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The Cream in My Polytope 
 

Bob Kinner, Fenwick High School <BKinner@fenwickfalcons.org> 
Abstract 

This guided discovery project provides high school math students an opportunity to solve 
a real-world problem by applying tools they have learned in geometry and, optionally, 
calculus. The task is to determine the volume, surface area, and other properties of a 
certain form of folded paper container, such as those used by Wendy’s for sour cream. 
Students first construct the containers, and then are challenged to find a geometric way to 
determine the volume of these objects, which do not fit conventional volume formulas. 
They next find surface area and, optionally, angles of the container. In the process, 2- and 
3-dimensional visualization skills are exercised. Calculus students are asked to find the 
volume by the method of slabs, and subsequently to determine the dimensions that 
optimize the surface-to-volume ratio. Several additional extensions are suggested, and 
core curriculum standards are listed. Diagrams and calculations are provided. While 
much support material is provided, it is hoped that the teacher will encourage students to 
explore, discover and invent as much as possible on their own. 

 
from 1928 begins: “You’re the cream in my coffee; you’re the salt in my stew.” I have 
occasionally seen individual containers for coffee creamer and sour cream – and, in England, 

for milk – constructed from a paper cylinder pinched perpendicularly at the ends. More recently, 
they have become popular containers among crafts and scrapbook enthusiasts. 
 
These humble little packages provide a plethora of mathematical explorations: find the volume; find the 
surface area; find the dimensions that will minimize the surface-to-volume ratio for a given volume; etc. 
Geometry, algebra, calculus, and Wendy’s baked potatoes rolled into one package; can life get any better? 
 

I approach this as an inquiry-based lesson. Students start out by 
actually constructing a container, then brainstorming approaches 
to calculating the various dimensions. Much of this can be done 
with geometry only, but it is also a very appropriate project for 
calculus students – who can take things farther than geometry 
allows. 
 
Activity Description 
To start, take a geometric approach to a very specific example. 
Your students should construct a paper cylinder with 

circumference 12 cm and length 71.6~53  cm, which may 
sound strange, but it makes things much clearer, as you will see. 
Call it the length, not height, for practical reasons: the containers 
topple over if stood on 
end. Pinch one end of 
the cylinder 
perpendicular to its 
axis; then pinch the 
other end 

perpendicular to both the axis and the first end (see photos). 
Ignore excess material needed to seal the ends. Crease along 
the segments joining the ends to form four congruent 
triangular faces. Call the length of the axis a, which turns out 
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to be 6 cm if the cylinder is 53  cm in length (there’s the connection: nice lengths to work with). The 
width of the pinched ends call b, which here is also 6 cm. Yes, it is a polyhedron, but it is also a polytope, 
and that will give your students a new math term to explore. [A polytope is any n-dimensional geometric 
object with flat edges or faces. Two-dimensional polytopes are called polygons; three-dimensional 
polytopes are called polyhedrons; etc.] 

 
Finding the volume of this solid geometrically is easier than it may look at first. Slice it in half, along the 
axis and through one end, and perpendicular to the other end. This step is the most difficult for students to 
visualize. I suggest cutting a model container from a Styrofoam block before class, then slicing it in half 
with students observing. Note that angles BFD and AFD are right angles. 
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Polyhedron ABFD is just a triangular-base right pyramid, so the volume can be found by: 

VABDF    18)3(2
66

3
1

3  Bh . But this is only one half of the total volume: 18 times 2 = 36 cm3. 

Now let’s generalize this for any a and b: 
21

3 3 2 2 12ABDF

Bh a b b ab
V

        
   

, then times 2, as above, giving a total volume of 
2

6ABCD

ab
V  . 

Finally, in the special case where a = b, 
3 3

6 6ABCD

a b
V    

 
While working with geometry, find the surface area and edge lengths. [From this point on, just deal with 
general formulas, not just the specific 6 × 6 (i.e. “a by b”) cm container.] Looking at the right triangular 
pyramid that we used for volume (from the top face, triangle ABD); we can see that the altitude of that 
triangle (i.e. the slant height s of the pyramid) can be found as follows. 

 

Since 
2

2

4

b
s a  , the area of one face 

2
2

4
2

b
b a

A


 , and the total surface area, 
2

22
4

b
SA b a  . 

Are you surprised that, for the 6 × 6 (a by b) cm model, s = 3 5  cm? Or that the SA = 36 5  cm2? 
 

Note that angle EFD is a right 
angle. 
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To find the container edge length, find the length of a non-base edge, e, of the (isosceles) triangle ABD. 
2

2 2
2 2

2 4

b b
e a

           
 

2
2

2

b
e a     sum of all edge lengths = 

2
22 4

2

b
b a  .  

 
Calculus Approach 
Now look at the calculus approach to volume, and start out with the special case where a = b. Consider 
some of the rectangular cross-sections perpendicular to the axis: 

The total volume of the container is the sum of the volumes of the rectangular slabs with thickness dx, 
each with area x(a – x), as x goes from 0 to a:  

   
2 3 3

2
00 0 2 3 6

a a a
ABCD

ax x a
V x a x dx ax x dx

 
       

 
  , as from the geometric approach above. 

Now, let’s generalize that to the case where a b (but still starting with a cylinder):

0

a

ABCD

b b
V x b x dx

a a

           
    

 , in which the first factor of the integrand varies from 0 to b as x varies 

from 0 to a, while the second factor varies from b to 0. The integration yields 
2

6ABCD

ab
V  , from the 

geometric approach above. 
 
As an extension for students to explore, consider the case where the original paper roll is a frustum of a 
cone instead of a cylinder. This implies that the widths of the ends of the container will differ; use c to 
symbolize the shorter end (but that does not matter).  

 
Geometrically finding the volume by slicing the container in half, as we did above in the cylindrical case: 

1 1

3 3 2 2ABDF

a c b
V Bh

           
     

 for one-half of the solid, then multiplying by 2 =
6

abc
, the total volume. 

It is easy to see that the cylindrical formulas are just special cases of this. Developing this formula from 
calculus is just a generalization of the approach made above where 

0

a

ABCD

b c
V x c x dx

a a

           
    

 , as the first factor of the integrand varies from 0 to b while x varies from 

0 to a, while the second factor varies from c to 0. The integration yields 
6ABCD

abc
V  . 
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So far, we have been able to approach things using both geometry and calculus, the geometric approach 
often being the easier. Now we must depend on the power of calculus: using a cylindrical tube, and for a 
given volume, what values of a and b minimize the surface-to-volume ratio? (This is an important 
packaging consideration.) Again, we will ignore the excess material needed to seal the ends, although that 
is a practical packaging consideration. Combining previously determined formulas in ratio form: 

2
2

2 2

2

2
6 44

6

b
b a

SA a b

abV ab

 
  . Since

2

6

ab
V  , 

2 6
6 4

6

6

V
a

V SA ab
a V V

a
a


   . 

The final fraction can be tidied-up a bit, but it’s hardly worth the trouble.  Finding the derivative of 
SA

V
 

with respect to a, and solving for the minimum point yields 3 3a V  . [If you have lots of free time, you 
could do that work by hand. I used a TI-nspire CX CAS to do it.] Our first example, the 6 × 6 cm 

container, had a volume of 36 cm3 and a surface area of 36 5  cm2, yielding 236.2~5V
SA . By 

choosing 762.4~3633 a  (instead of 6), 182.2~V
SA  (and b ~ 6.735), a modest improvement. 

 

Not surprisingly, the optimal
SA

V
 ratio is not constant; it depends on the volume. [This may be easier for 

students to visualize with a sphere. The geometry concepts of surface area ratio and volume ratio for 
similar solids are fundamental here.]  
 

However, since these polyhedrons would appear to be similar solids, you might guess that the ratio 
b

a
 is 

constant - and you would be right. As a clue, let’s consider the optimized V = 36 cm3 example two 

paragraphs above, 414.1~
762.4

735.6


a

b
, which looks suspiciously like 2 . Combining the formulas for the 

volume, 
2

6

ab
V  , and the optimum value of a, 3 3a V , we get:

1
2 2 23

3
2

3 2 2
6 2

ab ab b b
a a

a a

 
        
 

. 

 
Summing Up 
Many other explorations are possible, some easy, some not so. A few suggestions: 

 Determine the various angles formed at each of the four vertices and between the pairs of 
opposite faces. 

 Determine the optimal  for the conical case, or when allowing for the additional material 

needed to seal the ends. 
 We creased the edges to make flat faces – to make it easier to study. What happens if you don’t 

crease them, allowing the faces to bulge? 
 There’s a much easier way to find surface area, especially for the cylindrical case. What is it? 
 Clearly, if the end seams were parallel, the volume would be zero. However, does making them 

perpendicular necessarily maximize the volume?  

High school CCSS content: HSA-SSE.A.1b − Interpret complicated expressions 
HSA-CED.A.2 − Create equations in two or more variables 
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Yearly Ohio High School Graduate 
Math Remediation Rates (%) 

1979-2011

(1979, 23%) 

(2011, 35%) 

HSG-SRT.B.5 – Use congruence and similarity criteria 
HSG-GMD.A.3 – Use volume formulas 
HSG-GMD.B.4 – Identify cross-sections of 3-dimensional objects 

 
Container construction photos were taken by Emma Siewny. 

 
Wendy’s sour cream container photo source: http://ericsaltchemistry.blogspot.com/  
Crafts video for making sour cream container: http://www.youtube.com/watch?v=0rEvUkqqXnI  
     or http://www.youtube.com/watch?v=QCo3rvYV2og 
 
 

 
 
 
 
 
 
 
 

 
 
 

        
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
“Relative to learning algebra, one widely used strategy is to preserve the current approaches to 
teaching algebra and then address shortcomings in student outcomes with remediation.” 

Stroup, W., Carmona, L, & Davis, S. M. (2013). “Improving on Expectations: Preliminary Results from 
Using Network-supported Function-based Algebra” in Oldknow, A. & Knights C. eds. (2013). 

Mathematics education with digital technology: Education and digital technology, 67. London: 
Bloomsbury Publishing Plc.  

 
 

Mr. Kinner teaches honors and AP math courses at Fenwick High School in 
Franklin, OH. His focus is finding ways to breathe life into textbook mathematics 
for his students through explorations with technology and outside-the-box 
projects. 

Source:  
1979 to 2003 data from: 
http://qry.regents.state.oh.us/cgi-
pub/site_map?name=rem_rep&jsflag=yes  
 
2003 to 2007 data from: 
http://regents.ohio.gov/perfrpt/hs_transition2003-
2007/HS_Report_2003-07.pdf  
 
See: 
http://regents.ohio.gov/perfrpt/hs_2008/hs_trans_HS
_rpt_AU08.pdf  for links to various remediation 
reports 


