristics of the input, respectively. Within
the first three groups, the sequences of the input share
a variant degree of global affinity, but similarity drops
from group 1 to group 3. Group 4 contains alignments
with N/C-terminal extensions, while in group 5 sequences
with internal insertions have been collected. To compare
the computed alignments to the BAliBASE benchmark
alignments, we used the program aln compare written
by C. Notredame (personal communication).

Table 1 summarizes the main results. For each group
of alignments from the BAliBASE data set, the average
percentage identity with the reference alignments is given,
taking into account structural columns as annotated in
BAliBASE. A basic version of our program denoted by
Mixed T = 0 in Table 1 uses the entire set of fragments
returned by DIALIGN as constraints for the divide-and-
conquer alignment. In addition, we performed runs where
the cutoff value T was set to higher values, such that only
fragments with overlap weights above T were used. For
comparison, we also ran two popular multiple alignment
programs from the literature, CLUSTAL W Thompson et
al. (1994) and T-COFFEE Notredame et al. (2000).

As can be seen from Table 1, the strengths of DCA
and DIALIGN differ substantially. The mixed approach
shows characteristics of both strategies, refining the
segment-based local alignment computed by DIALIGN
with the divide-and-conquer hyperspace alignment strag-
egy (DCA). Problems arise in group 2 and group 3 where
neither DIALIGN can provide good local similarities,

ii192

82

Divide-and-conquer multiple alignment with segment-based constraints

2

4

3

1

1 42 3 5 1 42 3 5

2

4

3

1

1 42 3 5

2

4

3

1

i

sp

sq

Pred(i) = Succ(i) Pred(i) Succ(i)
sq

i

sp

Succ(i)

i

sp

sq

Pred(i)

ε εε

ε ε ε

Fig. 3. Three examples of transitivity frontiers for i = 2 in a two dimensional dynamic programming matrix of sp and sq . Black dots
represent cells within the matrix of which incoming edges are affected by the transitivity frontiers considered here.

Table 1. Percent identity of the results produced by the various algorithms with the reference alignments given by BAliBASE (according to the column score
of trusted regions). The alignment count is given in parentheses after each group in the top row

Algorithm Group 1 (83) Group 2 (23) Group 3 (12) Group 4 (13) Group 5 (11)

DCA 79.27 29.47 37.47 58.81 78.93
Mixed T = 10 76.03 26.06 35.71 71.52 72.45
Mixed T = 7 76.11 24.66 33.84 73.74 80.54
Mixed T = 5 76.26 25.49 34.04 74.82 85.08
Mixed T = 3 74.39 24.86 35.73 78.93 83.74
Mixed T = 0 73.07 25.39 35.49 75.29 80.38
DIALIGN 71.95 25.13 35.10 74.66 80.38
CLUSTAL W 79.53 32.91 48.72 74.02 67.84
T-COFFEE 76.86 36.89 49.94 81.28 86.25

nor does the scoring function maximized by DCA yield
results close to the reference alignments. However, in
group 1 and in the last two groups, the best scoring result
of the mixed strategy is very close to the T-COFFEE
results. Note that the values given are arithmetic averages
over all alignments in a group such that single alignments
within a group can score even better than with T-COFFEE.
Because of the global affinity within group 1, the global
strategies perform very good there (see CLUSTAL W,
DCA). In contrast, exclusively global methods perform
rather poorly in group 4 and group 5, whereas the mixed
strategy can successfully integrate the local fragments
into the global alignment (i.e. it scores better than any of
the underlying strategies alone).

Concerning the influence of the cutoff parameter on
the quality of the resulting alignment, it can be seen
from Table 1 that the best value for T depends on the
characteristics of the input data. In the first three groups
of BAliBASE where DCA is superior to DIALIGN, a high
cutoff prevents spurious fragments from deteriorating the
final alignment and increases the quality of the program
output. For groups 4 and 5, however, DIALIGN fragments
tend to improve the alignment produced by DCA. Here, a

lower cutoff leads to better results.
Table 2 reports on the running time for the programs

we analyzed. Alignments that did not terminate within
24 hours were considered as failures. The reason for this
phenomenon is that, even with efficient heuristics, the
search for high-quality cut positions and the subsequent
hyperspace alignment may be time-consuming for large or
badly matching sequence families. Our results show that if
input sequences are easy to align, the mixed protocol takes
slightly more time than the two underlying algorithms
together. This is because additional CPU time is necessary
to mask all matrices used in DCA according to the set of
fragments found by DIALIGN. However, the time spent
for this purpose quickly pays off for input sequences that
are difficult to align such as in groups 2–5. Here all mixed
results show less failures and are aligned faster than with
the original DCA algorithm. Fragments can, of course,
slow down the search for optimal cut points if they are
not in agreement with the global optimal alignment (see
failure counts in Table 2, Mixed T = 10). In general,
however, the fragments from the local alignment reduce
the part of the hyperspace that needs to be considered
by DCA, thereby speeding up the divide-and-conquer

ii193

83

M.Sammeth et al.

Table 2. Time consumption in seconds and number of failed runs (in parentheses) for the various programs summed up for each BAliBASE group. The total
number of alignments in each group is given in parentheses in the top row

Algorithm Group 1 (83) Group 2 (23) Group 3 (12) Group 4 (13) Group 5 (11)

DCA 136.33 (0) 119430.51 (1) 307753.98 (5) 9918.90 (2) 42252.48 (2)
Mixed T = 10 766.02 (0) 8942.64 (1) 1909.89 (1) 4427.80 (1) 42411.52 (1)
Mixed T = 7 680.62 (0) 8634.20 (0) 1475.39 (2) 1969.15 (1) 42175.50 (1)
Mixed T = 5 445.24 (0) 3435.06 (0) 1360.25 (2) 459.20 (1) 42051.03 (0)
Mixed T = 3 487.88 (0) 3014.28 (0) 1360.90 (2) 324.16 (1) 17202.66 (0)
Mixed T = 0 435.00 (0) 1652.18 (0) 1279.20 (0) 289.98 (0) 276.57 (0)
DIALIGN 136.67 (0) 525.97 (0) 386.45 (0) 141.51 (0) 94.49 (0)
CLUSTAL W 140.19 (0) 445.47 (0) 136.28 (0) 71.25 (0) 50.67 (0)
T-COFFEE 447.68 (0) 4614.28 (0) 2485.24 (0) 913.01 (0) 550.33 (0)

Table 3. Column scores and running time (in parentheses) for different algorithm runs in group 5 of the BAliBASE

data set Mixed T = 5 Mixed T = 3 Mixed T = 0 T-COFFEE

1eft 71.4 (5.03) 71.4 (5.30) 71.4 (5.66) 71.4 (15.94)
1ivy 94.7 (21.19) 92.8 (21.39) 77.8 (20.85) 75.6 (20.40)
1qpg 100.0 (73.35) 100.0 (74.60) 100.0 (73.82) 100.0 (131.08)
1thm1 66.7 (19.83) 66.7 (18.43) 55.6 (10.83) 83.3 (37.49)
1thm2 76.7 (4.01) 76.7 (3.71) 88.3 (4.03) 88.3 (12.85)
2cba 100.0 (11.23) 100.0 (9.35) 100.0 (9.22) 96.7 (17.52)
kinase1 93.5 (4.87) 80.6 (4.52) 80.6 (5.83) 91.0 (78.98)
kinase2 66.7 (76.55) 66.7 (79.93) 66.7 (31.64) 100.0 (5.37)
kinase3 81.2 (83.93) 81.2 (94.08) 81.2 (77.56) 80.6 (6.23)
S51 85.0 (41744.78) 85.0 (16884.04) 62.6 (32.90) 88.9 (62.90)
S52 100.0 (6.28) 100.0 (7.32) 100.0 (4.24) 72.9 (161.57)

approach and causing fewer fails. Obviously, this time
gain is reduced if more of the fragments are filtered out.
Nevertheless, in most instances the mixed strategy is still
faster than T-COFFEE which needs additional CPU time
to preprocess and bias local information of the input
and therefore takes about ten times the running time of
CLUSTAL W. To our knowledge this is the first time that a
simultaneous alignment strategy is about as time efficient
as progressive heuristics. Moreover, note that the mixed
strategy is implemented in JAVA as opposed to CLUSTAL
W and T-COFFEE that are written in C, such that there
is probably an even bigger algorithmic time gain than
reflected by the time measurements shown in Table 2.

Finally, Table 3 gives an overview of the quality and
running time for all 11 individual alignments of BAli-
BASE group 5. In the specific alignment runs, a general
trend of quality and time gain for different cutoff values
is hard to observe. However, in a few cases the time effort
is sensitively triggered by T (e.g. the running time for S51
runs can be reduced from 11.6 to 4.7 hours by increasing
the number of fragments from T = 5 to T = 3 while
the score remains the same). Although both protocols
inherit from global and local alignment methods, results

show that the strengths of mixed DIALIGN–DCA strategy
differ from the ones of T-COFFEE (e.g. the kinase2 set is
aligned correctly by T-COFFEE while the mixed protocol
just reaches 2/3 identity with the reference, whereas for
the S52 set the situation is the reverse). Thus, carefully
chosen fragments are essential in combining local and
global alignment strategies.

As could be demonstrated by the BAliBASE benchmark
results, the mixed alignment strategy successively com-
bines the strengths of DIALIGN (local) and DCA (global)
multiple alignment. On the one side, the mixed method
takes full advantage of the hyperspace alignment, while it
reduces the computational time (and space) requirements
necessary for this method (see Table 2). In most reference
groups, the average results can reach a value close to the
T-COFFEE algorithm (see Table 1), and they are generally
faster calculated. Single alignments within a group of the
BAliBASE reference set are even outperforming results of
the T-COFFEE algorithm (see Table 3).

Furthermore, different values empirically tested for the
cutoff T of fragment scores were found to show peaks
in alignment quality for each group in the BAliBASE

ii194

84

Divide-and-conquer multiple alignment with segment-based constraints

reference. Hence, in further work we will concentrate on
replacing the naive threshold-based fragment filter by a
weighting scheme that biases the score of each fragment
during the global alignment construction. Our hope is
that we can achieve a simultaneous dynamic programming
algorithm that considers the extended information of local
fragments but is not misled if the similarities found turn
out to be incorrect for a global solution.

ACKNOWLEDGEMENTS
We would like to thank Cedric Notredame for providing a
reliable program for the comparison of test alignments to
the BAliBASE reference alignments.

REFERENCES
Abdeddaı̈m,S. (1997) Incremental computation of transitive closure

and greedy alignment. Proceedings of 8th Annual Symposium
on Combinatorial Pattern Matching (CPM 1997), volume 1264
of LNCS, pp. 167–179.

Abdeddaı̈m,S. and Morgenstern,B. (2001) Speeding up the DI-
ALIGN multiple alignment program by using the ‘greedy align-
ment of biological sequences library’ (GABIOS-LIB). Proceed-
ings Journées Ouvertes: Biologie, Informatique, Mathématiques
(JOBIM 2000), volume 2066 of LNCS, pp. 1–11.

Carrillo,H. and Lipman,D. (1988) The multiple sequence alignment
problem in biology. SIAM J. Applied Math., 48, 1073–1082.

Depiereux,E., Baudoux,G., Briffeuil,P., Reginster,I., Boll,X.D.,
Vinals,C. and Feytmans,E. (1997) Match-Box server: a mul-
tiple sequence alignment tool placing emphasis on reliability.
CABIOS, 13, 249–256.

Feng,D.F. and Doolittle,R.F. (1987) Progressive sequence alignment
as a prerequisite to correct phylogenetic trees. J. Mol. Evol., 25,
351–360.

Gupta,S., Kececioglu,J. and Schäffer,A. (1995) Improving the
practical space and time efficiency of the shortest-paths approach
to sum-of-pairs multiple sequence alignment. J. Comp. Biol., 2,
459–472.

Higgins,D. and Sharp,P. (1988) CLUSTAL—a package for perform-
ing multiple sequence alignment on a microcomputer. Gene, 73,
237–244.

Kececioglu,J. (1993) The maximum weight trace problem in
multiple sequence alignment. Proceedings of the 4th Annual
Symposium on Combinatorial Pattern Matching (CPM 1993),
volume 684 of LNCS, pp. 106–119.

Lassmann,T. and Sonnhammer,E. (2002) Quality assessment of
multiple alignment programs. FEBS Lett., 529, 126–130.

Morgenstern,B. (1999) DIALIGN 2: improvement of the segment-
to-segment approach to multiple sequence alignment. Bioinfor-
matics, 15, 211–218.

Morgenstern,B., Dress,A. and Werner,T. (1996) Multiple DNA
and protein sequence alignment based on segment-to-segment
comparison. Proc. Natl Acad. Sci. USA, 93, 12098–12103.

Myers,G., Selznick,S., Zhang,Z. and Miller,W. (1996) Progressive
multiple alignment with constraints. J. Comp. Biol., 3, 563–572.

Notredame,C. (2002) Recent progress in multiple sequence align-
ment: a survey. Pharmacogenomics, 3, 131–144.

Notredame,C., Higgins,D. and Heringa,J. (2000) T-COFFEE: a
novel method for fast and accurate multiple sequence alignment.
J. Mol. Biol., 302, 205–217.

Schuler,G.D., Altschul,S.F. and Lipman,D.J. (1991) A workbench
for multiple alignment construction and analysis. Proteins:
Struct. Funct. Genet., 9, 180–190.

Stoye,J. (1998) Multiple sequence alignment with the divide-and-
conquer method. Gene, 211, GC45–GC56.

Taylor,W.R. (1988) A flexible method to align large numbers of
biological sequences. J. Mol. Evol., 28, 161–169.

Thompson,J., Higgins,D. and Gibson,T. (1994) CLUSTAL W: im-
proving the sensitivity of progressive multiple sequence align-
ment through sequence weighting, position-specific gap penalties
and weight matrix choice. Nucleic Acids Res., 22, 4673–4680.

Thompson,J., Plewniak,F. and Poch,O. (1999) BAliBASE: a bench-
mark alignment database for the evaluation of multiple alignment
programs. Bioinformatics, 15, 87–88.

Thompson,J., Plewniak,F. and Poch,O. (1999) A comprehensive
comparison of multiple sequence alignment programs. Nucleic
Acids Res., 27, 2682–2690.

Tönges,U., Perrey,S., Stoye,J. and Dress,A. (1996) A general
method for fast multiple sequence alignment. Gene, 172, GC33–
GC41.

Vingron,M. and Argos,P. (1991) Motif recognition and alignment
for many sequences by comparison of dot-matrices. J. Mol. Biol.,
218, 33–43.

ii195

85

Global Multiple-Sequence Alignment With Repeats
Michael Sammeth* and Jaap Heringa
Centre for Integrative Bioinformatics (IBIVU), Vrije Universiteit, Amsterdam, The Netherlands

ABSTRACT Repeating fragments in biological
sequences are often essential for structure and func-
tion. Over the years, many methods have been devel-
oped to recognize repeats or to multiply align protein
sequences. However, the integration of these two
methodologies has been largely unexplored to date.
Here, we present a new method capable of globally
aligning multiple input sequences under the con-
straints of a given repeat analysis. The method sup-
ports different stringency modes to adapt to various
levels of detail and reliability of the repeat informa-
tion available. Proteins 2006;64:263–274.
© 2006 Wiley-Liss, Inc.

INTRODUCTION

One of nature’s most striking inventions is repeated use
of sequence motifs throughout information-carrying
biopolymers such as DNA, RNA, and protein molecules. In
sequence analysis, we call such repeated substrings sim-
ply repeats, which sometimes constitute most of the respec-
tive biomolecule in which they are contained. Indeed, half
the human genome is known to consist of repeating
fragments. The spectrum of repeat functions in DNA
includes structural, replicational, and viral infection
mechanisms.

In proteins, multiple copies of the same basic motif can,
for example, determine the three-dimensional (3D) struc-
ture or bear essential functionality for protein–protein or
protein-DNA interactions. In both, DNA or protein se-
quences, the repeat strings may either be exact or degener-
ated (i.e., “approximate repeats” in literature), and diver-
gence of repeats can be particularly significant in proteins.
Furthermore, the repeat copies may be in tandem posi-
tions (i.e., two repeats immediately following each other in
the string) or more arbitrarily dispersed over the se-
quence. These properties make repeats a highly interest-
ing research topic in sequence analysis, and a vast number
of problems on repetitive structures have been formulated
in the literature, such as the problem of repeat detection
(see below), distance-based comparison1 and evolutionary
history.2

Given the widespread occurence of repeats throughout
the genomes of the major kingdoms, it is surprising to see
that relatively few efforts have been made to incorporate
information about sequence repeats into sequence align-
ment methods. On the other hand, repeats are known to be
a major obstacle in the generation of informative align-
ments. Recently, a survey about existing alignment meth-
ods concluded that “repeated sequences (in tandem or not)
are renowned for confusing all existing MSA methods.”3

What is it about the repeats that cannot be handled by the

alignment strategies we have? One problem with repeats
is that because of their evolutionary mechanisms, repeats
often interrupt informative subsequences, preventing those
effectively from being aligned correctly. Generally, there
are two ways to align sequences: while a global alignment
covers all sequence positions, a local alignment aligns
similar substrings of the input sequences and disregards
the remaining sequence regions. When dealing with a
sufficiently high number of adjacent copies, global align-
ment methods are usually forced by their scoring schemes
to align positions of repeat clusters with positions of the
intervening sequence. Even modern global alignment strat-
egies that are successfully incorporating local similarities,
such as T-Coffee4 and Dialign,5 can only tolerate accumu-
lations of repeats up to a certain level.

Over the last decade, much attention has been devoted
to both automated and manual extraction of repeats from
biological sequences. Some databases have been set up to
store repetitive sequences. Also, BAliBase,6 one of the
standard alignment benchmark databases, contains refer-
ence sequences with repeats. Furthermore, a number of
automated methods for repeat detection have been devel-
oped. Designed for a specific problem (e.g., exact or degen-
erated repeats, in tandem position or not, in a nucleic acid
or protein sequence, …), these repeat extraction methods
can be based on suffix trees such as Reputer7 or on local
alignment, e.g., Repro,8 Radar,9 and Trust.10 Although
some of these methods have been in existence for �10
years, no databases or tools developed for repeats have
been integrated within any global sequence alignment
method. In this work, we address this problem and de-
scribe a novel procedure to align repeated sequences, in
which information about repeats is merged with similari-
ties deduced from comparing nonrepetitious areas of the
sequences. The evolutionary model used can cope with
translocations that interrupt existing sequence motifs.
The method finally aligns the sequences in a standard
row-column alignment layout, where shuffled elements
remain unaligned in keeping with the global alignment
requirement. We assess alignments of repeat sequences
produced by our new method with those made by two
alternative state-of-the-art global alignment methods, Di-

Grant sponsor: Ernst Schering Research Foundation.
*Correspondence to: Michael Sammeth, Genome Informatics,

Bielefeld University, PO 10 01 31, 33501 Bielefeld, Germany. E-mail:
micha@sammeth.net

Received 25 August 2005; Revised 12 November 2005; Accepted 12
November 2005

Published online 11 April 2006 in Wiley InterScience
(www.interscience.wiley.com). DOI: 10.1002/prot.20957

PROTEINS: Structure, Function, and Bioinformatics 64:263–274 (2006)

© 2006 WILEY-LISS, INC.

align and T-Coffee, which are unaware of the repeats in
the sequences.

BACKGROUND

Our method aims to establish a global alignment A for a
given a family of k sequences S � {s1,s2,…,sk} over a finite
alphabet � and with a set of putative repeats R �
{r1,r2,…,rl}. Formally, A can also be defined as a k � m
matrix with entries in an extended alphabet �* � � � {�},
such that when additional gap characters “�” are ignored,
row p in the matrix reproduces sequence sp, and no column
in the alignment consists exclusively of gap characters.

However, in an intermediate step, we use the technique
of local alignment, which aligns only substrings of the
input sequences, to find anchors for the global alignment.
Anchors are strongly conserved subareas of different se-
quences that later on aid to construct a correct global
alignment. They are found by gap-free pairwise local
alignment by which two substrings of equal length are
aligned. Such anchors f � ([p,i],[q,j],�) are uniquely de-
fined by the involved sequences sp and sq, the starting
points i and j of the aligned substrings and the anchor
length �. One of the standard methods to construct a global
alignment from such anchors is Dialign.5 Some aspects of
the Dialign algorithm that are relevant for this work are
outlined in Appendix A.

Sequences Containing Repeats

In addition to the input sequences S � {s1,s2,…,sk}, our
algorithm allows the specification of a set of constituent
repeated or shuffled motifs R � {r1,r2,…,rl} contained in
these. Throughout this work, repeats are regarded as
similar but not necessarily identical substrings that may
appear more than once freely dispersed over the sequences
and positions (i.e., they do not need to be tandem-repeated,
exactly adjacent to each other, etc.) as depicted in Figure 1.

Repeated motifs are characterized by a start position i
within a specific sequence sp � S and a certain length �.
Optionally, we allow the user to divide the repeats into
groups of different types � according to a certain criterion

(motif variations, different domains in multidomain pro-
teins, etc.). Therefore, we denote repeats by r � (p,i,�,�) or
in case of only one repeat type by r � (p,i,�). The set of all
repeats R tokenizes the sequences s � S into repeat
substrings r � R and non-repetitious or intervening subse-
quences r� � (p,i,�) � R� in between the repeats.

THE ALGORITHM

Our repeat sensitive alignment takes in addition to the
sequences S � {s1,s2,…,sk} the repeats information R �
{r1,r2,…,rl} as input. For each subset of repeats of same
type �, a global alignment AR� can be provided as user
input or it is computed on-the-fly by divide-and-conquer
alignment DCA.11,12

The algorithm treats substrings of the input sequences S
differentially depending on whether they are contained in
R or if they are nonrepetitious (i.e., the substring is
included in R�). Basically, for both subsets pairwise anchors
f are found, which are then assembled to form a consistent
set of high-scoring anchors F with respect to the overlap-
ping weight olw(f) (see Appendix A for definition). In the
end, a global alignment layout is produced by submitting
all anchors of F as constraints to the constrained divide-
and-conquer alignment.13

Finding Anchors

To apply the Dialign strategy5 (Appendix A) of anchor
assembly, information of the input sequences has to be
tokenized into pairwise anchors f � ([p,i],[q,j],�). According
to their different nature, this step is performed in another
way for the repeated motifs than for intervening sequences
(non-motifs).

Anchors in the intervening sequences

True pairwise relations can effectively be overshadowed
by short dominating similarities in the repeats. Moreover,
an alignment of a subarea of a known repeat to any part of
a nonrepeat subsequence has no biological significance,
regardless of the score yielded (although we allow a certain
unreliability of the information in R, see the relaxed
stringency mode described below). To address these prob-
lems, we filter out the motifs before we determine the
anchors of the intervening sequence areas (Fig. 2).

Thus, we generate for each sequence sp � S [Fig. 2(a)] a
concatenation of the respective intervening subsequences
r� � (p,i,�) by taking out the motifs [Fig. 2(b)]. Then we
locally align these sequences by applying the standard
Dialign protocol [Fig. 2(c), Appendix A]. The result is a set
of pairwise anchors for the intervening sequences. These
anchors are then rescored and remapped by reinserting
the motifs [Fig. 2(d)].

Anchors derived from the repeats

Figure 3 outlines how information of the global align-
ment(s) AR� are used to obtain anchor-based similarity
information of the motifs. All projection pairs (rv,rw) from
every AR� are grouped into anchors by columns containing
gap characters. All anchors fx found for a certain repeat
pair (rv,rw) then are assigned a weight w(fx) in the context

Figure 1. An unaligned sequence set containing some partly repeated
motifs (boxes) of different types � (labeled with capital letters A, B, and E).
Note that the repeats R and the intervening areas R� are numbered
consecutively throughout the sequence set. In addition, the start and the
end position of each substring are given. Therefore, each repeat can be
specified by its sequence number p, the start position i, its length � and its
type �, e.g., r2 � (p � 2, i � 114, � � 45,�� B).

PROTEINS: Structure, Function, and Bioinformatics DOI 10.1002/prot

264 M. SAMMETH AND J. HERINGA

of the original sequences sp and sq. Motivated by multipli-
cating the underlying error probabilities, the logarithmic
weights of the anchors are added up to yield the weight of
the composed anchor w(f) � �xw(fx).

Mixing the anchors

After the preceding two steps, both sorts of anchors are
merged, the ones derived from intervening sequences R� as
well as the ones deduced from the repeat alignment(s) AR�.

To add a certain flexibility for biological facts, our algo-
rithm can operate in two different modes (Fig. 4). First, the
so-called strict mode [Fig. 4(a)] just merges the repeat
anchors (see above section) with nonrepeat anchors. As a
result, no part of a designated repeat area may be aligned
with an intervening sequence part (strict constraint).

However, to allow the input of repeat information of
lower reliability, for instance produced by fully automated
repeat prediction, we added a second possibility of aligning

Figure 3. Constructing anchors for the motifs. Gapless anchors f are assigned to each repeat pair as aligned in the global alignment(s) AR�. The
combined weight (rv,rw) for the anchor frv,rw is derived by adding up the weights for all gapless local alignments. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]

Figure 2. Basic outline of finding local similarities in the intervening sequences. While r-areas correspond to motifs, substrings denoted by r� designate
non-motifs. From the initial data set (a), all repeat areas r � R are filtered out (b), concatenating the intervening sequences at the �� marked positions. c:
Next, anchors (gray shadowed links between substrings of sequences) are found by applying the standard Dialign protocol. d: Finally, the repeat
subsequences are reinserted and the weight of all anchors found is recalculated. Note that some of the alignments (gray links) are broken upon
reinsertion of the motifs. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

PROTEINS: Structure, Function, and Bioinformatics DOI 10.1002/prot

GLOBAL MULTIPLE-SEQUENCE ALIGNMENT WITH REPEATS 265

the motifs with relaxed constraints. Here, additionally
cross-linked anchors between motifs and intervening se-
quences are searched by applying the standard Dialign
protocol on the sequences. The anchors retrieved then are
pooled with the local similarities found earlier [Fig. 4(b)].

Resolving Inconsistencies

Within the anchor detection process, inconsistencies are
tolerated at two stages. First and foremost, the anchors
imposed on the motifs given are not checked for pairwise
feasibility: as implied by the definition of a repeat, there
may be multiple mutually exclusive possibilities to align
the repeated motifs of a sequence pair. When talking about
mutually exclusive anchors, we also say the anchors are
contradicting each other. However, even with such pair-
wise contradictions resolved, gaining overall consistency
of segments in the context of all input sequences requires
further filtering.

Contradicting pairwise matches

When regarding the anchors of a sequence pair (sp,sq) � S,
some positions may participate in more than one anchor
with another sequence (in Fig. 5, the intersection of f1 and
f3) or contradict another anchor proposed for the same
sequence pair (Fig. 5, f1 and f2). Such inconsistent sets of
anchors are a problem when calculating the overlap weights
olw(f), because the same overlapping position if included in
multiple anchors biases corresponding anchors it overlaps
(see Appendix A for the definition of olw-weights). Espe-
cially with repeats, which by definition support each other
well, the problem of overrating the overlap weights is
crucial (Fig. 6).

To address this problem, we only consider anchors of an
optimal pairwise consistent set F̃ when giving additional

weights during the calculation of the olw(f). The modified
weighting function, denoted by olwF̃(f), keeps from overes-
timating the overlap weights of the repeats since the
weight of each anchor is increased by at most one other
anchor shared with every other sequence. Note that an-
chors not participating in F̃ are neither excluded from
receiving additional weights by overlaps, nor are they
discarded. They are only prevented from giving weights to
overlapping anchors and so they cannot bias the repeat
signal.

Retrieving a global alignment layout

Once the overlapping scores olwF̃(f) for all anchors f have
been computed, inconsistencies caused by transitive links
of the anchors between three or more sequences are to be
eliminated. To do so, we proceed following the Dialign
protocol and greedily integrate the anchors in a set of
consistent anchors F. All anchors are iterated according to
the olwF̃(f) assigned to them, starting at the one with the
highest overlap weight. Whenever an anchor f is inconsis-
tent with the anchors already contained in F, it is dis-
carded, otherwise it is added to F.

As a result of the protocol, all anchors included in F are
consistent (i.e., they can all be incorporated in a single
global multiple alignment). In the final step, the divide-and-
conquer multiple alignment with segment-based con-

Figure 5. Inconsistent anchors f1, f2, and f3 of a sequence pair (sp,sq).
Anchor f1 is contradicting the anchors f2 (crossing) and f3 (overlap).
Therefore {f1, f2, f3}, {f1, f2}, {f1, f3} are inconsistent sets, but {f2, f3} is
consistent.

Figure 6. Example of stacked anchors retrieved from the repeat
alignment. The number of possible matches grows with the number of
repeat copies in the other sequences. According to the definition of olw(f)
(Appendix A), repeat r4 (in the center of the starlike link structure) would
receive additional positive weights from all other anchors (the gray links
connecting it with the other repeats {r1,…,r8}�r4). The resulting overlap
weights would be falsified (i.e., overestimated according to the number of
repeats in the sequence set).

Figure 4. Two stringency modes for the repeat-sensitive alignment. a: In the strict mode, repeats may be
aligned with each other (gray links) and also intervening sequences may only be aligned with other parts of
intervening sequences (not depicted). No cross-links between any r � R and r� � R� are possible. b: The
relaxed mode allows also areas of the motifs to be aligned with intervening areas.

PROTEINS: Structure, Function, and Bioinformatics DOI 10.1002/prot

266 M. SAMMETH AND J. HERINGA

straints13 is applied to positions not yet aligned by the
anchors f � F. To be specific, the set F found in the
preceding step is submitted as a constraint framework for
divide-and-conquer alignment. All hitherto unaligned posi-
tions are aligned optimally, and the algorithm terminates
by providing a global alignment layout.

RESULTS

In the first part of this section, we compare our novel
method with other alignment methods. As reference align-
ments we use those given by BAliBase (version 2.0,
reference group 6),6 a database for alignment benchmark-
ing. Furthermore, we evaluate different parameters of our
method using these alignments. We also provide some
detailed comparisons of single alignment case studies to
show the advantages of our repeat-sensitive alignment
method.

BAliBase

In the second version of BAliBase,6 the authors included
sequence sets containing repeats (reference group 6). As in
other groups, the repeat group is subdivided in different
subsets according to common features of the data. All
these test categories were used in an assessment of our
method:

test 1a unique repeat type, same number of repeats
test 1b unique repeat type, variable number of repeats
test 2a variable types, same number and order of repeats
test 2b variable types, same number but varying order of

repeats
test 2c variable types, varying number and order of

repeats
test 3 variable types of repeats with an additional

domain of different type
test 4 motifs and repeats of variable types
test families of proteins including attributes from all of

the data sets before
BAliBase provides alignments, where structural informa-

tion has been superpositioned on the sequences to identify
so-called core regions, which are aligned without uncer-
tainty. However, in the BAliBase repeat group, only the
repeated substrings are aligned and not the reference data
sets over their complete sequence lengths.

Comparison with other alignment methods

Because the reference is only available for the repeat
areas, it cannot be evaluated whether intervening regions
are aligned correctly. We use the traditional sum-of-pair
(SP) score to count correctly aligned positions within the
repeats. According to the SP scheme, each character tuple
of the test alignment is assigned a score of 1 if it is also
aligned in the reference alignment; otherwise its score is 0.
The scores of all these character pairs are summed up
to the total SP score of the alignment. Applying this,
we determine the SP score of aligned repeat positions
(SPcorrect) and in the same manner the sum of misaligned
repeat positions (SPwrong). Here, a repeat position is
considered misaligned, whenever it is aligned with a
position within the intervening sequences.

Motivated by traditions in gene finding,14 we define a
measure upon the SP scores, the repeat separation index

(SI): SI �
SPcorrect

(SPcorrect�SPwrong)
. The SI measure gives a basic

idea of how well the positions within the repeat areas are
aligned: values range from 0.0 (no repeat position aligned
correctly, all repeat positions have been aligned with
characters outside of repeat areas) to 1.0 (all positions of
the repeat areas have been aligned with each other as
given by the BAliBase reference). Note that the SI does not
represent the correct fraction of the whole alignment, nor
does it give any information about the quality of the
alignment in the nonrepetitious sequence areas.

Table I compares the new method (RAlign) with other
techniques for global alignment (T-Coffee and Dialign).
While Dialign5 uses exclusively local alignments to con-
struct the global alignment, T-Coffee4 integrates local and
global pairwise comparisons before performing the final
global alignment. For the comparison, Dialign version 2.2
and T-Coffee version 2.15 were used, both with the default
parameters, and the time benchmarks were performed on
a Pentium 4 (3.4GHz, 2GB RAM) except for the largest
time- or memory-intensive problems, which had to be
submitted to a SunFire 880 with 32GB RAM to complete
(failures in Table I).

Table I summarizes the BAliBase benchmark tests for
the repeat-sensitive alignment (RAlign). The results show
the capabilities of the different methods to deal with the
difficulties imposed by the alignment characteristics of the
corresponding subgroup. Although in general the local
aligner Dialign (Appendix A) is the better performer of the
two reference methods, in test sets with a more global
similarity T-Coffee comes close (“test 2a”) or even outper-
forms (“test 1a”) Dialign (i.e., sets with equal number and
order of repeats). Within group 1 (repeats of equal sub-
types) and group 2 (repeats of variable subtypes), the ratio

of correctly aligned repeat tuples �SPcorrect

SPwrong
� decreases in

both reference methods: sequences from subgroup 2a (with
equal number of repeats) for instance are aligned better
than sequences from the subgroups 2b or 2c, respectively
(with a variable order and/or number of repeat subtypes).
Furthermore, in the groups “test 3,” “test 4,” and “test” the
separation index and the percentage of correctly aligned
repeat positions drops significantly in both reference meth-
ods.

As can be seen from Table I, the new alignment method
aligns more repeat tuples correctly than the other two
protocols when providing exact repeat boundaries. The
gain of correctly aligned repeat positions rises from 0.5%
(“test 2a”) to �25% (group “test”) of the correctly aligned
repeat positions and comprises in total �300,000 tuples.
Note that this number is bigger than the possible maxi-
mum of correctly aligned positions in other groups. By
definition of the strict alignment mode, none of the de-
clared repeat positions can be aligned with any positions
outside of the repeats. Therefore, the number of mis-
aligned SP remains zero in all instances, resulting in an SI
index of 100%, which proves the principles of our method.

PROTEINS: Structure, Function, and Bioinformatics DOI 10.1002/prot

GLOBAL MULTIPLE-SEQUENCE ALIGNMENT WITH REPEATS 267

TABLE I. Comparison of the Novel Method (RAlign) in the Different Stringency Modes (strict, respectively relaxed) With
Standard Alignment Methods (T-Coffee, Dialign)

For each RAlign run, repeat boundaries are provided once exactly as given by the reference (exact, shaded in dark gray), and another time with
noise as often produced by automatic repeat detection (noisy, light gray). Results are presented for each of the groups (test 1a-4) and their
summary (total), for each one the number of alignments comprised is given in parentheses. Each time the correctly aligned repeat tuples (SPcorrect)
and the misaligned tuples (SPwrong) are shown for the core regions, and in parentheses for all of the repeat areas (i.e., core regions and positions
with no superimposed structural information). The separation index (SI) of a group is derived as the arithmetic average of the SI indices over all
included alignments and is given in percent points. Time complexity is given as the number of seconds a respective run required, followed by the
number of failures within parentheses. Alignments that did not terminate within 24 h or that ran out of memory on a Pentium 4 (3.4 GHz, 2GB
RAM), had to be diverted to a SunFire 880 (32GB RAM) for successful completion and are considered as failures (given in parentheses to the
right).

When relaxing the constraints, sometimes anchors contra-
dicting the repeat pattern are chosen by error during the
greedy selection process due to their high sequence similar-
ity. These wrongly selected anchors efficiently prevent
from aligning many positions correctly. Nevertheless, even
with relaxed constraints, the SI index of the repeat-
sensitive alignment remains significantly beyond that of
the two reference methods, as long as the repeat bound-
aries provided are correct (Table I).

Table I also shows the results yielded when applying
repeat boundaries that are rather insecure. To evaluate
our method with noisy constraints, we provide repeat
boundaries for the BAliBase alignments as predicted by an
automatic repeat detection method (Trust10) and compare
the results yielded by the strict alignment mode with those
achieved under relaxed constraints. To calculate the SP of
correctly aligned and misaligned positions, the repeats as
annotated in BAliBase are taken as reference. Here, the
strict mode in all tested cases led to results below the
quality of the reference aligners. The relaxed constraint is
aimed to help the alignment in case repeat boundaries
provided are unreliable. Table I clearly shows that under
relaxed constraints, the number of correctly aligned repeat
residues increases whereas that of misaligned repeat
positions is reduced, resulting in a higher average SI for
each of the test groups. In total, correctly aligned positions
are increased by about 50% and also incorrect cross-
alignments are approximately cut in half when applying
the relaxed alignment mode compared with the strict
alignment mode on noisy boundaries.

This significant gain is primarily due to the following
fact: Trust, like many automatic repeat detection pro-
grams, does not provide any interface to process multiple-
sequence sets. To be specific, repeats are detected by Trust
for each sequence in single, unaware of the other se-
quences in the input set. Boundaries of repeats detected
hence may vary substantially across the sequence set,
resulting in a shorter intersecting substring. Within the
strict alignment mode, these intersection “losses” caused
by the boundary variations effectively prevent the selec-
tion of many correct anchors. Consequently, anchors con-
tradicting the repeat pattern are chosen and cannot be
taken back later on during the greedy selection process.
Providing repeat boundaries with a strong boundary varia-
tion across the sequences, therefore, is worse than not
providing repeat boundaries at all. However, if the quality
of repeat boundaries is not known, the relaxed stringency
mode can at least perform as well as the two reference
methods as shown in Table I. Note that “performance”
here only refers to the SI measure. It does not take into
account the geometry of the aligned repeat units (e.g.,
there is no penalty for repeats that are torn into pieces to
fit).

Regarding the time benchmarks, the algorithms can be
split into different complexity groups: T-Coffee needs
O(k3�s�2) time, whereas Dialign has a worse time complex-
ity of about O(k4�s�2) with �s� denoting the maximal se-
quence length in the input set. However, by default,
Dialign disables the calculation of the sensitive overlap

weights for large data sets (�35 sequences), such that the
time complexity falls back to a maximum of O(k3) and in
average it requires O(k2) to O(k3) time. The time complex-
ity of the repeat-sensitive alignment method using the
strict constraint depends on the underlying Dialign method
running on the repeats-intervening sequence fragments,
which is more time-efficient than aligning complete se-
quences. On the other hand, additional calculations have
to be performed to remap and rescore the anchors found.
On balance, the novel method usually takes more time
than Dialign (Table I), but it can also perform slightly
faster (Table I, “test 1b”), depending on the corresponding
number and position of the repeats. In contrast, RAlign
with relaxed constraints relies on two full Dialign runs:
one on the intervening sequences and one on the complete
sequences. With the additional all-against-all comparison
of the repeat anchors that is necessary for the calculation
of olw(f), computation times are significantly higher than
those of corresponding Dialign runs (Table I).

As expected, strict alignments are computed faster in
most instances than the corresponding alignments under
relaxed constraints (Table I, “total”). However, it is pos-
sible that the algorithm in relaxed mode reduces the
number of anchors before the time-critical step of calculat-
ing the overlap weights. In such cases, it can perform
faster in relaxed mode than under strict constraints (e.g.,
Table I, “test 2c”). For computation time for alignments
with noisy boundaries, it should be taken into account that
an exact global alignment of the repeats is calculated
(divide-and-conquer alignment12). Therefore, input sets
with many repeats that are not supporting the alignment
very well can take a long time to align (Table I, “test”).

Case Studies

Although the benchmark tests shown in the previous
section show some benefits of the new method, the SI
indices presented suffer from a lack of detail. First, they do
not include any measurement about the quality of the
non-repetitious sequence areas that have been aligned. As
mentioned earlier, no reference alignments exist for the
intervening regions and there are also no unique markers
annotated, which could be used as a reference. However,
this only slightly affects the results because most of the
BAliBase test sets do not have extensive non-repetitious
sequence information (i.e., most sequence stretches consist
of tandem repeats). More severe is the fact that the sum of
correctly aligned repeat tuples (SP) does not consider
whether the tuples involve positions of the same repeat
unit. Therefore, especially in sequences with a lower
number of repeat copies, it can easily happen with tradi-
tional methods that repeat sequences are aligned with
segments of more than one repeat in another sequence.
Such repeats are torn apart, and the substrings of their
sequence are scattered in the alignment. To investigate in
more detail the quality of the motif-constrained alignment
method, we present alignments of two protein families.

Src homology domains SH3 and SH2

We selected from the BAliBase reference sets 15 se-
quences with multiple copies of the Src homology domain 3

PROTEINS: Structure, Function, and Bioinformatics DOI 10.1002/prot

GLOBAL MULTIPLE-SEQUENCE ALIGNMENT WITH REPEATS 269

(SH3) and thus composed a sequence set with sequences
containing a variable number of SH3 copies; most se-
quences have two, but some sequences contain three SH3
repeats. The SH3 module is a small protein domain of
about 50 amino acid residues first identified in the noncata-
lytic part of several cytoplasmic protein tyrosine kinases
(e.g., Src). Since then, it has been found in a great variety
of other intracellular or membrane-associated proteins,
across many organisms (e.g., Homo sapiens, Mus muscu-
lus, Gallus gallus, Drosophila melanogaster, Caenorhabdi-
tis elegans, Saccharomyces cerevisiae, etc.). Repeat bound-
aries for the SH3 motifs were taken as specified by the
BAliBase reference.

In addition, all selected proteins contained a single
conserved Src homology 2 (SH2) domain. The SH2 module
is widely spread over proteins that act as regulatory
modules involved in intracellular signaling cascades. SH2
domains contain about 100 amino acids and hence are
twice as long as SH3 domain sequences. SH2 and SH3
motifs do not share any significant mutual sequence
similarity. As a test, we did not provide the boundaries of
the SH2 motifs as input to our algorithm, because the
motif is not repeated in any of the individual sequences
and, therefore, is treated as a non-repeat fragment. The
SH2 domains instead are used as markers to assess the
performance of our method.

Figure 7 provides a schematic outline of the alignments
obtained for the data set when applying T-Coffee [Fig.
7(a)], Dialign [Fig. 7(b)], and the repeat-sensitive align-
ment method [Fig. 7(c)] to the input. Although T-Coffee
generally aligns the SH3 domains accurately, it fails to
delineate the relation between the SH2 domains [Fig.
7(a)]. In contrast, the Dialign method matches the SH2
domains correctly, but seriously scatters the SH3 domains
[Fig. 7(b)]: the N-terminal two SH3 domains in the Dread-
locks protein (“DOCK_DROME,” Appendix B) remain un-
aligned with counterparts in the other sequences, whereas
an aligned block of N-terminal SH3 domains in the 11 top
sequences shows an incorrect sequential overhang over
three SH3 domains corresponding to the N-terminal two
SH3 domains in the bottom three sequences [Fig. 7(b)].
Moreover, a 48-residue homologous region within interven-
ing regions of the Nck family remains unmatched as well.
When applying our repeat-sensitive alignment, the SH2
and SH3 domains are all aligned biologically correctly
[Fig. 7(c)].

Apolipoproteins

Apolipoproteins are lipoprotein particles that make hy-
drophobic lipids solvable in an aqueous environment and
transport them via the blood to certain target cells. To do
so, their core is formed by particles of hydrophobic lipids,
surrounded by the apolipoproteins with amphiphilic heli-
ces that provide a polar, water-solvable surface. These
helices are encoded by exon 4 of the respective gene, and
most of them are made up of two 11-mers; however, some
only contain a single 11-mer. Thus, many of the repeats
bear some intrinsic symmetry, an attribute that is not
unusual for repeats. Repeat copies are tandem-repeated

within the sequence, and their number varies substan-
tially across the 10 different apolipoproteins yet isolated
(i.e., apolipoprotein A-1, A-2, A-4, B-48, B-100, C-1, C-2,
C-3, D, and E). The strongly varying copy number, the
intrinsic symmetry, and the low similarity between some
of the repeats make the sequences rather hard to align.
Moreover, the helix-structure forces residues neighboring
within the linear sequence to opposite sites of the helix.
Hence, an alignment of the repeats with exactly matched
boundaries is required (Appendix B; see Fig. 11).

We selected seven in-depth investigated sequences15

and submitted the repeat boundaries of the 22mer repeats
together with the input sequences to the repeat-sensitive
alignment method (strict constraint mode). Both reference
alignment methods, Dialign and T-Coffee, have different
copy numbers, poor conservation, and internal symmetry
of the repeats [Fig. 8(a–b)]. Although the repeats are
aligned accurately in the highly conserved apolipoproteins
A-1 (APA1_HUMAN and APA1_RAT), the less similar
copies of other sequences are clearly shifted in the align-
ments. In contrast, when constraining the alignment to
the boundaries of the 22mer motifs, we get a much clearer
impression of the relationship in between the repeats [Fig.
8(c)]. From the repeat-aware alignment, the closest rela-
tions according to sequence similarity along the repeats
become apparent. Further biological investigation will be
necessary to discover whether the aligned repeat copies
are indeed orthologous and whether the unaligned repeat
copies did evolve by duplication (paralogs).

DISCUSSION

The novel method (RAlign) is, to our knowledge, the first
automated strategy to perform global multiple alignment
while keeping track of repeats within the input sequences.
It is based on the anchoring procedure that has been
introduced by the Dialign method.5 Time benchmarks
showed the new method to perform 1–2 orders of magni-
tude slower than the original Dialign protocol (Table I). In
the process of publishing this work, Morgenstern et al.
developed a user-constrained version of Dialign that also
was applied to repeats.16 However, because anchors and
weights are to be set manually by a biological expert, this
method focuses on enhancing single alignments rather
than providing a general solution for repeated motifs.
Recently, another method for nonlinear multiple align-
ment of shuffled and repeated elements was proposed,
wherein local similarities in the input sequences are
represented as a (possibly cyclic) graph.17

The dilemma is that sometimes the repeats are obstacles
in retrieving relevant information of a sequence set,
whereas in other instances, they might serve as anchors to
guide the alignment. We solved this by a separated
evaluation of the information contained in both parts (i.e.,
the repeated areas and the intervening sequences) and
merging modes of different stringency for both pieces of
information (i.e., the strict and the relaxed alignment
mode). If the boundaries of the submitted motifs are
reliable, the user should select strict alignment con-
straints, whereas in noisy information, the relaxed align-

PROTEINS: Structure, Function, and Bioinformatics DOI 10.1002/prot

270 M. SAMMETH AND J. HERINGA

Figure 7. Schematic multiple alignment generated by (a) T-Coffee, (b) Dialign, and (c) the repeat-sensitive
alignment (RAlign) when applied to a set of protein sequences containing a varying number of SH3 copies
(transparent boxes). Note that the boundaries of the additional SH2-domains (boxes shaded in gray) were not
provided with the input. In each of the repeat boxes, the delimiting N- and C-terminal residue numbers are
given.

PROTEINS: Structure, Function, and Bioinformatics DOI 10.1002/prot

GLOBAL MULTIPLE-SEQUENCE ALIGNMENT WITH REPEATS 271

ment is more likely to improve the alignment results.
Strong noise caused by inaccurate repeats information,
however, cannot always be handled well by our new
method, so that it is possible that our algorithm—even
when run in relaxed mode—is unable to outperform tradi-
tional MSA methods. Nonetheless, when reliable repeat
boundaries are provided, our method produces signifi-
cantly improved alignments (Table I).

It would be highly interesting to know, which threshold
of noise finally brings down the objective function, and we
suggest to perform tests with different repeat detection
methods or randomized repeat boundaries in the future.
However, additional effort will be necessary to complete
this task, because a measure for the repeat noise has to be
set up that efficiently captures attributes affecting the
greedy selection of the anchors.

Furthermore, we see a potential of the method when
investigating repeat histories: in strict alignments, repeats
with a relation in the global context are aligned, whereas the
ones that cannot be matched remain unaligned so that
positions of the repeats are no longer misaligned with
positions of the intervening sequences (Table I). These align-
ment layouts may serve as additional information to analyze
repeat duplication histories, or to study the phylogenetic
relationship of repeat clusters. Finally, the method is rather
general and can be applied not only to repeats but also to
motifs based on another criterion (e.g., non-repetitious mo-
tifs, structural units, etc.).

ACKNOWLEDGMENTS

The work was supported by a scholarship of the Ernst
Schering Research Foundation to MS who is also grateful

Figure 8. Alignment of seven of the main apolipoproteins in human. The repeats consist of 11-mers (boxes labeled S, single repeats), which mostly are
joined to 22 amino acids long units (22-mers, double repeats). An 11-mer is shaded in light green if they correspond to the first half, dark green if they
correspond to the second half of a double repeat according to Luo and Li.15 Because of the intrinsic symmetry and the bad conservation of the repeats
during evolution, T-Coffee (a) and Dialign (b) cannot match them correctly. In contrast, the repeat-sensitive alignment method (c) retrieves an alignment
where all repeat boundaries are matched correctly.

PROTEINS: Structure, Function, and Bioinformatics DOI 10.1002/prot

272 M. SAMMETH AND J. HERINGA

to the staff of the Vrije Universiteit for the hospitality.
Further thanks go to Jens Stoye and Burkhard Morgen-
stern for fruitful discussions.

REFERENCES

1. Benson G. Sequence alignment with tandem duplication. J Comp
Biol 1997;4:351–367.

2. Sammeth M, Weniger T, Harmsen D, Stoye J. Alignment of
tandem repeats with excision, duplication, substitution and indels
(edsi). LNBI (Proceedings of WABI ’05) 2005;3692:276–290.

3. Notredame C. Recent progress in multiple sequence alignment: a
survey. Pharmacogenomics 2002;3:131–144.

4. Notredame C, Higgins D, Heringa J. T-COFFEE: a novel method
for fast and accurate multiple sequence alignment. J Mol Biol
2000;302:205–217.

5. Morgenstern B. DIALIGN 2: improvement of the segment-to-
segment approach to multiple sequence alignment. Bioinformatics
1999;15:211–218.

6. Thompson JD, Plewniak F, Poch O. BAliBASE: a benchmark
alignment database for the evaluation of multiple alignment
programs. Bioinformatics 1999;15:87–88.

7. Kurtz S, Schleiermacher C. REPuter: fast computation of maximal
repeats in complete genomes. Bioinformatics 1999;15:426–427.

8. Heringa J, Argos P. Rapid automatic detection and alignment of
repeats in protein sequences. Proteins 2000;41:224–237.

9. Heger J, Holm L. A method to recognise distant repeats in protein
sequences. Proteins 1993;17:391–411.

10. Szklarczyk R, Heringa J. Tracking repeats using significance and
transitivity. Bioinformatics 2004;20 (Suppl 1):I311–I317.

11. Tönges U, Perrey S, Stoye J, Dress A. A general method for fast
multiple sequence alignment. Gene 1996;172:GC33–GC41.

12. Stoye J. Multiple sequence alignment with the divide-and-
conquer method. Gene 1998;211:GC45–GC56.

13. Sammeth M, Morgenstern B, Stoye J. Divide-and-conquer align-
ment with segment-based constraints. Bioinformatics 2003;19:
ii189–ii195.

14. Burset M, Guigó R. Evaluation of gene structure prediction
programs. Genomics 1996;34:353–357.

15. Luo CC, Li WH. Structure and evolution of the apolipoprotein
multigene family. J Mol Biol 1986;187:325–340.

16. Morgenstern B, Prohaska SJ, Werner N, Weyer-Menkhoff J,
Schneider I, Subramanian AR, Stadler PF. Multiple sequence
alignment with user-defined constraints. In German Conference
on Bioinformatics, Lecture Notes in Informatics, 2004.

17. Raphael B, Zhi D, Tang H, Pevzner P. A novel method for multiple
alignment of sequences with repeated and shuffled elements.
Genome Research, 14:2336–2346, 2004.

APPENDIX A: THE DIALIGN ALGORITHM

Dialign5 is an anchor-based approach to produce global
alignments. Here, anchors (i.e., gap-free pairwise local
alignments) from a multiple-sequence set are iteratively
collected and greedily added to the solution. Parts of the
method that are relevant to understand this work are
briefly described in the following sections.

The Objective Function

The objective function w(f) assigns weights to each
anchor f � ([p,i],[q,j],�) based on the probability P(�f ,�f)
that the corresponding subsequences are not related, that
is, the probability that an alignment of two random strings
with length �f have at least the similarity of � according to
some substitution table (e.g., Blosum62 for amino acid
sequences). Note that �f is corrected by a factor dependent
on the lengths �sp� and �sq� of the involved sequences.
Finally, motivated by traditions established in statistical
mechanics and information theory, the negative logarithm
of this error probability is considered:

w	f
 � � ln P	�f,�f

To increase the sensitivity for less conserved motifs, a
secondary scoring function has been defined. It enlarges
the w(f) by the weight of regions overlapping with other
anchors. Note that for calculating this so-called overlap-
ping weight olwF̃, only the set of pairwise consistent
anchors of the longest diagonal is taken into account. See
Morgenstern5 for a more detailed definition of weights and
overlap weights, a draft overview is given in Figure 9.

olw	fx
 � wfx � �
fy�fx

w	fx � fy
 �fy � F̃

Consistency and Transitivity

Global multiple alignment by anchor assembly has to
deal with two sources of inconsistency (i.e., anchors that
are not realizable in a common global alignment). Pairwise
consistency requires the anchors found for each pair of
sequences (sp,sq) from the input set S�{s1,s2,…,sk} to be
consistent which each other, but not necessarily with
anchors found for other pairs of sequences from S. The set
of pairwise consistent anchors is denoted by F̃, which is
crucial for the calculation of correct overlap weights
olwF̃(f). Pairwise inconsistent anchors can disproportion-
ately bias regions with multiple possibilities for alignment
(Fig. 6).

In contrast, consistency within the entire multiple-
sequence context means that all anchors have to be
consistent. The latter is more restrictive because transi-
tive links of anchors sharing a common area can align
positions that are not directly joined by an anchor. We
denote with F a set of anchors consistent regarding all of
the multiple sequences S, and the Dialign algorithm tries
to find a high-scoring set F by greedily adding consistent
anchors according to their overlap weight (Fig. 10).

Figure 10. Transitive links and inconsistencies in the common se-
quence context: although all of the anchors f1, f2, and f3 are consistent
within the context of the respective sequence pairs, they are not realizable
at the same time. The transitive link between s1 and s3 through the
anchors f2 and f3 is contradicting the relationship imposed by f1.

Figure 9. Two overlapping anchors fx and fy (gray links). Their weights
w(fx) [respectively w(fy)] are increased by the weight of the anchor fx�fy
induced by the overlapping area (dark shadowed) to calculate the
overlapping weights olw(fx) [and correspondingly olw(fy)].

PROTEINS: Structure, Function, and Bioinformatics DOI 10.1002/prot

GLOBAL MULTIPLE-SEQUENCE ALIGNMENT WITH REPEATS 273

APPENDIX B: SEQUENCE DETAILS
Accession Numbers

Apolipoprotein Structure (Fig. 11)

TABLE II. Swiss-Prot Accession Numbers of the SH3 Proteins

Protein Organism Sequence name Accession number

Dreadlocks Dros. melanog. DOCK_DROME Q24218
Protein E(sev)2B Dros. melanog. DRK_DROME Q08012
Growth factor receptor-bound protein 2 Gallus gallus GRB2_CHICK Q07883

Xenopus laevis GRB2_XENLA P87379
Mus musculus GRB2_MOUSE Q60631
Homo sapiens GRB2_HUMAN (P29354) D49846.1
Rattus norveg. GRB2_HUMAN (P29354) L29511.1

SH2/SH3 adaptor protein NCK Xenopus laevis NCK_XENLA P79956
Cytoplasmic protein NCK1 Homo sapiens NCK1_HUMAN P16333
Cytoplasmic protein NCK2 Homo sapiens NCK2_HUMAN O43639
Mona (GRB2-related adaptor protein) Homo sapiens GRP2_HUMAN O75791 O43726

Mus musculus GRP2_MOUSE O89100
Grap (GRB2-related adaptor adaptor) Homo sapiens GRAP_HUMAN Q13588
Sex muscle abnormal protein 5 Caenorh. elegans SEB5_CAEEL P29355
Intersectins Homo sapiens ITN1_HUMAN Q9UNK1

Homo sapiens ITSN_HUMAN Q15811
Homo sapiens ITN2_HUMAN O95062

TABLE III. Swiss-Prot Accession Numbers of the Apolipoproteins

Protein Organism Sequence name Accession number

Apolipoprotein A-I [Precursor] Homo sapiens APA1_HUMAN P02647
Apolipoprotein A-I [Precursor] Rattus norvegicus APA1_RAT P04639
Apolipoprotein A-II [Precursor] Homo sapiens APA2_HUMAN P02652
Apolipoprotein C-I [Precursor] Homo sapiens APC1_HUMAN P02654
Apolipoprotein C-II [Precursor] Homo sapiens APC2_HUMAN P02655
Apolipoprotein C-III [Precursor] Homo sapiens APC3_HUMAN P02656
Apolipoprotein E [Precursor] Homo sapiens APE_HUMAN P02649

Figure 11. The 3D structure of apolipoproteins forces neighboring positions of the linear sequence to
opposite sides of an alpha-helix. a: space-filling model of the first 8 residues and (b) schematic view of the
complete helix formed by the first 22mer-repeat of human apolipoprotein A1.

PROTEINS: Structure, Function, and Bioinformatics DOI 10.1002/prot

274 M. SAMMETH AND J. HERINGA

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 0, NO. 0, ... 2006 1

Comparing Tandem Repeats assuming
Duplications and Excisions of Variable Degree

Michael Sammeth and Jens Stoye

Abstract— Traditional sequence comparison by alignment em-
ploys a mutation model comprising two events, substitutions
and indels (insertions or deletions) of single positions. However,
modern genetic analysis knows a variety of more complex mu-
tation events (e.g., duplications, excisions and rearrangements),
especially regarding DNA. With the ever more DNA sequence
data becoming available, the need to accurately compare se-
quences which have clearly undergone more complicated types
of mutational processes is becoming critical.

Herein we introduce a new method for pairwise alignment and
comparison of sequences with respect to the special evolution of
tandem repeats: substitutions and indels of single positions, and
additionally duplications and excisions of variable degree (i.e., of
one or more repeat copies simultaneously) are taken into account.
To evaluate our method, we apply it to the spa VNTR (variable
number of tandem repeats) cluster of Staphylococcus aureus, a
bacterium of high medical importance.

Index Terms— sequence comparison, tandem repeats, variable
number of tandem repeats, repeat duplication history, pairwise
alignment, dynamic programming.

I. INTRODUCTION

Tandem repeats are a big challenge in sequence comparison.
Traditionally, for the comparison of two sequences, so-called
edit operations have been defined which represent the atomic
steps of evolution. By successively applying such edit opera-
tions, the compared sequences can be aligned to each other and
– assuming parsimony as a major characteristic of evolution –
good sequence alignments minimize the number of operations
for these conversions or, more precisely, the assigned costs. In
the classical model of mutation, two types of edit operations
are considered: the substitution and the insertion or deletion
(together indel) of single characters in a sequence.

Whereas this model has proven to work well in general
sequence alignments, modern genetics knows more complex
sources of mutation – especially when regarding the evolution
of DNA. These mechanisms affect no longer only single
positions but complete substrings of a sequence. Common
such edit operations are duplications (insertions of copied
substrings; in case of tandem duplications, immediately ad-
jacent to the original), excisions (deletions of substrings of a
sequence), and rearrangements (relocations or reorientations
of substrings within the sequence, e.g. transpositions or inver-
sions).

Manuscript received February 15, 2006; revised ..., 2006. This work was
supported by a doctoral fellowship of the Ernst Schering Research Foundation
and a post-doctoral fellowship of the German Academic Exchange Service to
MS.

M. Sammeth, and J. Stoye are with the Faculty of Technology, Bielefeld
University, Germany.

Variable Number of Tandem Repeats (VNTR) loci provide
a source of very informative markers in bacteria. Tandem
repeats for bacterial identification have proven their utility for
the typing of highly monomorphic pathogens such as Bacillus
anthracis, Yersinia pestis [1], Mycobacterium tuberculosis [2],
[3], or Staphylococcus aureus [4], [5]. S. aureus for instance,
a bacterium responsible for a wide range of human diseases
(e.g., endocarditis, toxic shock syndrome, skin, soft tissue and
bone infections, etc. [6]), contains polymorphic 24-bp VNTRs
in the 3’ coding region of the staphylococcal protein A (the
spa protein) [7]. The tandem repeats in this region undergo
a mutational process including the duplication and excision
of repeat copies in addition to nucleotide-based substitutions
and indels [5], probably caused by slipped strand mispairing
[8]. Further on, the microvariation of the spa VNTR cluster
[4] seems to support the phylogenetic signal reported by other
methods (e.g., by [9]). Therefore, an automated method to
compare strains of S. aureus and classify them according to
the microvariation of the spa tandem repeats is critical in order
to determine the types of newly acquired sequences rapidly
and accurately.

In recent years quite some work has been invested in the
algorithmic study of tandem repeats. Tandem duplications and
excisions follow different rules than regular, character-based
indels. On the one hand the inserted or deleted substrings are
usually much bigger in duplications and excisions, and on the
other hand they contain the pattern of the tandem repeats in
the corresponding sequence. Previous work in this field can
roughly be categorized into (1) tandem repeat detection, (2)
alignment of sequences containing tandem repeats (with or
without knowledge of their positions), and (3) reconstruction
of a tandem repeat history where the phylogenetic history of
the tandem repeats of one sequence is tracked down to a single
ancestor repeat. (1) concerns the detection of tandem repeat
copies with an unknown pattern, e.g. in [10], [11]. In the
context of (2), various works extended the model of nucleotide
mutation to additionally consider tandem duplication events
[12] and excisions of single tandem repeats (degree 1) [13],
[14]. The research of (3) investigates possible duplication
histories of the tandem repeats in a sequence in order to
find one with minimal costs (minimum tandem repeat history
problem), see [15], [16], [17], [18].

In this paper we extend methods developed in the context
of category (2), but we also address aspects of category
(3). We introduce an extended model of evolution where the
duplication and excision of one or more consecutive tandem
repeats (variable degree ≥ 1) is considered. Moreover, these
operations may occur arbitrarily cascaded with mutations and

98

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 0, NO. 0, ... 2006 2

1-Excision

2-Duplication

1-DuplicationMutation

A B C

AAACTTAG AAACTTAT AGACTTAG

A

AAACTTAG

A

AAACTTAT

B

AAACTTAT

B

AAACTTAT

C

AGACTTAG

A

AAACTTAG

A

AAACTTAT

B

AAACTTAT

C

AGACTTAG

A

AAACTTAG

A

AAACTTAT

A

AAACTTAT

D

AGACTTAT

C

AGACTTAG

s

s'

1

1

4

4

3

3

2

2

s

s'

s

s'

s

s'

Fig. 1. An example for cascaded duplication, excision, and mutation events.
Shown are DNA sequences si and the corresponding sequences s′i on the
macro alphabet Σ′ of repeat types (superimposed on si in grey). The described
edit operations successively are performed on the sequence. It can be seen
easily that after a couple of cascaded operations the original sequence of
characters is rather scrambled.

indels of single nucleotides. In Section II we formalize the
evolutionary model and give an overview of the problem ad-
dressed. In Section III we introduce the structure of contramers
(contraction units) to formally describe duplication events in
the model. Using contramers, we propose in Section IV an
exact algorithm to align and compare a pair of sequences.
Finally, in Section V, we give some practical examples for
comparing spa sequences of S. aureus with our method, and
in Section VI we discuss the benefit of the evolutionary model
and its potential for accurate investigations.

II. THE EVOLUTION OF spa TYPES

Let s be a sequence of characters over the DNA alphabet
Σ = {A,C,G,T}, and let s consist of tandem repeats. If the
boundaries of the repeats are known, s can be written directly
as a sequence s′ over the macro alphabet of the different repeat
types Σ′ = {−, A, B, C,D, . . .}. The additional gap character
(− ∈ Σ′) is used later on when aligning repeat sequences (Sec-
tion IV). A sequence s′ ∈ (Σ′)+ is called a VNTR sequence,
where (Σ′)+ denotes the set of all nonempty strings over
Σ′. On VNTR sequences we define an evolutionary model,
allowing duplications and excisions of repeats (characters in
s′), as well as substitutions and indels of nucleotides within
the repeats (Fig. 1). We call this the VNTR model1.

Since the commonly used substitutions and indels work on
the DNA bases of s, we comprise them in a bundled mutation
operation mut(a, b), which changes a tandem repeat a ∈ Σ′

to a tandem repeat b 6= a. In contrast, the duplication and
excision events always affect complete repeats of s′. Precisely,
a duplication event dup(w) occurring during VNTR evolution
can be of variable degree, replacing a substring w of s′ by two
concatenated copies ww. Since w may contain one or more
tandem repeat(s), the corresponding duplication is sometimes
named according to |w|: 1-duplication, 2-duplication, etc. [12],

1Previously [19] we used the term EDSI (excision, deletion, substitution,
indel) model, but since our duplications and excisions are restricted to whole
repeat copies, we now prefer the term VNTR model.

or duplication of order |w| [20]. In this paper we use the
notation from [12], not to get confused with the evolutionary
order of edit operations. In the same manner, the excision of a
substring w of s′, denoted exc(w), can be of variable degree:
1-excision, 2-excision, etc.

Herein we describe a model of duplication/excision events
at certain positions in the nucleotide sequence s (fixed bound-
aries). However, duplicated/excised substrings may start and
end anywhere in s′ (variable degree). Furthermore, the du-
plication/excision operation in the model is single-step [12],
denoting that no more than one copy of a duplicated/excised
substring is produced in one evolutionary step (arity = 1
according to [20]). The order of events in evolution is un-
restricted, i.e., all four edit operations described by the model
may be applied arbitrarily cascaded with each other (Fig. 1).

In order to assess the evolutionary distance between two
given sequences, we assign costs to all operations comprised
in the evolutionary model: cost(exc(w)) and cost(dup(w))
for the excision respectively the duplication of the tandem
repeats in string w, and cost(mut(a, b)) for a mutation of
a repeat type a into the repeat type b. The cost model of
VNTR evolution can then be freely adjusted2 with respect to
the following restrictions:
• Excision costs should be positive, cost(exc(w)) > 0 for

all words w ∈ (Σ′)+, since excision events can replace
all other operations. To be specific, any pair of sequences
(s′, t′) can be derived from a concatenated ancestor
string s′t′ by two excisions: once excising t′ yielding
s′ and once excising s′ yielding t′. Hence, finding the
minimum distance for sequences in a cost model with
cost(exc(w)) = 0 is trivial. Furthermore, excision costs
should fulfill the triangle inequality cost(exc(w)) ≤
cost(exc(w1)) + cost(exc(w2)) whenever w = w1w2.

• Duplication costs should be non-negative,
cost(dup(w)) ≥ 0 for all words w ∈ (Σ′)+.

• Mutation costs should comply with the properties of a
metric: symmetry (cost(mut(a, b)) = cost(mut(b, a))
for all a, b ∈ Σ′\{−}), zero property (cost(mut(a, b)) =
0 if and only if a = b for all a, b ∈ Σ′ \ {−}), and the
triangle inequality (cost(mut(a, b)) + cost(mut(b, c)) ≥
cost(mut(a, c)) for all a, b, c ∈ Σ′ \ {−}).

The problem of sequence evolution comprising the de-
scribed operations can now be formulated as an optimization
problem with the goal of cost minimization.

Definition 1 (VNTR Distance): Given two VNTR
sequences s′ and t′ and cost measures cost(exc(w)),
cost(dup(w)), and cost(mut(a, b)), find the minimum sum
of costs among all series of operations possible to reproduce
s′ and t′ from a common ancestor string. This cost is called
the VNTR distance d(s′, t′) of s′ and t′.

Definition 1 can be interpreted such that an (a priori
unknown) common ancestor u′ is subjected to evolutionary
operations transforming it into s′ and t′, respectively. This
series of operations represents a VNTR transformation T

(u′)
s′,t′

whose cost cost(T (u′)
s′,t′) is the sum of the costs for the oper-

2For a definition of the costs used for the Staphylococcus aureus evolution,
see Section V.

99

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 0, NO. 0, ... 2006 3

ations it contains, and the transformation with the least costs
defines the VNTR distance d(s′, t′) = minu′(cost(T

(u′)
s′,t′)).

Definition 2 (Optimality): A VNTR transformation T
(u′)
s′,t′

whose cost equals the VNTR distance between s′ and t′ is
optimal. Transformations whose costs are larger than d(s′, t′)
are suboptimal.

To find an optimal transformation T
(u′)
s′,t′ , one naively may

try to enumerate all possible ancestors of s′ in a set S′ and all
possible ancestors of t′ in a set T ′, and then find a common
sequence u′ ∈ S′ ∩ T ′ with d(s′, t′) = minu′(cost(T

(u′)
s′,t′)).

However, the unrestricted order of excisions with respect to
the other edit operations under the VNTR evolution implies
an infinite search space of possible ancestor sequences. To be
specific, when reconstructing possible evolutionary histories
from a given pair of VNTR sequences (s′, t′), theoretically
there could have been present an arbitrarily large number of
repeats between any two adjacent positions i and i + 1 of s′

(or correspondingly between adjacent positions j and j +1 of
t′). Therefore, we limit our search to optimal transformations
between s′ and t′. With respect to optimality, the following
limitations apply to operations preceding an excision event
exc(v) in s′:
• Mutation events mut(a, b) replacing a repeat type a by

another repeat type b that succeedingly is excised by
exc(v) containing b = v[x] for some x, 1 ≤ x ≤ |v|,
are suboptimal and can be substituted by the excision of
v containing the original a without increasing the cost.
Note that the argument also holds for multiple mutations
on the same position of v and for the mutation of multiple
positions in v.

• The excision of a substring w contained in or adjacent
to v can be merged into a single excision of v and w
without increasing the cost.

• If the excision of v is preceded by a duplication dup(w)
such that v overlaps the duplication result ww, three cases
can be distinguished. Let v̄ be the part of v overlapping
ww: (a) if |v̄| > |w| or |v| > |v̄| = |w|, then the duplica-
tion followed by the excision can be substituted by one
excision without increasing the cost; (b) if |v| = |v̄| =
|w|, then dupl(w) and exc(v) are compensating events
and will never be part of an optimal transformation; (c)
if |v̄| < |w|, then possible substitutions in an optimal
transformation depend on the number of excisions and
their location inside ww. In some instances no substitutes
of equal or lower cost can be specified.

From these restrictions one can directly deduce the following.
Observation 1: In an optimal transformation, an excision

exc(v) may exclusively be preceded by a duplication dup(w)
such that v and the duplication result ww overlap and for the
operlapping part v̄ holds |v̄| < |w|.

In consequence of Observation 1, the space of evolutionary
operations to be explored in order to find the minimal distance
d(s′, t′) is finite.

Theorem 1 (finiteness): When comparing two VNTR se-
quences s′ and t′ under the VNTR model of evolution, the
number of excised substrings v that lead to optimal transforma-
tions minu′(cost(T

(u′)
s′,t′)) is limited. The sets S′ of ancestors

with optimal transformations into s′ and T ′ of ancestors with
optimal transformations into t′ are therefore finite.

Proof: Assume a non-empty substring v between posi-
tions i and i + 1 on s′ which has been excised by exc(v). By
Observation 1, in an optimal transformation any part v[x1, x2]
can have been produced either by an immediately preceding
duplication dup(w) overlapping v such that the overlapping
part v̄ is shorter than w or there have been no preceding
operations on the positions.

In the first case, the |w|−|v̄| deleted repeats are identical to
their duplicates in the other copy of w. Hence, reconstruction
of the excised substring v̄ is possible from the substrings in s′

to the left of position i+1 and to the right of position i whose
number is finite. The part of v not overlapping with ww may
be overlapping with another duplication or is not preceded by
any operation.

In the second case, exc(v) is not preceded by any operation.
Since cost(exc(v)) > 0, the excision operation can only
contribute to d(s′, t′) if there is an identical substring v
(still) present in t′: if t′ does not contain any corresponding
substring, exc(v) can be eliminated to minimize the costs of
the transformation; whereas, if t′ contains a substring v̄ 6= v,
additional mutation costs can be avoided by replacing exc(v)
by exc(v̄). Thus, in this case the possibilities for insertions
are limited by the substrings found in t′.

In the remainder of this paper, we describe an exact algo-
rithm to compare and align VNTR sequences with respect to
the defined edit operations exc(w), dup(w) and mut(a, b).
Basically the algorithm works in two steps: first it finds
possible ancestors for all substrings of the VNTR sequences
s′ and t′ separately (Section III), and then it determines the
VNTR distance between s′ and t′ in a generalized sequence
alignment procedure using the ancestors found before as alter-
native alignment possibilities between the compared sequences
(Section IV).

While the time and space complexity of our algorithm are
exponential w.r.t. the sequence lengths |s′| and |t′|, note that
the input of the algorithm are sequences of already annotated
repeats and the input size therefore is much shorter than the
original DNA sequences.

III. THE CONCEPT OF CONTRAMERS

Although not observed in nature, we use the term contrac-
tion for the mathematically inverse process of a duplication.
The first step of the algorithm is based on representing
contraction units that we call contramers.

Definition 3 (contramer): Let s′ be a VNTR sequence, b,
m and e integers such that 1 ≤ b < m ≤ e ≤ |s′|,
and A an alignment of the prefix s′[b,m − 1] and the suffix
s′[m, e]. C = (s′, b,m, e, A) is a contramer, describing a
contraction on the substring s′[b, e] of s′, split by the meridian
m. The alignment A describes how the characters of both
segments are evolutionarily related according to the contramer.
To be specific, aligned repeats correspond to each other with
respect to possible mutation events (links) and gaps indicate
the excision of repeats.

Obviously contramers can capture single-step contractions
reversing duplications of variable degree on s′, as required

100

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 0, NO. 0, ... 2006 4

A B C D A D D

A B C D

A B C D A B C D

A B C D A D D

s='

C=(s,1,5,7,A)

A B C D

A - D D
A

'

(b)

(c)

(a)

Fig. 2. (a) A contramer C = (s′, 1, 5, 7, A) that implies the duplication
of substring s′[1, 4] = ABCD and its post-duplicational modification into
ADD. (b) The alignment shows that repeat B was excised while repeat
C mutated to repeat D. All vertically adjacent repeat pairs (i.e., non-gap
characters linked by black lines) in an alignment layout correspond to each
other w.r.t. possible mutations. (c) A duplication-tree representation of these
links.

by the model. Note that the duplicated repeat copies may be
approximate, i.e. they may include mutations or excisions.
However, contramers with one empty segment are not con-
sidered, due to the restrictions on optimal transformations de-
scribed in Section II. An example of a contramer representing
a duplication with subsequent excision and mutation is given
in Fig. 2.

A. Primary library of contramers

The initial set of contramers is extracted directly from
the repeat sequence s′. For each meridian position in s′,
1 < m ≤ |s′|, all possible alignments of available non-empty
prefixes s′[b,m − 1], 1 ≤ b < m, and non-empty suffixes
s′[m, e], m ≤ e ≤ |s′|, are generated. The contramers inferred
thereby form the primary library. Note that at this stage links
are generated exhaustively for every set of boundaries (b,m, e)
and similarity of the aligned segments is not optimized by
any objective function. This is necessary because later on
(Section III-B) transitive links between overlapping contramers
will be established and suboptimal alignments can be involved
in optimal transformations.

Algorithm 1 (Generate contramers for the primary library L)
1: L ← ∅
2: for m ← 2 to |s′| do
3: for b ← 1 to (m− 1) do
4: for e ← m to |s′| do
5: AP [] ← GENERATEPOSSIBLEALIGNMENTS(b, m, e)
6: for all A in AP[] do
7: ADD C = (s′, b, m, e, A) TO L
8: end for
9: end for

10: end for
11: end for

Algorithm 1 outlines the technique used to assemble the
primary library of contramers. As input serves a VNTR
sequence s′ over the alphabet of tandem repeats Σ′. The
resulting list L contains each contramer possible under the
described model. The cost of a contramer C = (s′, b, m, e, A)
may be derived directly from the associated alignment A by

adding the costs of mutations and excisions to the obligatory
duplication cost:

cost(C) = cost(dup(s′[b, m− 1]))

+
∑

i=1,...,|A|
A1i 6=−6=A2i

cost(mut(A1i, A2i))

+
∑

w excision in A

cost(exc(w)).

Theorem 2 (completeness of the primary library):
Contramers contained in the primary library exhaustively
generate all ancestor strings that can be derived from a VNTR
sequence by reversing exactly one duplication event in an
optimal transformation.

Proof: Algorithm 1 exhaustively generates all alignments
for each pair of non-empty adjacent substrings of s′, and hence
each possibility of linking prefix repeats with suffix repeats in-
cluding mutations and excisions are realized. Empty substrings
are not considered as prefixes or suffixes of duplications since
they cannot be part of an optimal transformation.

B. The secondary library

In order to infer cascaded duplication histories, overlapping
contramers of the primary library are to be merged.

Two contramers C1 = (s′, b1,m1, e1, A1) and C2 =
(s′, b2,m2, e2, A2) are overlapping if their index sets
ind(C1) = {b1, . . . , e1} and ind(C2) = {b2, . . . , e2} share
at least one common position (one tandem repeat) of s′.

The union of overlapping contramers forms a merged con-
tramer representing a cascaded duplication event. Abusing
notation, we denote by lnk(C1 ∪ C2) the result of merging
two contramers whose link sets are lnk(C1) and lnk(C2),
consisting of the aligned positions in A1 and A2, respectively.

If the intersection ind(C1) ∩ ind(C2) of two overlapping
contramers comprises positions of both segments of C1, we
call C1 a contained contramer and C2 a containing contramer.
All other pairs of overlapping contramers are connected. Note
that not all overlapping duplication events are necessarily
compatible with each other. The precondition for a pair of
compatible contramers (C1, C2) is that they can be realized
in a common evolutionary order, i.e., there exists at least
one repeat history tree comprising both described duplication
events. To describe the order of duplications, we use arrow
symbols to relate the corresponding contramers. C1 → C2

means that the duplication event captured by C1 happened
before C2, whereas C1 ↔ C2 allows an arbitrary order of the
duplications.

Observation 2 (evolutionary order): The common evolu-
tionary realizability of the duplications represented by two
contramers C1 and C2 can be deduced from analyzing the
intersection ind(C1)∩ ind(C2). If one contramer is contained
in the other, the duplication events described by the contained
contramer C1, say, must have happened before the duplication
events of the containing contramer C2 (C1 → C2, Fig. 3a).
For a pair of connected contramers, the evolutionary order
does not matter (C1 ↔ C2, Fig. 3b). Two contramers mutually
contained in each other are not realizable in a common repeat

101

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 0, NO. 0, ... 2006 5

history (Fig. 3c), even if they share the same meridian position
m (Fig. 3d).

Observation 2 results from the transitivity created when
merging contramers: any common position j ∈ ind(C1) ∩
ind(C2) linked by A1 to a position i /∈ ind(C2) and by A2

to a position k /∈ ind(C1) transitively links s′[i] to s′[k].
Obviously, for i = k both contramers describe the same
duplication of position j and therefore exclude each other from
being included in a common history (i.e., mutually contained
contramers in Observation 2). More generally, there has to
exist a valid evolutionary order on the duplication events
described by C1 and C2, that are C1 → C2, C2 → C1, or
C1 ↔ C2. From this, we can straightforwardly formulate the
criteria for merging two contramers.

Lemma 1 (pairwise merging conditions): Two contramers
C1 = (s′, b1,m1, e1, A1) and C2 = (s′, b2, m2, e2, A2) are
compatible and can be merged if:

1) they overlap, i.e. ind(C1) ∩ ind(C2) 6= ∅, and
2) one of the reflected duplication events has happened

after the other one. Therefore at least one contramer
needs to have a segment outside of the intersection area,
i.e., at least one of the positions m1−1,m1,m2−1,m2

must not be contained in ind(C1) ∩ ind(C2).
Proof: Let C1 be a contramer that overlaps with C2

such that m1 − 1,m1 ∈ ind(C1) ∩ ind(C2), then C1 → C2

holds. Similarly, m2 − 1, m2 ∈ ind(C1) ∩ ind(C2) imposes
the evolutionary order C2 → C1 that clearly contradicts C1 →
C2. In the same manner, chains of connected contramers that
impose contradicting evolutionary orders cannot be merged
(Fig. 4).

Lemma 1 describes the preconditions that are to be met
to merge a pair of contramers. If they intersect and they are
compatible, C1 and C2 are merged into a new contramer
by combining their respective alignments: the three repeats
of every transitive link (s′[i], s′[j], s′[k]) can be written in a
common column of the merged alignment (Fig. 5a). Problems
arise when both contramers comprise excisions in between
corresponding positions of the overlapping area (Fig. 5b). In
this case C1 and C2 do not provide unique information about
the transitive relation between the excised characters. One
possibility would be to exhaustively generate all the alignment
possibilities between the respective characters. However, since
we are only interested in finding a “good” combination of
characters minimizing the distance to another sequence, we
leave these ambiguous repeats unaligned for the moment
and search for the least-cost combination later on in the
comparison step (Section IV).

The merging strategy is extendable to deal with more
than two contramers. A set of combinable contramers
{C1, C2, . . . , Cr} obviously requires that each of the con-
tramers Cx must be connected to the other contramers in the
set. Otherwise Cx is isolated and cannot be merged. Further-
more, it is required that each pair of overlapping contramers
(Cx, Cy) is compatible. The next lemma demonstrates that the
order in which the contramers are merged does not matter.

Lemma 2 (commutativity): The pairwise merging steps of
multiply merged contramers are commutative.

Proof: Consider merging the alignments A1 and A2 of

A B A B B A Bs='

'

C =(s,1,3,4,A)1 1

C =(s,2,5,7,A)2 2

A B A B B A B

A B A B

A B

A B A B As=

C =(s,1,3,4,A)1 1

C =(s,2,4,5,A)2 2

A B A B A B

A B A B

A B

B A B A B A

B A B A

B A

A B Bs=

C =(s,1,3,3,A)1 1

C =(s,2,3,3,A)2 2

A B B B

A B B

A B

A B B B

A B B

A B

A B C A B C B Cs=

'

'

C =(s,1,4,6,A)1 1

C =(s,5,7,8,A)2 2

A B C A B C B C

A B C B C

A B C

A B B A B C B C

A B C A B C

A B C

(a)

(b)

(c)

(d)

'

'

'

'

'

'

'

'

Fig. 3. Restrictions on compatible contramer pairs C1 =
(s′, b1, m1, e1, A1) and C2 = (s′, b2, m2, e2, A2) (grey rectangles,
meridian position indicated by a dashed line). The implied evolutionary
order and possible repeat histories expressed by merging C1 and C2 are
shown on the right with contradictions shaded in grey. (a) C1 is contained in
C2, therefore the evolutionary order is fixed and the duplication captured in
C1 must have happened before the one described by C2 (only one possible
repeat history C1 → C2). (b) Merging two connected contramers imposes
no order on the evolution (C1 ↔ C2, the duplication of C1 or C2 may have
happened first). (c) and (d) If none of the contramers has a non-intersecting
segment, i.e. m1 − 1, m1, m2 − 1, m2 ∈ ind(C1) ∩ ind(C2), then no
repeat history can be found incorporating both duplication events captured
by the contramers. This holds even if the meridians coincide, m1 = m2,
see (d).

two contramers C1 and C2. Here, the same link (s′[i], s′[k])
in lnk(C1∪C2) is created if a link (s′[i], s′[j]) from lnk(C1)
is extended by a link (s′[j], s′[k]) from lnk(C2) or if the link
(s′[j], s′[k]) from lnk(C2) is extended by the link (s′[i], s′[j])
in lnk(C1).

Thus, when merging multiple contramers C1, C2, . . . , Cr,
with all preconditions met, we can perform the merging in
any order successively for each pair of overlapping contramers
(Cx, Cy), x 6= y (Figure 6).

Algorithm 2 describes the construction of contramers in
the secondary library. Initially, L comprises the contramers
already included in the primary library. The set of contramers
with beginning b, meridian m, and end e can be accessed
via the function GETC(L, b, m, e). For chains of already
merged contramers the variables b, m and e always refer to
the contramer at the end (i.e., with the largest position e;
ties are broken by smaller start position b). The functions
FINDCONNECTEDC() and FINDCONTAINEDC() extract com-
patible contramers in a given subarea (specified by the start and
end point). Compatibility is checked according to Lemma 1.

Theorem 3 (completeness of the secondary library): The
secondary library contains all ancestor strings u′ that can
be derived from a sequence s′ under the VNTR model of
evolution by reversing one or more duplication events in an
optimal transformation.

Proof: By the iteration order of Algorithm 2 over ascend-
ing start positions b, all (possibly already merged) contramers
are considered in left-to-right order. Since for already partially

102

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 0, NO. 0, ... 2006 6

A A C A A C B B C B B Cs='(a)
C
1

C
4

C
7

C
2

C
5

C
1

C
2

C
5

C
8

A A C A A C B B C B B Cs='(b)

1 2

7

5
C C C

1 2
C C C

A A C A A C B B C B B Cs='(c)
C
1

C
7

C
3

C
6

A A C A A C B B C B B Cs='(d)
C
1

C
7

C
2

C
6

16

7

C C

1 3
C C C

16

7

C C

26
C C

1 2
C C C

1 2

8

5
C C C C

21 4

4

C C C C

Fig. 4. Contained contramers and restrictions they put on the evolutionary
order. Depicted are different subsets of the contramers C1 = (s′, 1, 4, 6, A1),
C2 = (s′, 4, 7, 9, A2), C3 = (s′, 6, 7, 9, A3), C4 = (s′, 7, 10, 12, A4),
C5 = (s′, 1, 2, 2, A5), C6 = (s′, 4, 5, 5, A6), C7 = (s′, 7, 8, 8, A7),
C8 = (s′, 10, 11, 11, A8). Shown on the right are constraints imposed on
the evolutionary order with contradictions shaded in grey. (a) C1 containing
C5 is incompatible to contramer C2 overlapping C1 in the segment that is not
intersecting with C5 and containing itself an inner duplication C7. (b) This
restriction also holds for chains of connected contramers (C2, C4) with an
inner duplication (C8). (c) demonstrates that C1 can be connected to C3 (with
the inner duplication C7) in the same segment of the contained contramer C6,
as long as the connected contramer is not overlapping C6 like C2 (d).

A B C A B C D B C Ds='

'

'

'

'

'

C =(s,1,4,6,A)1 1

C =(s,5,8,10,A)
2 2

A B C D A D A X Y Ds=

C =(s,1,5,6,A)1 1

C =(s,5,7,9,A)
2 2

1

2

A b c D

A - - D

A x y D

A

A

1

2

A B C

A B C D

B C D

A

A

(a)

(b)

Fig. 5. Transitive links when merging contramers. (a) A pair of partially
overlapping contramers where e.g. C1 links positions 2 and 5, and C2 links
position 5 and 8. The transitive link created when merging A1 with A2 links
all three B-characters together (2nd column of the merged alignment to the
right). (b) Merging of contramers C1 and C2 that both induce characters in the
same excised area. Consequently, the phylogenetic relation of the characters
(lowercase) cannot be exactly determined (possible relations are indicated by
the dotted grey lines).

A B X Y B A A A B B C D E D Fs=

C =(s,1,6,9,A)1 1

C =(s,8,10,12,A)3 3

C =(s,12,14,15,A)4 4

C =(s,6,7,7,A)
2 2

- A B x y

- - B - -

A B - -

- B c d E

D F

A

A

A

A
A4

A3A2

A1

Fig. 6. A set of multiply merged contramers {C1, C2, C3, C4} and the
respective concatenated alignment. Note that lowercase characters are not
uniquely aligned by the transitive links of the contramers, and their position
is determined later during the comparison process (Section IV).

Algorithm 2 (Merge contramers to build the secondary library
L)

1: L ← PrimaryLibrary()
2: for b ← 1 to |s′| − 1 do
3: for e ← b + 1 to |s′| do
4: for m ← b + 1 to e do
5: CP [] ← GETC(L, b, m, e)
6: for all C in CP [] do
7: DP [] ← FINDCONTAINEDC(L, b, e; C)
8: for all D in DP[] do
9: F ← MERGE(C,D)

10: ADD F TO CP [] AND L
11: end for
12: DP [] ← FINDCONNECTEDC(L, m, e; C)
13: for all D in DP[] do
14: F ← MERGE(C,D)
15: ADD F TO L
16: end for
17: end for
18: end for
19: end for
20: end for

merged contramers C1, C2, . . . , Cr the iteration order refers to
the contramer Cx = (s′, bx,mx, ex, Ax) with largest end point
ex, always the contramer of a chain that was connected last
is selected to be extended.

First, any compatible contramer Cy = (s′, by,my, ey, Ay)
contained anywhere in Cx is extracted. The product of merg-
ing Cx with Cy will not result in a chain of contramers that
is iterated later on in the main loop. Therefore it has to be
added at the end of the list CP [] in order to allow multiple
merges of Cx with different contained contramers.

Second, any compatible contramer Cy =
(s′, by,my, ey, Ay) connected to Cx is extracted. After
merging the two, Cy will be iterated again later in the
main loop since by > mx. This results in a construction
order of chains from the beginning of s′ towards the end in
which connected contramers that overlap with s′[mx, ex] are
contramers of the primary library that are not yet merged.
Therefore, growing chains are extended by a single connected
contramer in each cycle, in which afterwards possible inner
duplications (contained contramers) are explored.

Thus, all valid combinations of contramers are found, and
Lemma 2 respectively Theorem 2 complete the proof.

103

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 0, NO. 0, ... 2006 7

IV. VNTR ALIGNMENT

A. Contramer alignment

In the final alignment phase, the possible tandem repeat
histories of two sequences s′ and t′ are used as alternative
character combinations when comparing s′ to t′. To this
end, we extend the well established technique of dynamic
programming (DP) for sequence alignment to additionally take
into account the cascaded duplications. The contramers found
along both sequences to be compared serve as additional
alignment possibilities, i.e., cells extending the regular DP
matrix. For each cell (i, j) to be computed in the DP recursion
of the main matrix D with size (|s′|+1)×(|t′|+1), contramers
ending at position i in s′ (or at position j in t′) are considered.
The alignment A of each contramer C = (s′, b,m, e, A) can
substitute the characters of the original sequence in the area
s′[b, e]. For instance, the operation align(s′[0, i], A) describes
a submatrix of size (i + 1) × (|A| + 1) that substitutes the
respective part of the original matrix of size (i + 1)× (e− b).
Therefore, the resulting alignment procedure needs to consider
multiple alternative submatrices for each contramer in both
sequences (Fig. 7). Matrix D is computed by the following
recursion formula:

D(0, 0) = 0

D(0, j) = cost(exc(t′[1, j])) for all 1 ≤ j ≤ |t′|
D(i, 0) = cost(exc(s′[1, i])) for all 1 ≤ i ≤ |s′|
D(i, j) =

min

8>>>>>>>>>>>><>>>>>>>>>>>>:

D(i− 1, j − 1) + cost(mut(s′[i], t′[j])) //mutation
D(x, j) + cost(exc(s′[x, i])) for all x ≤ i //excision in s′

D(i, y) + cost(exc(t′[y, j])) for all y ≤ j //excision in t′

D(x, b) + cost(C) + align(s′[x, i], A)
for all C = (t′, b, m, j, A) and x ≤ i //duplication in t′

D(b, y) + cost(C) + align(A, t′[y, j])
for all C = (s′, b, m, i, A) and y ≤ j//duplication in s′

D(b1, b2) + cost(C1) + cost(C2) + align(A1, A2)
for all C1 = (s′, b1, m1, i, A1)
and C2 = (t′, b2, m2, j, A2) //duplication in s′ and t′

Note that each cell (i, j) of the matrix D is connected by
multiple contramers with any of the cells computed earlier
during the DP process. We want to stress that when con-
tramers substitute in both sequences, align(A1, A2) spans
a submatrix that is connected with D by 3 dependencies
of its source cell (to D(b1 − 1, b2 − 1), D(b1, b2 − 1) and
to D(b1 − 1, b2)) and the connection to D(i, j) in its sink
cell (Fig. 7, left submatrix). However, align(s′[x, i], A) (re-
spectively align(A, t′[y, j])) span submatrices (Fig. 7, right
submatrix) that are connected with D(x, b) and D(x − 1, b)
(respectively D(b, y) and D(b, y − 1)) in each row x ≤ i
(column y ≤ j). In an optimization, these submatrices are
re-used and extended by each row (or column) with growing
values of i (j).

Note that we do not need to explicitly consider the case that
two excisions from adjacent contramers are fused because then
also a larger (possibly merged) contramer exists that covers the
complete excision.

At each stage (i, j) of the alignment, the minimum cost
is calculated for all edit operations of the evolutionary model:

mutation of repeats (comprising substitutions and indels on the
DNA alphabet Σ), excisions of repeat copies (on the macro
alphabet Σ′) or duplication events (as described above). The
order of computation of the algorithm should be performed as
given. In our implementation, to optimize the performance we
added a bounding step such that only alignments of contramers
C ending in cell (i, j) are considered whose cost cost(C) does
not exceed the best cost found earlier for the cell D(i, j).

Theorem 4 shows why the recursion finds the minimum
distance of two VNTR clusters under the model of VNTR
evolution.

Theorem 4 (correctness): The dynamic programming re-
currence computes the alignment with minimal distance
d(s′, t′) between two VNTR sequences s′ and t′ under the
VNTR model of evolution.

Proof: Initialization. The minimal cost between two
empty strings is 0, between an empty string and a VNTR
sequence it is the cost of excising this sequence.

Induction. We prove the correctness of the recurrence by
decomposing the alignment of arbitrary prefixes s′[0, i], 0 ≤
i ≤ |s′| and t′[0, j], 0 ≤ j ≤ |t′| into the alignment of shorter
prefixes s′[0, x], x < i, and t′[0, y], y < j, and an additional
operation. The latter is restricted to the operations of which the
dynamic programming recurrence takes the minimum. Since
within the recursion no further contractions are generated, it
depends on the duplication events captured in the secondary
library of contramers. The recursion therefore correctly re-
trieves d(s′, t′), if and only if the contramers represent all
valid evolutionary histories under the given model. This was
shown in Theorem 3.

In order to analyze the time complexity of our method, we
have to estimate the number of contramers generated in the
earlier steps. Let n = |s′| be the length of the given VNTR
sequence. In the generation of the primary library, all O (

n3
)

combinations of beginning b, meridian m and end e such that
1 ≤ b < m ≤ e ≤ n are iterated. For each of these, all
alignment possibilities are generated exhaustively. As shown in
[21], for two sequences of length n there exist approximately
22n/

√
πn alignments, bounding the size of the primary library

by O(n322n/
√

πn) = O (
n2.522n

)
.

Let x be the size of the primary library. In the secondary
library, new contramers are generated merging the contramers
of the primary library. In the worst case, every subset of the
x elements of the primary library forms a merged contramer
in the secondary library. Hence an upper bound for the size
of the second library is 2x.

In the final step, the VNTR alignment, an alignment matrix
has to be generated for each of the contramers of the second
library as well as for the repeat sequences. Assuming now
n = max{|s′|, |t′|}, the main DP matrix as well as each
of the submatrices have O(n2) entries, each of which has
O(n) predecessors. The averall computation time, however,
also depends on the time required to calculate the cost of
merged contramers during the alignment process, the subject
of the next subsection.

104

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 0, NO. 0, ... 2006 8

C1
C2

11

10
9

9

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

Fig. 7. Examples for alternative submatrices within a DP matrix D. The
floating submatrix aligns C1 = (s′, 2, 5, 6, A1) with C2 = (t′, 2, 5, 7, A2).
Dependencies of cell initialization with the main matrix D are depicted as
dotted lines. The source cell of the submatrix is initialized by the D(1, 1),
D(1, 2) and D(2, 1) while the result is used when determining the optimal
cost in cell D(6, 7). In contrast, the bridge-like submatrix aligning C2 =
(t′, 2, 5, 7, A2) to s′ is connected to the main matrix at the beginning and
the end of each of its rows (not shown). To be specific, all pathes from cells
in column 1 of D are taken into account when determining optimal costs for
the cells in the first column of the submatrix and on the other hand, pathes
from all cells in the last column of the submatrix are respected for calculating
the minimum costs in column 8 of D.

B. Costs of merged contramers

As observed earlier (Section III-B, Fig. 5b), in merged
contramers not necessarily all of the transitive relations can
uniquely be established. These positions are to be aligned
within the merged contramer taking into account the sequence
the contramer is compared to. Merged contramers may con-
tain concatenated alignment areas of three or more rows,
corresponding to transitive links in the overlapping area of
contramers. The sum-of-pairs score normally used to measure
multiple alignments is not suitable here since it does not reflect
the order of the segments, i.e., the rows in the alignment; in a
regular alignment, the sequences (the rows) are independent of
their order while the rows of contramer-alignments represent
an order of the evolutionary segments. The scoring function
has to respect this order, and all possible repeat histories are
to be explored to find the minimum cost for transitively linked
areas.

Algorithm 3 formalizes the algorithm to find the minimum
distance for merged contramers. To this end we use our im-
plementation of the hyperspace multiple sequence alignment
procedure [22], which was modified to use the scoring function
for repeat evolution. The input is a set S of k sequences that
correspond to the lines of two (possibly merged) contramer
alignments A1 and A2, or to simple substrings of the VNTR
sequences s′ and/or t′. Let the number of lines from the first

B B A A A B A B A

A B A A B A

A B A A B A

A B A

** *

(a)

B B A A A B A B A

A A B A A B

A B A A B A

A B A

* *

*

*

*

(b)

Fig. 8. Depicted is a repeat history for three repeats originating from two
tandem duplication events (grey rectangles). Although the topology of the
repeat history is the same in (a) and (b), the calculated costs diverge when
changing the time point a certain mutation (grey asterisk) happens. In (a),
three mutation events are used, whereas in (b), in total five mutations are
performed. Note that the time a certain mutation takes place is independent
for all positions of a duplication.

alignment or sequence be x ≥ 1 and the number of lines from
the second alignment or sequence be k − x ≥ 1. For all pairs
of positions (r1, r2) in the input, function ALIGNABLE(r1, r2)
tests for alignability w.r.t. the constraints (i.e., the links)
provided by the contramer alignments and stores alignable
tuples (r1, r2) in a list F . Alignment of positions not contained
in F is not considered later on.

Type point is a k-tuple of integer coordinates cre-
ated by p ←POINT(p1, p2, . . . , pk) such that (q1, . . . , qx) −
(p1, . . . , px) ∈ {0, 1}x \ {0x} and (qx+1, . . . , qk) −
(px+1, . . . , pk) ∈ {0, 1}k−x \ {0k−x}. By this, all possible
orders are iterated for repeat copies for which the transitive
relation has not yet been fixed (Figure 5b). A vertex v stores,
apart from its coordinate of the alignment matrix v.P , the
sequence data v.S on which the indices are based and the
minimum cost v.D found for a path from the source cell
src to v. These costs are successively summed up for each
column q. As explained later on, COSTCOLUMN() calculates
the optimal mutation costs for repeats in the respective column
of both of the compared contramers and MINCOST() returns
the minimal cost to align one contramer column to the other.
Later on, we will also introduce the conditions under which the
evolutionary order of repeats in a column can be non-linear. In
these instances PERMUTE() generates additional permutations
of the input sequences.

The priority queue ranks the vertices by distance from
src, where INSERT(Q, v) inserts a vertex at the appropriate
position, DECREASE(Q,w) re-positions a vertex according
to its new costs w.D, and EXTRACTMINIMUM(Q) returns
the vertex v with the current minimum cost v.D. By this,
the alignment is constructed node-by-node in a branch-and-
bound fashion starting from the source vertex to the sink.
By LOOKUP(v,Q) a vertex with the same coordinates and the
same sequence data as v is returned, or ⊥ if such an element
is not contained in the queue. Under the assumption that the
alignment is feasible, EMPTY(Q) will never become true and
the algorithm terminates in line 13, returning the cost of an
optimal alignment.

Figure 8 shows different examples for the evolutionary
order in which mutation events could have taken place in
merged contramers. As can be seen, this order is independent
for neighboring repeats and therefore Algorithm 3 has to

105

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 0, NO. 0, ... 2006 9

Algorithm 3 (Exact alignment and cost calculation of charac-
ters in merged contramers.)

1: sequences S; int x; trie T ; priority queue Q; vertex v, w; point
p, q; list F

2: src ← VERTEX(0, POINT(0, 0, . . . , 0), S)
3: snk ←VERTEX(∞,POINT(N1, N2, . . . , NK), ∅)
4: Q ← PRIORITY(); INSERT(Q, src)
5: for all (r1, r2) ∈ S do
6: if ALIGNABLE(r1, r2) then
7: F ← F + (r1, r2)
8: end if
9: end for

10: while not EMPTY(Q) do
11: v ← EXTRACTMINIMUM(Q); p ← v.P
12: if v.P = snk.P then
13: return v.D
14: end if
15: for all q ← POINT(q1, q2, . . . , qk)) such that (q1, . . . , qx)−

(p1, . . . , px) ∈ {0, 1}x \ {0x} and (qx+1, . . . , qk) −
(px+1, . . . , pk) ∈ {0, 1}k−x \ {0k−x}, (qm, qn) ∈ F and
for all O ← PERMUTE(q) do

16: w ← LOOKUP(q, Q)
17: if w = ⊥ then
18: w ← VERTEX(∞, q, O); INSERT(Q, w)
19: end if
20: if v.D+ COSTCOLUMN(p1,...,x, q1,...,x, O)+

COSTCOLUMN(px+1,...,k, qx+1,...,k, O)+
MINCOST((q1, . . . , qx)(qx+1, . . . , qk)) < w.D then

21: w.D ← v.D+ COSTCOLUMN(p1,...,x, q1,...,x, O)+
COSTCOLUMN(px+1,...,k, qx+1,...,k, O)+
MINCOST((q1, . . . , qx)(qx+1, . . . , qk))

22: DECREASE(Q, w)
23: end if
24: end for
25: end while

exhaustively investigate all possible combinations separately
for each column of multiply merged contramers. Finding the
best order of mutation events is equivalent to the problem
of finding the best order of 1-duplications that produced a
sequence of repeats. To solve it, we modify the so-called
arch technique developed for minisatellite maps [13]. An arch
is a set of (≥ 2) positions on s′ that all mutated from the
same common ancestor repeat (seed). However, due to the
more flexible cost scheme in the VNTR model, the optimality
criterion from [13] has to be constrained as stated by the
following lemma.

Lemma 3: An arch of length l is optimal, if (a) both
marginal repeat types contain the seed A and if (b) it contains
a ≥ l

2 copies of A.
Proof: (a) Assume an arch with a marginal repeat

Xi 6= A and assume Xi is flanked by a repeat A in-
side the arch. Shortening the arch by one position removes
cost(mut(A,Xi)) ≥ 0 (b) Let an arch with a copies of A
contain more tandem repeats Xi, 1 ≤ i ≤ l − a, with all
Xi 6= A and Xi1 6= Xi2. Assuming A as the seed of the arch,
the total mutation costs are

∑l−a
i=1 cost(mut(A, Xi)), whereas

any seed Xi generates
∑l−a

j=1,j 6=i(cost(mut(Xi, Xj))) +
a cost(mut(Xi, A)). By the triangle inequality assumption
of mutation costs (cost(mut(Xi, Xj))+ cost(mut(Xi, A)) ≤
cost(mut(A,Xj))), the relation

∑l−a
i=1 cost(mut(A, Xi)) ≤∑l−a

j=1,j 6=i(cost(mut(Xi, Xj))) + a · cost(mut(Xi, A)) holds

A A A Bs=

C =(s,1,3,4,A)1 1

C =(s,1,2,2,A)
2 2

A2

A1

A

A

A

A

A

B

A

B A A A B

A A

A

A X A Y B X Bs=

C =(s,1,3,4,A)1 1

C =(s,4,6,7,A)
2 2

A2

A1
A X

A

A X

A Y B

X B

Y B

X B
A X A Y B X B

A X B X B

A X B

A Y A Z A Xs=

'

'

'

'

'

'

'

'

'

C =(s,1,3,4,A)1 1

C =(s,3,5,6,A)
2 2

A2

A1
A YA Y

A Z

A X

A Z

A X
A X A Z A Y

A X A Y

A X

cost (X,Y) = cost (Y,Z) < cost (X,Z)
mm m

(a)

(b)

(c)

Fig. 10. Tandem duplication histories for contramer sets merged in different
manners. Shown are the contramers on s′ (left), the concatenated alignments
(center), the constraints on the evolutionary order and an example of a repeat
history (right). (a) A contained contramer C1 always represents a duplication
event that happened before the duplication of the contramer C2 that it is
contained in (C1 → C2). Note that the history displayed is the only one
possible for the merged contramers C1 and C2. (b) In partially overlapping
contramers C1 and C2 the cost-optimal list of evolutionary steps is to be
found (C1 ↔ C2). Every segment has to be investigated as possible root
from where the repeats evolved in order of their location within the sequence.
(c) When overlapping completely, finding the history of connected contramers
is a tandem repeat history problem first described by Fitch [23]. In the history
given here the last evolutionary segment (AX) evolves directly from the first
one (AY). Note that for only partially overlapping contramers such a non-
linear evolutionary order is not possible.

only if a ≥ l
2 . Therefore any arch with a < l

2 copies of its
seed is not necessarily optimal.

Figure 9a and b depicts how the best order of mutations is
found independently for each column of merged alignments.
Lemma 3 forces us to explore all possible mutation orders in
between optimal arches in order to find minimum costs for a
column (Figure 9b). This is performed in Algorithm 3 by

COSTCOLUMN(p1,...,x, q1,...,x, O)+
COSTCOLUMN(px+1,...,k, qx+1,...,k, O)+
MINCOST((q1, . . . , qx)(qx+1, . . . , qk)).

COSTCOLUMN() yields the best order of mutations separately
for the contramer columns of both sequences and MINCOST()
determines the minimun cost to transform an arbitrary repeat
copy from one sequence into one from the other sequence.

The arch technique modified according to Lemma 3 finds
optimal mutation orders under the assumption that neighboring
positions in a column are evolving consecutively from each
other. While this condition always holds for contained con-
tramers (Figure 10a), the evolutionary order of duplications
in connected contramers can be non-linear (Figure 10c).
Either, two merged contramers C1 = (s′, b1,m1, e1, A1) and
C2 = (s′, b2,m2, e2, A2) overlap partially, s.t. (m1, e1) 6=
(b2,m2 − 1) and (m2, e2) 6= (b1,m1 − 1). Here, some of the
characters of C1 or C2 are not transitively linked with the
other contramer, implying that the evolutionary order must be
a subsequent chain, starting at any of the involved evolutionary
fragments (Fig. 10b). Alternatively, two connected contramers
may overlap fully, e.g. (m1, e1) = (b2,m2 − 1). In this case

106

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 0, NO. 0, ... 2006 10

- A B D D

- - B - -

A C D D

- B D B E

C D D -

D - B E A

B - D E A

A

A

A

A

A
4

A
5

A
6

A
3A

2

A
1

 B D B E

C D D -

D - B E

A
4

A
5

1

2

3

4

5

6

7

4

5

6

4

6 5

B

B

C

B

C

D

B

B

C

D

B

D C

(a) (b) (c)

B D B E C D D D B E

B D B E C D D D B E

1

2

3

4

5

6

7x =

o =

o =

1

2

x + 1

k

Fig. 9. Alignment of two multiply merged contramers, one comprising the lines 1 to x = 7 and the other one spanning lines x+1 to k. The merged link set
for the first sequence is given by lnk(C1 ∪C2 ∪C3 ∪C4 ∪C5 ∪C6). (a) shows one column (grey) for which the minimum costs are to be determined. In
(b) optimal (solid) and suboptimal arches (dashed) for one of the multiply merged contramers are depicted for the respective column. Note that the best order
of mutations is found for each column independently in Algorithm 3). (c) Two possible orders for the duplications captured by the completely overlapping
contramers C4 and C5 (o1 = 4, o2 = 6). In contrast to the order of mutations, the order of duplications within completely overlapping contramers stays
the same for all included positions (columns of the alignment). These orders are generated by PERMUTE({o1, . . . , o2}) in Algorithm 3. Corresponding parts
from the alignment column shown in (b) are given to the right of the corresponding duplication order.

the evolutionary order is arbitrary and all possible duplication
tree topologies have to be investigated to find the history with
least cost (Fig. 10c). To yield minimum costs, we therefore
separate the problem of finding the best order of duplications
in completely overlapping contramers from the problem of
finding the best order of mutation events. Algorithm 3 imple-
ments this as follows: if the first position of fully overlapping
contramers is included in a newly constructed point q, possible
duplication orders O are correspondingly added as alternatives
by PERMUTE(q). Unlike the mutation order, the order of
duplications obviously stays the same for all positions involved
in the same fully overlapping duplication events.

V. RESULTS

To test our method, we applied it to the DNA se-
quences of Staphylococcus aureus. To be specific, the 5’-
VNTR clusters in the gene encoding the spa-Protein were
used as input for pairwise alignment under the model
of evolution described in Section II. Since the spa types
for all hitherto isolated strains are known, the sequences
are provided in characters of the macro alphabet Σ′. To
this point, we use the Kreiswirth notation defined by
Σ′ = {−, A,A2, B, B2, C, C2, . . . , V, V2, W,X, Y, Y2, Z, Z2}.
In addition to the simplified alphabet used to introduce the
model, in the Kreiswirth notation each letter may be used more
than once in conjunction with a unique index [4].

Figure 11 shows an alignment of the spa repeat patterns that
we used to set up a simple cost scheme for the comparison
of spa types: since we are interested in a distance to measure
evolutionary steps, we assign a unit cost u. In our tests, we
always set u = 1. The objective function to score mutations is
based on a multiple alignment of all repeat types (Fig. 11). In
order to contribute to the fact that the repeat cluster is coding,
nucleotide substitutions changing effectively the corresponding
codon are weighted with a cost of u, while silent mutations are
omitted. In the same manner indels are penalized according
to the number of codons x missing (xu). The mutation costs

cost(mut(a, b)) for a, b ∈ Σ′ \ {−} are summed up along
the pairwise DNA alignment of a and b which is projected
from the global alignment of all repeats. A duplication has
always unit cost, regardless of its degree. An excision is treated
differently, we penalize it according to its length, such that
cost(exc(s′[i1, i2])) = (i2 − i1). The linear cost function
prevents the algorithm from replacing all evolutionary events
by excisions when repeat copies are no longer exact. From
another point of view, the scoring biases the algorithm to favor
duplications and mutations and prefer them – up to a certain
threshold – over possible excisions.

Since, to our knowledge, this is the first time the VNTR
data of spa types is used to infer distance measures, we focus
on one sequence type (ST), ST-254, that by definition pools
strains with the same types of the seven housekeeping genes
used for MLST [25]. However, the resolution of STs found by
MLST is lower than the microvariation within the spa repeat
cluster. Thus, a ST group with an identical MLST pattern can
pool several strains with diverging spa types (named by “t” and
a 3-digit code), while a spa type may have evolved in different
ST groups. spa types used in here to investigate the micro-
variation of the repeats (i.e., t036, t048, t115, t139, and t146)
were isolated in the laboratory from identical strain stocks
[24]. Therefore, the microvariation of these spa types can be
assumed to bear a phylogenetic marker (Fig. 12a).

Figure 12b summarizes the differences of applying the
VNTR distance, compared to a standard distance measure
that takes into account only substitutions and indels. In order
to compare the results, we adapted the scoring function to
the same values given for the VNTR evolution (xu for the
insertion of x gaps and substitution costs according to non-
synonymous mutations, as shown in Figure 11). Note that the
alignments shown in Figure 12 are only one example from
a set of alignments that can reproduce the minimal costs
shown. As can be seen clearly, the distribution of the costs
varies substantially between the described model and a model
exclusively based on substitutions and indels. This results from

107

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 0, NO. 0, ... 2006 11

spa Repeat Code 1 2 3 4 5 6 7 8

A AAA GAA GAC AAC AAA AAA CCT GGC

A2 GAG GAA GAC GGC AAC AAA CCT GGT

B AAA GAA GAC AAC AAA AAA CCT GGT

B2 AAA GAA GAT AAC AAC AAG CCT GGT

C AAA GAA GAC AAC AAA AAG CCT GGC

C2 AAA GAA GAC AAT AAC AAG CCT GGT

D AAA GAA GAC AAC AAC AAA CCT GGC

D2 GAG GAA GAC AAT AAC AAA CCT GGT

E AAA GAA GAC AAC AAC AAA CCT GGT

E2 AAA GAA GAC AAT AAC AAG CCT GGT

F AAA GAA GAC AAC AAC AAG CCT GGC

F2 AAA GAA GAC AAC AAA AAG CCT AGC

G AAA GAA GAC AAC AAC AAG CCT GGT

G2 AAA GAA GAC AGC AAC AAG CCT GGC

H AAA GAA GAC AAT AAC AAG CCT GGC

H2 AAA GAA GAT GGC AAC AAG CGT AGT

I AAA GAA GGC AAC AAA AAA CCT GGT

I2 GAG GAA GAC AAC AAC AAA CCT GGC

J AAA GAA GAC GGC AAC AAA CCT GGC

K AAA GAA GAC GGC AAC AAA CCT GGT

L AAA GAA GAC GGC AAC AAG CCT GGC

M AAA GAA GAC GGC AAC AAG CGT GGT

N AAA GAA GAT GGC AAC AAA CGT GGC

O AAA GAA GAT GGC AAC AAA CCT GGT

P AAA GAA GAT GGC AAC AAG CGT GGC

Q AAA GAA GAT GGC AAC AAG CCT GGT

R AAA GAA GAT GGT AAC AAA CCT GGC

T GAG GAA GAC AAC AAA AAA CCT GGT

U GAG GAA GAC AAC AAC AAA CCT GGT

U2 CAA GAA GAC GGC AAC AAG CCT GGT

V GAG GAA GAC AAC AAC AAG CCT AGC

V2 CAA GAA GAC AAC AAC AAG CCT GGT

W GAG GAA GAC AAC AAC AAG CCT GGC

X GAG GAA GAC AAC AAG AAG CGT GGT

Y GAG GAA GAC AAT AAC AAG CCT GGC

Y2 GAG GAA GAC AAC AAA CCT GGC

Z GAG GAA GAC AAT AAC AAG CCT GGT

Z2 AAA GAA GAC AAC AAG CCT GGT

AAA, AAG (Lys)

GAA, GAG (Glu)

GAC, GAT (Asp)

AAC, AAT (Asn)

GGC, GGT (Gly)

AGC, AGT (Ser)

CCT (Pro)

CAA (Gln)

Fig. 11. DNA sequences of the spa repeat types known hitherto. To the left,
the letter denoting the repeat type in the Kreiswirth notation is given. The
24-bp repeats are grouped in triplets according to the reading frame. Shaded
boxes indicate the different amino acids that are translated from the codons.
Data adapted from [4].

YGFMBQBLPO
YGFMBLPO
YGFMBQBLQBLQBLPO
YFMBQBLQBLPO
YFMBQBPO

t036
t048
t115
t139
t146

ST254:(a)

(b)

YGFMBL--------PO
YGFMBQBLQBLQBLPO

t048
t115 cost=3

YGFMBQBLPO
Y-FMBQB-PO

t036
t146 cost=2

YGFMBQBLPO
YGFM--BLPO

t036
t048 cost=1

YGFMBQBL------PO
YGFMBQBLQBLQBLPO

t036
t115

cost=2

YGFMBQBL---PO
Y-FMBQBLQBLPO

t036
t139 cost=2 YGFMBQBLQBLQBLPO

Y-FMBQBLQBL---PO
t115
t139 cost=2

YGFMBQBLQBLQBLPO
Y-FMBQB-------PO

t115
t146 cost=4

YFMBQBLQBLPO
YFMBQB----PO

t139
t146 cost=2

YGFMBL-----PO
Y-FMBQBLQBLPO

t048
t139 cost=3

YGFMBL-PO
Y-FMBQBPO

t048
t146 cost=2

(2)

(6)

(4)

(2)

(8)

(6)

(2)

(4)

(8)

(4)

Fig. 12. Sequence comparison of the MLST sequence type ST-254. (a) a
list of spa types found to have the ST-254 pattern. The data was acquired
by sequencing from the same laboratory strains the VNTR cluster of the
Spa protein and the MLST loci [24]. (b) One alignment that scores minimal
costs for each pair of spa types from the ST-254 group. Substrings involved
in duplication events leading to the minimum distance are underlined. To
the right of the alignments the costs are given w.r.t. the spa type model
and in parentheses the costs under a model that is not taking into account
duplications. Under the evolutionary model, the costs in the comparison
of t036 and t048 are composed of a duplication event of the substring
t048[5, 6] = BL and the mutation of repeat L into t036[6] = Q, yielding
the distance d(t036, t048) = cost(dup(t048[5, 6]))+ cost(mut(L, Q))=
1 + 0 = 1.

the simple fact that the latter scoring scheme is not capable
to distinguish duplication events from excisions and cannot
score them differently. The resolution of the VNTR model
is therefore higher, which results in a more detailed analysis
when comparing the distances.

For instance, the minimal costs of the alignments in Fig. 12b
can be calculated as follows. (Note that mutation costs of
cost 0 are omitted. Therefore, character changes are possible
between repeats that do only differ by silent mutations.)

d(t036, t048) = cost(dup(t048[5, 6])) + cost(mut(L, Q)) = 1

d(t036, t115) = 2cost(dup(t036[6, 8])) = 2

d(t036, t139) = cost(dup(t036[6, 8])) + cost(exc(t036[2, 2])) = 2

d(t036, t146) = cost(dup(t036[2, 2])) + cost(exc(t036[8, 8])) = 2

d(t048, t115) = cost(dup(t048[5, 6])) + 2cost(dup(QBL)) = 3

d(t048, t139) = cost(dup(t048[2, 2])) + cost(dup(t048[4, 5]))

+cost(dup(QBL)) = 3

d(t048, t146) = cost(dup(t048[2, 2])) + cost(exc(t146[6, 6])) = 2

d(t115, t139) = cost(dup(t115[2, 2])) + cost(exc(t115[6, 8])) = 2

d(t115, t146) = cost(dup(t146[2, 2])) + cost(exc(t115[8, 8]))

+2cost(dup(QBL)) = 4

d(t139, t146) = cost(dup(t139[7, 7])) + cost(dup(QBL)) = 2

VI. CONCLUSION

The VNTR model of evolution joins point mutations (sub-
stitutions and indels) and mutations that involve whole tandem
repeats (excisions and duplications of variable degree) while
allowing them in arbitrary order. To our knowledge, this is
the first time an evolutionary model containing duplications of
variable degree has been described for sequence comparison.
Note that, because spa repeats are within a coding region, we
restricted our VNTR model to single-step duplications and
excisions at the boundaries of the repeat types of Σ′. Taking
into account operations as captured in the VNTR model,
we described an exact method to compare a pair of repeat
sequences and to assign them a distance. In first tests we
could show that the pairwise comparison under the VNTR
evolution efficiently captures cascades of duplication events
and expresses them in the distance measure. Traditional scor-
ing functions based on a model restricted to substitutions and
indels cannot resolve duplication events, and scoring schemes
that additionally consider duplications (but no excisions) do
not support cascaded cycles of duplications, excisions and mu-
tations. However, in vivo studies demonstrated how essential
these mechanisms are, when investigating the evolution of S.
aureus [5].

ACKNOWLEDGMENT

The authors would like to thank France Denoeud and Dag
Harmsen for fruitful discussions.

REFERENCES

[1] P. L. Flèche, Y. Hauck, L. Onteniente, A. Prieur, F. Denoeud, V. Ramisse,
P. Sylvestre, F. Ramisse, and G. Vergnaud, “A tandem repeats database
for bacterial genomes: application to the genotyping of Yersinia pestis
and Bacillus anthracis,” BMC Microbiol., vol. 1, p. 2, 2001.

108

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 0, NO. 0, ... 2006 12

[2] R. Fronthingham and W. Meeker-O’Connell, “Genetic diversity in the
mycobacterium tuberculosis complex based on variable numbers of
tandem dna repeats,” Microbiology, vol. 144, pp. 1189–1196, 1998.

[3] P. L. Flèche, M. Fabre, F. Denoeud, J.-L. Koeck, and G. Vergnaud, “High
resolution, on-line identification of strains from the Mycobacterium
tuberculosis complex based on tandem repeat typing,” BMC Microbiol.,
vol. 2, p. 37, 2002.

[4] L. Koreen, S. V. Ramaswamy, E. A. Graviss, S. Naidich, J. M. Musser,
and B. N. Kreiswirth, “spa typing method for discriminating among
staphylococcus aureus isolates: implications for use of a single marker
to detect genetic micro- and macrovariation,” J. Clin. Microbiol., vol. 47,
pp. 792–799, 2004.

[5] B. Kahl, A. Mellmann, S. Deiwick, G. Peters, and D. Harmsen, “Varia-
tion of the polymorphic region X of the protein A gene during persistent
airway infection of cystic fibrosis patients reflects two independent
mechanisms of genetic change in Staphylococcus aureus,” J. Clin.
Microbiol., vol. 43, pp. 502–505, 2005.

[6] N. N. I. S. System, “National nocosomial infections surveillance (nnis)
system report, data summary from january 1990-may 1999,” Am. J.
Infect. Control, vol. 27, pp. 520–532, 1999.

[7] M. de Macedo Brgido, C. R. M. Barardi, C. A. Bonjardin, C. L. S.
Santos, M. de Lourdes Junqueira, and R. R. Brentani, “Nucleotide
sequence of a variant protein a of Staphylococcus aureus suggests
molecular heterogeneity among strains,” J. Basic Microbiol., vol. 31,
pp. 337–345, 1991.

[8] A. van Belkum, S. Scherer, L. van Alphen, and H. Verbrugh, “Short-
sequence dna repeats in prokaryotic genomes,” Microbiol. Mol. Biol.
Rev., vol. 62, pp. 275–293, 1998.

[9] D. A. Robinson and M. C. Enright, “Evolutionary models of the
emerge of methicillin-resistant staphylococcus aureus,” Antimicrob.
Agents Chemother., vol. 47, pp. 3926–3934, 2003.

[10] R. Groult, M. Lonard, and L. Mouchard, “A linear algorithm for the
detection of evolutive tandem repeats,” in The Prague Stringology
Conference 2003, 2003.

[11] D. Gusfield and J. Stoye, “Linear time algorithms for finding and
representing all the tandem repeats in a string,” J. Comput. Syst. Sci.,
vol. 69, no. 4, pp. 525–546, 2004.

[12] G. Benson, “Sequence alignment with tandem duplication,” J. Comput.
Biol., vol. 4, pp. 351–367, 1997.

[13] S. Bèrard and E. Rivals, “Comparison of minisatellites,” J Comput Biol,
vol. 10, pp. 357–372, 2003.

[14] B. Behzadi and J.-M. Steyaert, “The minisatellite transformational
problem revisted,” in Proc. of WABI 2004, ser. LNBI, vol. 3240, 2004,
pp. 310–320.

[15] G. Benson and L. Dong, “Reconstructing the duplication history of a
tandem repeat,” in Proc. of ISMB 1999, 1999, pp. 44–53.

[16] D. Jaitly, P. Kearney, G.-H. Lin, and B. Ma, “Reconstructing the
duplication history of tandemly repeated genes,” J. Comput. Sys. Sci.,
vol. 65, pp. 494–507, 2002.

[17] O. Elemento, O. Gascuel, and M.-P. Lefranc, “Reconstructing the du-
plication history of tandemly repeated genes,” Mol. Biol. Evol., vol. 19,
pp. 278–288, 2002.

[18] D. Bertrand and O. Gascuel, “Topological rearrangements and local
search method for tandem duplication trees,” IEEE/ACM Trans. Comput.
Biol. Bioinformatics, vol. 2, pp. 1–13, 2005.

[19] M. Sammeth, T. Weniger, D. Harmsen, and J. Stoye, “Alignment of tan-
dem repeats with excision, duplication, substitution and indels (EDSI),”
in Proceedings of the 5th International Workshop on Algorithms in
Bioinformatics, WABI 2005, ser. LNBI, vol. 3692, 2005, pp. 276–290.

[20] E. Rivals, “A survey on algorithmic aspects of tandem repeats evolution,”
Int. J. Found. Comput. S., vol. 15, pp. 225–257, 2004.

[21] M. Waterman, Introduction to computational biology: maps, sequences,
and genomes. CRC Press, 1995.

[22] M. Sammeth, J. Rothgänger, W. Esser, J. Albert, J. Stoye, and D. Harm-
sen, “Qalign: quality based multiple alignments with dynamic phyloge-
netic analysis,” Bioinformatics, vol. 19, pp. 1592–1593, 2003.

[23] W. Fitch, “Phylogenies constrained by cross-over process as illustrated
by human hemoglobins in a thirteen-cycle, eleven amino-acid repeat in
human apolipoprotein a-i,” Genetics, vol. 86, pp. 623–644, 1977.

[24] “Ridom nomenclature server,” http://www.ridom.de/spaserver/
nomenclature.shtml.

[25] M. Enright, N. Day, C. Davies, S. Peacock, and B. Spratt, “Multi-
locus sequence typing for characterization of methicillin-resistant and
methicillin-susceptible clones of Staphylococcus aureus,” J. Clin. Mi-
crobiol., vol. 38, pp. 1008–1015, 2000.

Michael Sammeth studied Biology and Computer
Science at the University of Würzburg. Supported
by a fellowship of the Ernst Schering Research
Foundation, he researched on special applications
of multiple sequence alignment at Bielefeld Univer-
sity and the Center for Integrated Bioinformatics in
Amsterdam. He received his PhD degree from the
Technical Faculty of Bielefeld University in 2005
and he currently holds a postdoctoral position in
Barcelona at the Center for Genome Regulation
in Barcelona supported by the German Academic

Exchange Service.

Jens Stoye studied applied computer science in the
natural sciences at Bielefeld University, where he
received the PhD degree in 1997 on a topic related
to multiple sequence alignment. After postdoctorate
positions at the University of California at Davis and
the German Cancer Research Center in Heidelberg,
he became head of the Algorithmic Bioinformatics
group at the Max Planck Institute of Molecular
Genetics in Berlin. Since 2002, Dr. Stoye has been
a professor of genome informatics at Bielefeld Uni-
versity.

109

The thesis presents enhancements for automated and manual multiple sequence
alignment: existing alignment algorithms are made more easily accessible and new
algorithms are designed for difficult cases.
Firstly, we introduce the QAlign framework, a graphical user interface for multiple
sequence alignment. It comprises several state-of-the-art algorithms and supports
their parameters by convenient dialogs. An alignment viewer with guided editing
functionality can also highlight or print regions of the alignment. Also phylogenetic
features are provided, e.g., distance-based tree reconstruction methods, corrections
for multiple substitutions and a tree viewer. The modular concept and the platfor-
mindependent implementation guarantee an easy extensibility.
Further, we develop a constrained version of the divide-and-conquer alignment such
that it can be restricted by anchors found earlier with local alignments. It can be
shown that this method shares attributes of both, local and global aligners, in the
quality of results as well as in the computation time. We further modify the local align-
ment step to work on bipartite (or even multipartite) sets for sequences where
repeats overshadow valuable sequence information. In the end a technique is estab-
lished that can accurately align sequences containing eventually repeated motifs.
Finally, another algorithm is presented that allows to compare tandem repeat
sequences by aligning them with respect to their possible repeat histories. We
describe an evolutionary model including tandem duplications and excisions, and
give an exact algorithm to compare two sequences under this model.

Kangaroo rat (Dipodomys spec.) escaping constrained dynamic programming matri-
ces. The 30 cm (incl. tail) animal received its name from the ability to jump up to 2
meters when in danger. In the context of this thesis, it is noticeable that more than half
of the kangaroo rat genome consists of families of just three basic repeats, with over
two billion copies of a three-base repeat, two billion copies of a six-base repeat, and a
billion copies of a ten-base repeat.

Abstract

Cover page

Bielefeld Server for Online Publications

http://bieson.ub.uni-bielefeld.de

