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ẍ acceleration of a particle or a degree of freedom
xmax(t) instantaneous maximum of a potential
xmin(t) instantaneous minimum of a potential
xs(t) stable orbit
xu(t) unstable orbit
Z∗ derivative of the prefactor in the saddle point

approximation with respect to the final coordi-
nate

vii



List of Symbols

viii



List of Figures

2.1 Illustration of the escape problem . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Sketch of an atomic force microscope . . . . . . . . . . . . . . . . . . . . 19
3.2 Deflection of the AFM cantilever . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Setup of a single-molecule force spectroscopy experiment . . . . . . . . 21
3.4 Force distance curve measured by the AFM . . . . . . . . . . . . . . . . 22
3.5 Typical distributions of rupture forces . . . . . . . . . . . . . . . . . . . . 24
3.6 Effect of the applied force on the model potential landscape . . . . . . . 25

4.1 Statistical uncertainties for Bell’s model . . . . . . . . . . . . . . . . . . 38
4.2 Rupture force distributions for the extension of Bell’s model . . . . . . . 40
4.3 Dependence of the maximum likelihood fit values on the manner in

which the barrier height decreases . . . . . . . . . . . . . . . . . . . . . 41
4.4 Distribution of maximum likelihood fit values for the extension of Bell’s

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.1 Rupture force distributions for the PhoB peptide . . . . . . . . . . . . . 47
5.2 Survival probabilities for the dissociation of the PhoB peptide . . . . . . 48
5.3 Geometrical variations in single-molecule pulling experiments . . . . . . 50
5.4 Heterogeneous bond model applied to experimental data: Gaussian dis-

tribution of α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.5 Heterogeneous bond model applied to experimental data: f vs. −v ln n

plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.6 Fitted distributions of α . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.7 Rupture force density for different distributions of α . . . . . . . . . . . 55
5.8 Heterogeneous bond model applied to experimental data: Gamma dis-

tribution of λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.9 Influence of the pulling geometry on the dissociation pathway . . . . . . 60
5.10 Examples for force-extension curves . . . . . . . . . . . . . . . . . . . . 61
5.11 Filtering with respect to the force-extension curve . . . . . . . . . . . . 64
5.12 DNA-protein interaction: f vs. −v ln n plots . . . . . . . . . . . . . . . . 65
5.13 Model with an intermediate metastable state . . . . . . . . . . . . . . . 66
5.14 Influence of the equilibration time in a two state model . . . . . . . . . 68

6.1 Stable and unstable orbits of a driven cubic potential . . . . . . . . . . . 75
6.2 Optimal transition paths for a modulated potential . . . . . . . . . . . . 83
6.3 First passage time density for the modulated cubic potential . . . . . . . 92

ix



List of Figures

6.4 Integrands of the rate approximation for static potentials . . . . . . . . . 96
6.5 Instantaneous escape rate for the tilted parabolic potential . . . . . . . . 108
6.6 Time-averaged escape rate as a function of driving frequency . . . . . . 109
6.7 Time-averaged escape rate as a function of driving amplitude . . . . . . 110
6.8 Time-averaged escape rate as a function of noise strength . . . . . . . . 110
6.9 Instantaneous escape rate for the linear-cubic potential . . . . . . . . . 113
6.10 Time-averaged escape rate for the linear-cubic potential . . . . . . . . . 114

7.1 Potential with two metastable states . . . . . . . . . . . . . . . . . . . . 118
7.2 Temperature pulses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.3 Instantaneous transition rates for a fluctuating noise strength . . . . . . 124
7.4 Instantaneous transition rates for a potential with two metastable states 126
7.5 Equilibrium distribution in dependence of the parameters . . . . . . . . 127
7.6 Effective escape rate from a potential with 2 metastable states . . . . . . 128
7.7 Effective escape rate in dependence of the pulse length and strength . . 129
7.8 Effective escape rate for different potentials . . . . . . . . . . . . . . . . 131

x



Part I

General introduction and concepts

1





1 Introduction

Thermally activated escape over a potential barrier is ubiquitous in physical, biological,
chemical, and technical processes and its understanding of paramount importance
[HTB90]. Examples arise in the context of chemical and biological bonds [Mer01],
folding and unfolding of polymers [LOR+01, BS05], molecular motors [Rei02], friction
at the atomic scale [RGB+03], and phase jumps in Josephson junctions [Kur72, FD74],
to name only a few.
In the last decades elaborate experimental techniques have not only allowed to

observe systems at the nano-scale where thermal noise is particular important, but
also to directly manipulate them in a well defined manner, leading to far from ther-
mal equilibrium conditions which are theoretically particularly challenging. Thermally
activated escape from a metastable state under these far from thermal equilibrium
conditions is the main topic of this work.

Historically, Arrhenius may be considered as the father of reaction rate theory. He
investigated the dependence of the rate k of a chemical reaction on the temperature
T . Following a previous work of van’t Hoff, he proposed in 1889 a proportionality
k ∝ exp(−A/T ) with a constant A that was later identified with Eb/kB . Here Eb de-
notes the minimal energy needed before the reaction can occur and kB Boltzmann’s
constant. In the following half a century a lot of efforts have been spent on calculating
the escape rate, leading to concepts like the transition state method [HTB90, PT05],
but it took until 1940 that an expression for the rate could be derived from micro-
scopic physics principles by Kramers in his seminal paper [Kra40]. To this aim he
described thermally activated escape from a metastable state as Brownian motion of
a fictitious particle along a reaction coordinate in a (static) field of force. The theoret-
ical modeling of this Brownian motion goes, amongst others, back to Einstein [Ein05]
and can be described in two different ways. On the one hand, single realizations of
the dynamics can be considered. This results in a stochastic differential equation, the
Langevin equation [Lan08]. On the other hand, one may consider the probability dis-
tribution of particles. The temporal evolution of this distribution is governed by the
Fokker-Planck equation [Fok14, Smo15, Ris89]. Starting from the latter one, Kramers
showed that, for small noise strengths, meaning that Eb is much larger than the ther-
mal energy kBT , the escape rate is of the form proposed by Arrhenius and derived
expressions for the prefactor in the case of weak, intermediate, and strong damping.
In the subsequent decades Kramers’ rate theory was generalized in various important
directions [HTB90], but for a long time all of these works were restricted to the case
of time-independent force fields and time-independent heat baths. Some of the con-
cepts relevant for the theoretical description of Brownian motion and Kramers’ rate
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1 Introduction

theory will be outlined in chapter 2.

From a theoretical point of view, systems far from thermal equilibrium are partic-
ularly interesting for the following reason: In the equilibrium case, the probability
distribution of particles always resembles a Boltzmann form, and the second law of
thermodynamics sets strict restrictions to the behavior of the system. In the non-
equilibrium case, the probability distribution can strongly deviate from the Boltzmann
form. The possible behavior of the system is much more versatile, and important,
partly counterintuitive effects can occur. Extensively studied effects are the absolute
negative mobility [ERCdB05], stochastic resonance [GHJM98], or the rectification of
noise in ratchets and Brownian motors [Rei02]. The required non-equilibrium condi-
tions are achieved by applying time-dependent external perturbations either directly
to the system, leading to time-dependent potentials, or to its thermal environment,
resulting in time-dependent temperatures or damping coefficients. In fact, the inven-
tion of experimental techniques like optical tweezers [ADBC86] or the atomic force
microscope [BQG86] made it possible to exert quickly varying perturbations like forces
on nano-sized objects and thus to experimentally study the proposed effects.

The escape rate of a particle from a metastable state in the presence of time-
dependent perturbations is, in general, also time-dependent, and a relevant and im-
portant question is how this escape rate can be calculated. Here two different cases
can be distinguished. If the external driving is much slower than all internal relaxation
processes, the escape rate can at any time be approximated by the escape rate in the
frozen system. This situation has been extensively studied in many theoretical and
experimental works, e.g., [ER97]. However, if the perturbation of the system occurs
on the same time scale as the internal relaxation processes, the situation is much more
involved, and, despite its importance, this situation has been studied much less ex-
tensively than the first one. Approximations to the time-dependent escape rate were
only derived for rather special cases. In this thesis examples for both cases will be con-
sidered. In general, these examples refer to bio-chemical reactions or to the escape
of nano- or micro-sized particles from metastable potentials in an aqueous environ-
ment. As pointed out by Astumian [Ast06], for these systems it is nearly impossible
to achieve a situation in which the system is not near mechanical equilibrium. That
means, the damping is strong so that the inertia term in the equations of motion can
be neglected. The viscous drag is then equal to the net force, but with opposite sign.
Throughout this work we will restrict our discussions to this overdamped case.

In part II of this thesis we consider (dynamic) single-molecule force spectroscopy ex-
periments [Mer01, Rit06] which allow to observe the chemical dissociation of two
biomolecules at the single-molecule level. These experiments can, for example, be
conducted with an atomic force microscope (AFM) by connecting one binding part-
ner via a suitable linker to the tip of the AFM and the other one to the surface. When
retracting the tip from the surface at a constant speed, a steadily increasing force
on the pico-Newton scale acts on the complex. The main quantity of interest is the
magnitude, or to be more precise the distribution, of the force at the moment when

4



the bond breaks, i.e., the rupture force. It has been proposed by Evans and Ritchie
[ER97] that this forced single-molecule dissociation process can be viewed as a ther-
mally activated escape of a reaction coordinate over a potential barrier and that the
dissociation/escape rate can at any time be very well approximated by the Kramers
rate from a frozen, tilted potential. From a biological point of view, the perhaps most
important applications of single-molecule force spectroscopy arise in the context of
molecular recognition. This concept refers to the ability of biomolecules to recognize
their target molecules with an astonishing high precision. As most biological functions
rely on this highly selective recognition, its importance can hardly be overestimated.
Consequently, single-molecule force spectroscopy, being one of the few experimental
techniques allowing to study molecular recognition at the single-molecule level, has
been applied to a remarkable range of interactions: from the binding of complex bi-
ological molecules like antibodies [HBG+96, RSA+98] and protein-DNA interactions
[BBA+03, KCB+04, BBA+05] to small bio-organic or organic compounds like peptides
[EWB+05] and supramolecular systems [AdJM+04]. The basic principles of single-
molecule force spectroscopy will be presented in chapter 3. However, the theoretical
interpretation of the experimental data is still very challenging. In this thesis several
important questions in this context will be addressed.

The model introduced by Evans and Ritchie predicts the rupture force distribution
starting from a given potential landscape. But for a real experiment one usually faces
the inverse problem. The distribution of rupture forces is known, and one wants to
gain information about the energy landscape of the bond. Although the knowledge
of this distribution allows to calculate the dissociation rate for a given instantaneously
applied force, it is well known that one cannot uniquely reconstruct the full potential
landscape [ISB+97]. Hence, one usually starts from some model potential landscape
and tries to infer its parameters from the experimental data. In chapter 4 we will
discuss how this can be done in the optimal way. We will then demonstrate that the
proposed method is in fact superior to the commonly used methods. However, by
“simulating” an idealized experiment on the computer, we will also demonstrate that
only some global features of the kinetics and of the potential landscape can be reliably
reconstructed from single-molecule force spectroscopy experiments while others, like
the height Eb of the potential barrier of the unperturbed bond, depend critically on
the a priori choice for the functional form of the potential landscape. Quite different
potential landscapes with completely different values for the barrier height lead to
nearly identical rupture force distributions.

In chapter 5 we turn to real experimental data. It was shown in [REB+06] that
these data are often incompatible to the basic assumptions which are usually em-
ployed when theoretically modeling these experiments. A heterogenous bond model
has been introduced in which it has been proposed that some properties of the bond
are subjected to random variations upon repeating the single experiment. Here, this
Ansatz will be put forward and the microscopic physical origin of the proposed het-
erogeneity will be discussed. In fact, there are, for example, direct experimental hints
for variations in the pulling geometry which result in a natural way in a randomization
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1 Introduction

of the angle between the applied force and the direction of the reaction coordinate
which might explain the experimental observations. However, we will also discuss
alternatives to this model. For example, very similar distributions of rupture forces
might be obtained if the bond can exist in different metastable states and if the initial
probabilities for the states differ from the equilibrium ones. The results from this part
of the work might also be useful for various other experimental systems like friction at
the atomic scale [RGB+03] which is modeled within the very same theoretical frame-
work.

While it can be assumed for single-molecule force spectroscopy experiments that
the time-dependent escape rate is at any time very well approximated by the Kramers
rate from the frozen potential, in part III of this thesis the technically much more
challenging case of largely arbitrarily modulated potentials and temperatures will be
considered. As for the derivation of the Kramers rate, it will be assumed that the ther-
mal energy is small compared to the relevant potential barrier. Some approximations
to the time-dependent or the time-averaged escape rate are known for periodically
modulated potentials [SDG99, LRH00b, MS01, BG05, RD05], resulting in a renormal-
ization of Eb which depends in a very complicated manner on details of the model.
But each of these approximations is usually limited to just one of the following cases:
weak, slow, fast, or moderately fast and moderately strong driving. In chapter 6 we
employ the technique of path integration to develop an approximation to the instan-
taneous escape rate that applies to arbitrary modulation frequencies and the whole
range of modulation strengths, from no modulation to moderately strong modulation.
After discussing some properties of the approximation, we will show that it unifies and
extends several of the previously known approximations. For example, for small noise
strengths and adiabatically slowly modulated potentials or temperatures it simply re-
duces to the Kramers rate. A comparison to high precision numerical results will show
for a number of fairly general modulations and potentials that the approximation is in
fact very good.
Employing this new approximation scheme, we will consider systems with several
metastable states in chapter 7. While the potentials are static, we allow for time-
dependent temperatures. In thermal equilibrium, the probability distribution of par-
ticles in a confining potential is of the Boltzmann form, and for small, constant noise
strengths always the energetically lowest metastable state is preferentially occupied.
We will show that this situation may considerably change in systems far from thermal
equilibrium. Even more interestingly, the effective escape rate from a potential with
several metastable states may decrease upon temporally increasing the temperature.
Indeed, given that thermal noise is indispensable to escape, one would expect that
an “extra dose” of noise should always enhance escape. As far as we know, these ef-
fects have not yet been studied experimentally. But it is very likely that the emerging
possibilities of nanotechnology will make it possible soon.
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2 Basic concepts of stochastic modeling
and rate theory

This chapter outlines the basic stochastic modeling concepts. The motion of a Brown-
ian particle in a potential will be discussed and then generalized to the dynamics of a
general reaction coordinate. Particular attention will be paid to methods allowing to
calculate the escape rate from a domain of attraction. These concepts provide the ba-
sis for the discussions in the following chapters. As all of these concepts and methods
are well known, the line of reasoning will at some points be kept on a rather heuris-
tic level. At these points we will refer to mathematically more rigorous approaches.
General overviews over this topic are given, e.g., in [Ris89, HTB90, Rei02].

2.1 The Langevin equation with Gaussian white noise

In this section we consider the motion of a Brownian particle in a fluid under the
action of an external conservative force. As already discussed in the introduction,
there exist different approaches to describe this motion. Here we will focus on
Langevin’s approach which is based on Newton’s equation of motion [Lan08, LG97].
In Langevin’s own words this approach is “infinitely more simple” than Einstein’s
[Ein05].
Let us consider the simplest possible case, namely that of a one-dimensional particle

with coordinate x(t) at time t and with mass m. For a moment we will assume that
no external force acts on the particle. Then the motion of the particle is governed by
Newton’s equation of motion mẍ(t) = F (ẋ(t), x(t), t).1 Here F is the sum of a friction
force Fd and a fluctuation force ξ̃. In the simplest case, the friction force is given by
Stokes’ law:

Fd(ẋ(t), x(t), t) = −ηẋ(t) , (2.1)

where η is the friction coefficient. The physical mechanism behind this friction force
is that the Brownian particle collides with molecules of the fluid. Through these
collisions the momentum of the particle is transferred to the molecules of the fluid,
i.e., the kinetic energy is dissipated to the thermal environment. On the other hand,
these very same collisions result in an additional fluctuating force ξ̃(t) which acts on
the particle and causes the observed erratic Brownian motion.

1 Throughout this work the usual convention to denote the derivative with respect to the time by a dot
and the derivative with respect to a coordinate by a prime will be used.
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2 Basic concepts of stochastic modeling and rate theory

Assuming that the environment is in thermal equilibrium, the fluctuating force can
in many physical problems be modeled as a Gaussian noise with mean and correlation:

〈ξ̃(t)〉 = 0 , (2.2)

〈ξ̃(t)ξ̃(t′)〉 = 2Dδ(t − t′) . (2.3)

Here δ(t) is Dirac’s delta function, 〈 〉 refers to an average over an ensemble of single
realizations, and 2D denotes the noise strength which depends for a given tempera-
ture T solely on the friction coefficient η and is given by

D = ηkBT , (2.4)

with kB the Boltzmann constant. This relation, together with equation (2.3), is termed
the fluctuation-dissipation relation [CW51] and reflects that both effects of the thermal
environment, energy dissipation and thermal fluctuations, have the same origin. The
friction coefficient η hence determines the coupling strength of the Brownian particle
to the thermal environment.2

The spectral density of a fluctuation force with delta correlation (2.4) is indepen-
dent of the frequency. Therefore, such a fluctuation force is called (Gaussian) white
noise. It is a mathematical idealization and formally defined as the derivative of a
Wiener process3 [FW98, RY99]. From a physical point of view, modeling the effects
of the thermal environment by an energy dissipation mechanism of the form (2.1) and
the fluctuation force by a Gaussian white noise (2.2-2.4) means that the correlation
time, which is at least as large as the typical duration τ0 of the collisions between
the Brownian particle and the molecules of the fluid, is much smaller than all other
relevant time scales of the problem.
Let us now consider the dynamics of a Brownian particle in a potential V (x, t).
The existence of such a potential does not change the statistical properties of the
fluctuation force. The dynamics of the system is hence given by the Langevin equation:

mẍ(t) + V ′(x(t), t) = −ηẋ(t) +
√

2ηkBTξ(t) , (2.5)

where we have defined ξ(t) := ξ̃(t)/
√

2ηkBT . Here, ξ(t) is a Gaussian white noise with
zero mean and correlation:

〈ξ(t)ξ(t′)〉 = δ(t − t′) . (2.6)

Again, the right-hand side of equation (2.5) models all effects of the thermal environ-
ment while the left-hand side accounts for the deterministic part of the dynamics.

2 It can indeed be shown that the statistical properties (2.2,2.3) of the fluctuation force are already
fixed by the Ansatz (2.1) for the dissipation mechanism (see [Rei01]).

3 A Wiener processW (t) is characterized by the following three properties:

• W (0) = 0.

• W (t) is almost surely continuous.

• W (t) has independent increments with distributionW (t)− W (s) ∼ N (0, t − s) for all 0 ≤ s ≤ t.

Here, W (t) − W (s) ∼ N (0, t − s) means that W (t) − W (s) is drawn from a normal distribution with
zero mean and variance t − s.
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2.2 Equation of motion for a general reaction coordinate

A particularly important case is the overdamped motion, where the mass is small
and/or the damping strong so that the term mẍ(t) in equation (2.5) can be dropped.
This equation then reduces to the overdamped Langevin equation:

ηẋ(t) = −V ′ (x(t), t) +
√

2ηkBTξ(t) . (2.7)

This case typically arises when dealing with very small objects. For a macroscopic
sphere with radius r, the friction coefficient η is according to Stokes’ law, for example,
proportional to the radius while its mass is proportional to r3. In the limit r → 0, the
term mẍ(t) in equation (2.5) is hence negligible. On the other hand, in the opposite
limit of very large objects the fluctuating force can be neglected.

2.2 Equation of motion for a general reaction coordinate

So far we have considered the dynamics of a one-dimensional particle in a thermal en-
vironment which could be described by equations (2.5) and (2.7), respectively. How-
ever, such a modeling approach is also applicable to the dynamics of various other
physical systems in contact with a heat bath. Examples include the polarization rever-
sal in nanomagnets [WOH+97], friction at the atomic scale [RGB+03, SJF05, ESJ+06],
phase jumps in Josephson junctions [Kur72, FD74], the dynamics of the geometrical
configurations of polymers [LOR+01, BS05], and the rupture of bonds between two
or more biomolecules [ER97, Mer01]. In these systems, x refers to some collective
degree of freedom in the high dimensional phase space of the system. The dynamics
of this degree of freedom shall be slow compared to the other degrees of freedom.
Therefore, x is referred to as a slow reaction coordinate.
One may, for example, consider the interaction of two biomolecules in an aqueous

environment which serves as a heat bath (cf. Part II). For sufficiently low temperatures
the transition from an initially bound state to the unbound state occurs practically al-
ways along the same most probable escape path Φ∗(x) in the high-dimensional phase
space of the system (cf. also chapter 6). This path is parameterized by a single parame-
ter x, the reaction coordinate. Then, all relevant states of the system are characterized
by the position on this escape path, i.e., by the value of x. In many cases, the relative
distance between the centers of mass of the two biomolecules is a “good reaction co-
ordinate” meaning that this quantity uniquely characterizes the position on the most
probable escape path. But for other systems, it may be possible that one cannot find
a reaction coordinate with such a simple interpretation.
Concerning the temporal evolution of the reaction coordinate, for many systems

it has proven fruitful to assume a stochastic dynamics of the form (2.5) or (2.7). In
most cases, this is a priori just a phenomenological modeling approach which can be
justified only a posteriori by the success of the resulting predictions.
There is a long-standing discussion whether such a stochastic dynamics for the re-

action coordinate can alternatively also be deduced from the microscopic dynamics
of the system which is governed by the Hamiltonian equations of motion or equiva-
lently by the Euler-Lagrange equations [Kuy97, GPS02]. Quite some progress in this
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2 Basic concepts of stochastic modeling and rate theory

direction has been made, resulting in Langevin type equations of motion for the re-
action coordinate [Gre52, Zwa61, GHT80, Mil83, Rei02]. However, at the very end
one is left with postulating some ad hoc Ansatz for the properties of the noise and
the dissipation terms [cf. equation (2.1)] in these equations. We, therefore, restrict
ourselves to a brief and mathematically not very rigorous sketch of some ideas of
these approaches and refer for further details to the above mentioned references, in
particular to [GHT80]. We will, furthermore, restrict our discussion to the interac-
tion of two biomolecules which is of great importance for the present work. For the
other examples mentioned at the beginning of this section a completely analogous
argumentation applies.

On a microscopic level, the state of the system at time t0 is given by a pointΦ0 in the
high-dimensional phase space. In general, this point is defined by the set of positions
q = (q1, . . . qf ) and momenta p = (p1, . . . pf ) of the atoms of the two biomolecules and
of the surrounding fluid, hence Φ(t0) = Φ0 = (q0,p0). Together with the Hamiltonian
H = H(q,p, t), this gives the state Φ(t) of the system at any time t as the solution
of Hamilton’s equations of motion. However, because the phase space is of very
high dimension, it is neither possible to simultaneously measure the positions and
momenta of all the particles, nor is it possible to prepare the system in a given state
Φ0. Now we assume that there exists a single slow degree of freedom x(t) which
can be identified with the value of a given, not explicitly time-dependent phase space
function X, hence X(Φ(t)) = x(t) (the relative distance between the centers of mass
of the two biomolecules is such a phase space function). Then, also ẋ(t) is connected
to a phase space function, namely d/dt X(Φ(t)) = {X(Φ(t)),H(Φ(t))} = ẋ(t) where
{·, ·} denotes the Poisson brackets. To any given values (x, ẋ) there exists a whole
hypersurface S(x, ẋ) on which the functions X and d/dt X assume the same values.
Let us denote by Ωx,ẋ a point on the hypersurface S(x, ẋ). Then the microscopic state
Φ of the system can also be characterized by the values X(Φ) = x, d/dt X(Φ) = ẋ and
the point on the corresponding hypersurface, i.e., Φ = (x, ẋ,Ωx,ẋ). The preparation
of the system is assumed to be such that X(Φ(t0)) = x0 and d/dt X(Φ(t0)) = ẋ0 are
exactly given, while Ωx0,ẋ0(t0) is randomly sampled from some distribution. Next, the
temporal evolution of x(t) = X(Φ(t)) can be considered. As our knowledge about the
initial state is limited to the values of the phase space functions X and d/dt X, while
Ωx0,ẋ0(t0) is unknown, this dynamics is of stochastic nature. Nevertheless, one can
formally split the rate of change of ẋ(t) at a given time t into three parts: A systematic
part which depends solely on the instantaneous value x = x(t) and thus defining the
effective potential, a dissipative term depending on ẋ(t), and a “random” part which
on the average over all initial conditions Ωx0,ẋ0(t0) leading to (x(t), ẋ(t)) is zero. The
result is a Langevin type equation for the reaction coordinate x(t). However, the single
terms (like the properties of the noise term) appearing in this equation depend on the
microscopic dynamics in a complicated way. The applicability to a given system is,
thus, rather limited. Furthermore, the effective heat bath, which enters the equation
of motion for x(t) via the dissipative term and the noise term, in general contains
memory. Then, the dynamics of the reaction coordinate is non-Markovian. Finally,
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2.3 Fokker-Planck equation

one is still left with postulating an Ansatz for the stochastic dynamics of the reaction
coordinate. One can, for example, make a Markovian approximation to the dynamics
which can be justified by the assumption that x(t) is the only slow coordinate. In this
case, the dissipation term in the Langevin equation is of the form (2.1) which fixes the
statistical properties of the noise according to equations (2.2,2.3) [see [Rei01] for a
proof].
We will restrict our discussion to the overdamped dynamics (2.7) from now on.

Furthermore, the term “Brownian particle” may also refer to a general reaction coor-
dinate.

2.3 Fokker-Planck equation

In the previous two sections 2.1 and 2.2, we have described Brownian motion in the
form of single realizations of the stochastic dynamics (2.5,2.7). Next, a completely
equivalent description will be discussed. Here we will restrict ourselves to the one-
dimensional overdamped motion (2.7).
In this approach the conditional probability density

ρ(x, t|t0, x0) := 〈δ(x − x(t))〉 , (2.8)

to find the particle at time t at position x will be considered. The notation ρ(. . . |x0, t0)
refers to the initial condition ρ(x, t0|x0, t0) = δ(x − x0). The time-evolution of this
quantity is governed by a deterministic partial differential equation, called the Fokker-
Planck equation . Without giving any proof, it was proposed by Fokker in 1914 [Fok14]
and discussed by Planck in 1918. A mathematically rigorous derivation of this equa-
tion, as well as a discussion of methods for its solution, can be found in [Ris89].
The time-evolution of the probability density ρ(x, t|x0, t0) is given by4:

∂

∂t
ρ(x, t|x0, t0) =

∂

∂x

(

V ′(x, t)

η
+

kBT

η

∂

∂x

)

ρ(x, t|x0, t0) =: L̂FPρ(x, t|x0, t0) , (2.9)

where the linear differential operator L̂FP is termed the Fokker-Planck operator. This
equation was also proposed by Smoluchowski in 1915 [Smo15] and is, therefore,
also called Smoluchowski equation. In this work Smoluchowski gave a nice heuristic
argument for its validity. He considered the continuity equation for the probability
density

∂

∂t
ρ(x, t|x0, t0) = − ∂

∂x
j(x, t|x0, t0) , (2.10)

where j(x, t|x0, t0) is the flux of probability. This quantity has a contribution
−kBT

η
∂
∂xρ(x, t|x0, t0) from the diffusion and a contribution −V ′(x,t)

η ρ(x, t|x0, t0) from

4 One may, of course, choose any other initial condition ρ(x, t0) = ρ0(x). Then, due to
the linearity of the Fokker-Planck equation, the probability density at time t reads: ρ(x, t) =
R

dx0 ρ0(x0)ρ(x, t|x0, t0).
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2 Basic concepts of stochastic modeling and rate theory

the convective flow. The total flux j(x, t|x0, t0) is the sum of these contributions,
yielding together with equation (2.10) the Fokker-Planck equation (2.9).
In the absence of an external potential this equation reduces to the well known
diffusion equation:

∂

∂t
ρ(x, t|x0, t0) =

kBT

η

∂2

∂x2
ρ(x, t|x0, t0) , (2.11)

with diffusion coefficient kBT/η in accordance with Einstein’s 1905 result [Ein05],
henceforth also called the Einstein relation.

2.4 Escape from a static potential

Let us now consider the thermally activated escape from a metastable, static potential,
like that depicted in figure 2.1. As discussed in section 2.2, the coordinate x does not
necessarily refer to the position of a particle, but can be a general reaction coordinate.
Consequently, the escape over the potential barrier at xmax can also describe the decay
of some metastable state. This can be, e.g., the unfolding of a protein or rupture of a
bond which will be discussed in detail in chapter 3. Having this in mind, we will for
simplicity refer to this problem as the escape of a Brownian particle from a metastable
state.
In the absence of a fluctuation force, the dynamics of the particle is given by equa-
tion (2.7) with temperature T = 0. If the particle is in the metastable state x ≤ xmax

at some time t0, it will stay there forever and relax to the minimum of the potential at
xmin on a time scale approximately given by τR = η/V ′′(xmin). The situation changes
for a finite temperature T . Then the particle will almost surely cross the barrier for
sufficiently large times. In this work, we are mainly interested in the case of small
noise strengths so that kBT ≪ ∆V := V (xmax) − V (xmin).
In order to characterize this escape process, we first have to define the boundary
conditions for the problem. Here we will assume that the potential V (x) is mono-
tonically decreasing for x < xmin and has an absorbing boundary at xa > xmax. That
means, particles that cross this boundary will be “removed infinitely fast”. A particle
shall be injected into the potential in the vicinity of the minium at time t0. Then,
for sufficiently large times t, the probability density ρ(x, t) = ρ(x, t|x0, t0) will become
independent of the initial conditions. Next, we can consider the survival probability
of the state, i.e., the probability that the particle has not crossed the boundary until
time t:

n(t) :=

∫ xa

−∞
dx ρ(x, t) . (2.12)

The relative change of this probability becomes independent of time after a short
equilibration and defines the escape rate:

k := −ṅ(t)/n(t) . (2.13)
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2.5 Kramers rate

This quantity can also be expressed in two different ways. Firstly, we make use of the
Fokker-Planck equation (2.9) and insert it into equation (2.13) which yields

k = − 1

n(t)

kBT

η

∂

∂x
ρ(xa, t) . (2.14)

Alternatively, one may assume that a constant flux j of particles is injected into the
potential at some point x+ < xmin. Then the system will relax into a quasi-steady
state where ∂/∂t ρ(x, t) = 0 and j(x, t) = j for all x > x+ (see figure 2.1), and one can
define:

k :=
j

n
, (2.15)

where n is the stationary probability to find the particle inside the domain of attrac-
tion. Often equation (2.15) is used to define the escape rate. However, the for-
mulation (2.13) has the advantage that it can be directly generalized to the case of
time-dependent force fields which will be discussed in chapter 6.
The approach (2.15) is termed the flux-over-population method and was used by

Kramers in 1940 to derive his famous result [Kra40] (see next section). There exist
also other approaches to this problem which are extensively discussed in [HTB90].
Among them are concepts like the mean first passage time or the method of the
lowest eigenvalue. In the former, one studies the distribution of times which a random
walker, starting near the minimum of the potential, needs to pass the boundary xmax

for the first time. The expectation value of this distribution is termed the mean first
passage time. This concept is commonly used in the mathematical literature. In the
method of the lowest eigenvalue, the escape rate is identified with the lowest non-
vanishing eigenvalue of the Fokker-Planck operator L̂FP. In the limit of small noise
strengths (∆V/(kBT ) ≫ 1) all these approaches yield identical results [Ris89, HTB90].

2.5 Kramers rate

For low temperatures, i.e., small noise strengths, the escape rate (2.15) can be very
accurately approximated by a simple formula, called the Kramers rate. It depends only
on a few properties of the potential. In order to derive this approximation, we will
closely follow Kramers’ original line of reasoning [Kra40].
Let us consider the situation discussed above equation (2.15), namely that a con-

stant flux j of particles is injected into the potential at some point x+ < xmin. Con-
sidering only positions x > x+, in the stationary state the probability density obeys,
according to equations (2.9,2.10), the differential equation:

V ′(x)

η
ρ(x, t) +

kBT

η

∂

∂x
ρ(x, t) = −j . (2.16)

For the boundary condition ρ(xa, t) = 0, its solution reads:

ρ(x, t) =
ηj

kBT
exp

(

−V (x)

kBT

)∫ xa

x
dy exp

(

V (y)

kBT

)

. (2.17)
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x

V(x)

x
max

x
+

j

x
min x

a

Figure 2.1: Illustration of the escape problem from a metastable potential. An ab-
sorbing boundary is placed at xa. Particles are injected at x+ at a constant
rate j.

Using equation (2.12) and equation (2.15), we get the following expression for the
escape rate:5

1

k
=

∫ xa

−∞
dx

η

kBT
exp

(

−V (x)

kBT

)∫ xa

x
dy exp

(

V (y)

kBT

)

. (2.18)

The main contribution to the first integral stems from the x values in close vicinity to
the minimum of the potential at xmin (the remaining contributions are exponentially
suppressed). For these values, the second integral is approximately constant with
its main contribution stemming from the y values near the maximum xmax of the
potential. Hence, both integrals can be approximated by the Laplace or Gaussian
steepest-descent method, yielding the Kramers rate

k =

√

|V ′′(xmax)|V ′′(xmin)

2πη
exp

(

− ∆V

kBT

)

. (2.19)

The inverse of this rate is called the Kramers time tK and characterizes the typical
survival time of the metastable state.

5 Here we have implicitly assumed that x+ is sufficiently small so that the probability to find the particle
at a point x < x+ is negligible. However, equation (2.19) remains valid for all x+ < xmin.
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Part II

Single-molecule force
spectroscopy: Theory and

evaluation of experimental data
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3 Principle and theory of single-molecule
force spectroscopy

This chapter introduces the basic principles of single-molecule force spectroscopy.
After a short introduction to the interactions between biomolecules, we turn to the
experimental techniques used for these kinds of measurements. Particular attention
will be paid to the atomic force microscope. The chapter ends with a review of the
theoretical models which are commonly used in order to interprete the experimental
data.

3.1 Introduction

Many biological functions rely on the ability of biomolecules to recognize their target
molecules with an astonishingly high precision. Examples include the recognition of
viruses by the receptors of the immune system or the specific binding of proteins to
DNA. The latter is of fundamental importance for all aspects of transcription. Due to
its importance for biological functions, molecular recognition is the subject of many
scientific studies.
Biomolecules, like proteins or DNA, are macromolecules which can consist of sev-

eral thousands (in general covalently bound) atoms. Despite their size, biomolecules
are built up of a relatively small number of fundamental building blocks. For example,
proteins are chains of amino acids. Each amino acid is linked to its neighbors via co-
valent peptide bonds. There are no more than 20 types of amino acids in proteins of
all life-forms, from bacterium to human. Determined by the sequence of the amino
acids in the chain, the protein folds to a complex and well-defined three-dimensional
structure. This results in a remarkable variety of structurally complex and functionally
sophisticated proteins [Str95, AJL+08]. Likewise, DNA consists of two polynucleotide
chains, each of them being built up of four types of nucleotide subunits.
The binding between two or more biomolecules as well as the folding of proteins

relies on the cooperative effect of many non-covalent bonds. These interactions can
roughly be divided into four groups: electrostatic interactions, van der Waals attrac-
tions, hydrogen bonds, and hydrophobic effects. The latter of these interactions is
mediated by the water molecules of the surrounding medium. In water the strength
of all these interactions is of the order of the thermal energy kBT at room tempera-
ture and, therefore, by a factor of approximately 100 weaker than the covalent bonds
[Str95, AJL+08]. Hence, no non-covalent interaction can separately result in a stable
bond between two biomolecules (cf. section 2.5). The formation of a specific bond
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requires that the two biomolecules possess topologically as well as chemically comple-
mentary surfaces so that many non-covalent bonds can simultaneously form [PD40].
This condition is a form of the key-lock principle which has already been proposed by
Fischer in 1894 [Fis94]. The typical strength of the resulting specific bonds is of the
order of 10kBT and therefore still much lower than that of covalent bonds. However,
the requirement that the two binding partners must possess complementary surfaces
is the basis of the high specificity of the biomolecular interactions.
Single-molecule force spectroscopy provides a possibility to study these bonds and,
in particular, to gain information about binding motifs and positions, as well as infor-
mations about the properties of the bond like the binding strength and dissociation
rate. It is, therefore, a valuable tool to study the molecular basis of many biological
functions.

3.2 Single-molecule force spectroscopy with the AFM

3.2.1 Atomic force microscope

A ground-breaking step towards studying matter on the atomic scale was the in-
vention of the scanning tunneling microscope (STM) by Binnig and Rohrer in 1981
[BRGW82, BR82]. This technique makes use of the vacuum tunneling current of elec-
trons between a sharp conducting tip and a conducting surface. Scanning such a tip
against the surface, while regulating the distance between tip and surface such that
the tunneling current is constant, allows to image the surface at an atomistic scale (for
a review see [Wie94]).
Already in 1986 Binnig and Rohrer were rewarded with the Nobel price in physics
which demonstrates the impact the STM had on surface science. In the same year
Binnig invented another imaging technique, the atomic force microscope (AFM), also
called scanning force microscope [BQG86]. A schematic sketch of an atomic force mi-
croscope is shown in figure 3.1. The key feature of this apparatus is a tiny force sensor
consisting of a tip with a diameter of typically a few 10 nm which is mounted on a soft
cantilever. If this tip approaches the surface, different forces act between the single
atoms of the tip and the surface, among them electrostatic and magnetic forces, van
der Waals forces, and at very short distances quantum-mechanical repulsive forces (for
details see [Wie94, Gie03]). These forces cause a deflection of the cantilever which
behaves approximately like a Hookean spring. While in Binnig’s prototype of an AFM
the deflection was measured by a STM, in most modern AFMs optical methods are
employed [MA88]. A focused laser beam is reflected off the rear side of the can-
tilever which is often metal coated to guarantee high reflectivity. The reflected beam
is sensed by a (quadrant) photodiode. The signal of this detector is used by a feed-
back loop to control the vertical distance between tip and sample which is mounted
on a piezoelectric device. Similarly as for the STM, the surface can be scanned while
keeping, e.g., the force between tip and surface constant. The result is a topographic
image of the sample surface with a sub-Å resolution. Different imaging modes exist.
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Figure 3.1: Schematic sketch of an atomic force microscope.

For details we refer to [Gie03].
The advantage of AFM over STM is that also measurements on non-conducting

samples are possible. No vacuum is required, and experiments can be conducted in
aqueous solution which is particularly interesting when studying biological systems.

3.2.2 Force spectroscopy

The atomic force microscope as an imaging device makes use of the forces F acting
between the sharp tip and the surface atoms. These forces are connected to the
experimentally accessible deflection sc of the cantilever over a wide range of forces
via Hooke’s law:

F = c sc , (3.1)

with c the spring constant of the cantilever. Hence, AFM provides the possibility to
quantitatively determine forces acting on the cantilever tip, provided that the spring
constant is known. This quantity can be determined in different ways, e.g., by mea-
suring the thermal fluctuations of the cantilever [HB93] or by connecting it to the
geometry of the cantilever [Gie03]. Typical spring constants lie in the region of 10-
100 pN/nm, allowing to determine the forces with an accuracy of a few pN [HD06].
The basic idea of (local) force spectroscopy is to determine the force versus distance

curve at a particular point on the sample surface, i.e., for fixed x, y coordinates. The
quantity which can be experimentally controlled is the z coordinate, that means, the
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Figure 3.2: Deflection of the AFM cantilever. The distance s can be experimentally
controlled.

relative distance s of the surface from the rest position of the cantilever. If elastic
deformations of tip and surface can be neglected, this is the sum of the deflection sc

of the cantilever and the absolute distance sd of the tip from the surface (see figure
3.2):

s = sc + sd . (3.2)

In force spectroscopy experiments, the AFM tip or the surface is cycled up and down
while measuring the force acting on the cantilever, yielding the so called force distance
curves F (s) which will be discussed in more detail in section 3.2.3.

In single-molecule force spectroscopy experiments, specific ligand-receptor interac-
tions can be probed. A typical experimental setup is sketched in figure 3.3. It is
basically the same as that for local force spectroscopy, but in addition one binding
partner is connected to the cantilever tip, and the other is bound to the surface. The
ligand, the receptor-molecules, or both are linked via polymeric tethers to the tip and
to the surface, respectively [HBG+96, RSA+98]. Typical choices for these polymeric
tethers are poly(ethylene glycol) (PEG) linkers. Usually, at least one of the linkers is
long (about 30 nm) compared to the molecular length scales. This guarantees that in-
termolecular interactions can be distinguished from the tip-sample interactions in the
force distance curves. The surface density of bound molecules is chosen such that only
in a small fraction of force distance curves (approximately 10%) a bond between the
ligand and the receptor-molecules can be observed. Then the probability for multiple
parallel bonds is assumed to be negligible [ZLCB02].

From the force distance curves, rupture or unbinding forces can be analyzed for var-
ious pulling velocities. This yields information about the properties of the molecular
interaction and will be discussed in detail in section 3.3 .
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3.2 Single-molecule force spectroscopy with the AFM

Figure 3.3: Schematic illustration of a dynamic force spectroscopy experiment. The
receptor is immobilized on the surface, and the ligand is connected via a
linker to the tip of an AFM cantilever which serves as a force transducer.
The distance between surface and tip can be controlled with a piezoelec-
tric element. When the surface is pulled down at a constant speed v,
monotonically increasing forces act on the ligand-receptor complex.
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Figure 3.4: Retracting part of a “typical” force distance curve F (s) measured by AFM
for the protein-DNA interaction studied in [BMF+07]. The surface is pulled
down at a constant speed v in the direction indicated by the red arrows.
The adhesion force between tip and surface is denoted by fadh and the
rupture force of the protein-DNA complex by fr. The part of the force
distance curve after the rupture of the bond at point C is used to fit the
so called baseline (blue) which corresponds to a vanishing force acting on
the tip. More details are given in the main text.
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3.2 Single-molecule force spectroscopy with the AFM

3.2.3 Force distance curves

The retracting part of a typical force distance curve measured by AFM is shown in
figure 3.4. The curve starts when the tip is pressed on the surface so that the cantilever
is bended upwards which causes a positive force signal. Then, the surface is pulled
down at a constant speed. The force decreases, and at point A the attractive and
repulsive forces cancel each other, resulting in a vanishing net interaction. At this
point the cantilever is not deflected and hence sc = 0. Upon further motion of the
surface, the attractive force regime is entered where tip and sample adhere to each
other (see section 3.2.1 and [Wie94, Gie03]). At point B an instability occurs. The
tip jumps off the surface into the unbent position of the cantilever. This jump can
be identified with the transition from one energy minimum of a bistable potential
to another minimum. The force at which this jump occurs is termed the adhesion
force −fadh. Amongst others, it depends on the material of surface and tip and on
the temperature [KT04, SPA+07]. From B on, the complex composed of cantilever,
linkers, and the ligand-receptor molecules is stretched until the bond breaks at point
C. The part of the force distance curve between B and C is called the force-extension
curve. Although a number of different models describing the mechanical response of
idealized polymeric chains in terms of microscopic parameters like contour and Kuhn
length exist (e.g. the freely jointed chain or the worm-like chain model, as reviewed,
e.g., in [Mer01]), the exact functional form of this part of the force distance curve
F (s) is quite complicated. Since the total elastic entity is composed of cantilever,
linkers, and ligand-receptor molecules, no simple realistic model exists to describe
the relevant force-extension curve F (s). However, because this curve is approximately
linear over a wide range of loading forces, it is often approximated by a straight line
(cf. green dashed line in figure 3.4) in order to quantitatively evaluate single-molecule
force spectroscopy experiments. After the rupture of the specific bond at point C, the
measured force fluctuates around zero. This part of the force distance curve is used to
determine the baseline (blue solid line in figure 3.4) where no force acts on the tip.
All forces are measured with respect to this offset, and the rupture force fr is defined
as the distance to this value at point C.
In typical experiments, many thousands of force distance cycles are measured for

each pulling velocity. Only a small fraction of them shows specific rupture events. In
the other curves only the adhesion signal is visible. It is, therefore, highly desirable
to automatically process the force distance curves [KJHM05]. Among others, this was
the aim of our work [FAR+08]. We will come back to this point in section 5.4.

3.2.4 Force spectroscopy with other techniques

Besides the atomic force microscope a number of other experimental techniques ex-
ist to perform single-molecule force spectroscopy experiments, for a review see, e.g.,
[Mer01, LLA+02, Rit06]. Most of these techniques have in common that a small force
sensor (like the cantilever of the AFM) is functionalized with one of the molecules
which shall be studied while the binding partner of this molecule is immobilized.
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Figure 3.5: Typical distributions of rupture forces measured by Eckel et al. with the
AFM for the dissociation of the PhoB peptide from the DNA target se-
quence [EWB+05]. The pulling velocity in (a) was v = 100 nm/s and that
in (b) v = 3000 nm/s.

Prominent examples, which also allow a detection of rupture forces on the pico-
Newton scale, are the biomembrane force probe (PFP) [MNL+99, NDKM03, HO07],
laser optical tweezers (LOTs) [VSWS05, MWS07], magnetic tweezers (MTs) [SL07], and
magnetic biochips [PKRB05]. The theory that will be reviewed in the next section, in
principle, applies to all these techniques.

3.3 Theoretical modeling of bond rupture

As discussed in the previous section, single-molecule force spectroscopy experiments
yield a set of N rupture forces f = {fi}N

i=1 measured at pulling velocities v = {vi}N
i=1.

Usually, for each pulling velocity several rupture forces are sampled, i.e., many of the
vi are identical. Figure 3.5 shows two rupture force distributions for a typical exper-
iment, here the dissociation of a peptide from its DNA target sequence studied by
Eckel et al. [EWB+05]. For each fixed pulling velocity, the rupture forces are found to
be distributed over a wide range, and with increasing velocity these distributions shift
towards higher forces. This observation is in contrast to the expectation for a purely
mechanical breaking of a compound object which should rupture at some “critical”
force. Hence, the theoretical interpretation of single-molecule pulling experiments is
a non-trivial task. Major steps towards theoretically modeling these experiments are
due to Evans and Ritchie [ER97]. Following a previous work of Bell [Bel78], they pro-
posed that a forced bond rupture event is a thermally activated decay of a metastable
state that can be described within the framework introduced in chapter 2. Several
extensions of this theory exist, all relying on this basic picture of a thermally activated
decay, see, e.g., [HG00, Sei00, Eva01, Wil03, BDA02, DFKU03, HS03, DBA04, HK06,
SR06, ML06, DHS06, HP08].
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Figure 3.6: Schematic illustration of the total relevant potential energy landscape
U(x) − xf of a receptor-ligand bond as a function of the reaction coor-
dinate x without and with externally applied bias forces f1 < f2. For low
forces, the main effect is that the energy barrier Eb(f) is lowered by an
amount ∆Eb ≃ xbf , where xb is the distance between potential well and
barrier at zero force. For larger forces this distance decreases.

3.3.1 Bond rupture as thermally activated decay of a metastable state

Following Evans and Ritchie [ER97, Mer01], a single-molecule dissociation process
is viewed as a thermally activated escape of a reaction coordinate x over a potential
barrier, see figure 3.6. According to our discussion in chapter 2, the dynamics of this
reaction coordinate can be described by the one-dimensional overdamped Langevin
equation (2.7) with delta-correlated white noise.1

In single-molecule force spectroscopy experiments a steadily increasing force is ap-
plied to the bond, resulting in a time-dependent potential (cf. figure 3.6)

V (x, t) = U(x) − f(t)x , (3.3)

where f(t) = cos(ϕ)F (t) is the projection of the instantaneous force onto the direction
of the reaction coordinate and U(x) the potential landscape of the unperturbed bond.
It is usually assumed that f(t) agrees with the measured force F (t). That means that
the direction of pulling is identically to the direction of the reaction coordinate or that
the angle ϕ between these two directions is always the same so that the factor cos(ϕ)
can be included in the reaction coordinate.2

1As already discussed in section 2.2, this is an ad hoc Ansatz which cannot be derived systematically.
Since the true phase space of this system is high-dimensional, projecting the dynamics to just one
relevant reaction coordinate will, in general, result in a noise term with memory. We, hence, implicitly
assume that the correlation time of this noise is much shorter than all other relevant time scales of
the system, in particular, much shorter than the relaxation time τR.

2 In Ansatz (3.3) it is also implicitly assumed that the relative distance of the centers of mass of the
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3 Principle and theory of single-molecule force spectroscopy

Given the one-dimensional potential landscape along the reaction coordinate, the
dissociation rate k(f) for a static force f(t) = f is given by the Kramers rate (2.19)

k(f) = ω(f) exp(−Eb(f)/kBT ). (3.4)

In comparison to equation (2.19), the pre-exponential factor depending on the cur-
vature of the potential at the extrema and on the friction coefficient has been ab-
breviated by ω(f) and is sometimes also referred to as an “attempt frequency”. The
exponentially leading Boltzmann-Arrhenius factor contains the relevant potential bar-
rier Eb(f) against escape:

Eb(f) := V (xmax(t(f)), t(f)) − V (xmin(t(f)), t(f)) , (3.5)

where xmin,max(t) are the instantaneous minimum and maximum of V (x, t).
Exploiting the fact that, under experimentally realistic conditions, the force in-
creases on a time scale much larger than all other relevant molecular relaxation times,
the instantaneous escape rate is at any time very well approximated by equation (3.4)
(cf. chapter 6). Due to this separation of time scales [HTB90], the reaction kinetics
can be very accurately approximated by a one-step rate equation:

dn(t)

dt
= −k (f(t))n(t) , (3.6)

where n(t) denotes the survival probability of the bond up to time t and k(f(t)) is the
accompanying dissociation rate (3.4) at an instantaneous external force f(t).
Employing equation (3.6), the experimentally established survival probability n(t)
(for a given fixed pulling velocity) can be used to reconstruct the force-dependent
escape rate k(f). From this knowledge information about the underlying potential
landscape, i.e., potential energy vs. the reaction coordinate, cf. figure 3.6, shall be
gained. As the escape rate in equation (3.4) depends only on the energy difference
at two force-dependent extrema (and via the prefactor on the curvature at these ex-
trema), the full potential landscape cannot be uniquely reconstructed [ISB+97].
One therefore usually starts with some model energy landscape and tries to deduce
its global features, such as barrier height in the absence of the force and dissociation
length (the distance between potential well and barrier without bias force, cf. figure
3.6). This introduces some specific functional form for the escape rate (3.4) involving
several parameters µ, which are then determined by fitting the experimental data.

3.3.2 Distribution of rupture forces

A key assumption for a quantitative analysis of single-molecule force spectroscopy
experiments is that the instantaneous force f(t) depends solely on the total instanta-
neous extension s = s(t) of all elastic components of the complex (cantilever, linker,

molecules is a “good” reaction coordinate. Otherwise, application of force would result in a more
complicated effect on the metastable potential than assumed in equation (3.3).
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3.3 Theoretical modeling of bond rupture

receptor, and ligand). In other words, there exists a common force-extension curve
F (s) such that

f(t) = F (s(t)) (3.7)

for all the pulling experiments under consideration, independently of any further de-
tails (pulling speed, linker properties, etc.) of the single repetitions of the experiment
[FAR+08].
We restrict ourselves to the usual case that the surface is retracted at constant

velocity v, i.e.,

s(t) = vt , (3.8)

and without loss of generality we choose the time offset such that t = 0 when pulling
starts. Applying furthermore the usual assumption of a linear force-extension charac-
teristics (cf. section 3.2.3 and figure 3.4), the instantaneous force at time t is given
by

f(t) = κvt , (3.9)

where κ is the relevant total elasticity of cantilever, linker molecules, receptor, and
ligand (slope of green dashed line in figure 3.4).
We can formally solve equation (3.6) for a given velocity v and a given force-

dependence of the escape rate k(f) = k(f |µ) which is characterized by a set of model
parameters µ. Changing to f as independent variable by employing (3.9) yields the
probability density of escape events at the force value f :

p1(f |µ, v) = −dn(f |µ, v)

df
=

k(f |µ)

κv
e−g(f |µ)/κv , (3.10)

g(f |µ) :=

∫ f

0
df ′k(f ′|µ) . (3.11)

For later convenience, the rupture force distribution (3.10) is written as a conditional
probability, conditioned on the values of the model parameters µ and the pulling
velocity v. While, in practice, the latter is directly accessible from the measurement,
the model parameters µ have to be inferred from the distribution of rupture forces
(see chapter 4).

3.3.3 Rate Ansatz

For any functional form of the rate k(f |µ), the integral (3.11) can be evaluated nu-
merically or by employing efficient approximations [HG00, Evs08]. In what follows,
we focus on two prominent rate approximations which allow to evaluate the integral
from equation (3.11) analytically.
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3 Principle and theory of single-molecule force spectroscopy

Bell’s model

The first common approximation, originally due to Bell [Bel78], and later also em-
ployed by Evans and Ritchie [ER97], consists in the linearization of the force depen-
dent potential barrier (3.5) according to

Eb(f) = Eb(0) − xbf . (3.12)

The dissociation length xb is defined as the distance between potential well and barrier
of the unperturbed potential U(x), i.e., xb := xmax(t = 0)−xmin(t = 0) [cf. figure 3.6].
Furthermore, the force dependence of the pre-exponential factor ω(f) in the Kramers
rate (3.4) is neglected, resulting in

k(f |µ) = k0 exp

(

xbf

kBT

)

=: exp(λ + αf) , (3.13)

where k0 := ω(0) exp(−Eb(0)/kBT ) is the force-free dissociation rate and λ := ln k0,
α := xb/kBT are convenient abbreviations.
Substituting equation (3.13) into (3.10,3.11), a straightforward calculation yields the
survival probability and the probability density of rupture events for Bell’s model:

n(f |µ, v) = exp

(

− eλ

κv

eαf − 1

α

)

, (3.14)

p1(f |µ, v) =
eλ+αf

κv
exp

(

− eλ

κv

eαf − 1

α

)

. (3.15)

In this approximation the survival probability (3.14) and the rupture force density
(3.15) are conditioned on µ = (λ, α) and v. The remaining parameter κ, appearing on
the right-hand sides of (3.14,3.15), is assumed to be exactly known from the force-
extension curves.
For pulling velocities larger than k0/(ακ), the rupture force density (3.15) has a
maximum at

f∗ =
1

α
ln
(ακv

eλ

)

, (3.16)

otherwise it is a monotonically decreasing function of the force f . As discussed in
more detail in section 4.2.2, relation (3.16) is often employed to estimate the model
parameters from a single-molecule force spectroscopy experiment. A similar relation
can be derived for the mean rupture force 〈f〉 as, for example, done in appendix A.2.

Extension of Bell’s model

As can be seen from figure 3.6, a linearization (3.12) of the force dependent potential
barrier Eb(f) is relatively good for small forces. For a larger force, the distance be-
tween the potential extrema decreases, leading to a weaker sensitivity of the barrier
height to force variations upon further pulling than in equation (3.12).
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3.3 Theoretical modeling of bond rupture

Models including this effect, in general, rely on some assumptions concerning the
shape of the energy landscape. Typical choices are Morse potentials, harmonic poten-
tials with a cusp barrier, two parabolas at the potential extrema joined at a midpoint,
and linear-cubic potentials [DFKU03, HS03, HK06, ML06, DHS06, HK06, HP08]. It
has been suggested in [DHS06] that for sufficiently high barriers, i.e., forces substan-
tially smaller than the critical force, the dissociation rate can be written in a unique
form:

k(f |µ) = (1 − γαf/ǫ)1/γ−1 eλ+ǫ[1−(1−γαf/ǫ)1/γ ] , (3.17)

with three model parameters µ = (λ, α, ǫ) and fixed exponent 1/γ. Here λ and α have
the same physical meaning as in equation (3.13), and ǫ := Eb(0)/kBT stands for the
force-free activation energy barrier in units of the thermal energy kBT .
The extra parameter γ controls the manner in which the barrier height decreases

with the applied force. We note that, physically, this parameter should be in the
range γ ∈ (0, 1] since γ ≤ 0 would imply a positive barrier for all f > 0. On the other
hand, the first derivative of the barrier height equals minus the distance between the
potential extrema corresponding to a given force value. Since we expect this distance
to decrease with the force, we conclude that the second force derivative of the barrier
height must be positive, excluding γ-values greater than 1. Specifically, for γ = 1 the
parameter ǫ drops out and one recovers Bell’s model (3.13), γ = 2/3 reproduces the
Kramers rate for a cubic reaction potential, and γ = 1/2 corresponds to a parabolic
potential well with a cusp barrier.
Substituting equation (3.17) into (3.6) and employing equation (3.9), one derives

the survival probability and the rupture force density of the bond:

n(f |µ, v) = exp

(

− eλ

κv

eǫ[1−(1−γαf/ǫ)1/γ ] − 1

α

)

, (3.18)

p1(f |µ, v) =
k(f |µ)

κv
n(f |µ, v) . (3.19)

We mention that, like for Bell’s model, approximate formulas for the mean and most
probable rupture force can be derived [Gar95, Evs08].
As already mentioned, the application of Kramers’ reaction rate theory requires that

the potential barrier Eb(f) is sufficiently high compared to the thermal energy kBT (cf.
section 2.5). Thus, all approximations are only valid for forces substantially smaller
than the critical force at which the barrier vanishes, fc = ǫ/(γα). On the other hand,
if the exponent 1/γ in equation (3.17) is known, i.e., if it is known how the potential
barrier decreases with increasing force, one should, in principle, be able to estimate
the force-free potential barrier Eb(0) from single-molecule force spectroscopy data.
How accurate these estimates are, will be discussed in the next chapter. We will fur-
thermore deal with the question whether the exponent 1/γ itself can be determined
by performing such experiments.
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4 Evaluation of single-molecule force
spectroscopy experiments

Let us assume that a specific model and thus the particular form of the probability
density p1 in (3.10) is given. Then, the remaining task is to estimate the model pa-
rameters µ from a given set of N rupture forces f = {fi}N

i=1 and pulling velocities
v = {vi}N

i=1. There exist different “recipes” for doing this, called estimators. Each of
them can be formally represented by some function µ̃(f), indicating that the estimate,
being a function of the random variables f , is a random variable itself. Now, the main
question is: what is the optimal estimate of the model parameters that can be ex-
tracted from the given set of N rupture forces? Stated differently: which recipe yields
estimates µ̃(f) of the model parameters which are on average over many data sets f

closest to the “true” model parameters?
Questions of this kind have been extensively discussed in the mathematical liter-

ature, and it has been shown that in many cases the so-called maximum likelihood
estimator is the “best possible recipe” [Cra46, CT91]. In this chapter, we briefly re-
view the main results and work out a rather simple, new derivation under the specific
conditions given in single-molecule pulling experiments, namely the availability of
quite large data sets of measured rupture forces for several different pulling velocities.
We will show that, under realistic experimental conditions, indeed no estimator µ̃(f)
outperforms the maximum likelihood estimator. After that, we apply the method to
the two specific models discussed in section 3.3.3. For Bell’s model explicit expres-
sions for the statistical errors will be derived. The main purpose for discussing the
generalization of Bell’s model is to examine whether all of the model parameters, in
particular the force-free activation barrier height, can be estimated reliably from the
experimental data.
The main parts of this chapter are taken from our publications [GR07, GER09]. All

numerical and most of the analytical calculations as well as writing main parts of the
manuscripts have been done by the present author.

4.1 Parameter estimation: Properties of the maximum
likelihood estimator

4.1.1 Maximum likelihood estimator

Our starting point is the probability p to observe a given set of N rupture forces
f = {fi}N

i=1 measured at pulling velocities v = {vi}N
i=1. Since the fi are statistically
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4 Evaluation of single-molecule force spectroscopy experiments

independent, this probability reads:

p(f |µ,v) =

N
∏

i=1

p1(fi|µ, vi) . (4.1)

The proceeding consists in simply maximizing (4.1) with respect to µ [GR07, DMS+07];
usually, this has to be done numerically. For any given f and v the corresponding set
of parameters µ∗ = µ∗(f ,v) is called the maximum likelihood estimate.
Intuitively, the properties of this estimator are most easily understood within the
framework of Bayesian inference [JB03, D’A03, Dos03]. The quantity in (4.1) is called
likelihood and plays a central role in the Bayesian approach. Extending the notion of
“probability” in the sense of “degree of belief” to the model parameters µ, the joint
probability p(f ,µ,v) can be written in terms of conditional probabilities p(...|...) either
in the form p(µ|f ,v) p(f ,v) or in the form p(f |µ,v) p(µ,v), yielding Bayes’ theorem:

p(µ|f ,v) = p(f |µ,v) p(µ,v) [p(f ,v)]−1 . (4.2)

The left-hand side represents the “likeliness” of µ, given the data f , v, and hence
is clearly of central interest for our purposes. Considering also the right-hand side
as a function of µ, it is equal to the likelihood from (4.1) times the so called prior
probability p(µ,v), encapsulating all our knowledge about µ before the measurement,
times a µ-independent factor. Thus, determining p(µ|f ,v) by means of the right-hand
side of (4.2) provides the central “recipe of learning” within the Bayesian approach
[D’A03, Dos03].
Regarding actual practical application of Bayesian inference, the determination of
the prior probability is the most problematic point. Different recipes for selecting an
appropriate prior exist [JB03]. Common choices are distributions which are uniform
in the parameters or the logarithms of the parameters. Rigorous justifications are in
general not possible and one is left with postulating some heuristic ad hoc Ansatz.
However, dynamic force spectroscopy usually provides large data sets, i.e., large N .
Then the likelihood (4.1) develops a narrow peak in the region of its maximum µ∗ (see
next section), and the prior p(µ,v) in (4.2), though usually unknown in detail, can be
considered as approximately constant, i.e., p(µ|f ,v) ∝ p(f |µ,v). Given f and v, the
likelihood (4.1) thus quantifies the “likeliness” that the “true” model parameters are
µ.
The upshot of the above intuitive considerations is that maximizing (4.1) with re-
spect to µ should yield the best possible guess for the unknown true parameters.
Furthermore, the statistical uncertainties of this estimate should be somehow related
to the width of the likelihood. In the following subsection, we leave this intuitive level
and turn to a more rigorous discussion of the asymptotic properties of the maximum
likelihood estimator.1

1 In this work Bayesian inference is only used to motivated the choice of the maximum likelihood
estimator for parameter inference. From a mathematical point of view, Bayesian inference is a com-
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4.1.2 Asymptotic properties

Let us assume that the rupture forces fi have been sampled according to the “true”
distribution p1(fi|µ0, vi) with unknown, “true” model parameters µ0. For a given set
of rupture forces f and pulling velocities v the maximum likelihood estimate can then
be determined as described above. Upon repeating the entire set of N pulling experi-
ments with the same set of pulling velocities v, a different set of rupture data f will be
sampled, yielding a different maximum likelihood estimate µ∗. While the probability
distribution of f is given by (4.1) with µ = µ0, what can we say about the distribution
of the maximum likelihood estimates µ∗?
To answer this question, we first exploit the fact that in typical single-molecule

pulling experiments for each pulling velocity several hundred rupture forces are mea-
sured. The resulting set of rupture force data f is thus quite large, and it is convenient
to rewrite the likelihood (4.1) as

p(f |µ,v) = exp{−N sN (f ,µ,v)} , (4.3)

sN (f ,µ,v) := −N−1
N
∑

i=1

ln p1(fi|µ, vi) . (4.4)

Furthermore, we assume that rupture forces have been measured at Z different pulling
velocities vβ, β = 1, ..., Z, and that the relative frequency with which the differ-
ent pulling velocities v are sampled, converges towards a well defined limit ρ(v) =
∑Z

β=1 ρβδ(v − vβ) for N → ∞. Then it follows from the law of large numbers [CT91]
that

sN (f ,µ,v) → s(µ) := −〈ln p1(f |µ, v)〉1 (4.5)

forN → ∞, where 〈· · · 〉1 indicates an average over f and v with weight p1(f |µ0, v) ρ(v).
Hence, sN is an intensive, entropy-like quantity. Observing that s(µ)− s(µ0) is a rela-
tive entropy of the form 〈ln(p1(f |µ0, v)/p1(f |µ, v))〉1, and using the fact that p1(f |µ, v)
is normalized with respect to f for every choice of the parameters µ, we obtain

s(µ) − s(µ0) =

∫

dv ρ(v)

∫

df p1(f |µ, v) [R ln R − R + 1] , (4.6)

with R := p1(f |µ0, v)/p1(f |µ, v). Finally, using the inequality

0 ≤
∫ R

1
dx ln x = R ln R − R + 1 ∀R , (4.7)

we see that s(µ) − s(µ0) ≥ 0 and that s(µ) − s(µ0) = 0 if the expression in the
square brackets on the right-hand side of (4.6) vanishes for all f . Thus, s(µ) has a

pletely different approach to parameter inference than maximum likelihood estimation. The latter is
a method from the “frequentists” approach to probability theory. Even “probability” has a different
meaning within these two frameworks. We do not discuss this rather “philosophical” point in more
detail here and refer to the references [Siv96, JB03]. We mention, however, that in our case of large
data sets both frameworks yield the same estimates.
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unique absolute minimum at µ = µ0 [CT91]. Since sN converges for large N toward s
according to (4.5), also the minimum µ∗ of the former converges to the minimum µ0

of the latter, i.e., the maximum likelihood estimate is a so-called consistent estimate
[Cra46].
For large, but finite N values, µ will be close to µ∗. Consequently, we can expand

sN (f ,µ,v) up to second order about its minimum at µ∗, and neglecting terms of
order O(1/

√
N), the Hessian matrix of sN (f ,µ∗,v) can be replaced by the Hessian

H = H(µ0) of s(µ0), which is generically positive definite, i.e.,

sN (f ,µ∗ + ∆,v) = sN (f ,µ∗,v) + ∆†H∆/2 . (4.8)

For largeN this is a very good approximation for all µ-values, and p(f |µ,v) approaches
a very sharply peaked Gaussian about µ∗,

p(f |µ,v) ∝ exp{−N(µ − µ∗)†H(µ − µ∗)/2} . (4.9)

We can now determine the first moments of the distribution of the maximum like-
lihood estimate µ∗ (upon many repetitions of the same experiment). Differentiating
(4.8) and choosing ∆ = µ0 − µ∗ results in

µ∗ − µ0 = −H−1∂sN (f ,µ0,v)/∂µ . (4.10)

Averaging over f yields zero on the right-hand side, as can be inferred from (4.4,4.5)
and the fact that µ0 is the minimum of s. Hence,

〈µ∗〉 = µ0 , (4.11)

where 〈· · · 〉 indicates an average over f with weight p(f |µ0,v) for a given set of pulling
velocities v. Equation (4.11) thus shows that the maximum likelihood estimate is
“unbiased” for large N .
With (4.10) the determination of the second moments is straightforward. Using

〈

∂

∂µi
sN (f ,µ0,v)

∂

∂µj
sN (f ,µ0,v)

〉

=
1

N
Hij , (4.12)

gives the covariance matrix for the maximum likelihood estimate:

〈[µ∗ − µ0] [µ
∗ − µ0]

†〉 = (N H)−1 . (4.13)

Observing that (N H)−1 is also the covariance matrix of the distribution from (4.9),
we arrive at our
First main conclusion: For any given, sufficiently large data set f , the expected devi-
ation of the concomitant maximum likelihood estimate µ∗ from the “true” parameters
µ0 immediately follows from the “peak-width” of likelihood (4.1), considered as a
function of µ.
Similarly, using the central limit theorem, one can show (see appendix A.1) that µ∗

is Gaussian distributed, yielding with (4.9) our
Second main conclusion: Apart from the peak position and a normalization factor,
the likelihood (4.1) for one given data set f looks practically the same as the distribu-
tion of the maximum likelihood estimates µ∗ from many repetitions of the N pulling
experiments.
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4.1 Parameter estimation: Properties of the maximum likelihood estimator

4.1.3 Cramér-Rao bound

It should be noted that, in order to derive the above two main conclusions, we did not
make any use of the Bayesian formalism (4.2) at all. The latter only served to acquire
an intuitive idea about the meaning of the likelihood (4.1). At this intuitive level, we
have seen that the left-hand side of (4.2) is very well approximated by the sharply
peaked Gaussian in (4.9), and hence it is reasonable to expect that its maximum µ∗

should be the best possible guess for the unknown, true parameters µ0 that possibly
can be inferred from a given set of data f . A more rigorous line of reasoning starts
with an arbitrary “recipe” µ̃(f) of estimating the true parameters µ0 from a given
data set f . The only assumption is that this recipe is unbiased, i.e., upon repeating
the same experiment many times, the “true” parameters are recovered on average,
〈µ̃(f)〉 = µ0. By generalizing the well known Cramér-Rao inequality [CT91], which in
turn is basically a descendant of the Cauchy-Schwarz inequality, one can show [Cra46]
for any such “recipe” µ̃(f) that

〈[µ̃ − µ0] [µ̃ − µ0]
†〉 − (N H)−1 ≥ 0 , (4.14)

i.e., the matrix on the left-hand side is non-negative definite. Comparison with (4.13)
yields our
Third main conclusion: There is no unbiased estimator µ̃ of the true parameters µ0

which on the average outperforms the maximum likelihood estimate µ∗.
The remaining possibility that a biased estimator may be even better is rather subtle

to treat rigorously, but intuitively this seems quite unlikely. Furthermore, in the above
conclusion we exploited the relation (4.13) which is strictly correct only for asymptot-
ically large N . Finally, also the criterion of minimizing the left-hand side of equation
(4.14) itself is in principle debatable, but hardly in practice.

4.1.4 Parameter inference: Main steps for the practical application

We now briefly summarize the main steps of the maximum likelihood method for
evaluating single-molecule pulling experiments. The first step consists in specifying
the dependence of the rupture force probability p1(f |µ, v) on the model parameters
µ and the pulling velocity v within a given theoretical description. Then, for the set
of rupture forces f = {fi}N

i=1 and corresponding pulling velocities v = {vi}N
i=1 the

logarithm of the likelihood (4.3)

− NsN (f ,µ,v) =
N
∑

i=1

ln p1(fi|µ, vi) (4.15)

is maximized with respect to the model parameters µ. Usually, this step has to be
accomplished numerically. The position of the maximum defines the most probable
parameters µ∗ which are on average closer to the true model parameters than any
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4 Evaluation of single-molecule force spectroscopy experiments

other estimate. The statistical uncertainties of the parameters can then be estimated
as

〈[µ∗ − µ0] [µ
∗ − µ0]

†〉 ≈ (N HN )−1 , (4.16)

where HN denotes the Hessian matrix of sN evaluated at the most probable parame-
ters µ∗ and µ0 the true model parameters. Moreover, the distribution of the maximum
likelihood estimate is Gaussian with mean µ0.

4.2 Application to Bell’s model

By numerically solving the integral in the formal solution (3.10,3.11) for the rupture
force density, one can apply the maximum likelihood approach from the previous sec-
tion to deduce the rate parameters for any functional form of the escape rate. In what
follows, however, we will focus on the two rate approximations discussed in section
3.3.3, which allowed us to evaluate the integral from equation (3.11) analytically.

4.2.1 Statistical uncertainties of Bell’s model

For Bell’s model, the probability density for the rupture forces is given by equation
(3.15):

p1(f |µ, v) =
eλ+αf

κv
exp

(

− eλ

κv

eαf − 1

α

)

. (4.17)

This density is conditioned on the two unknown parameters µ = (λ, α) which shall be
extracted from the rupture force data.
For this model we can calculate s(µ) = −〈ln p1(f |µ, v)〉1, as defined in (4.5), analyt-
ically if the dimensionless quantity τβ := eλ0/(κvβα0) is small for all pulling velocities,
i.e., τβ ≪ 1. In fact, τβ < 1 is equivalent to the assumption that the distribution of
rupture events p1(f |µ0, vβ) has a maximum at some force f∗

β > 0 [cf. equation (3.16)].
Details of the calculations are given in appendix A.2, resulting in

s(µ) = −λ +
Z
∑

β=1

ρβsβ(µ) + O(τβ) , (4.18)

sβ(µ) := ln(κvβ) + η(C + ln τβ) +
eλ Γ (η + 1)

κvβα [τβ ]η
,

with η := α/α0, C ≈ 0.577 Euler’s constant, and Γ(·) the Gamma function. Differenti-
ating (4.18) twice with respect to the model parameters, a straightforward calculation
yields the Hessian H = H(µ0) of s(µ0). Finally, inverting this (2× 2) matrix, we obtain
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the variance of the maximum likelihood estimate of the two parameters:

〈(α∗ − α0)
2〉 ≈ α2

0

N

1
π2

6 + σ2(ln(r))
, (4.19)

〈(λ∗ − λ0)
2〉 ≈ 1

N

Z
∑

β=1

Nβ

N

(

α2
0 〈fβ〉2 + π2

6

)

π2

6 + σ2(ln(r))
, (4.20)

where

σ2(ln(r)) =

Z
∑

β=1

ρβ ln2(rβ) −





Z
∑

β=1

ρβ ln(rβ)





2

(4.21)

is the variance of the logarithm of the loading rate r := κv and

〈fβ〉 = −1/α0(C + ln(eλ0/(rβα0))) (4.22)

the expected rupture force at loading rate rβ (again neglecting terms of order O(τβ)).
For practical application of equations (4.19,4.20), the true model parameters µ0 on the
right-hand sides of the equations have to be replaced by the concomitant maximum
likelihood estimate µ∗. For large N this is a very good approximation.
In single-molecule pulling experiments, only a limited range of pulling velocities v

is accessible, i.e., vβ ∈ [vmin, vmax]. Now the question arises: for which distribution
of pulling velocities ρ(v) do the statistical uncertainties (4.19,4.20) of the estimated
parameters become minimal? Recognizing that the variance of the maximum likeli-
hood estimate of α depends on the distribution of the pulling velocities solely via the
term σ2(ln(r)) in the denominator of (4.19), while this distribution enters into the ex-
pression for the statistical uncertainties of λ∗ also via the terms 〈fβ〉 in the numerator
of (4.20), we see that it is, in general, not possible to simultaneously minimize the
two uncertainties. Given a fixed number N of pulling experiments, the minimization
of the variance 〈(α∗ − α0)

2〉 of α∗ is equivalent to a maximization of σ2(ln(r)). Under
the constraint vβ ∈ [vmin, vmax] for all pulling velocities vβ, this maximum is obviously
reached if half of the rupture forces have been sampled at a pulling velocity as large
as possible, i.e., vmax, and the other half at a pulling velocity as small as possible,
i.e., vmin. This result is independent of the values of the true model parameters µ0.
Regarding the distribution of λ∗, the situation is more complicated. Given the analytic
expression (4.20) for the error, the calculation is straightforward, but not shown here
for the following two reasons. The ”best” choice consists again in sampling just at the
two extreme pulling velocities vmin and vmax. The relative number of pulling experi-
ments for each of the two pulling velocities is, however, non-trivial and depends on
the values of the true model parameters µ0. It is, therefore (in contrast to the result
for α∗), only of limited use for a real experiment.
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Figure 4.1: Solid histogram: Distributions of the (a) first and (b) second components
of the maxima µ∗ = (λ∗, α∗) of the likelihood (4.1) for 10000 “computer
experiments”. For each of them, N = 400 rupture forces f were sampled
according to (4.17), 100 for each of the 4 loading rates κv = 50, 200,
1000, 5000 pN/s and with “true” parameters λ0 = −5 and α0 = 0.1 pN−1.
These are typical numbers in “real experiments” [Mer01]. For sake of better
visibility the bin-width of the histograms is much larger than the optimal
bin-width for a Gaussian distribution (appendix A.3). Thin lines: Likelihood
(4.1) for the first 15 of the 10000 experiments after integrating over the
other component, shifting the maximum to µi,0, and normalizing (some are
almost indistinguishable). Dotted histogram: Distribution of the estimates
for λ and α according to the “standard method”, as described in the main
text.
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4.2 Application to Bell’s model

4.2.2 Illustration for computer generated data

We now illustrate the findings from sections 4.1.2 and 4.1.3. To avoid uncontrollable
experimental inaccuracies and uncertainties regarding the “true” model and the “true”
model parameters µ0, we numerically generated synthetic rupture data f by “simu-
lating” an idealized experiment on the computer according to the probabilistic “law”
(4.17) with given parameters µ = µ0. Hence, all remaining uncertainties are statistical
finite N effects. Figure 4.1 shows the results for 10000 repetitions of a computer ex-
periment, each samplingN = 400 rupture forces f according to (4.17) with experimen-
tally realistic parameter values α0 = 0.1pN−1 and λ0 = −5. Since two-dimensional dis-
tributions are difficult to compare graphically, we focus on the marginal distributions.
For each of the 10000 experiments, the maximum µ∗ = (λ∗, α∗) of the likelihood
(4.1), considered as a function of µ, was determined numerically. The distribution of
the resulting λ∗- and α∗-values are depicted as histograms in figure 4.1. The stan-
dard deviations of the maximum likelihood estimate for λ and α, determined from the
10000 experiments, are s(λ∗) = 0.20 and s(α∗) = 0.0023pN−1, respectively. These
values coincide with those obtained from the analytical approximations (4.19-4.22),
when rounded up to the above shown decimal places. Replacing the parameters µ0

on the right-hand side of (4.19,4.20) by the maximum likelihood estimate µ∗ for one
given data set thus provides reliable estimates for the statistical uncertainties.
Furthermore, for the first 15 of the 10000 experiments, after integrating over the

other parameter in the likelihood (4.1), shifting the peak position from µ∗
i to µi,0,

and normalizing, the resulting marginal distributions were plotted in figure 4.1. They
closely agree with the histograms. These observations illustrate very convincingly our
two conclusions from section 4.1.2. In particular, finite-N corrections are apparently
very small for the typical parameter values used in this example. Also the practically
perfect Gaussianity of the distributions is as expected, cf. (4.9).
Let us finally compare the performance of the maximum likelihood estimate with

that of the most widely used “recipe” of parameter estimation in the field of single-
molecule pulling experiments. This consist of the following steps: (i) Fit a Gaussian to
the observed rupture force distribution for a fixed pulling velocity v and approximate
the most probable rupture force f∗ by the maximum of that Gaussian. (ii) Plot f∗ for
different v versus ln(v) and fit the resulting points by a straight line. (iii) Assume that
the model (4.17) is applicable and employ equation (3.16) to deduce its model param-
eters µ = (λ, α) from the slope and the axis intercept of the straight line as detailed,
e.g., in [ER97, MNL+99, SOS+00, Mer01, ER03]. We have applied this procedure
to each of the 10000 experiments in figure 4.1 and plotted the distribution of the
resulting estimates for λ and α in figure 4.1. The systematic bias of the estimate for
λ can be traced back to fitting a Gaussian, which is symmetric about its maximum, to
the asymmetric “true” distribution (4.17) [ER03], while the suboptimal variance of the
estimate for both λ and α signals that quite some information is lost by only consid-
ering the most probable rupture forces f∗. Hence, the maximum likelihood estimate
represents a substantial improvement compared to the so far “standard method” of
data evaluation in this field. This is in agreement with our conclusion from section
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Figure 4.2: Rupture force distributions for different loading rates κv. Histograms:
numerically generated rupture forces according to (3.17-3.19) with γ =
2/3, λ0 = −5, α0 = 0.1 pN−1, ǫ0 = 15. For each κv, we sampled 500
forces, i.e., N = 2000. The bin-width is chosen according to equation
(A.15). The maximum likelihood fits p1(f |µ∗, v) according to (3.17-3.19)
for γ = 1/2 and γ = 2/3 (red solid) are not distinguishable within the
line width in this plot. For γ = 1/2, the fit parameters have the following
values: λ∗ = −5.37, α∗ = 0.110 pN−1 , and ǫ∗ = 17.2. For γ = 2/3, the fit
results are slightly closer to the true parameter values, namely, λ∗ = −5.20,
α∗ = 0.104 pN−1, and ǫ∗ = 14.64. Blue dashed distribution: same for Bell’s
Ansatz γ = 1, with fit results λ∗ = −3.81 and α∗ = 0.072 pN−1. Upon
repeating the entire “numerical experiment”, the resulting plots always
look practically the same.

4.1.3. We have also directly compared the maximum likelihood estimate with other
known “recipes” of evaluating single-molecule rupture data, e.g., [ER03]. In all cases
we found that the maximum likelihood method was superior.

4.3 Extension of Bell’s model

Our second example is the extension of Bell’s model discussed in section 3.3.3. In this
model the barrier height was not assumed to decrease linearly according to equation
(3.12), but rather as

Eb(f) = Eb(0)(1 − f/fc)
1/γ = Eb(0)(1 − γαf/ǫ)1/γ . (4.23)

Assuming a similar scaling for the prefactor in (3.4), the rate could be written in the
form (3.17), and an analytical expression for the probability density of rupture events
p1 could be derived. For a known value of γ, this model involves the three unknown
parameters µ = (λ, α, ǫ).
This suggests that, for escape processes over a single activation barrier, single-
molecule force spectroscopy should, in principle, provide the possibility not only to
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Figure 4.3: Maximum likelihood fit values for the data set from figure 4.2 fitted with
the rupture force distribution (3.17-3.19). Each data point was obtained by
fitting the same data set, but assuming a different value of the parameter
γ.

determine the force-free dissociation rate k0 = exp(λ) and the dissociation length xb

(as in Bell’s model), but also the height Eb(0) = ǫkBT of the barrier. Naturally, the
question arises how accurate these estimates will be, and whether the inferred values
critically depend on the chosen theoretical model, in particular on the value of the
parameter γ. These questions will be addressed next.
There is an ongoing debate in literature about which of the three exponents, i.e.,

γ = 1, γ = 2/3, or γ = 1/2, is most appropriate to use when evaluating experimental
rupture data [DFKU03, HS03, SO03, ML06, DHS06, HK06]. Taking for granted that
one of the three models approximates the “truth” satisfactorily, choosing µ = µ∗ is
– according to our above conclusions – the closest one can get to the “full truth” on
the basis of one given data set f . In case of disagreement about the “true” γ-value, a
fully objective selection criterion seems unavailable in principle. In practice, the usual
criterion is the comparison with the basic “true” quantity observed experimentally,
namely the distribution of rupture forces.
For the example shown in figure 4.2, we sampled N = 2000 rupture forces f ac-

cording to the distribution (3.17-3.19). In the simulations, we have taken γ = 2/3 and
realistic parameter values λ0 = −5, α0 = 0.1 pN−1, ǫ0 = 15.
In order to test the maximum likelihood method, for the resulting data set we

determined the estimate µ∗ for several possible γ-values. Since in a real experiment,
the value of the exponent γ is not known a priori, also during the fitting, the γ-values
used were not necessarily coincident with the “true” value used for data generation.
The bin-width of the histograms in figure 4.2 was chosen as hβ = 2.83sNβ

N
−1/3
β ,

where sNβ
is the standard deviation of the rupture forces measured at pulling velocity

vβ . As discussed in appendix A.3, this is the optimal choice of the bin-width for Bell’s
model; although this model is in fact not the true one in our numerical experiment,
this choice of the bin-width remains suitable, as every distribution can separately be
very well fitted with equation (3.15).
Comparing in figure 4.2 the resulting distributions p1(f |µ∗, v) for three different γ
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Figure 4.4: Histograms: Numerically determined distribution of the single compo-
nents of the maxima µ∗ = (λ∗, α∗, ǫ∗) of the likelihood (4.1,3.17-3.19) with
γ = 1/2, γ = 2/3, and γ = 1 for 10000 “computer experiments”. For
all data sets the rupture forces were generated numerically according to
(3.17-3.19) with γ = 2/3, λ0 = −5, α0 = 0.1 pN−1, ǫ0 = 15. For each κv,
we sampled 500 forces, i.e., N = 2000. The bin-width of the histograms is
hβ = 3.49sNβ

N
−1/3
β (see appendix A.3). Solid lines: Gaussian approxima-

tions to the distributions with covariance matrices (4.13). They have been
shifted so that their maximum coincides with the mean of the empirically
determined distributions. For sake of better visibility the distributions for
γ = 1 have been rescaled by an appropriate value.
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values, we observe the following. Already the two-parametric Bell’s Ansatz (γ = 1) re-
produces the experimental distribution of rupture forces with reasonable accuracy, see
the dotted line in figure 4.2. However, if one increases the number of fit parameters
to three, one obtains the fit distributions notably different from the Bell’s curves, see
the solid lines corresponding to γ = 1/2 and γ = 2/3. We also note that the difference
between the curves corresponding to these two values of γ is smaller than the line
thickness. This means that if one treats the exponent γ as a fourth fit parameter, then
its precise value cannot be determined by fitting the experimental rupture force dis-
tribution. With respect to the three remaining fit parameters, their values are rather
close to each other for the fits with γ = 1/2 and γ = 2/3, with the largest discrepancy
between the fit values of the force-free barrier height (see the caption in figure 4.2).

When fitting the real experimental data, one does not know a priori the true value of
the exponent γ. It is therefore of interest to find out, how the remaining fit parameter
values depend on the assumption with respect to this quantity. Figure 4.3 shows the
fit results obtained for different assumed values of γ within the physically meaningful
range. All of the fitting curves obtained for the different γ-values from figure 4.3
coincided within the line thickness. We observe that the resulting fit values of the
force-free escape rate eλ and the dissociation length kBTα are not very sensitive to
the choice of the exponent γ. At the same time, the force-free barrier height value
inferred from the fit depends approximately linearly on the choice of this parameter,
and can assume values differing by as much as a factor of 2 at extreme γ-values. This
means that when fitting the experimental data, the value of the force-free barrier
height will be determined with the least accuracy.

In view of these observations, an interesting question arises: are the approxima-
tions (4.13) and (4.19-4.22) for the statistical uncertainties of the model parameters
still valid for those models, about which we (in our case) know that they are not true?
To study this point, we have repeated the above described procedure for 10000 data
sets, each generated in the same way and with same “true” parameters as the data
set shown in figure 4.2. The distributions of the inferred parameters µ∗ for the three
different γ-values are depicted in Fig. 4.4 as histograms. Following section 4.1.2, they
should be bell-shaped with variance given by equation (4.13). We have evaluated
this expression at the mean values of the inferred parameters µ∗ for each of the three
γ-values, respectively. For γ = 2/3 and γ = 1/2 this had to be done numerically,
whereas for γ = 1, equations (4.19-4.22) could be employed. The resulting distribu-
tions, centered about the mean value of the inferred parameters, are shown in figure
4.4 as solid lines. For λ and α they closely agree to the histograms. With respect
to the parameter ǫ, the approximated variance agrees very well with the empirically
determined, but finite-N corrections to the full distributions, which are not symmetric
about their centers, are apparent.

In conclusion, although the models for γ = 1 and γ = 1/2 are not the true models,
equation (4.13) still yields very good approximations for the statistical uncertainties
of the parameters, i.e., for their distribution upon repeating the same experiment
many times. Nevertheless, comparing these distributions to the distribution of the

43



4 Evaluation of single-molecule force spectroscopy experiments

parameters for the “true” gamma-value γ = 2/3, we see, that by choosing the wrong
model, the systematic deviations to the parameters are much larger than the statistical
uncertainties. As one will, in general, be unsure about the true underlying energy
landscape, and thus about the “true” γ-value, this point is essential if one wishes to
use the inferred parameter values in another context than the interpretation of single-
molecule pulling experiments.
We would like to mention that the deviations between the distributions resulting
from the different γ values increase with the pulling velocity [DHS06]. Hence, by
increasing the range of accessible pulling velocities [vmin, vmax], a clearer distinction
between the models is possible. However, for precise measurements with the AFM
the loading rate κv is limited to a few orders of magnitude, comparable with our
values.

4.4 Discussion

In this chapter (and in our works [GR07, GER09]) we have shown that the maximum
likelihood approach is an extremely simple, general, and powerful method for param-
eter estimation in the context of single-molecule force spectroscopy. For large data
sets it outperforms all other estimates. Furthermore, approximations to the statistical
uncertainties of the parameters are available once the parameters are estimated. In
the case of the standard Bell model we were able to derive an analytical expression
for these uncertainties in terms of the model parameters and the distribution of the
applied loading rates. For more general models, the uncertainties can be determined
numerically.
When fitting the experimental data, one usually assumes some functional form of
the force-dependent escape rate involving several fit parameters. By means of a nu-
merical example, we have demonstrated for potentials with a single activation barrier
that the largest number of such parameters that can be determined from the ex-
periment is three. These parameters are related to the force-free value of the rate,
the dissociation length, and the barrier height in the absence of the force. Further-
more, when fitting the experimental rupture force distributions, one needs to make
an additional assumption about the manner in which the escape rate decreases with
the applied force. While the fit values of the force-free escape rate and the disso-
ciation length depend only weakly on this assumption, the value of the force-free
barrier height can be determined much less reliably. We have shown that, even if the
model adopted for the description of the experiment is not the true one, but pre-
dicts distributions of rupture forces similar to the measured distribution, the statistical
uncertainties found from the maximum likelihood method very well approximate the
dispersion of the estimated parameters upon repeating the same experiment many
times. Often these uncertainties are much smaller than the systematic error resulting
from choosing the “wrong” model.
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5 Incompatibilities between experiment
and theory – theoretical assumptions
under critical inspection

Having introduced the basic stochastic modeling concepts in the field of
single-molecule force spectroscopy (chapter 3) and a general method for parameter
estimation (chapter 4), we will now turn to real experimental data.
In the previous chapter we have demonstrated that, given a dissociation kinetics

in the form of a one-step rate equation (3.6), a number of different models for the
force-dependence of the dissociation rate k(f) can explain the “experimental” findings
equally well, even under idealized conditions (no experimental error, force distance
curve linear with fixed and known κ, etc.). For real single-molecule pulling experi-
ments, it turns out that the rupture force data can, in most cases, not be explained
by a one-step rate description (3.6), e.g., [SSHM99, MSL+05, NAPG06]. This incom-
patibility between experimental findings and theoretical assumptions was rigorously
demonstrated in [RER+04, IP04]. It is particularly astonishing in view of the fact that,
for a number of closely related systems, like the unfolding of polymers [CVLL+03],
opening of DNA hairpins [HZV+07], nanopore unzipping of DNA hairpins [MVV+04],
and disruption of a DNA-protein complex by unzipping DNA [KW03], which are the-
oretically described by the very same formalism, the experimental data is in good
agreement with the theory.
In [REB+06], Raible et al. introduced a model based on the heterogeneity of chem-

ical bonds. In this model the heterogeneity was introduced in form of an ad hoc
Ansatz, by postulating a randomization of one of the model parameters. This resulted
in an excellent agreement between experiment and theory for all studied data sets.
However, the exact physical origin of this heterogeneity remained unclear.
After briefly reviewing the heterogeneous bond model, we will critically reconsider

the theoretical assumptions on which the modeling in section 3.3 was based. Then we
will discuss some physical mechanisms which can naturally result in a randomization of
one or more model parameters, as well as alternatives to this proposed randomization.

5.1 Revealing incompatibilities between experiment and
theory

Let us for an example consider the dissociation of the PhoB peptide from the DNA
target sequence studied by Eckel et al. [EWB+05]. The distributions of rupture forces
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5 Incompatibilities between experiment and theory

measured at five different pulling velocities are shown in figure 5.1 (b)-(f). We will
now check whether any of the models discussed in the previous chapters is applicable
to these data.
A minor theoretical challenge constitutes the fact that one cannot reliably determine
arbitrarily small rupture forces in the experiment. These cannot be distinguished from
the noise in the force distance curves. For an evaluation of the experiment one there-
fore only uses those rupture forces larger than a threshold force fmin. This threshold
should be larger than the thermal fluctuations so that one can assume that all rupture
forces above this value can be determined. Typically for AFM measurements, fmin

has a value of a few ten pN. For the example shown in figure 5.1, fmin = 20pN was
chosen. In order to compare the experimentally measured rupture force distribution
to the theoretical distribution, one has to normalize the theoretical density according
to

p1(f |µ, v, fmin) := p1(f |µ, v)/n(fmin|µ, v) , (5.1)

where p1(f |µ, v, fmin) denotes the rupture force density for a given value of fmin and
p1(f |µ, v) that for fmin = 0. The same notation is used for the survival probability
n(f | . . . ).
Figure 5.1 (a) shows the most probable rupture force f∗ (the maximum of the rup-
ture force distribution determined from a Gaussian fit, see section 4.2.2) in depen-
dence of the loading rate κv. It is obvious that f∗ increases approximately linearly
with ln(κv). As this relationship is also predicted by Bell’s model (3.16), this observa-
tion is often seen as a hint that Bell’s model is in fact applicable to the evaluation of
single-molecule pulling experiments [MNL+99, Eva01, NDKM03, BKB+05, EWB+05].
Fitting on the semi-logarithmic scale a straight line to the data, assuming an (aver-
age) total net elasticity κ = 3pN/nm of the complex composed of cantilever, linker
molecules, peptide, and DNA sequence [c.f. section 3.2.3)], and applying equation
(3.16) yields the model parameters λ = −3.93 and α = 0.133 pN−1.1

Comparing in figure 5.1 the resulting distributions (3.15,5.1) to the experimentally
determined ones reveals a great discrepancy. Except the positions of the maxima
(which have been used for fitting the data) both distributions are completely different.
The fitted distributions according to Bell’s model are, in particular, much too small and
have the wrong skewness. Furthermore, other methods for parameter estimation (like
the maximum likelihood method from the previous chapter) yield completely different
parameter values and distributions which are quite different from those obtained from
the f∗ vs. ln(κv) plot and which are also in complete disagreement with the exper-
imentally measured distributions (data not shown). In the same way, the extension
of Bell’s model (3.10,3.17) yields similarly unsatisfying results [cf. blue solid lines in
figure 5.1 (b)-(f)]. In summary, none of the previously discussed models can explain
the experimental findings from [EWB+05]. For other experiments similar conclusions

1 The value κ = 3pN/nm is taken from [REB+06]. It is a typical value for single-molecule pulling
experiments measured by AFM. However, if one just wants to check whether any model based on
the one-step rate description (3.6) with f(t) = κt is applicable, the precise value of κ is irrelevant.
The net elasticity enters the distribution of rupture forces only in the combination eλ/κ.
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Figure 5.1: Dissociation of the PhoB peptide from the DNA target sequence mea-
sured by Eckel et al. [EWB+05]. (a) The experimentally determined most
probable rupture force f∗ as a function of the loading rate κv is depicted
by the points. The solid line corresponds to the least squares fit accord-
ing to equation (3.16) with fit parameters λ = −3.93 and α = 0.133 pN−1.
(b)-(f) show the distributions of rupture forces measured at five different
pulling velocities. The number of rupture forces at each pulling velocity
is indicated in brackets. The experimental data is shown by the black his-
tograms, the Bell’s model (3.15) with parameters obtained from the force
spectrum (a) and for sake of better visibility rescaled by an appropriate
value by the red lines. The maximum likelihood fits p1(f |µ∗, v) of the ex-
tension of Bell’s model (3.17-3.19) with exponent γ = 2/3 are shown by
the blue lines. The fit parameters have the following values: λ∗ = −1.18,
α∗ = 0.0215 pN−1, and ǫ∗ = 134.19. A force threshold of fmin = 20pN and
a net elasticity κ = 3pN/nm were used.
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Figure 5.2: Experimentally reconstructed functions −v ln(n(f |v) for the same data as
in figure 5.1. A few large forces are omitted for sake of better visibility.

were drawn [SSHM99, MSL+05, NAPG06].
Following [RER+04, IP04] one can rigorously demonstrate that the experimental
rupture force data are in fact incompatible to the basic assumptions from section
3.3.1, namely:

• Assumption 1: The reaction kinetics is given by the first-order differential equa-
tion:

ṅ(t) = −k(f(t))n(t) . (5.2)

• Assumption 2: There exists a common, monotonically increasing force-extension
curve F (s) such that

f(t) = F (s(t)) (5.3)

for all the pulling experiments under consideration, independently of any further
details (pulling speed, linker properties, etc.) of the single repetitions of the
experiment.

Using that s(t) = vt can be experimentally controlled with great accuracy and com-
bining equations (5.1-5.3), we obtain in analogy to equations (3.10,3.11)

n(f |v, fmin) = exp

(

−1

v
g(f |fmin)

)

, (5.4)

g(f |fmin) :=

∫ f

fmin

df ′ k(f ′)

F ′(F−1(f ′))
. (5.5)

Hence, given that the above two assumptions are valid, g(f |fmin) = −v ln(n(f |v, fmin))
should not depend on the pulling velocity. This observation is independent of the
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5.2 Heterogeneous bond model

exact force-dependence of the rate k(f) and independent of the exact form of the
force-extension curve F (s).
Given Nv experimentally measured rupture forces fi, i = 1, ..., Nv, measured at

a pulling velocity v, the survival probability of the bond can be approximated by
ñ(f |v, fmin) = N−1

v

∑Nv
i=1 Θ(fi−f) with the Heaviside step function Θ(·). For the same

data as in figure 5.1, these functions are shown in 5.2. The functions corresponding
to the different pulling velocities clearly do not collapse on a single curve. One can
therefore conclude that at least one of the above two assumptions (5.2,5.3) does not
apply to the experiment [EWB+05]. The same discrepancy was found by us and Raible
for a number of other experimental data sets [BBA+03, NDKM03, BBA+05, BMF+07,
FSA+09].

5.2 Heterogeneous bond model

A possible explanation for this discrepancy is given in [REB+06] in the form of a het-
erogeneous bond model. The basic idea of this model is that the two assumptions
(5.2,5.3) are in fact valid for each single repetition of the experiment. But in each
repetition one actually deals with a slightly different system composed of ligand, re-
ceptor, linker molecules, cantilever, and thermal environment, leading to a different
force-dependence of the escape rate k(f). Possible physical reasons leading to such
a heterogeneity are: there might exist different conformations of the ligand-receptor
complex [SSHM99, NSK+03, TNELG04]; variations of the local environment of the
complex, e.g., in the form of fluctuations of the pH-value, electric fields and ionic
strength [VL01]; multiple binding sites of the receptor for the ligand [SSHM99]; and
geometrical variations of the microscopic configuration upon repeating the experi-
ment, as illustrated and discussed in figure 5.3, and observed in experiments and
computer simulations for the unfolding of proteins [BPZ+03, DBBR06, BPHD08]. Fur-
thermore, in a small fraction of experiments one might be pulling apart multiple paral-
lel bonds [EPNS08, GRK+08] or unspecific bonds [RRL+06]. A cooperative rupture of
multiple bonds or that of an unspecific bond cannot (or only hardly) be distinguished
from the rupture of a single specific bond in the force distance curves (cf. section
5.4).2

In order to formalize this, one assumes that there exists a parametric form of the
force-dependent escape rate k(f) = k(f |θ) with parameters θ. Now the variations of
the force-dependence of the escape rate are modeled such that the functional form of
the escape rate is the same for each repetition of the experiment, but the parameters
θ assume different values. That means, they are drawn from some distribution ρ(θ|µ)
depending on the ultimate model parameters µ. Under these assumptions the survival

2 The fraction of unspecific rupture events can be estimated by performing “control experiments” in
which the specific binding site is blocked.
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5 Incompatibilities between experiment and theory

Figure 5.3: Schematic illustration of some random geometrical variations in single-
molecule pulling experiments. The green and orange dots indicate pos-
sible binding sites between ligand and receptor, and between ligand and
linker, respectively. The binding sites between receptor and ligand are
omitted for sake of better visibility. The black dots indicate the points
where the linkers are connected to the tip and to the surface. Depending
on the choice of the green and orange binding sites and on the positions of
the immobilization points, which cannot be controlled experimentally, the
force acting along the relevant reaction coordinate can significantly differ
from the measured normal component of the force F . Furthermore, the
escape rate k(f), itself, can depend on the direction of the applied force
[BPZ+03, DBBR06, BPHD08], and the lateral component of the force can
influence the deflection of the laser beam from the cantilever, see figure
3.1, and hence the “measured” force in a complicated manner [KEG06].
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Figure 5.4: Solid histograms: Same as figure 5.1(b)-(f). Dashed lines: Maximum like-
lihood fits p̂1(f |µ∗, v, fmin) according to equations (5.6,5.7,3.14). The fit
parameters have the following values: λ∗ = −4.905, α∗

m = 0.103pN−1, and
σ∗ = 0.0663pN−1.

probability of the bond is given by

n̂(f |µ, v, fmin) =

∫

dθ n(f |θ, v)ρ(θ|µ)
∫

dθ n(fmin|θ, v) ρ(θ|µ)
, (5.6)

where n(f |θ, v) is the survival probability according to equations (5.2-5.5). The hat in
equation (5.6) refers to the fact that n̂(f |µ, v, fmin) corresponds to a different model
than n(f |θ, v). Finally, the rupture force density p̂1(f |µ, v, fmin) = −d/df n̂(f |µ, v, fmin)
follows directly from equation (5.6).
It should be noted that the basic models discussed in section 3.3 are special cases

of the heterogeneous bond model corresponding to a delta distribution ρ(θ|µ) =
δ(θ − µ).
Now the remaining task is to find an appropriate model for the force-dependent

escape rate k(f) = k(f |θ) and for the force-extension curve F (s). Here we follow
[REB+06] and make the same choices as in section 3.3.3 for Bell’s model. Hence,
the survival probability n(f |θ, v) of the basic model is again given by equation (3.14)
and the corresponding model parameters are θ = (λ̃, α̃). Furthermore, as done in
[REB+06], we assume for the present that α̃ is Gaussian distributed with mean αm

and variance σ2, while λ̃ = λ is fixed. This assumption can (in part) be justified by
the role of the random geometrical variations (figure 5.3) as the angle between the
applied force and the direction of the relevant reaction coordinate has been implicitly
included in the parameter α̃, cf. discussion below equation (3.3) and section 5.6.
Hence, the distribution of the parameters is

ρ(θ|µ) ∝ exp

(

−1

2

(α̃ − αm)2

σ2

)

Θ(α̃)δ(λ − λ̃) , (5.7)

with model parameters µ = (λ, αm, σ).
Let us again consider the data from [EWB+05]. The maximum likelihood estimates

of the parameters of the model specified by (5.6,5.7,3.14) are λ∗ = −4.905, α∗
m =

51



5 Incompatibilities between experiment and theory

10-1

100

101

102

103

104

 0  50  100  150  200  250

-v
 ln

 n
(f

|v
,f m

in
) 

[n
m

/s
]

f  [pN]

3000 nm/s
1000 nm/s

200 nm/s
100 nm/s

10 nm/s

Figure 5.5: Same as figure 5.2. The solid lines correspond to the theoretical distribu-
tion (5.6) supplemented with equations (3.14,5.7) and with fit parameters
µ∗ as in figure 5.4.

0.103pN−1, and σ∗ = 0.0663pN−1. In figure 5.4 the resulting distributions of rupture
forces p̂1(f |µ∗, v, fmin) are compared to the experimentally determined histograms for
the different pulling velocities. The corresponding f vs. −v ln n̂(f |µ∗, v, fmin) plots are
shown in figure 5.5. Within the statistical uncertainties, the agreement between the
experimental and theoretical distributions is quite good, especially when compared
to figure 5.1(b)-(f). Considering the statistical uncertainties of the estimated model
parameters, we can proceed as detailed in section 4.1 and apply equation (4.16).
Here, the Hessian matrix has to be evaluated numerically at the most probable pa-
rameters µ∗. The resulting uncertainties are: s(λ∗) = 0.516, s(α∗

m) = 0.008pN−1, and
s(σ∗) = 0.005pN−1. By applying parametric bootstrap methods [ET93] in analogy to
our numerical experiments in sections 4.2 and 4.3, we have verified for different ex-
amples that these estimates and the corresponding confidence intervals are again very
good and that finite N corrections are rather small.

The agreement between the theoretical and experimental distributions of rupture
forces is similarly good for the other data sets [BBA+03, NDKM03, BBA+05, BMF+07,
FSA+09] studied by Raible and us. A somewhat similar model has been proposed
independently in [LOYI06] to explain the occurrence of so-called “catch bonds” under
the application of a constant force [ZLM05, PPF+05].
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Figure 5.6: Fitted distributions ρ(α̃|µ∗) for the same data as in figure 5.4. They are
obtained from ρ(θ|µ∗) by integrating over the remaining parameter λ̃. The
parameters of the distribution as well as the estimated value for λ can
be taken from the main text. (a) blue: Gaussian distribution (5.7), green:
parabolic distribution (5.8), and red: uniform distribution (5.9). (b) red:
linear distribution (5.10), blue: Gamma distribution (5.11), and green: Beta
distribution (5.12).

5.3 Influence of the parametric Ansatz for the rate
distribution

Next, we want to check the influence of the parametric Ansatz for the distribution of
the model parameters ρ(α̃|µ). In section 5.3.1 we will assume, as in equation (5.7),
that only the parameter α̃ is subjected to random variations while λ̃ = λ is the same
for all repetitions of the experiment. We will investigate how strong the quality of the
fitted distributions, as well as the value of λ, depend on this Ansatz. In section 5.3.2
the opposite situation, i.e., only λ̃ is subjected to random variations while α̃ = α is
fixed, will be considered. Throughout this section we will restrict our discussion to
the data from [EWB+05]. However, similar conclusions can be drawn for other data
sets.

5.3.1 Other distributions of α

Let us first study two other distributions which are – as the Gaussian distribution (5.7)
– symmetric about some value:3

• Parabolic distribution

ρ(θ|µ) ∝ (α̃ − αmin)(αmax − α̃)Θ(α̃ − αmin)Θ(αmax − α̃)Θ(α̃)δ(λ − λ̃) , (5.8)

3 Except the cutoff at α̃ = 0.
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with model parameters µ = (λ, αmin, αmax). Employing the maximum likelihood
method to determine the most probable parameters as well as the concomitant
statistical uncertainties yields: λ∗ = −4.853±0.439, α∗

min = −2.569 ·10−3 ±5.036 ·
10−3 pN−1, and α∗

max = 2.298 · 10−1 ± 0.128 · 10−1 pN−1.

• Uniform distribution

ρ(θ|µ) ∝ Θ(α̃ − αmin)Θ(αmax − α̃)Θ(α̃)δ(λ − λ̃) , (5.9)

with most probable parameters λ∗ = −5.219± 0.428, α∗
min = 1.932 · 10−2 ± 0.193 ·

10−2 pN−1, and α∗
max = 2.160 · 10−1 ± 0.119 · 10−1 pN−1.

The marginal distributions ρ(α̃|µ∗), obtained from ρ(θ|µ∗) by integrating over the
remaining parameter λ̃, are shown in figure 5.6 (a) together with the corresponding
Gaussian distribution (5.7). The mean values, the dispersions about these values,
as well as the inferred values for λ are very similar for all three distributions. This
observation is in full agreement with [REB+06] where the same parametric forms have
been applied to the data from [BBA+03].
However, the three distributions (5.7-5.9) employed so far have in common that
they are, in absence of the cutoff at α̃ = 0, symmetric about their mean values. We
now consider other distributions which do not possess such a symmetry:

• Linear distribution

ρ(θ|µ) ∝ (α̃ − αmin)Θ(α̃ − αmin)Θ(αmax − α̃)Θ(α̃)δ(λ − λ̃) , (5.10)

with λ∗ = −3.524 ± 0.339, α∗
min = −2.305 · 10−1 ± 1.111 · 10−1 pN−1, and α∗

max =
1.672 · 10−1 ± 0.078 · 10−1 pN−1.

• Gamma distribution

ρ(θ|µ) ∝
(

α̃

ᾱ

)m

exp

(

− α̃

ᾱ

)

Θ(α̃)δ(λ − λ̃) , (5.11)

with λ∗ = −7.863 ± 1.209, ᾱ∗ = 5.098 · 10−2 ± 0.606 · 10−2 pN−1, and m∗ =
2.093 ± 0.156.

• Beta distribution

ρ(θ|µ) ∝
(

α̃

αmax

)m(

1.0 − α̃

αmax

)s

Θ(αmax − α̃)Θ(α̃)δ(λ − λ̃) , (5.12)

with λ∗ = −7.684, α∗
max = 3.395pN−1, m∗ = 1.997, and s = 62.01.

The corresponding distributions ρ(α̃|µ∗) are shown in 5.6 (b). Particularly interesting
is the fact that the fitted Gamma distribution (5.11) and the Beta distribution (5.12)
are nearly identical. This can also be seen directly by comparing equations (5.11)
and (5.12) and by making use of the well known approximation (1.0 − α̃/αmax)

s ≈
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Figure 5.7: Same comparison between experimental and fitted rupture force distri-
butions as in figure 5.4, but for the different distributions (5.7-5.12) of the
parameter α̃ shown in figure 5.6. The explicit values of the model parame-
ters can be taken from the main text. The bin-width of the histograms was
chosen according to equation (A.12) (see Appendix A.3), supplemented
with the concomitant maximum likelihood estimates.
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5 Incompatibilities between experiment and theory

exp(−α̃s/αmax) for s ≫ 1. Hence, ᾱ∗ = 0.051pN−1 in equation (5.11) has to be
compared to α∗

max/s
∗ = 0.055pN−1 in equation (5.12). These values are obviously close

to each other. The most probable parameters of the Beta distribution are therefore
found in a region where the Beta distribution approaches the Gamma distribution
and depends on αmax and s only via their ratio.4 Consequently, our assumption from
chapter 4, that the likelihood as a function of the model parameters develops a sharp
maximum, does not apply here, and we cannot estimate the statistical uncertainties
of the model parameters in the usual way.
Except the positions of the maxima, the distributions ρ(α̃|µ∗) shown in figure 5.6
(b) differ considerably from each other and from those shown in figure 5.6 (a). In
particular, the skewness and asymptotics for large α̃ values is completely different. In
figure 5.7 the corresponding distributions of rupture forces are compared to the ex-
perimentally determined ones. For this comparison, the bin-width of the histograms
was chosen following the procedure described in Appendix A.3. Here, however, no
analytic expression for the optimal bin-width could be derived. Instead, equation
(A.12) with p̂1(f |µ∗, v, fmin) from (5.6,5.11,3.14) was solved numerically. Although
the six distributions ρ(α̃|µ∗) of model parameters are quite different, each of them
explains the experimental findings satisfactorily, with the seemingly best agreement
for the Gamma/Beta and for the Gaussian distribution. Hence, it seems that the dis-
tribution of rupture forces (5.6) depends only weakly on details of the underlying
distribution ρ(θ|µ), as long as the mean values and the dispersions about these values
are comparable.
The parameter λ has the same physical meaning for all so far applied distributions

ρ(θ|µ∗). Namely, it denotes the logarithm of the force-free dissociation rate which
is assumed to be the same for all repetitions of the experiment. While it has been
assumed in [REB+06] that the inferred value for this parameter does not significantly
depend on the distribution of α̃, which is indeed the case for the three symmetric
distributions (5.7-5.9), we find here that this value depends considerably on the para-
metric Ansatz for the asymmetric distributions (5.10-5.12). For example, the most
probable force-free dissociation rate k∗

0 = exp(λ∗) is for the linear distribution ap-
proximately two orders of magnitude larger than for the Gamma distribution. This
“systematic” difference is much larger than the statistical uncertainties of the inferred
parameter value, cf. the statistical uncertainties of λ. This situation is comparable to
our discussions in section 4.3, where the estimated energy barrier height ǫ in the ex-
tension of Bell’s model was found to depend strongly on the Ansatz for the exponent
γ.
Next, the comparison between experimental and theoretical distributions shall be
further quantified. For this purpose, different statistical tests for hypotheses test-
ing can be used. Here we employ a particular simple test, namely the Kolmogorov-
Smirnov test [Jam06]. This test provides a possibility to check whether a given set

4 The inferred set of parameters µ∗, obtained by numerically maximizing the likelihood, is not unique
and depends strongly on the initial guess. However, within the numerical accuracy λ∗, m∗, and
α∗

max/s∗ can be uniquely determined.
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5.3 Influence of the parametric Ansatz for the rate distribution

test set α̃, Gauss (5.7) α̃, Gamma (5.11) λ̃, Gamma (5.14)
vc (nm/s) Nc DNc

√
NcDNc DNc

√
NcDNc DNc

√
NcDNc

10 112 0.266 2.82 0.171 1.87 0.083 0.88
100 123 0.074 0.82 0.088 0.98 0.069 0.76
200 202 0.121 1.72 0.094 1.34 0.081 1.16
1000 278 0.095 1.58 0.068 1.13 0.049 0.81
3000 151 0.114 1.40 0.093 1.14 0.087 1.07

Table 5.1: Maximum deviation DNc of the empirical survival probability of the test
data set {fi|vi = vc}N

i=1 of size Nc from the theoretical survival probability
(5.6,3.14) supplemented with a Gaussian (5.7) and a Gamma (5.11) distri-
bution of the parameter α̃ and with a Gamma distribution (5.14) for the
parameter λ̃. Indicated in red are the deviations for which the hypothe-
sis has to be rejected on the basis of a Kolmogorov-Smirnov test with a
significance level of 0.05. More details are given in the main text.

of rupture forces is compatible to a proposed theoretical distribution. However, in
our case this distribution depends on the maximum likelihood estimate of the model
parameters and thus on the set of rupture forces. As a consequence, the Kolmogorov-
Smirnov test cannot be applied directly. One possibility to circumvent this problem
consists in splitting the full data sets into two subsets. One of them is used to obtain
an estimate µ∗ of the model parameters. Then it can be checked whether the model,
together with these parameters, is consistent with the distribution of rupture forces
in the other subset. The latter is from now on called the test set.
For simplicity, the test set used here consists of all Nc rupture forces measured at a

pulling velocity vc, i.e., {fi|vi = vc}N
i=1. In the Kolmogorov-Smirnov test the maximum

deviation of the empirical survival probability ñ(f |vc, fmin) from the theoretical survival
probability n̂(f |µ∗, vc, fmin) is considered, i.e.,

DNc := max
f

|ñ(f |vc, fmin) − n̂(f |µ∗, vc, fmin)| . (5.13)

It can be shown [Jam06] that, given that the rupture forces have been sampled
from the distribution p̂1(f |µ∗, vc, fmin) = −d/df n̂(f |µ∗, vc, fmin), the distribution of√

NcDNc (upon repeating the experiment many times) is independent of the func-
tional form of p̂1(f |µ∗, vc, fmin). On a significance level of 0.05,

√
NcDNc should not

exceed 1.36. That means, given that the Nc forces have been sampled according to
p̂1(f |µ∗, vc, fmin), then on the average only in one out of 20 cases,

√
NcDNc should be

larger than 1.36.
We restrict our comparison between the experimental and theoretical distributions

to the Gaussian and Gamma distribution of parameters (5.7,5.11) for which the ap-
parently best agreement was found. The procedure described above has been applied
to each of the five different pulling velocities used for the data in figure 5.6. The
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Figure 5.8: Solid histograms: Same as figure 5.1(b)-(f). Dashed lines: Maximum like-
lihood fits p̂1(f |µ∗, v, fmin) according to equations (5.6,5.14,3.14).

resulting maximum deviations DNc are given in table 5.1. While for the Gamma dis-
tribution only in one case the critical value for

√
NcDNc is exceeded, this threshold

is exceeded for the Gaussian distribution for four out of the five test sets. Hence,
the Gamma distribution seems to explain the experimental findings better. A closer
inspection reveals that for the Gaussian distribution and large pulling velocities, the
largest deviation between the empirical and theoretical survival probabilities is found
in the large force regime. This can be traced back to the fact that ρ(α̃|µ∗) does not
vanish as α̃ → 0. As a consequence, the theoretical distributions p̂1(f |µ∗, v, fmin) have
a long large force tail.
Although a fully objective statement is impossible, the results from table 5.1 indicate
that there are still some small systematic deviations from the experimentally observed
distribution (for the Gamma distribution and vc = 200nm/s, the renormalized devia-
tion

√
NcDNc is also close to the critical value). However, these small deviations will

probably vanish by a further fine-tuning of the distribution of model parameters or
when including the effect of the experimental noise in the evaluation which has so
far not been done. In addition, modeling the force-dependence of the rate as in the
extension of Bell’s model (3.17) might also improve the results.

5.3.2 Variation of λ

Up to now we have always considered the situation that only α̃ was allowed to
vary from one repetition of the experiment to the next while λ̃ always assumed
the same value. Next, the opposite situation will be considered. This means, λ̃
changes upon repeating the experiment while α̃ is always the same. Remembering
that the force-free dissociation rate and the energy barrier height are connected to
λ̃ via eλ̃ = k̃0 = ω(0) exp(−Eb(0)/kBT ), we see that the randomization of the latter
quantity is equivalent to a randomization of one of the former quantities.
As in the previous section, we have to make an Ansatz for the functional form of the
distribution of the model parameters. Let us assume that the energy barrier height is
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5.3 Influence of the parametric Ansatz for the rate distribution

drawn from a Gamma distribution. Then obviously:

ρ(θ|µ) ∝ (λmax − λ̃)m exp

(

λ̃

λ̄

)

Θ(λmax − λ̃)δ(α − α̃) . (5.14)

Further assuming that m ≥ 0, the most probable parameters are found to be α∗ =
0.143pN−1, λ∗

max = −1.39, λ̄∗ = 9.37, and m∗ = 0.0. Figure 5.8 shows that the
agreement of the maximum likelihood fit with the experiment is excellent. This is
also confirmed by the Kolomorogov-Smirnov test. Proceeding in the same way as
detailed in the previous section, the results of this test for the different test sets are
summarized in table 5.1. Rather surprisingly, this test indicates that a randomization
of λ̃ fits the experimental data even better than a randomization of α̃. Similar results
were found for the four parameter Beta distribution

ρ(θ|µ) ∝
(

λ̃

λmin
− 1.0

)m(

1.0 − λ̃

λmax

)s

Θ(λmax − λ̃)Θ(λ̃ − λmin)δ(α − α̃) , (5.15)

which has shown to be sufficiently general to fit all other studied data sets, e.g.,
[BBA+03, NDKM03].
However, for Bell’s model the transformation λ̃ → λ̃+ λ̃′ results in a shift of the rup-

ture force distribution (3.15) towards lower forces (by ∆f = λ̃′/α). As a consequence,
changing the skewness of the distribution of λ̃, in general, results in rupture force
distributions with opposite skewness. Stated differently, for a given, experimentally
established rupture force distribution, the possible functional forms of the distribu-
tion of λ̃ are limited to those functions which allow the correct skewness. This is in
contrast to a randomization of α̃, cf. figures 5.6 and 5.7.
Considering the Gamma distribution (5.14) fitted to the data from [EWB+05], we

see that the distribution has a “cutoff” at the maximum value λ∗
max = −1.39 and falls

off exponentially towards the lower λ̃ values, on a scale given by λ̄∗ = 9.37. Hence,
rather small λ̃ values, down to values of λ̃ ≈ −20, are needed to satisfactorily explain
the experimental rupture force distribution. This corresponds to a variation of the
energy barrier height of approximately 20kBT . In view of the fact that the typical
strength of a specific bond is of the order of just 10kBT (compare section 3.1) and
in view of the restrictions concerning the skewness of the distribution, interpreting
the randomization of the relevant energy barrier height as the physical origin of the
heterogeneity of the bonds might appear rather unlikely.
However, most of the possible physical sources of the heterogeneity of chemical

bonds discussed in [REB+06] and reviewed in section 5.2 are likely to effect the en-
ergy barrier height (and thus λ̃) as well as α̃. For example, it has been shown in
[DBBR06, BPHD08] that the unfolding kinetics of proteins can critically depend on
the pulling geometry. Depending on the direction of the applied force, completely
different dissociation/unfolding pathways may be sampled which is visualized in fig-
ure 5.9 for a two dimensional model potential landscape. While in absence of an
applied force practically always pathway I with the lowest energy barrier is taken,
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Figure 5.9: Model of a two dimensional potential landscape. In absence of a force,
thermally activated escape practically always occurs along pathway I. Un-
der application of force, also the other pathways (II and III) may be sam-
pled, depending on the direction of the applied force.

under application of force, also the other pathways with higher energy barriers may
be sampled. It is possible that such a system may still be described approximately
by Bell’s model, but with parameter values (λ̃, α̃) now depending on the direction
of the applied force. As illustrated and discussed in figure 5.3, in single-molecule
pulling experiments the microscopic configuration of the system is subjected to ran-
dom variations of this pulling geometry. Considering also other possible reasons for
the heterogeneity, like variations in the local environment or a small fraction of mul-
tiple or of unspecific bonds, the proposed randomization of the parameter λ̃ upon
repeating the experiment is not as unlikely as it might be suggested at the first glance.
The upshot of this section is that it is sufficient to randomize just one of the two
parameters in Bell’s model to explain the experimental findings. But from the experi-
mental data alone, no conclusions can be drawn which parameter in fact changes from
one repetition of the experiment to the next. Most likely, both parameters will change
simultaneously. It is clear that allowing such a simultaneous randomization of both
parameters in the Ansatz for the distribution ρ(θ|µ) of model parameters would re-
sult in an even better agreement between experimental and theoretical distributions.
However, quite different distributions of just one of the model parameters, with sig-
nificantly different values of the remaining parameter, can explain the experimental
findings equally well. In view of this fact, a simultaneous randomization of both pa-
rameters seems to be of little use. Again, the inferred values for the model parameters
can only be roughly connected to physical quantities if no further information about
the system (for example from specially designed experiments) is available.
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Figure 5.10: Solid lines: Retracting part of two force distance curves measured by
AFM for the protein-DNA interaction studied by Bartels et al. [BMF+07].
Dashed lines: Baselines of the two measurements corresponding to a van-
ishing force acting on the AFM tip. All forces are measured with respect
to these lines.

5.4 Preprocessing the data: Experimental hints for a
heterogeneity of bonds

Together with Alexander Fuhrmann and Robert Ros from the experimental biophysics
group of Dario Anselmetti, we have reanalyzed already published data to check
whether there are any direct experimental hints for variations of the number of bonds,
the local environment, or of the microscopic pulling geometry which were possible
physical sources of the proposed heterogeneity of the bonds. For this purpose we
have, in a first step, considered the full force distance curves of the single measure-
ments, and not only the rupture forces. The rupture force data correspond to the
dissociation of a protein from a 285bp long DNA fragment and was measured by
Bartels et al. [BMF+07].
A basic assumption in nearly all theoretical models for the interpretation of single-

molecule pulling experiments is that there exits a unique force-extension curve F (s)
which is the same for all repetitions of the experiment (cf. section 5.1). As the
cantilever is always the same (at least for a huge subset of data) and as the linker
molecules employed for the experiment possess a very sharp distribution of length,
this assumption seems reasonable. Even if different binding motifs between ligand
and receptor exist, one would not expect that the force-extension curve is influenced
by details of the bond between ligand and receptor.
Figure 5.10 shows two examples of measured force-extension curves. The black
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curve has, as expected, an adhesion signal at a low distance s and a single rupture
event at a larger distance. In both cases, after the tip jumps off the surface and after
the rupture of the bond, the force immediately fluctuates around the baseline corre-
sponding to a vanishing force acting on the cantilever. However, in a non-negligible
fraction of force distance curves, like the red curve in figure 5.10, this behavior is dif-
ferent. The force signal does not immediately “jump back” to the baseline, but to
some finite value. Especially the behavior of the red curve in figure 5.10 after the
rupture of the bond at s ≈ 60nm might be hint that one is, in this measurement,
not pulling apart a single bond, but multiple parallel bonds. Curves which show such
multiple rupture events are excluded from the further analysis.5 Furthermore, in all
theoretical models, it is assumed that all bonds have formed at forces not larger than
the threshold force fmin. Therefore, in addition only those measurements have been
used for a further evaluation for which the force acting on the bond is smaller than
fmin after the tip jumps off the surface (adhesion signal).
In [FAR+08] we have shown that, for “not too small” fmin, the remaining force-
extension curves can be very well fitted with a second-degree polynomial in the whole
force interval [fmin, fr] with fr the rupture force, but not with a straight line as usually
assumed. Details of the exact numerical algorithm are given in [FAR+08]. For other
data sets more complicated functions than low order polynomials might be neces-
sary. For example, in [RBA07] the freely jointed chain model and the worm-like chain
model have been employed. It has been shown that the simple approximation of a lin-
ear force-extension curve results in small but systematic errors in the estimated model
parameters. Realizing, however, that the parameterization of the curve is only an in-
termediate step in the evaluation, any function which describes the force-extension
characteristic satisfactorily over the full range of pulling forces, may be used. For all
data sets studied by us second-degree polynomials were sufficient.
After aligning the curves such that F (s = 0) = fmin = 32pN, all these resulting
polynomials for the data from [BMF+07] and a pulling velocity v = 2000nm/s are
shown in figure 5.11(a). Clearly, these curves do not collapse to a single universal
force-extention curve as expected, but show rather large deviations. Hence, the basic
assumption 2 from section 5.1 [equation (5.3)] is in fact not true.
In principle, this finding may have different physical reasons, e.g., a dispersion of
linker lengths, a fraction of multiple bonds, or variations of the pulling geometry. We
will now briefly discuss whether any of these points might explain the findings from
figure 5.11(a) quantitatively. The effect of the dispersion of linker lengths has been
discussed in detail in [FWKG03, KCB+04]. In the experiment [BMF+07], rather soft
cantilevers (with spring constant c ≈ 10pN/nm) have been used. As a consequence,
differences in the force distance curves due to a dispersion of the linker length can be
expected to occur mainly in the low extension/low force part of the curves. This is in
contrast to the observed behavior of the force-extension curves from figure 5.11(a).
Furthermore, in the experiment [BMF+07] the proteins were immobilized on the sur-
face via short linker molecules, and the DNA fragment was linked via an approximately

5 This has in fact already been done previously when evaluating the experiments.
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35nm long PEG linker to the tip. Both linkers had a very sharp length distribution
[FW]. The dispersion of linker lengths should thus play a minor role. A similar con-
clusion can be drawn for multiple parallel bonds. Again, the differences should be
mainly visible in the low force regime. Furthermore, as only in approximately 10% of
all trials a rupture event in the force distance curves is visible, it is very unlikely that a
large fraction of those curves with a rupture event corresponds to the rupture of mul-
tiple parallel bonds (cf. discussion in chapter 3.2.2). On the other hand, the observed
splitting of the curves might be a hint for variations of the pulling geometry. That
these variations occur is likely in view of the fact that the rather stiff DNA fragment is,
with approximately 97nm, long compared to the linker molecules. This effect might
even be amplified by the fact that the protein, which binds to the DNA fragment, is
linked to the surface with a very short linker of only a few nm. As a consequence,
the direction of the force acting on the cantilever is, in general, not normal to the sur-
face. This speculation is confirmed by the typical force distance curves shown in figure
5.10. Subtracting the deflection sc of the cantilever at the point of rupture, we see
that the distance of the tip from the surface at this point is approximately sd = 60nm
(cf. figure 3.2). Compared to sum of the length of the DNA fragment and of the PEG
linker, L = LDNA + LPEG ≈ 130nm, this distance is short, indicating that the complex
is in these cases stretched under a large angle (with respect to the normal direction
of the surface). As demonstrated in [KEG06], the tangential component of the force
can influence the deflection of the laser beam from the cantilever, see figure 3.1, and
hence the “measured” force in a complicated manner. Because only the distance s of
the cantilever from the surface is experimentally controlled, variations of the pulling
geometry also result in different rates at which the linker molecules are stretched. An-
other possible reason for the observed behavior of the force distance curves is that the
compound object does not simply consist of the protein, the DNA fragment, and the
two linkers, but that a whole network of linkers participates. There are experimental
hints – the location of the rupture event in the force distance curves is incompatible
to the single lengths of the molecules – that this might happen [FW].

Next, we have put forward a selection procedure of rupture events such that the
initial discrepancy between theory and experiment is remedied by construction. For
this purpose we have considered (for one pulling velocity) the data pairs (fi, f

′
i) with

fi the rupture force and f ′
i the slope of the (fitted) force-extension curve prior to

the rupture. This data has been binned to a histogram, and the data points in the
neighborhood of the maximum of this histogram have been selected, resulting in a
subset of typically 20 data points. Then a second degree polynomial has been fitted
to the force distance curves of this subset by a least squares fit. This curve can be
assumed to be the most characteristic force-extension curve of the present data set
and is called the fitted universal force-extension curve Fu(s). In a second step, all
force-extension curves for all pulling velocities are compared with Fu(s), and only
those which are “sufficiently close” to this curve are accepted for the final evaluation.
This selection procedure is controlled by two parameters (δ1, δ2). The first of them sets
the maximum relative deviation of the slope f ′

i at the rupture point from the slope of
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Figure 5.11: Force-extension curves measured for the protein-DNA interaction
[BMF+07] at a pulling velocity v = 2000nm/s. (a) All fitted force-
extension curves with just one rupture event and maximum force
max(F (s)) > −fmin = 32pN after appropriate aligning. (b) The fitted uni-
versal force-extension curve Fu(s) is shown in red. All accepted curves
(black) lie entirely between the two green lines which set the maximum
allowed deviation from Fu(s). More details are given in the text.

the universal force extension curve at this point. The second defines an interval around
Fu(s), limiting the maximum relative deviations [cf. green lines in figure 5.11(b)].
The result of this filtering procedure with (δ1 = 0.2, δ2 = 0.35) is shown in figure
5.11(b) for the force-extension curves measured at v = 2000nm/s. However, the dis-
tributions of the rupture forces before and after this filtering procedure differ within
their intrinsic statistical uncertainties from each other only slightly. The same was
found for all other analyzed data sets. Even going to smaller tolerance levels (δ1, δ2)
does not change this finding, implying that the distribution of rupture forces does not
critically depend on details of the force-extension characteristic. Furthermore, the f
vs. −v ln n(f |v, fmin) plots in figure 5.12 reveal the same discrepancy between stan-
dard models and experimental data as in figure 5.2, while the heterogeneous bond
model again fits the data very well (data not shown).
Although the data processing described above did not result in a significantly im-
proved agreement between experimental data and the standard theories, it suggests
that there are in fact variations in the experimental conditions, e.g., in the micro-
scopic configuration, from one repetition of the experiment to the next which might
effectively be described by a randomization of the model parameters. The differences
in the force-extension curves can be a result of geometrical variations, but also other
reasons are possible. For example, a whole network of linkers might somehow in-
teract with the tip. This is suggested by some experiments [FW], but the physical
and chemical origin of this proposed interaction is still unclear. On the other hand,
looking on individual force-extension curves, one sees that in some repetitions of the
experiment one is pulling apart multiple parallel bonds. In a small but not negligible
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Figure 5.12: The functions −v ln n(f |v, fmin) for the experimental rupture force data
from [BMF+07]. A unique threshold force fmin = 42 pN has been used
for all pulling velocities. Only events with a force-extension characteristic
similar to the constructed universal force-extension curve Fu(s) have been
taken into account. The numberNv of experimental data points for the six
different velocities are N200nm/sec = 54, N500nm/sec = 48, N1000nm/sec = 80,
N2000nm/sec = 151, N3000nm/sec = 87, and N5000nm/sec = 95. A few large
rupture forces are omitted for sake of better visibility.
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λ2,0, α2,0
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Figure 5.13: Schematic representation of a chemical bond that can exist in the two
different metastable states 1 and 2. The dissociation into the unbound
state 0 can proceed along different pathways indicated by the solid ar-
rows.

fraction, these bonds might rupture nearly simultaneously so that the multiple rup-
ture event cannot or only hardly (red curve in figure 5.11) be resolved.6 As discussed
above these events cannot be removed by the proposed filtering procedure, but will
influence the distribution of rupture forces [GRK+08]. This will be discussed in some
more detail in section 5.6.

5.5 Effects of non-equilibrium initial distributions

We will now discuss a possible alternative explanation for the observed incompatibil-
ity between the experimental data and the theoretical models based on a one-step
rate description. Some recent experiments have provided an indication that – after for-
mation – the bond relaxes relatively slowly via some metastable states [PH05, LYZL06,
BBLD07, FSA+09]. For example, it has been observed in [PH05, LYZL06, FSA+09] that
the average rupture force 〈f〉 at a given pulling velocity increases with the dwell time
td, i.e., the time the tip is pressed onto the surface before it is again pulled away. In
these works, it has been proposed that for too short dwell times td the system has
not always reached the deepest energy minimum, i.e., the initial distribution between
these metastable states is not the equilibrium distribution. We will now investigate
whether these non-equilibrium effects can result in rupture force distributions similar
to the observed ones.
Let us consider the simple two-state model which is schematically represented
in figure 5.13. We assume that the formation of the bond always occurs via the
metastable state 1. Then the bond can either relax to the ground state 2 or dissociate
to the unbound state 0. For simplicity, we will further assume that, once the ground

6 This has been supplemented by numerical experiments by simulating the force-extension curves of
two parallel bonds with linkers attached at different positions on the tip.
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state is reached, the system cannot return to state 1, but only directly dissociate. The
reaction kinetics is hence given by the following master equation:

ṅ1(t|µ, v) = −(k1,2(f(t|v)|µ) + k1,0(f(t|v)|µ))n1(t|µ, v) , (5.16)

ṅ2(t|µ, v) = −k2,0(f(t|v)|µ)n2(t|µ, v) + k1,2(f(t|v)|µ)n1(t|µ, v) , (5.17)

with force-dependent rates as in Bell’s model (3.13). That means, each force-
dependent dissociation rate is specified by two parameters (λi,j , αi,j).
Models of this kind have been studied in various publications, e.g., [BDA02, RER+04,

IP04]. While the initial distribution between the two states is usually assumed to be
given (in general the equilibrium distribution), we will proceed differently and ex-
plicitely consider the equilibration process. For this purpose, we reconsider the ex-
perimental conditions: The tip is pressed onto the surface for the time td. During this
time a bond between the ligand and receptor can form. Dealing with the dynamics
of tethered molecules, modeling the association process is a highly complicated and
unsolved problem [JWK+01]. We therefore simply assume that the bond can form
at any time, while the tip is pressed onto the surface, with equal probability. Then
the tip is pulled away. This, however, does not immediately result in a force acting
on the bond. First the complex of linker-molecules, receptor, and ligand has to be
stretched (cf. sections 3.2.3 and 5.4 and figure 5.10). Here we will assume that no
force acts on the bond up to a distance s = L of the cantilever from the surface,
followed by a linearly increasing force in analogy to Bell’s model. We will, hence,
choose the time offset such that t = 0 at the moment the bond has formed. Then, the
time-dependence of the force is given by

f(t|v) = κ

{

0 if t < teq + L/v ,

t − (teq + L/v) else ,
(5.18)

with teq uniformly distributed in [0; td]. The time the bond has to equilibrate, before a
force is applied to it, thus depends on the pulling velocity.
Next, the dynamics according to equations (5.16-5.18) with n1(t = 0|µ, v) = 1,

n2(t = 0|µ, v) = 0 shall be numerically simulated. For this purpose, we choose experi-
mentally realistic values td = 0.4s, L = 60nm and rate parameters α1,2 = −0.001pN−1,
eλ1,2/κ=1s−1, α1,0 = 0.09pN−1, eλ1,0/κ=0.3s−1, α2,0 = 0.05pN−1, eλ2,0/κ=0.1s−1. For
six different pulling velocities between v = 200nm/s and v = 5000nm/s, 200 rup-
ture forces have been generated according to the probabilistic laws (5.16-5.18), using
the so-called Gillespie algorithm. In order to make a comparison to the experiment
more realistic, we added a Gaussian distributed error ∆f with standard deviation
σf = 15pN to the resulting rupture forces and kept only those above a threshold force
fmin = 42pN. The error ∆f is assumed to contain all experimental uncertainties, like
instrumental noise or variations in the pulling geometry. The result of this computer
experiment is shown in figure 5.14(a) in the form of the f vs. −v ln n(f |µ, v, fmin) plots.
Comparing them to figure 5.12 for the experimental data from [BMF+07] shows that
both are very similar. The same can be seen by directly comparing the histograms of
rupture forces.
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Figure 5.14: The functions −v ln n(f |v, fmin) for two numerical experiments with re-
action kinetics from figure 5.13 and time-dependent force (5.18) with
total length L = 60nm. The transition rates according to Bell’s model
are specified by the parameter values: α1,2 = −0.001pN−1, eλ1,2/κ=1s−1,
α1,0 = 0.09pN−1, eλ1,0/κ=0.3s−1, α2,0 = 0.05pN−1, eλ2,0/κ=0.1s−1. In (a) a
dwell time td = 0.4s was used and in (b) td = 20s. For each velocity 200
rupture events have been simulated, and an additive experimental error
with σf = 15pN has been assumed. The threshold force was fmin = 42pN.

We can therefore conclude that, at least in principle, multiple state models with
non-equilibrium initial distributions can result in rupture force distributions similar to
the observed ones. However, a relevant question is: Is it also probable that these
models can explain all experimental data sets which are apparently incompatible to
the theory? To study this point we will first consider the situation that we start from an
equilibrium distribution. For various networks of metastable states and allowed transi-
tions between them, it has been demonstrated by Raible et al. [RER+04] that (except
for very complicated networks involving many metastable states) the experimental
findings cannot be reproduced satisfactorily, when starting from an equilibrium initial
distribution. For our example, this can be confirmed by increasing the dwell time td.
The results for td =20s are shown in 5.14(b). The reconstructed −v ln n(f |µ, v, fmin)
functions nearly collapse on a single curve, as predicted by the basic models based
on a one-step rate equation, and are qualitatively very different from those in (a) and
thus also from the experimental data. To the best of our knowledge such a behavior
could not be observed in any of the experiments where the average rupture force was
found to depend on the dwell time. One may furthermore ask whether the velocity
dependence of the −v ln n(f |v, fmin) functions is typical for the two-state model with
non-equilibrium initial conditions. The answer to this question is “no”; The details
of the distribution, like the skewness, depend critically on the model parameters as
well as the range of pulling velocities. In fact, the “typical” rupture force distribution
according to the two state model has two peaks, each of them similar to the distri-
bution of rupture forces in Bell’s model. Even including the backward transition from
state 2 to state 1 does not change this finding. In contrast to this, the experimentally
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measured −v ln n(f |µ, v, fmin) functions almost always show a velocity dependence as
in figure 5.12 and 5.14(a), respectively.
In summary, in some cases non-equilibrium effects in multiple state models may

explain the experimental findings. It is, however, rather unlikely that they are the only
reason for the apparent discrepancy between experiment and theory.

5.6 Concluding discussion

In this part of the present work, we have demonstrated that the evaluation and in-
terpretation of single-molecule force spectroscopy data is still very challenging. The
reverse problem of connecting the measured rupture force data to the physical prop-
erties of the chemical bond is hard to tackle, even under idealized conditions (chapter
4). Some properties of the dissociation process and of the underlying potential land-
scape, like the force-free dissociation rate and the distance between potential well
and barrier, can be reliably estimated, while the determination of other quantities,
like the barrier height, requires further information.
The situation is even more complicated for real experimental data. We have shown

that the data are in most cases incompatible with the basic assumptions (5.2,5.3)
which are usually employed when evaluating these experiments. Different explana-
tions have been discussed, and it has been shown that different models may explain
the findings. The most general and promising explanation has been introduced by
Raible [REB+06] in the form of a heterogeneous bond model. We have shown that
quite different distributions of model parameters result in nearly the same rupture
force distributions. On the one hand, this shows that the extracted parameters are
just model parameters. Although they have, in principle, a physical interpretation, it
is not clear how to connect them to the true physical quantities of the bond if the
data can be fitted with completely different values, or even distributions, of the single
parameters. On the other hand, this insensitivity of the rupture force distribution on
details of the distribution of model parameters argues for the heterogeneous bond
model. Any changes of the experimental conditions from one repetition of the experi-
ment to the next, which can be described effectively by a randomization of the model
parameter α, causes qualitatively the same distribution of rupture forces (skewness)
and the same velocity dependence of the−v ln n(f |v, fmin) functions as experimentally
observed.
It has been argued that one possible source of the heterogeneity of the bonds are

variations of the pulling geometry which are likely to occur at least in some of the
experiments studied. These variations can cause a randomization of the model pa-
rameters in two different ways. First, the AFM cantilever “measures” only the com-
ponent of the force normal to the surface. This can differ from the force acting along
the direction of the relevant reaction coordinate, cf. figure 5.3. This effect can be
included in the parameter α via α → cos(ϕ)α, where ϕ is the “random” angle between
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the two forces.7 Second, the dissociation pathway, and hence both parameters α and
λ, may depend on the direction of the applied force, as illustrated in figure 5.9, and
therefore on the pulling geometry. Another possible reason is that in a fraction of
trials one is pulling apart multiple parallel bonds. We have discussed in section 5.4
that the force-extension curves corresponding to these events can, in many cases, not
be distinguished from those of single rupture events. It has been shown in [GRK+08]
that, if the force is unequally distributed along the single bonds (caused, for exam-
ple, by different immobilization points on the cantilever tip), this can result in similar
rupture force distributions as in the heterogeneous bond model. This is, however, not
surprising. The force acting on bond i at time t is fi(t) = ci(f(t))f(t), 0 ≤ ci(f) ≤ 1. In
the relevant rage of forces, ci(f) depends only weakly on the force, so that we can ap-
proximate ci(f) = ci. The simultaneous rupture of the bonds occurs, in general, at the
moment at which the bond with the largest force fmax = cmaxf ruptures. This force is
then distributed over the other bonds and leads finally to their rupture. It is therefore
very likely that the reaction kinetics can again be described effectively by a Bell type
model with α̃ = cmaxα. Because cmax changes from one repetition of the experiment
to the next, the multiple bond model is effectively a special case of the heterogeneous
bond model. Although the multiple bond model is based on a nice physical picture, it
is rather unlikely that it is consistent with the experiments discussed in this chapter. In
[GRK+08] a large fraction of all rupture events had to correspond to the simultaneous
rupture of multiple parallel bonds. There is, however, no experimental evidence that
this is the case for the experimental data studied by us. Only in very few force distance
curves, multiple rupture events could be resolved. Furthermore, in only about 10%
of all trials at least one bond has formed. As the number of bonds should roughly
follow a Poissonian statistics, the occurrence of a large fraction of multiple bonds is
very unlikely.
Specially designed experiments are needed in order to gain further insight into the
physical mechanisms underlying the forced rupture of bonds in single-molecule force
spectroscopy experiments. From a theoretical point of view, it would be interesting to
study model systems where both, the receptor and the ligand, are “small” molecules
and possess just one binding site for the linker-molecules. Both, the receptor and lig-
and, should then be linked via long linkers to the tip and to a flat surface, respectively.
In this way, the influence of geometrical variations should be reduced to a minimum.
Furthermore, surface charges should play no role. Then dwell times, concentrations of
immobilized molecules, and other parameters of the experiment can be systematically
varied. Measurements on such a system, where both binding partners were immobi-
lized via long PEG linkers, were performed in [MBZ+07], resulting in one of the few
data sets which are compatible to a one-step rate description.

7In addition, there can occur other measurement errors, cf. figure 5.3.
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6 A unified approach to the
approximation of escape rates

6.1 Introduction

In part II of this work we have considered the forced rupture of chemical bonds as ex-
perimentally studied in single-molecule pulling experiments. This rupture is modeled
as a thermally activated escape of a Brownian particle from a metastable potential un-
der application of a steadily increasing force. The rate at which this force increases is,
however, much slower than all relevant molecular relaxation processes. In this context
one speaks of an adiabatically slowly modulated potential V (x, t) = U(x)− f(t)x, and
the relevant probability density closely resembles the Boltzmann form. As a conse-
quence, the escape rate out of such a slowly modulated potential can at any time be
very well approximated by the Kramers rate (2.19).
In this part of the work, we consider the particularly challenging situation that the

system is far from thermal equilibrium. This can either be the result of fast and strong
modulations of the potential or of the thermal bath, e.g., in form of time-dependent
temperatures. In this case, the probability density strongly deviates from the Boltz-
mann form, and the instantaneous escape rate can no longer be approximated by the
Kramers rate [LRH00b]. Important for conceptual reasons as well as for a number of
experiments are periodically modulated potentials. The escape from such systems has
been studied in a number of works [Jun93, MS96a, SDG99, Tal99, LRH00a, LRH00b,
MS01, BG04, BG05, RD05, RD06], but each of these approaches is limited to just one
of the following cases: weak, slow, fast, or moderately fast and moderately strong
driving. Furthermore, the non-periodic case can be treated by none of these approxi-
mations.
In this chapter we put forward a new path integral approximation for the instanta-

neous escape rate which unifies and extends several of the previous approximations
[CCR81, Jun93, MS96a, Shn97, BDKA99, SDG99, Tal99, LRH00a, LRH00b, MS01,
SSLM01, BG04, BG05, RD05, RD06] and which is not limited to just one of the above
mentioned cases. The escape from periodically as well as from non-periodically mod-
ulated systems can be treated, and the modulation can occur on any time scale. Only
very strong driving cannot be treated within this formalism.
The focus of this chapter lies on the derivation of the approximation and on the

discussion of some of its properties. Then, the approximation will be applied to some
model systems and compared to very accurate numerical results. While these exam-
ples will be for time-dependent potentials and static temperatures, we will in the
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following chapter 7 consider the complementary case of static potentials and time-
dependent temperatures and illustrate some interesting effects which can occur in
these systems.

6.2 General formulation of the problem

6.2.1 Model

In this chapter we again consider the overdamped one-dimensional motion of a Brow-
nian particle or of a general reaction coordinate (see sections 2.1, 2.2). For a spatially
homogeneous white noise, the general equation of motion reads:

η(t)ẋ(t) = F (x(t), t) +
√

2D(t)ξ(t) , (6.1)

〈ξ(t)〉 = 0, 〈ξ(t)ξ(t′)〉 = δ(t − t′) . (6.2)

In contrast to equation (2.7) the friction coefficient η(t) as well as the noise strength
D(t) are allowed to be time-dependent. Both situations can experimentally be re-
alized. For example, the dynamics of a Browninan particle in a solvent containing
anisotropic molecules (i.e., a lyotropic liquid), which can be oriented by a time-
dependent external magnetic field, can be described by equation (6.1) with a time-
dependent friction coefficient [HH05]. Short laser pulses, temporarily heating the
environment of the Brownian particle, on the other hand, result in a time-dependent
noise strength.
Without loss of generality the friction coefficient can be assumed to be constant [di-
vide both sides of equation (6.1) by η(t)]. Furthermore, using dimensionless units (see,
e.g., [Rei02]), we can appropriately rescale time and set η(t) = 1. Hence, equation
(6.1) reduces to

ẋ(t) = F (x(t), t) +
√

2D(t)ξ(t) . (6.3)

The time-dependence of the force field F (x, t) can be completely arbitrary. The most
often studied case is that of a time-periodic force field with period T , so that

F (x, t) = F (x, t + T ) . (6.4)

However, this assumption is not necessary for the theory that will be developed in
sections 6.3 and 6.4. But for reasons of simplicity we will restrict our discussions at
some points to this case.
We will further assume that the deterministic dynamics

ẋ(t) = F (x(t), t) (6.5)

exhibits exactly one bounded stable orbit xs(t) (attractor) and one bounded unstable
orbit xu(t) (repeller) with the following properties:

λs := limt→∞
1
t

∫ t
0 dt′ λs(t

′) < 0 , lim
t→∞

1

t

∫ −t

0
dt′ λs(t

′) > 0 , (6.6)

λu := limt→∞
1
t

∫ t
0 dt′ λu(t′) > 0 , lim

t→∞

1

t

∫ −t

0
dt′ λu(t′) < 0 , (6.7)
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Figure 6.1: (a) The cubic potential V (x, t) = −a/3x3 + b/2x2 − A sin(ωt)x used in
section 6.6.4 with parameters a = 1.78 and b = 2.67 at time t = 0. The
instantaneous minimum is denoted as xmin(t) and the maximum as xmax(t).
(b) The stable and unstable orbits (solid lines) as a function of time. They
follow xmin(t) and xmax(t) (red dashed lines), respectively, with some phase
shift. The basin of attraction A(t) is shown as the grey shaded region.

where
λs,u(t) := F ′(xs,u(t), t) . (6.8)

The quantities λs,u are also termed Lyapunov coefficients.1 Here we assume that
xs(t) < xu(t) for all times. The analogous case xs(t) > xu(t) can be treated in the
same way. Hence, every solution of equation (6.5) in the long-time limit converges to
xs(t) if x(t0) < xu(t0) for some time t0 and diverges to x = ∞ if x(t0) > xu(t0).
For our standard example of a time-periodic force field (6.4) the orbits become

periodic functions, too:

xs(t) = xs(t + T ), xu(t) = xu(t + T ) . (6.9)

The force field F (x, t) is connected to a potential V (x, t) via F (x, t) = −V ′(x, t). We
denote by xmin(t) the instantaneous minimum of V (x, t) and by xmax(t) the instanta-
neous maximum [cf. figure 6.1(a)]. The stable and unstable orbit agree with these
functions only for an adiabatically slow modulation of the potential. Usually, they fol-
low xmin(t) and xmax(t), respectively, with some phase shift [and smaller amplitude,
see Fig. 6.1(b)] [BG02].

6.2.2 Definition of the instantaneous escape rate

In section 2.4 it was shown that the escape rate k from a static metastable potential
can be defined as the flux of probability over an absorbing boundary xa. In some works
this definition is also used in the case of fast driven systems, e.g., [RD05]. In these
systems the so-defined escape rate is also time-dependent, and the explicit value

1 The conditions (6.6,6.7) are sufficient, but not necessary for stable and unstable orbits, respectively.
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at a given time will ultimately depend on the position of the absorbing boundary xa.
Here, we use a different definition of the instantaneous escape rate [LRH00a, LRH00b]
which is very similar to our original definition (2.13) where the escape rate was defined
as the relative change of the survival probability of a metastable state. This definition
seems to be more natural and is, in particular, independent of the (arbitrary) choice
of the absorbing boundary. In order to avoid any confusion with the escape rate
k defined in section 2.4, we will denote the instantaneous escape rate defined in
equation (6.10) by Γ(t).
Let us consider the deterministic motion (6.5). According to our assumptions about
the stable and unstable orbits xs,u(t), we can define a time-dependent basin of at-
traction A(t) = {x ∈ R | x < xu(t)} [gray shaded region in figure 6.1(b)]. Every particle
that is in this region at some time t0 will stay there forever.
This situation changes for a non-vanishing noise strength D(t). Then, the particle
will leave the basin of attraction with probability one as t → ∞. Let us consider
a particle starting at some point x0 ∈ A(t0) at time t0. We denote by n(t|t0, x0)
the probability that the particle has not left the basin of attraction until time t, i.e.,
the survival probability. The instantaneous escape rate Γ(t) is defined as the relative
change of probability:

Γ(t) := −
d
dtn(t|t0, x0)

n(t|t0, x0)
. (6.10)

For static potentials this definition is equivalent to the usual definition (2.13) of the
escape rate. It should be noted that the escape rate (6.10) depends on the chosen
initial condition x(t0) = x0. However, in the following we will restrict ourselves to
small noise strengths D(t) so that the typical time needed to escape from the basin of
attraction (the Kramers time tK) is much larger than all relevant time scales τR of the
deterministic motion. Then, for times t − t0 much larger than τR the definition (6.10)
becomes independent of t0 and x0, and we may choose x(t0) = xs(t0). If at the same
time t − t0 ≪ tK , the denominator in equation (6.10) can be approximated by 1.
The instantaneous escape rate Γ(t) can also be expressed in terms of the probability
density ρ(x, t|x0, t0). Its time evolution is given by the Fokker-Planck equation (cf.
section 2.3). For the dynamics (6.2,6.3) this equation reads [Ris89, HTB90]:

∂

∂t
ρ(x, t|x0, t0) =

∂

∂x

(

−F (x, t) + D(t)
∂

∂x

)

ρ(x, t|x0, t0) . (6.11)

Expressed in terms of this quantity, the probability to find the particle within the basin
of attraction is

n(t|t0, x0) =

∫ xu(t)

−∞
dx ρ(x, t|x0, t0) . (6.12)

Substituting equation (6.12) into equation (6.10), approximating n(t|t0, x0) = 1, and
making use of equation (6.11), one readily finds (cf. equation (2.14))

Γ(t) = −D(t)
∂

∂xu(t)
ρ(xu(t), t|x0, t0) . (6.13)
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As already discussed at the beginning of this section, definition (6.10) of the instan-
taneous escape rate Γ(t) differs from that used by some other authors, e.g., [RD05].
But when considering the time-averaged escape rate2

Γ̄ := lim
t→∞

1

t

∫ t

0
dt Γ(t) , (6.14)

both definitions of Γ(t) yield the same Γ̄. Therefore, as long as only the time-averaged
escape rate is experimentally accessible (which is the usual case), both definition can
be used equivalently.

6.2.3 Time transformation

We will now show that we can, without loss of generality, assume that the noise
strength D(t) in the Langevin equation (6.3) is time-independent.
Let us for this purpose write the noise strength in the form:

D(t) =: Dg(t) , (6.15)

lim
t→∞

1

t

∫ t

0
dt g(t) = 1, g(t) > 0 . (6.16)

Using the fact that g(t) is strictly positive allows us to define an auxiliary time t̂(t) via
[Rei02]

t̂(t) :=

∫ t

0
dt′ g(t′) . (6.17)

Now the Langevin equation (6.3) can be written in terms of x̃(t̂) := x(t(t̂)), yielding

˙̃x(t̂) = F̃
(

x̃(t̂), t̂
)

+
√

2Dξ(t̂) , (6.18)

with ξ(t̂) a Gaussian white noise with correlations as in equation (6.2) and

F̃
(

x̃(t̂), t̂
)

:= F (x(t(t̂)), t(t̂))/g(t(t̂)) . (6.19)

The problem of an overdamped particle in a time-dependent temperature field can
thus be mapped to the case of an overdamped particle in an effective (time-dependent)
force field with a time-independent temperature. Hence, from now on we will assume
that the noise strength is time-independent. Once we have approximated the instan-
taneous escape rate Γ̃(t̂) for this problem, we can make use of ñ(t̃) = n(t(t̃)) so that
the escape rate in the original time t immediately follows as

Γ(t) =
dt̂

dt
Γ̃(t̂(t)) = g(t)Γ̃(t̂(t)) . (6.20)

We will come back to the case of time-dependent noise strengths in section 6.7.

2 For time-periodic forces or noise strengths, Γ̄ is defined as the average over one period T .
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6.3 Theoretical framework

The technique of path integration is well developed in the physical [CCR81, Sch81,
LRT82, BDKA99, LRH00b, BML+05] and the mathematical literature [Lud75, FW98].3

In this section we briefly outline the main ingredients of this formalism for the calcu-
lation of the transition probability density ρ(x, t|x0, t0). We refer to the above men-
tioned references for further details. In the subsequent sections these concepts will
be used to derive approximations for the escape rate.

6.3.1 Notation

In the following, it will often be necessary to explicitly state the dependence of a
quantity A or of a function B(t) on the boundary conditions, that means, on the
initial and final times and positions. The following notations will be used equally for
this purpose:

At0(tf ) = At0(xf , tf ) = A(xf , tf |x0, t0) , (6.21)

B(t) = Bt0(t) = B(t|xf , tf , x0, t0) . (6.22)

The time-average of such a function is defined as

B̄ := lim
t→∞

1

t

∫ t

0
dt′ B(t′) (6.23)

for non-periodic force fields and as

B̄ :=
1

T

∫ T

0
dt′ B(t′) (6.24)

for periodic ones.

6.3.2 Path integrals for the transition probability density

The solution of equation (6.11) with initial condition ρ(x, t0|x0, t0) = δ(x − x0) and
D(t) = D can be formally written as [CCR81, FW98]

ρ(xf , tf |x0, t0) =

∫

x(t0)=x0,
x(tf )=xf

Dx(t) e−S[x(t)]/D , (6.25)

3 It is interesting to note that it was indeed not Feynman who proposed the path integral method first.
Gregor Wentzel used a very similar concept in a 1924 paper [Wen24, AL98]. The value of these ideas
was not recognized at that time, and the paper was forgotten. Wentzel himself never came back to
this idea.
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where the integral has to be taken over all paths with x(t0) = x0 and x(tf ) = xf , and
where Dx(t) denotes the integration measure. In equation (6.25) S[x(t)] denotes the
action of the path x(t) (also called the Onsager-Machlup functional) and is defined as

S[x(t)] :=

∫ tf

t0

dt L(x(t), ẋ(t), t) , (6.26)

with Lagrangian

L(x, ẋ, t) =
1

4
[ẋ − F (x, t)]2 . (6.27)

It should be noted that the path integral (6.25) is mathematically well defined only as
a limiting case of the time-discretized dynamics (6.3) with ti = t0 + i∆t, i = 1, . . . ,N
(for details see, e.g., [BDKA99, LRH00b]). In this case, equation (6.25) is a high
dimensional integral with appropriately discretized versions of the action (6.26,6.27),
and with integration measure

∏N
i=1 dxi(4πD∆t)−N/2.4

We now consider the case of a small noise strength D. Then, the main contribution
to the integral in equation (6.25) stems from those paths that minimize the action. Let
us for a moment assume that there exists only one path x∗(t) that globally minimizes
S. The more general case will be discussed in section 6.3.3. Paths with a higher action
are exponentially suppressed. Therefore, with decreasing noise strength D, transitions
become exponentially less probable (unless S[x∗(t)] = 0). But, given that the particle
reaches xf at time tf , it is most likely that it has moved in close vicinity to x∗(t).
As is well known from classical mechanics, the path that extremizes the action sat-

isfies the Euler-Lagrange equation, or equivalently the Hamilton equations [Kuy97,
GPS02]:

ẋ∗(t) = 2p∗(t) + F (x∗(t), t) , (6.28)

ṗ∗(t) = −p∗(t)F ′(x∗(t), t) , (6.29)

with boundary conditions:

x∗(t0) = x0, x∗(tf ) = xf . (6.30)

Here, p∗(t) can be understood as a generalized momentum and is formally defined via
equation (6.28). Exploiting equations (6.26,6.27,6.28), we see that the action of the
optimizing path is given by

Φ∗(xf , tf |x0, t0) := S[x∗(t)] =

∫ tf

t0

dt p∗(t)2 . (6.31)

Because the main contribution to the path integral (6.25) stems from trajectories
in the vicinity of the optimizing path x∗(t), we can expand the action around this

4 In fact, as discussed in section 2.1, the Gaussian white noise ξ(t) is a mathematical idealization. The
Langevin equation (6.3) itself has a tangible meaning only in the limiting case of the time-discretized
dynamics.
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path and keep only contributions up to second order in y(t) = x∗(t) − x(t). This
results in a Gaussian integral which can be easily solved, and we finally end up with
[CCR81, LRH00b]

ρ(xf , tf |x0, t0) =
e−Φ∗(xf ,tf |x0,t0)/D

√

4πDQ∗(xf , tf |x0, t0)
[1 + O(D)] . (6.32)

This approximation is also called (functional) saddle point approximation. The most
challenging task consists in finding the appropriate prefactor Q∗(xf , tf |x0, t0). In
[LRH00b] it was shown that Q∗(xf , tf |x0, t0) = Q∗(tf ) is given by the solution Q∗(t) of
the second order linear differential equation:

Q̈∗(t) = 2
d

dt

[

Q∗(t)F ′(x∗(t), t)
]

− 2Q∗(t)p∗(t)F ′′(x∗(t), t) , (6.33)

with initial condition
Q∗(t0) = 0, Q̇∗(t0) = 1 . (6.34)

It should be noticed that Q∗(t) in equations (6.33,6.34) has to be understood in the
sense of Q∗(t|xf , tf , x0, t0). The initial and final positions enter via the optimizing path
in the differential equation (6.33).
In order to calculate the instantaneous escape rate Γ(t) according to equation (6.13),
we do not only need the transition probability density, but also its derivative with
respect to the final coordinate xf . Therefore, we will now discuss the corresponding
derivatives of the action Φ∗(xf , tf |x0, t0) and of the prefactor Q∗(xf , tf |x0, t0) which
appear in the saddle point approximation (6.32) of the transition probability density.
In full analogy to classical mechanics one obtains [Kuy97, GPS02]

∂

∂xf
S [x∗(t)] = p∗(tf ) . (6.35)

The determination of ∂/∂xfQ∗(xf , tf |x0, t0) is slightly more involved. To start with,
we consider the path x∗(t) that minimizes the action (6.26,6.27) for the boundary
conditions x∗(t0) = x0 and x∗(tf ) = xf . Analogously, we denote by x̃∗(t) the optimiz-
ing path corresponding to x̃∗(t0) = x0 and x̃∗(tf ) = xf + dxf , where in comparison to
x∗(t) the final position is shifted by an amount dxf , while both, the initial time and
position and the final time, are kept fixed. For sufficiently small dxf both paths will
be in close vicinity to each other for all t ∈ [t0; tf ], and we write

x̃∗(t) =: x∗(t) + dxfDx(t) , (6.36)

p̃∗(t) =: p∗(t) + dxfDp(t) , (6.37)

where p∗(t) and p̃∗(t) are the momenta corresponding to x∗(t) and x̃∗(t), respectively.
Expanding the force F (x̃∗(t), t) and its derivative F ′ (x̃∗(t), t) around x∗(t), i.e.,

F (x̃∗(t), t) = F (x∗(t), t) + dxfDx(t)F ′ (x∗(t), t) , (6.38)

F ′ (x̃∗(t), t) = F ′ (x∗(t), t) + dxfDx(t)F ′′ (x∗(t), t) , (6.39)
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and inserting equations (6.36-6.39) into equations (6.28,6.29) for the optimizing
path, one sees that Dx(t),Dp(t) solve a set of two coupled first order linear differ-
ential equations:

Ḋx(t) = F ′(t)Dx(t) + 2Dp(t) , (6.40)

Ḋp(t) = −p∗(t)F ′′(t)Dx(t) − F ′(t)Dp(t) . (6.41)

Here we have used the abbreviation F ′(t) := F ′ (x∗(t), t) and similarly for the higher
derivatives. The boundary conditions for this problem are given by Dx(t0) = 0 and
Dx(tf ) = 1. However, as the linear differential equations (6.40,6.41) are homoge-
neous, one may integrate them with any initial conditions Dx(t0) = 0 and Dp(t0) =
p0 6= 0 and divide the solution by the final value Dx(tf ). The quantity Dp(tf ) equals
the derivative of the momentum p∗(tf ) with respect to the final position xf . Hence,
we have together with equation (6.35):

∂2

∂x2
f

S [x∗(t)] =
∂

∂xf
p∗(tf ) = Dp(tf ) . (6.42)

In the same line, we can expand Q̃∗(t) = Q̃∗(t|xf + dxf , tf , x0, t0) in powers of dxf .
To first order we have

Q̃∗(t) = Q∗(t) + dxfZ∗(t) + O(dx2
f ) . (6.43)

Proceeding in the same way for all quantities appearing in the differential equation
(6.33) for the prefactor, one finds that Z∗(t) satisfies an inhomogeneous second order
linear differential equation. Using the usual abbreviations, this is

1

2
Z̈∗(t) − d

dt

[

F ′(t)Z∗(t)
]

+ p∗(t)F ′′(t)Z∗(t) = H(t) , (6.44)

with

H(t) =
d

dt

[

F ′′(t)Q∗(t)Dx(t)
]

− F ′′(t)Q∗(t)Dp(t) − p∗(t)F ′′′(t)Q∗(t)Dx(t) , (6.45)

and with initial conditions

Z∗(t0) = 0, Ż∗(t0) = 0 . (6.46)

From (6.43) one can infer that

∂

∂xf
Q∗(xf , tf |x0, t0) = Z∗(tf ) , (6.47)

i.e., once the optimal path x∗(t) is determined via equations (6.28,6.29), one can
solve the set of differential equations (6.33,6.40,6.41,6.44) and obtain explicit values
for the prefactor and its derivative.
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6.3.3 Optimizing paths and limitations

The approximation of the transition probability density, presented in the previous
section, in principle applies to arbitrary initial and final positions. Therefore, one might
in particular choose xf = xu(tf ) and x0 = xs(t0), and approximate ρ(xu(t), t|x0, t0),
appearing in equation (6.13) for the instantaneous escape rate, by equation (6.32).
This was the basic idea for the approximation in [LRH00a, LRH00b]. However, this
approach is limited to moderately strong and moderately fast driving. The reason
for this is most easily understood when considering the optimizing paths. As this
discussion is necessary in order to motivate and understand our proceeding in section
6.4, we review the main points in the following paragraphs, although they are not
new [Col79, WH80, CCR81, BDKA99, LRH00b, BG05, RD06].
Let us first consider our standard example (6.4,6.9): the thermally activated escape
from a metastable state in a periodically modulated force field where the modulation
is moderately strong and moderately fast. Then there exist, in general, many solu-
tions x∗

i (t) of equations (6.28,6.29), i.e., many paths that (locally) minimize the action
functional. For a particular example with finite tf − t0, figure 6.2(a) shows all optimiz-
ing paths. These paths are “typical” for the thermally activated escape in periodically
modulated systems [LRH00b, RD06]. They start on the stable orbit xs(t) at time t0
and follow it for some time. Then, in a relatively short time window ∆t the paths
cross to the unstable orbit xu(t) and stay in its vicinity until time tf . It is obvious from
equations (6.26,6.27) that the deterministic motion does not generate any action.
Hence, also the parts of the optimizing path in close vicinity to the periodic orbits
contribute little to S. Nearly the whole action is accumulated in the short time ∆t in
which the particle travels from the stable to the unstable orbit. For not too large driv-
ing frequencies ω = 2π/T , this transition strongly synchronizes with the modulation
and appears when the energy barrier is lowest, i.e., once per period. All the paths
can be characterized with respect to the time at which they travel into the vicinity of
the unstable orbit. To be more precise, we can choose some intermediate level x1

and enumerate the paths in the sequence they cross this level for the first time. We
denote these times by ti1 and use the convention that x

∗
1(t) is the optimizing path that

travels to xu(t) at the latest possible time [see figure 6.2(a)].
Summing up the contributions from all paths, a first main result from [LRH00b] was
the following approximation of the instantaneous escape rate:

Γ(tf ) =
∑

i

p∗i (tf )e−Φ∗

i (xf ,tf |x0,t0)/D

√

4πDQ∗
i (xf , tf |x0, t0)

[1 + O(D)] , (6.48)

where equations (6.13,6.32,6.35) have been used and all contributions of order D
are neglected. For any finite tf − t0 there will be, in general, only one path that
globally minimizes the action S. Then, for small noise strengths D, this path will
mainly contribute to the sum in equation (6.48). However, in the small noise limit,
escape is a rare event so that usually the case tf − t0 ≫ max(T ,∆t) is considered. One
can show that for large indices i, two “neighboring” optimizing path are connected
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Figure 6.2: (a) Illustration of the escape from a periodically modulated potential. The
particle starts on the stable orbit xs(t) at time t0 and crosses the unstable
orbit xu(t) at time tf . The periodic orbits are depicted by the red solid
lines and are shifted by a small number for reasons of better visibility.
For these boundary conditions, 5 different solutions x∗

i (t), i = 1, . . . , 5
of equations (6.28,6.29) exist (one for each period of the driving). They
correspond to local minima of the action (6.26) and are shown as black
solid lines. For this illustration the piecewise parabolic potential U(x) from
equation (6.157) with an additive sinusoidal driving force f(t) = A sin(ωt)
has been used. For the same potential U(x) and the same initial and final
times, (b) shows the case of a vanishing driving force f(t) = 0. Only
one optimizing path x∗(t) (black solid line) exists. The dashed lines are
approximate solutions of equations (6.28,6.29) which arise from x∗(t) by
a translation in time.
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by a translation in time by T , i.e., x∗
i (t) = x∗

i+1(t − T ) for i → ∞. Without going
into details, we note that this fact has been used in [LRH00b] in order to further
approximate Γ(tf ) in (6.48).

Let us now turn to the case of a static force field F (x, t) = F (x) which is discussed
in [WH80, CCR81] (see also section 6.5). As shown for an example in figure 6.2(b),
in general, a unique optimizing path x∗(t) exists. Qualitatively it is very similar to
the optimizing paths from figure 6.2(a). Usually, one refers to such a trajectory as
an instanton. For a constant force, equations (6.28,6.29) simplify to d/dt[ẋ∗(t)2 +
F (x∗(t))2] = 0. In the limit tf − t0 → ∞ the only solution of this equation is given
by ẋ∗(t) = −F (x∗(t)), i.e., the optimizing path is the time-reversed deterministic
motion. Exploiting the fact that equations (6.28,6.29) are invariant under a time
translation, we see that for any τ the trajectory x∗(t+ τ) [dashed lines in figure 6.2(b)]
is an optimizing path, too. Given that tf − (t1 + τ) is large, it satisfies the same
boundary conditions as x∗(t), up to exponentially small corrections [CCR81] (see also
section 6.4.3). However, again all the paths arising from x∗(t) by a time translation
can be uniquely characterized by the time t1 at which they cross the intermediate
level x1. As a consequence of this continuous time translation symmetry, the Gaussian
approximation to the full path integral (6.25) breaks down (the order D corrections
become very large) so that no approximation of the form (6.48) applies to the escape
rate in this case. The same is true for adiabatically slow, very fast, or very weak
modulations [LRH00b].

Hence, approximation (6.48) applies only to a limited interval of modulation fre-
quencies ω, whereas a completely different treatment is necessary for other frequen-
cies. A further complication is that the interval of frequencies, for which equation
(6.48) can be used, is usually not known. In the following section we develop an
approximation to the rate which can be applied to the whole range of modulation
frequencies from zero to ∞. This approximation can be considered as a generaliza-
tion of the the result from [LRH00b]. The sum over the contributions to the path
integral (6.25) is replaced by an integral over the time at which an intermediate level
is crossed for the first time. A motivation, that this proceeding is reasonable, is our
above observation: In periodically modulated systems as well as in static systems the
main contributions to the path integral (that with lowest action) can be characterized
by this time.

Before continuing, we point out that the appearance of the continuous time trans-
lation symmetry results from the fact that both, the initial and the final coordinate,
lie on the stable or on the unstable orbit, and that the movement in close vicinity
to these orbits does not accumulate any action, as can be inferred from equations
(6.26,6.27). In contrast, if the initial or/and final coordinate does not lie on such an
orbit, the symmetry breaks down and the saddle point approximation applies.
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6.4 A new path integral approach to the escape problem

We now come to the central section of this chapter and introduce an approximation
for the instantaneous escape rate that applies to arbitrary modulation frequencies5 ω
and to the whole range of modulation strength, from no modulation to moderately
strong modulation. Only the case of very strong driving has to be excluded. In section
6.4.2 the term “moderately strong” will be quantified.

6.4.1 Renewal approach

Let us again consider the Langevin equation (6.3) and (6.18), respectively, for our
present problem. For every realization of the noise ξ(t) and every initial condition
x(t0) = x0 the solution of this equation is continuous. That means, a particle starting
at x0 at time t0 and reaching the position xf at time tf , has crossed every level x1 with
x0 < x1 < xf at least one time. We denote by R1 the time at which the level is crossed
for the first time, or to be more specific R1 := inf({t}|x(t) = x1). The corresponding
probability density Ψ(x1, t1|x0, t0) is called first passage time density, so that

Prob (R1 ∈ [t1 ; t1 + dt]) = Ψ(x1, t1|x0, t0)dt (6.49)

is the probability that the level x1 is crossed in an interval dt around t1 for the first
time [Red01].
We know from the Markovian nature of our problem that the probability that the

particle reaches xf at time tf , provided that it was at position x1 at time t1, depends
solely on the initial and final times and positions, but not on the history of the process.
This allows us to rewrite the transition probability ρ(xf , tf |x0, t0) as

ρ(xf , tf |x0, t0) =

∫ tf

t0

dt1 Ψ(x1, t1|x0, t0)ρ(xf , tf |x1, t1) , (6.50)

with x0 < x1 < xf a priori arbitrary.
From now on we will always denote by x0 an initial position on the stable orbit and

by xf a final position on the unstable orbit, i.e.,

x0 = x(t0) = xs(t0), xf = x(tf ) = xu(tf ) . (6.51)

Using equations (6.13,6.50), we get

Γ(tf ) = −D

∫ tf

t0

dt1 Ψ(x1, t1|x0, t0)
∂ρ(xf , tf |x1, t1)

∂xf
. (6.52)

For any x0 < x1 < xf this is still an exact equation for the instantaneous escape
rate. Now the main idea of our proceeding is to approximate both, Ψ(x1, t1|x0, t0)
and ∂/∂ xfρ(xf , tf |x1, t1), in terms of the optimizing paths with the corresponding

5 That means, the force field is allowed to have contributions of arbitrary frequency.
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boundary conditions. As we have already discussed at the end of section 6.3.3, for
not too strong modulations, in general, a unique path exists that globally minimizes
the action S, provided that x1 is for all times “sufficiently” far away from the stable
and unstable orbit.6

For such a level x1 we can use approximation (6.32) together with equations
(6.35,6.47) and get

∂

∂xf
ρ(xf , tf |x1, t1) =

(

p∗t1(tf ) +
DZ∗

t1(tf )

2Q∗
t1(tf )

)

e−Φ∗

t1
(tf )/D

√

4πDQ∗
t1(tf )

[1 + O(D)] (6.53)

and hence

Γ(tf ) = Γ0(tf ) + Γ1(tf ) + Γ0(tf ) ∗ O(D) , (6.54)

Γ0(tf ) =

∫ tf

t0

dt1 Ψt0(x1, t1)
p∗t1(tf )e−Φ∗

t1
(tf )/D

√

4πDQ∗
t1(tf )

, (6.55)

Γ1(tf ) =

∫ tf

t0

dt1 Ψt0(x1, t1)
DZ∗

t1(tf )e−Φ∗

t1
(tf )/D

2Q∗
t1(tf )

√

4πDQ∗
t1(tf )

, (6.56)

where the notation introduced in section 6.3.1 has been used. Here, the neglected
terms of order D arise from the saddle point approximation (6.32). The integrand of
Γ1(tf ) is of the same order in the noise strength D. However, we will show in section
6.4.4 that, for any finite noise strength, DZ∗

t1(tf )/Q∗
t1(tf ) becomes large compared

to the final momentum p∗t1(tf ) for some t1 appearing in the integral. Including the
first correction Γ1(tf ), thus improves approximation (6.54), in general. This will later
be discussed and demonstrated. In the next section, we derive an approximation for
the first passage time density Ψt0(x1, t1). As all other quantities can be calculated as
described in section 6.3.2, equations (6.54,6.55,6.56) provide an approximation for
the instantaneous escape rate which can be applied to a wide range of modulation
strengths and the whole range of driving frequencies, provided that the noise strength
is small. These equations are the first main result of this chapter.
We note that in [BG04], Berglund and Gentz have used a similar renewal approach
to derive an approximation for the instantaneous escape rate. However, their ap-
proach was limited to a pulsed, piecewise parabolic potential and was not based on
the path integral formalism. Furthermore, their main aim was to mathematically rigor-
ously approximate the escape rate for moderately strong and moderately fast driving
as it was done in [LRH00b]. Hence, this work goes beyond the results of [BG04] and
has a different aim, namely, to find an approximation to the rate which works for
arbitrary modulation frequencies.

6 For very strong and fast modulation several optimizing paths can exist. Then one has to sum over
their contributions.
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6.4.2 Approximation of the first passage time density

The problem of finding analytical expressions for the first passage time density
Ψt0(x1, t1) is an unsolved problem, even for simple stochastic processes, like the
Ornstein-Uhlenbeck process, if time-dependent forces and absorbing boundaries are
involved. A great deal of work has already been done to find approximations to this
quantity for various different systems [Dur85, DW92, STH04, STH05]. However, to
the best of our knowledge none of them can be applied to arbitrary time-dependent
force fields. Here we propose an approximation scheme which can be applied under
the same conditions as the saddle point approximation (6.32).
The first passage time density Ψt0(x1, t1) can be obtained by solving the Fokker-

Planck equation (6.11) for an absorbing boundary at x1. Then, Ψt0(x1, t1) is the flux of
probability over this boundary. However, in general equation (6.11) cannot be solved
in closed form for others than free boundary conditions. Thus, casting the problem to
one with free boundary conditions, would be a great simplification.
Equation (6.50) provides one possibility for such an approach. Let us consider this

equation for y = x1 + ǫ with ǫ > 0 small:

ρ(y, t|x0, t0) =

∫ t

t0

dt1 Ψt0(x1, t1)ρ(y, t|x1, t1) . (6.57)

This is an integral equation for Ψt0(x1, t1). Following the discussion in the previous
section, the left-hand side of this equation can be approximated by the saddle point
approximation (6.32). Next, let us look at the propagator ρ(y, t|x1, t1). This can be
calculated by solving the Langevin equation (6.3) with x(t1) = x1 (or equivalently by
solving the corresponding Fokker-Planck equation). We denote by Xt1(t) the solu-
tion of the corresponding deterministic equation (6.5) for the same initial condition
Xt1(t1) = x1. Intuitively, it is clear that for small ǫ the transition probability as a
function of t − t1 (and fixed t) will at first rapidly grow. Then, with further increasing
t − t1, the particle will most likely follow Xt1(t) and relax to the stable orbit so that
transitions to y = x1 + ǫ become less and less probable. For t − t1 & τR we finally
have ρ(y, t|x1, t1) ≈ ρ(y, t|x0, t0). Contributions from these times will be neglected in
the following.7 Hence, the lower integration limit in (6.57) can be replaced by t− τR.
Because the largest contributions to (6.57) stem from times t1 near t, we can, further-
more, approximate ρ(y, t|x1, t1) by a short-time propagator. One possible technique
for finding approximate propagators for the case of small noise strengths (which we
are dealing with) was suggested by van Kampen [Kam03]. It consists in introducing a
new variable ϑ(t) via

x(t) = Xt1(t) +
√

Dϑ(t), ϑ(t1) = 0 . (6.58)

7 The paths that cross x1 at some time t1 for the first time and reach x1 + ǫ at time t ≫ t1 have an
action much larger than the action of the paths that spend most of the time in close vicinity to the
stable orbit and then directly travel to x1 + ǫ. Thus, their contribution to the path integral (6.25) is
exponentially suppressed, for small noise strengths D.
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For this variable the Langevin equation reads

ϑ̇(t) = a(t)ϑ(t) +
√

2ξ(t), a(t) := F ′(Xt1(t), t) , (6.59)

where terms of order D1/2 are neglected. We assume a(t) ≤ 0 for all t > t1 to guar-
antee stability of the solution. The Fokker-Planck equation corresponding to (6.59) is
that of an Ornstein-Uhlenbeck process:

∂

∂t
ρ̃(ϑ, t|0, t1) =

∂

∂ϑ

(

−a(t)ϑ +
∂

∂ϑ

)

ρ̃(ϑ, t|0, t1) . (6.60)

Its solution is readily found to be Gaussian with zero mean and standard deviation:

σ2
t1(t) = 2

∫ t

t1

dt′ e2L(t,t′) , (6.61)

L(t, t′) =

∫ t

t′
dt′′ a(t′′) . (6.62)

As ϑ is connected to our original variable x via the deterministic equation (6.58), the
approximation for the desired transition probability follows as

ρ(y, t|x1, t1) ≈
∣

∣

∣

∣

dϑ

dx

∣

∣

∣

∣

ρ̃(ϑ, t|0, t1) =
1

√

2πDσ2
t1(t)

exp

(

−(y − Xt1(t))
2

2Dσ2
t1(t)

)

. (6.63)

In [GW93] it was shown that this approximation is usually good for sufficiently small
times and noise strengths. We note that more involved approximations for the short
time propagator exist, e.g., [Dro95]. These, however, often do not apply to explicitly
time-dependent force fields, or have to be adjusted to every force field separately.
We, therefore, use the simple approximation (6.63) which is usually good enough for
our purposes.
We now replace the left-hand side of equation (6.57) by the saddle point approxi-
mation (6.32) and the propagator under the integral on the right-hand side by equa-
tion (6.63), thus:

e−Φ∗

t0
(y,t)/D

√

4πDQ∗
t0(y, t)

=

t
∫

t−τR

dt1 Ψt0(x1, t1)

exp

(

− (y−Xt1(t))2

2Dσ2
t1

(t)

)

√

2πDσ2
t1

(t)
. (6.64)

This equality only holds approximately, but should be very good for small noise
strengths. Closely following the proceeding in [DW92], we apply the operator−D∂/∂y
to both sides of equation (6.64) with the result:

LHS =
p∗t0(y, t)e−Φ∗

t0
(y,t)/D

√

4πDQ∗
t0(y, t)

, (6.65)

RHS =

t
∫

t−τR

dt1 Ψt0(x1, t1)
y − Xt1(t)

σ2
t1(t)

e
−

(y−Xt1
(t))2

2Dσ2
t1

(t)

√

2πDσ2
t1(t)

, (6.66)
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where LHS stands for the left-hand side of the resulting equation and RHS for
the right-hand side, respectively. On the left-hand side the term proportional to
DZ∗

t0(y, t)/Q∗
t0(y, t) has been neglected. It is clear that this can be done for small noise

strengths D if Z∗
t0(y, t)/Q∗

t0(y, t) is bounded. This will be discussed in more detail in
sections 6.4.3 and 6.4.4.
We next consider the limit y → x1. As all quantities appearing on the left-hand side

are continuous in y, it obviously follows

lim
yցx1

LHS =
p∗t0(x1, t)e

−Φ∗

t0
(x1,t)/D

√

4πDQ∗
t0(x1, t)

= p∗t0(x1, t)ρ(x1, t|x0, t0) . (6.67)

Taking the corresponding limit of the right-hand side is much more involved. The
argument of the exponential function in equation (6.66) converges for t1 → t towards
zero, if y = x1, whereas it diverges to −∞ for every y 6= x1. Hence, equation (6.66)
is only valid for y > x1. For y = x1 integration and differentiation do not commute in
this simple way, and we have to be more careful when considering the limit y → x1.
In full analogy to the appendix of [DW92] we first split the integral in (6.66) into two
parts:

RHS =

∫ t−δ

t−τR

dt1 · · · +
∫ t

t−δ
dt1 · · · := I1(y, δ) + I2(y, δ) . (6.68)

For every δ > 0 all quantities under the integral I1(y, δ) remain finite in the limit
y → x1. Hence,

lim
δց0

lim
yցx1

I1(y, δ) =

t
∫

t−τR

dt1 Ψt0(x1, t1)
x1 − Xt1(t)

σ2
t1(t)

e
−

(x1−Xt1
(t))2

2Dσ2
t1

(t)

√

2πDσ2
t1(t)

. (6.69)

Turning to the integral I2(y, δ), we first note that

σ2
t1(t) = 2(t − t1) + O(δ2) . (6.70)

Because δ can be chosen arbitrarily small, terms of order δ2 are neglected without loss
of generality. Substituting s = 2Dt1 and defining t′ = 2Dt and δ′ = 2Dδ, we arrive at

I2(y, δ) =
1

2

t′
∫

t′−δ′

ds Ψ̃t0(x1, s)
y − X̃s(t

′)

t′ − s

e
−

(y−X̃s(t′))2

2(t′−s)

√

2π(t′ − s)
, (6.71)

with Ψ̃t0(x1, s) := Ψt0(x1, s/2D) and X̃s(t
′) := Xs/2D(t′/2D). One can show that the

limit δ → 0, y → x1 of I2(y, δ) exists and is given by (details are given in appendix B.1,
see also [DW92])

lim
δց0

lim
yցx1

I2(y, δ) =
1

2
Ψt0(x1, t) . (6.72)
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We can now combine equations (6.64-6.69,6.72) with the result:

p∗t0(t)ρ(x1, t|x0, t0) =
1

2
Ψt0(x1, t)+

t
∫

t−τR

dt1 Ψt0(x1, t1)
x1 − Xt1(t)

σ2
t1(t)

e
−

(x1−Xt1
(t))2

2Dσ2
t1

(t)

√

2πDσ2
t1

(t)
. (6.73)

Bringing the integral in equation (6.73) to the left-hand side, multiplying by 2, and
adding a zero in the form Fρ − Fρ, we finally arrive at

Ψt0(x1, t) = ẋ∗
t0(t)ρ(x1, t|x0, t0) + Ψrest

t0 (x1, t) , (6.74)

Ψrest
t0 (x1, t) =

t
∫

t−τR

dt1 Ψt0(x1, t1)

[

2(Xt1(t) − x1)

σ2
t1(t)

− F (x1, t)

]

e
−

(x1−Xt1
(t))2

2Dσ2
t1

(t)

√

2πDσ2
t1(t)

,(6.75)

where ẋ∗
t0(t) = 2p∗t0(t)+F (x1, t) is the velocity of a particle following the optimal path

at the moment it crosses the level x1. This equation allows to determine the first
passage time density Ψt0(x1, t) iteratively:

Ψt0(x1, t) = ẋ∗
t0(t)ρ(x1, t|x0, t0) +

∞
∑

i=1

Ψi
t0(x1, t) . (6.76)

Up to small errors, which result from the approximations (6.32,6.63) and should be-
come negligible in the small noise limit, this equation is exact (provided that the series
converges). We will now discuss that, for a continuous and not too strong modulation
of the force field, already the zeroth order approximation

Ψt0(x1, t) ≈ ẋ∗
t0(t)ρ(x1, t|x0, t0) (6.77)

is very good. To see this, we consider the first correction to Ψt0(x1, t), namely

Ψ1
t0(x1, t) =

t
∫

t−τR

dt1 ẋ∗
t0(t1)ρ(x1, t1|x0, t0)

[

2(Xt1(t) − x1)

σ2
t1(t)

− F (x1, t)

]

e
−

(x1−Xt1
(t))2

2Dσ2
t1

(t)

√

2πDσ2
t1(t)

.

(6.78)
If we assume that Q∗

t0(x1, t) in equation (6.67) is bounded from below by Q∗
t0,min > 0

and from above by Q∗
t0,max, we can estimate

8

ρ(x1, t1|x0, t0) ≤
√

Q∗
t0,max

Q∗
t0,min

e∆Φ∗(t,t1)/Dρ(x1, t|x0, t0) , (6.79)

8 In fact, a negative prefactor would imply that the solution x∗(t), p∗(t) of equations (6.28,6.29) does
not minimize the action S, but rather corresponds to a saddle point or a maximum. In this case, the
saddle point approximation itself is not applicable. Our discussions in sections 6.4.3 and 6.4.4 will
show that the prefactor is usually also bounded from above.

90



6.4 A new path integral approach to the escape problem

where ∆Φ∗(t, t1) = Φ∗
t0(x1, t) − Φ∗

t0(x1, t1) is the difference of the action. Because,
usually, ẋ∗

t0(t1) will also be bounded, one can conclude that the first correction is
small compared to the zeroth order approximation (6.77) if the following integral is
small:

t
∫

t−τR

dt1

[

2(Xt1(t) − x1)

σ2
t1(t)

− F (x1, t)

] exp

(

− 1
D

[

(x1−Xt1 (t))2

2σ2
t1

(t)
− ∆Φ∗(t, t1)

])

√

2πDσ2
t1(t)

. (6.80)

For not too strong modulations, the argument of the exponential function is a mono-
tonically decreasing function of t − t1. The main contribution to the integral, thus,
stems from times t1 near the upper bound t. At the same time, the term in the
squared brackets in front of the exponential function vanishes at t1 = t and increases
approximately linearly for small t− t1. Hence, the zeroth order approximation will be,
in general, very good for small noise strengths and not too strong driving. In appendix
B.2 a more rigorous result will be derived under some additional constraints for a
piecewise linear potential. Employing some further assumptions about the modula-
tion strength, it can be shown that for this potential already the first order correction
is of the same order in D as the terms neglected in the saddle point approximation
(6.32) which has been used in order to obtain approximation (6.74) for the first pas-
sage time density. A similar behavior can be expected for other potentials, although a
rigorous proof is at the moment not available.

From a practical point of view, the easiest possibility to check whether the zeroth
order approximation is sufficient, is to evaluate the integral (6.78) and to compare it to
the zeroth order approximation. An explicit example is shown in figure 6.3. For a cubic
potential with additive sinusoidal driving, equations (6.77) and (6.78) are evaluated
for various modulation frequencies. In all cases the zeroth order approximation is
very good. In fact, the first correction (6.78) improves the approximation only for
large modulation frequencies. The reason for this behavior should be that the errors,
resulting from the two approximations in (6.64), are of the same order of magnitude
as Ψ1

t0(x1, t). For all studied cases the zeroth order approximation indeed converges
to the exact result for D → 0.

We finish this section with some remarks. Firstly, for static potentials approximation
(6.77) reproduces a well known result from transition state theory [HTB90]. This case
will be discussed in more detail in section 6.5. Secondly, it should be noticed that
equation (6.77) is intuitively clear. The flux of probability over the boundary x1 equals
the density of particles at this level, times a “characteristic” velocity. However, as we
have seen, the proof of this intuitive result is rather involved. Equations (6.74,6.77)
are the second main result of this chapter. Together with equations (6.54-6.56) they
allow us to approximate the instantaneous escape rate Γ(t) for arbitrary modulation
frequencies. Finally, if there exist more than one optimizing path, one has to sum over
their contributions in approximation (6.77).
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Figure 6.3: First passage time density for the modulated cubic potential V (x, t) =
−a/3x3 +b/2x2−A sin(ωt)x which is also used in section 6.6.4. All shown
curves were obtained for the parameters: a = 1.78, b = 2.67, A = 0.3, and
D = 0.05. The absorbing boundary was placed at x1 = 0.75 (the inflection
point of the un-modulated potential), and the driving frequency was varied
from ω = 0.3 (top left figure) to ω = 10.0 (bottom right figure). The zeroth
order approximation (6.77) is shown as the blue dashed line, the approx-
imation including the first order correction (6.78) as the green dashed-
dotted line, whereas the red solid line shows the first passage time density
obtained from numerically solving the Fokker-Planck equation (6.11) with
appropriate boundary conditions.
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6.4.3 Behavior of the optimizing paths in vicinity of the stable and
unstable orbit

In the previous sections we have derived equations for all quantities appearing in
approximation (6.54-6.56) for the escape rate. Next, we want to discuss how these
quantities depend on t1 for a fixed final time tf and a fixed reference level x1. For this
purpose, we first have to consider the behavior of the optimizing paths in the vicinity
of the stable and unstable orbit. In this region we can expand the force around these
orbits:

F (x∗(t), t) = F (xs,u(t), t) + λs,u(t)∆xs,u(t) , (6.81)

with λs,u(t) defined in equation (6.8). Here and in the following we set

∆xs,u(t) := x∗(t) − xs,u(t) . (6.82)

The derivatives of the force field are expanded in the same way.
In this approximation the Hamiltonian equations (6.28,6.29) for the optimizing

paths become

∆ẋs,u(t) = 2p∗(t) + λs,u(t)∆xs,u(t) , (6.83)

ṗ∗(t) = −λs,u(t)p∗(t) . (6.84)

These equations are equivalent to equations (6.40,6.41) for two infinitesimally neigh-
boring paths. However, as the momentum of a particle following exactly one of the
orbits vanishes, the term proportional to F ′′(xs,u(t), t) is dropped out. The solutions
of equations (6.83,6.84) are

∆xs,u(t) = ∆xs,u(t̃)eΛs,u(t,t̃) + p∗(t)Is,u(t, t̃) , (6.85)

p∗(t) = p∗(t̃)e−Λs,u(t,t̃) , (6.86)

with

Λs,u(t, t̃) :=

∫ t

t̃
dt′ λs,u(t′) , (6.87)

Is,u(t, t̃) := 2

∫ t

t̃
dt′ e2Λs,u(t,t′) , (6.88)

and with t̃ an arbitrary reference time. It is not surprising that the expressions in
(6.87,6.88) are equivalent to those in (6.61,6.62). In both cases a particle in a
quadratic potential was considered.
Turning to the movement in the vicinity of the unstable orbit, equations (6.85,6.86)

determine the full solution in terms of the two parameters ∆xu(t̃) and p∗(t̃). We can
use the boundary condition x∗(tf ) = xu(tf ) to eliminate one of them. As the reference
time t̃ is arbitrary, we can choose t̃ = tf with the result:

∆xu(t) = p∗(t)Iu(t, tf ) = p∗(tf )e−Λu(t,tf )Iu(t, tf ) . (6.89)
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This equation is valid for all t ≤ tf for which the optimal path is close to the unstable
orbit. Let us denote by tu the time at which the particle enters the neighborhood of
this orbit so that equations (6.83,6.84) apply for all tu ≤ t ≤ tf . Then, by dividing
(6.89) by the same identity evaluated at tu, we arrive at

∆xu(t) = ∆xu(tu)e−Λu(t,tu) Iu(t, tf )

Iu(tu, tf )
, (6.90)

p∗(t) = ∆xu(tu)e−Λu(t,tu) 1

Iu(tu, tf )
. (6.91)

One can infer from assumptions (6.7,6.8) that Λu(t, tu) is, for a fixed time tu and suffi-
ciently large t − tu, a monotonically increasing function of t and can be approximated
by

Λu(t, tu) ≈ λu(t − tu) . (6.92)

From this behavior one readily sees that Iu(tu, tf ) converges for tf → ∞ towards a
finite value

Iu(tu) := − lim
tf→∞

Iu(tu, tf ) > 0 . (6.93)

For a periodically modulated force field, Iu(tu) is also periodic in tu with period T .
Hence, we see from equations (6.90,6.91) that both, |∆xu(t)| and p∗(t), decrease
exponentially with the time the particle spends in the neighborhood of the unstable
orbit. In the case of ∆xu(t) this is of course only true as long as also tf − t is large.
In full analogy one finds for the movement in vicinity of the stable orbit

∆xs(t) = ∆xs(ts)e
−Λs(t,ts) Is(t, t0)

Is(ts, t0)
, (6.94)

p∗(t) = ∆xs(ts)e
−Λs(t,ts) 1

Is(ts, t0)
, (6.95)

where ts denotes the time at which the neighborhood of the stable orbit is left. Here
Is(ts, t0) converges for t0 → −∞ towards

Is(ts) := lim
t0→−∞

Is(ts, t0) . (6.96)

Again, for periodic force fields this quantity becomes periodic in ts. Analogously to
equation (6.92) we have Λs(t, ts) ≈ −λs(ts − t) for large ts − t. Hence, equations
(6.94,6.95) are dominated by exponentially increasing factors exp(λs(ts − t)).

6.4.4 Asymptotics of the integrand

In this section we discuss the asymptotical behavior of the quantities in the approxi-
mation (6.54-6.56) for the rate in the case of periodically modulated force fields. For
other force fields the asymptotical behavior will be qualitatively the same, but for rig-
orous estimates more assumptions about the force field, than applied in section 6.2.1,
are necessary.

94



6.4 A new path integral approach to the escape problem

For periodically modulated systems it is clear that in the considered limit t0 → −∞
the first passage time density Ψt0(x1, t1) becomes a periodic function of t1. Also the
action of the path, starting at x1 at time t1, and crossing the unstable orbit at time tf ,
is invariant under a translation of time by T , i.e.,

Φ∗
t1(tf ) = Φ∗

t1+T (tf + T ) . (6.97)

It is further well known that for a fixed time t1 the action of the globally minimizing
path is a monotonically decreasing function of the final time tf .9 Together with equa-
tion (6.97) and the fact that the action is always positive, it follows that also Φ∗

t1(tf )
converges to a t1 periodic function

Φ∞(t1) := lim
(tf−t1)→∞

Φ∗
t1(tf ) . (6.98)

Turning to the momentum p∗t1(tf ) of the optimizing path at the moment it crosses the
unstable orbit, we can infer from equations (6.91) and (6.93) that it is an exponentially
decreasing function of the time tf − tu, the path spends in the vicinity of the unstable
orbit. As the time needed to travel from the reference level x1 into the vicinity of the
unstable orbit is negligible for large tf − t1, it follows that

p∗t1(tf ) ∼ e−Λu(tf ,t1) . (6.99)

Next, we consider the prefactor Q∗
t1(tf ) and its derivative Z∗

t1(tf ) with respect to the
final position. From our above discussion we know that the term proportional to p∗t1(t)
in the differential equation (6.33) for the prefactor can be neglected for sufficiently
large times, and without loss of generality

d

dt

[

Q̇∗(t) − 2Q∗(t)F ′(x∗
t1(t), t)

]

= 0 (6.100)

is valid for all times t > tu. The term in the squared brackets in equation (6.100) is
therefore constant and

Q̇∗(t) − 2Q∗(t)F ′(x∗
t1(t), t) = Q̇∗(tu) − 2Q∗(tu)F ′(x∗

t1(tu), tu) =: c(tu) . (6.101)

The solution of (6.101) is readily found:

Q∗(t) = e2Λu(t,tu)

[

Q∗(tu) − 1

2
c(tu)Iu(tu, t)

]

. (6.102)

The term in the squared brackets in equation (6.102) converges according to equation
(6.93) towards a finite value, and for large tf − t1 we find:

Q∗
t1(tf ) ∼ e2Λu(tf ,t1) . (6.103)

9 Proof: Consider two final times tf > t′f and a fixed starting time t1. The corresponding optimizing
paths shall be denoted by x∗

t1(t|t
′

f ) and x∗

t1(t|tf ), respectively. Consider further the path x̃(t) that
equals x∗

t1(t|t
′

f ) for t1 ≤ t ≤ t′f and xu(t) for t′f ≤ t ≤ tf . As the deterministic movement on the
unstable orbit does not accumulate any action, the action of the path x̃(t) equals that of x∗

t1(t|t
′

f )
which is, hence, an upper bound for the action of the path x∗

t1(t|tf ).
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Figure 6.4: (a) Integrands of Γ0(tf ) (solid line) and Γ1(tf ) (dashed line) for a static
cubic potential V (x) = −a/3x3 + b/2x2 with a = 1.78 and b = 2.67. The
noise strength is D = 0.05, and the reference level is chosen as x1 = 0.75.
(b) The same for a double well potential V (x) = a/4x4 − b/2x2 with a =
0.25, b = 1.0, and x1 = −1.1.

We mention that the quantities c(tu) = c(tu|t1, tf ) and Q∗(tu) = Q∗(tu|t1, tf ) in equa-
tion (6.102) depend on both, the initial and the final times. For a rigorous proof of
(6.103) one therefore also has to show that c(tu|t1−nT , tf ) and Q∗(tu|t1−nT , tf ) con-
verge for n → ∞ towards a finite limit which will, in general, depend on t1. Hence,
in order to write the expression (6.103) in the limit tf − t1 → ∞ as an equation, a
t1-periodic function has to be multiplied to the right-hand side.
From our above discussion the asymptotical behavior of the remaining quantity

Z∗
t1(tf ) can be easily derived. For this purpose, we consider the differential equation
(6.44, 6.45) which determines the derivative of the prefactor. Using the asymptotical
behavior (6.103) of Q∗

t1(tf ) and the boundary condition Dx(tf ) = 1, we see that the
inhomogeneity H(t), evaluated at the final time tf , is dominated by an exponentially
increasing factor H(tf ) ∼ exp(2Λu(tf , t1)). Considering Z∗

t1(tf ) for a fixed time tf as
a function of t1, the left-hand side of the differential equation evaluated at tf must
grow in the same manner. As we are dealing with a linear differential equation with
bounded coefficients (on the left-hand side), we can conclude that Z∗

t1(tf ) itself is
dominated by the exponentially increasing factor exp(2Λu(tf , t1)), hence

Z∗
t1(tf ) ∼ e2Λu(tf ,t1) . (6.104)

An exception to this asymptotical behavior has to be expected for a static poten-
tial with F ′′(xu(t), t) = F ′′(xmax) = 0. In this case a closer inspection of equations
(6.40,6.41) and (6.44, 6.45) reveals that Z∗

t1(tf ) only grows like exp(Λu(tf , t1)).
Having now discussed the asymptotics of all quantities appearing in the approxima-
tion (6.54-6.56) for the instantaneous escape rate, we can turn to the integrands of
the integrals in (6.55,6.56). Using relations (6.99,6.103), we infer that for large tf − t1
the integrand of the leading term Γ0(tf ) decreases like exp(−2Λu(tf , t1)) and that of
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the first correction Γ1(tf ) as exp(−Λu(tf , t1)). That means, the lower limits of both in-
tegrals in (6.55,6.56) can be replaced by some finite value. We can further infer that,
for all finite noise strengths D, the integrand of Γ1(tf ) will be much larger than that of
Γ0(tf ) for large tf − t1. This indicates that the first correction might significantly im-
prove the approximation for finite values of the noise strength D. We, however, note
that this is not in contradiction with the fact that Γ1(tf ) becomes negligible compared
to Γ0(tf ) as D → 0.
The asymptotical behavior of the integrands of Γ0(tf ) and Γ1(tf ) is illustrated in

figure 6.4 for two static potentials. In the case of the cubic potential the integrands
decrease in the above discussed way, whereas the static double well potential is one
of the exceptions discussed below equation (6.104). As both, F ′′(xu(t)) = F ′′(0) and
ẋu(t) vanish, the derivative Z∗

t1(tf ) of the prefactor is dominated by the exponential
factor exp(λu(tf − t1)), and, hence, the integrand of Γ1(tf ) is dominated by the same
exponentially decreasing factor exp(−2λu(tf − t1)) as that of Γ0(tf ).
In equation (6.65) of section 6.4.2, we have neglected the term proportional

DZ∗
t0(t1)/Q

∗
t0(t1). This could be done because for transitions from the stable orbit

to the reference level x1 this term is usually very small compared to p∗t0(t1). We de-
sist from a rigorous proof, but give two arguments for this statement. Firstly, the
momentum p∗t0(t1) of the optimizing path is not small at the moment it crosses the
reference level. In contrast, p∗t1(tf ) decreases exponentially with time tf − t1 [cf. equa-
tion (6.99)]. Secondly, proceeding as in equations (6.100-6.102), one can easily show
that the prefactor of a path equals

Q∗
t0(ts) = Is(ts)/2 (6.105)

for all times ts at which it is still the vicinity of the stable orbit. Hence, the prefactors
corresponding to two neighboring paths are “exactly” the same as long as they are
near the stable orbit. Differences can only be accumulated in the short time interval,
needed to travel from the vicinity of the stable orbit to the reference level. Therefore,
the ratio Z∗

t0(t1)/Q
∗
t0(t1) is in most cases very small itself.

6.4.5 Expansion around asymptotic paths

For reasons of computational efficiency [see also Sec. 6.4.6] we can further approxi-
mate the instantaneous escape rate and express all quantities appearing in equations
(6.54-6.56) in terms of the path x∞

t1 (t) which satisfies the boundary conditions

x∞
t1 (t1) = x1, lim

t→∞
(x∞

t1 (t) − xu(t)) = 0 . (6.106)

It can be inferred from our discussions in sections 6.3.3 and 6.4.4 that the paths which
strongly deviate from x∞

t1 (t) correspond to a large action Φ∗
t1(tf ). Their contribution

to the escape rate in equations (6.54-6.56) is exponentially suppressed by the term
exp(−Φ∗

t1(tf )/D).
We first point out that we can truncate the path x∞

t1 (t) at any time tf . As the
resulting path obviously satisfies the Hamiltonian equations (6.28,6.29), it is still an
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optimizing path with initial point (x1, t1) and final point (xf = x∞
t1 (tf ), tf ). Hence,

equations (6.35,6.42,6.47), determining the derivative of the action, of the momen-
tum, and of the prefactor with respect to the final position, remain valid. Using the
notation introduced in section 6.3.1, we get:

∂

∂xf
Φ∗

t1(x
∞
t1 (tf ), tf ) = p∞t1 (tf ) , (6.107)

∂2

∂x2
f

Φ∗
t1(x

∞
t1 (tf ), tf ) =

∂

∂xf
p∞t1 (tf ) = D∞

p (tf ) , (6.108)

∂

∂xf
Q∗

t1(x
∞
t1 (tf ), tf ) = Z∞

t1 (tf ) . (6.109)

These quantities can be calculated as described in section 6.3.2. Equations (6.107-
6.109) can now be used to expand the action, momentum, and prefactor of the opti-
mizing path x∗

t1(t), with boundary condition x∗
t1(tf ) = xu(tf ), in powers of the distance

∆x∞
t1 (tf ) = x∗

t1(tf ) − x∞
t1 (tf ) of the path x∞

t1 (t) from the unstable orbit. For the action
it follows:

Φ∗
t1(xu(tf ), tf ) = Φ∗

t1(x
∞
t1 (tf ), tf ) + p∞t1 (tf )∆x∞

t1 (tf )

+
1

2
D∞

p (tf )∆x∞
t1 (tf )2 + . . . . (6.110)

The final momentum and prefactor can be expanded in the same way:

p∗t1(xu(tf ), tf ) = p∞t1 (tf ) + D∞
p (tf )∆x∞

t1 (tf ) + . . . , (6.111)

Q∗
t1(xu(tf ), tf ) = Q∗

t1(x
∞
t1 (tf ), tf ) + Z∞

t1 (tf )∆x∞
t1 (tf ) + . . . . (6.112)

While in equations (6.111,6.112) only the first order terms are kept, the second order
term is included in the approximation (6.110) for the action for two reasons. Firstly,
including this term does not “cost” anything. The derivative D∞

p (tf ) of the momentum
is also needed elsewhere, e.g., in equation (6.111). Secondly, the action of the path
enters approximation (6.54-6.56) for the escape rate via the term exp(−Φ∗

t1(tf )/D).
Hence, for small noise strengths D, even small errors in the approximation for the ac-
tion are exponentially amplified. For the derivative of the prefactor Q∗

t1(tf ), appearing
in equation (6.56), only the zeroth order approximation

Z∗
t1(tf ) = Z∞

t1 (tf ) + . . . (6.113)

will be used. This is justified by the fact that Γ1(tf ) itself is a correction. The error
resulting from neglecting the higher order terms will therefore be very small.
Equations (6.110-6.113), together with (6.54-6.56) and (6.77), are the third main
result of this chapter. In the next section we discuss that these equations provide a
computationally efficient approximation to the instantaneous escape rate for periodi-
cally modulated force fields.

98



6.4 A new path integral approach to the escape problem

6.4.6 Main steps for a practical application

We will now summarize the main steps which are necessary for an application of
the approximation to a given force field F (x, t). Except for some special cases like
the piecewise parabolic potential, described in section 6.6.2, all these steps require
numerical methods.
In a first step, the stable and unstable orbit xs,u(t) have to be determined. As

the solution of the deterministic equation (6.5) converges to the stable orbit for any
initial condition lying in the basin of attraction, the determination of xs(t) is quite
easy. All that has to be done is to evolve the deterministic equation of motion “suf-
ficiently long” forward in time. In practice, different initial conditions are used. After
an “equilibration time” the solutions of the deterministic equation (6.5) become (ap-
proximately) independent of the initial condition and agree with the stable orbit. In
the same way the unstable orbit xu(t) can be determined by evolving equation (6.5)
backwards in time for some initial conditions x(t0) > xs(t0).
In a second step, the intermediate level x1 has to be chosen. While equation

(6.52) is valid for any level with xs(t) < x1 < xu(t) for all times t, the quality
of the approximation usually depends on the explicit choice. This will be demon-
strated for an example in section 6.6.4. As a guideline, x1 should be chosen such that
|V (xs,u(t), t) − V (x1, t)| and |F (x1, t)| are as large as possible.
Then, the first passage time density Ψt0(x1, t1) can be approximated by equations

(6.32,6.77). For the calculation of the quantities Φ∗
t0(x1, t1), Q

∗
t0(x1, t1), and ẋ∗

t0(t1),
appearing in these formulas, a system of three coupled differential equations
(6.28,6.29,6.33) with boundary conditions

lim
t→−∞

x∗
t0(t) − xs(t) = 0, x∗

t0(t1) = x1 , (6.114)

lim
t→−∞

Q∗
t0(t) = 0, lim

t→−∞
Q̇∗

t0(t) = 1 (6.115)

has to be solved. Not dealing with an initial-value problem, the solution of the dif-
ferential equations, in general, requires more sophisticated numerical methods like
shooting procedures or relaxation methods [PTVF92]. However, as we need the first
passage time density Ψt0(x1, t1) for all times t1, the following very simple method can
be used: We first choose a small ∆xs > 0 for which the linearization (6.81) of the
force field is justified for all x∗

t0(t) − xs(t) < ∆xs and for all times t. Then, for some
time ts we set:

x∗
t0(ts) = xs(ts) + ∆xs, p∗t0(ts) = ∆xs/Is(ts), (6.116)

Q∗
t0(ts) = Is(ts)/2, Q̇∗

t0(ts) = İs(ts)/2 . (6.117)

We know from our discussion in sections 6.4.3 and 6.4.4 that (x∗
t0(ts), p

∗
t0(ts)) given by

(6.116) corresponds to an optimizing path with the desired initial condition, and the
prefactor in (6.117) is the solution of equation (6.33) with initial condition (6.115).
Using equations (6.31,6.87,6.88,6.95), a short calculation yields the action of this
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path at time ts:

Φ∗
t0(x

∗(ts), ts) =
1

2

∆x2
s

Is(ts)
. (6.118)

For the initial conditions (6.116,6.117), the set of differential equations can be evolved
forward in time until the level x1 is crossed at time t1.10 This time clearly depends
on the chosen reference time ts and on the distance to the stable orbit ∆xs, i.e.,
t1 = t1(∆xs, ts). Using equations (6.31,6.118), the action of the path is

Φ∗
t0(x1, t1) =

1

2

∆x2
s

Is(ts)
+

∫ t1

ts

dt p∗t0(t)
2 . (6.119)

Having determined all necessary quantities for the approximation of the first passage
time density for this time, one can next vary either ∆xs or/and ts and repeat the same
procedure. In this way, the first passage time density Ψt0(x1, t1) can be calculated
for sufficiently many times t1. These cannot be fixed a priori, but, by using adaptive
procedures for the variation of the parameter ts (or ∆xs), the distance between these
sampling points can be made arbitrarily small. Then, Ψt0(x1, t1) can be interpolated
to arbitrary times. The first passage time densities for the cubic potential which are
shown in figure 6.3 have been calculated in this way.
In a next step, ∂/∂xfρ(xf , tf |x1, t1) has to be determined according to equation
(6.53). This can be done in two ways which are both similar to the procedure used
to determine the first passage time density. We will later refer to the first method as
the full approximation. The second method makes use of the expansion around the
asymptotic paths, described in the previous section, and is for periodically modulated
force fields computationally much more efficient.
For the full approximation, we first fix the final time tf for which the instantaneous
escape rate shall be calculated. We choose a small distance ∆xu < 0 and a reference
time tu < tf and set:

x∗
t1(tu) = xu(tu) + ∆xu, p∗t1(tu) = ∆xu/Iu(tu, tf ) . (6.120)

For this initial condition the differential equations for the optimizing paths are evolved
backwards in time, until the level x1 is crossed at time t1 = t1(∆xu, tu) with momen-
tum p1. Then, the system of six differential equations (6.28,6.29,6.33,6.40,6.41,6.44)
can be evolved forward in time to tf with initial conditions

x∗
t1(t1) = x1 , p∗t1(t1) = p1 , (6.121)

Dx(t1) = 0 , Dp(t1) = p0 , (6.122)

Q∗
t1(t1) = 0 , Q̇∗

t1(t1) = 1 , (6.123)

Z∗(t1) = 0 , Ż∗(t1) = 0 . (6.124)

10 If the solution Q∗

t0(t) of the differential equation (6.33) becomes negative, x
∗

t0(t) does for larger times
no longer minimize the action, but rather corresponds to a saddle or a maximum. In this case, or if
the level x1 is not crossed, a different ∆xs and/or ts has to be chosen.
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Because of the linearity of the differential equations (6.40,6.41,6.44) and because
of the initial condition (6.124) for the inhomogeneous equation, p0 can be chosen
arbitrarily, but the final solutions of both, Dp(tf ) and Z∗(tf ), have to be divided by
Dx(tf ). Again, by variation of either tu or ∆xu, all quantities can be calculated for
sufficiently many t1. If one is interested in the instantaneous escape rate for different
final times tf , this part of the approximation is computationally very expensive.
The second approximation scheme is particularly suited for periodic force fields and

allows to approximate ∂/∂xf ρ(xf , tf |x1, t1) much more efficiently. In this approxima-
tion scheme we proceed as in the full approximation, but consider the limit tf → ∞,
i.e., we determine the paths x∞

t1 (t). For sufficiently many t1 these paths and the values
of the other quantities along these paths can be stored (in appropriate time steps). For
a given final time tf , all needed quantities can then be expressed in terms of these
paths, as described in section 6.4.5. This method is computationally favorable be-
cause the differential equations have to be solved for a sufficient number of times t1
only once. After that, for each time tf just one integral has to be solved numerically to
approximate the instantaneous escape rate Γ(tf ) according to equations (6.54-6.56).
We mention that the computational costs do not depend on the noise strength D.
The optimizing paths, actions, and prefactors are independent of this quantity. The
approximation is therefore particularly efficient if the escape rate shall be calculated
for different noise strengths.

6.5 Adiabatically slowly modulated potentials

Before demonstrating our approximation scheme for different time-dependent force
fields, we show that our approximation reduces to the well known Kramers result
(2.19) for static or adiabatically slowly modulated potentials and weak noise strengths
D.
Hence, let us consider a static potential V (x) and a corresponding static force field

F (x) = −V ′(x). The stable and unstable orbits are obviously the minimum of the
potential xmin and maximum xmax, respectively. Using equations (6.28,6.29) for the
optimizing path, a short calculation shows

d

dt

[

ẋ∗(t)2 − V ′(x∗(t))
2
]

= 0 , (6.125)

and therefore
[

ẋ∗(t) − V ′(x∗(t))
] [

ẋ∗(t) + V ′(x∗(t))
]

= const , (6.126)

with some constant const. Let us next consider the optimizing path x∗
t0(t), correspond-

ing to the boundary conditions (6.114), and implicitly define the time ts = ts(ǫ) ≪ t1
via x∗

t0(ts) = xmin + ǫ with ǫ ≪ x1 − xmin. From our discussions in section 6.4.3 we
know that ẋ∗

t0(ts) = O(ǫ). As also V ′(x∗
t0(ts)) = O(ǫ), by taking the limit ǫ → 0 we can

infer that const = 0 in equation (6.126). It thus follows that the optimizing path is
given by

p∗t0(t) = ẋ∗
t0(t) = V ′(x∗

t0(t)) . (6.127)
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That means, for a static potential the optimizing path with boundary conditions (6.114)
is nothing but the time-reversed deterministic motion, and the action (6.31) is readily
found to be the difference of the potential energy between initial and final point:

Φ∗
t0(t1) = V (x1) − V (xmin) . (6.128)

For the optimizing path (6.127), equation (6.33) for the prefactor reduces to

Q̈∗
t0(t) = −2Q̇∗

t0(t)V
′′(x∗

t0(t)) , (6.129)

with the usual initial condition Q∗
t0(t0) = 0 and Q̇∗

t0(t0) = 1. Its solution is formally
given by

Q∗
t0(t) = Q∗

t0(ts) + Q̇∗
t0(ts)

[

V ′(x∗
t0(ts))

]2
∫ t

ts

dt′
1

[

V ′(x∗
t0(t

′))
]2 (6.130)

= Q∗
t0(ts) + Q̇∗

t0(ts)
[

V ′(x∗
t0(ts))

]2
∫ x∗

t0
(t)

x∗

t0
(ts)

dx
1

[V ′(x)]3
, (6.131)

where ts is some reference time. Choosing, in particular, ts = ts(ǫ) as defined below
equation (6.126) and t = t1, we see that the main contribution to the integral in
equation (6.131) stems from the x-values with x ≈ x∗

t0(ts) = xmin+ǫ. We can therefore
expand V ′(x) around x = xmin with the result:

Q∗
t0(t1) ≈ Q∗

t0(ts) + Q̇∗
t0(ts)

[

V ′′(xmin)ǫ
]2
∫ x1

x∗

t0
(ts)

dx
1

[V ′′(xmin)(x − xmin)]
3

= Q∗
t0(ts) +

Q̇∗
t0(ts)

2V ′′(xmin)
+ O(ǫ) . (6.132)

Now, taking the limit ǫ → 0 and using the initial condition Q∗
t0(t0) = 0 and Q̇∗

t0(t0) = 1
gives the prefactor Q∗

t0(t1) = 1/(2V ′′(xmin)). Hence, the first passage time density
through the level x1 is approximately given by equations (6.32,6.77), yielding together
with equations (6.127,6.128)

Ψt0(t1) = Ψ =

√

V ′′(xmin)

2πD
V ′(x1)e

−(V (x1)−V (xmin))/D . (6.133)

As already mentioned at the end of section 6.4.2, this approximation can also be
obtained within the framework of transition state theory [HTB90].
We next turn to the optimizing path x∗

t1(t) with boundary conditions x∗
t1(t1) = x1

and x∗
t1(tf ) = xmax. Due to the continuous time translation symmetry, all quantities

depend on the initial and final time only via tf − t1. Now, the main idea is to follow
the proceeding in section 6.4.5, and to express all quantities in the approximation for
the transition probability ρ(xf , tf |x1, t1) in terms of the asymptotic optimizing path
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x∞
t1 (t) corresponding to the boundary conditions (6.106). In full analogy to our above
discussions, this path is easily found:

p∞t1 (t) = ẋ∞
t1 (t) = V ′(x∞

t1 (t)) . (6.134)

Again, the action is the difference of the potential energy between initial and final
point:

Φ∞
t1 =

∫ ∞

t1

dt
[

p∞t1 (t)
]2

= V (xmax) − V (x1) . (6.135)

The action corresponding to the path x∗
t1(t) can be approximated by equation (6.110).

Neglecting in this equation terms of order ∆x∞
t1 (tf )2 and using

(6.31,6.91,6.135), a short calculation gives

Φ∗
t1(xmax, tf ) ≈ V (xmax) − V (x1) +

1

2
|V ′′(xmax)|

(

xmax − x∞
t1 (tf )

)2
, (6.136)

where the dependence on the final position has been explicitely stated to avoid con-
fusion with that of the truncated asymptotic path.
The prefactor Q∗

t1(x
∞
t1 (tf ), tf ) of the truncated asymptotic path is given by the solu-

tion of equation (6.129) (cf. equation (6.130)):

Q∗
t1(x

∞
t1 (tf ), tf ) =

[

V ′(x1)
]2
∫ tf

t1

dt′
1

[

V ′(x∞
t1 (t′))

]2 (6.137)

≈ 1

2

(

V ′(x1)

V ′(x∞
t1 (tf ))

)2 1

|V ′′(xmax)|
. (6.138)

In the limit D → 0, we can neglect terms of order ∆x∞
t1 (tf ) in equations (6.111,6.112).

As also the contribution Γ1(tf ) vanishes in this limit, we have everything at hand to
approximate the escape rate. Substituting equations (6.133,6.134,6.136,6.138) into
equation (6.55) yields

Γ0(tf ) =

√

V ′′(xmin)|V ′′(xmax)|
2πD

e−∆V/D (6.139)

×
∫ tf

−∞
dt1

[

V ′(x∞
t1 (tf ))

]2
exp

[

− 1

2D
|V ′′(xmax)|(xmax − x∞

t1 (tf ))2
]

,

with ∆V = V (xmax) − V (xmin). Using the fact that x∞
t1 (tf ) depends on both times

only via their difference tf − t1, we can rewrite the integral in equation (6.139) as an
integral over the coordinate by substituting x = x∞

t1 (tf ). For small noise strengths D,
the integrand of this integral is sharply peaked at the upper bound xmax of this integral.
The factor V ′(x) in front of the exponential function can therefore be expanded around
xmax, up to first order in xmax − x. Doing this, we finally get

∫ tf

−∞
dt1

[

V ′(x∞
t1 (tf ))

]2
exp

[

− 1

2D
|V ′′(xmax)|(xmax − x∞

t1 (tf ))2
]

≈ D . (6.140)
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Inserting this result into equation (6.139) shows that, for static potentials in the limit
D → 0, the approximation of the escape rate reduces to

Γ0(tf ) ≈
√

V ′′(xmin)|V ′′(xmax)|
2π

e−∆V/D . (6.141)

This is exactly the Kramers formula (2.19) for the dimensionless units used in this
chapter.

We have, thus, shown that the approximation scheme for the first passage time
density and the escape rate reduces to the well known results for static potentials.
This will still hold for adiabatically slow modulations. In the limit of very fast mod-
ulations, meaning that the potential is modulated on time scales much shorter than
the time scales of the deterministic motion, the potential and its derivatives, appear-
ing in the equations for the optimizing path, can be replaced by their concomitant
time-averaged versions. The escape rate is, hence, again given by equation (6.141).

6.6 Examples

We now illustrate the procedure on some examples. In sections 6.6.1 - 6.6.3 a piece-
wise parabolic potential is considered for which all quantities appearing in equations
(6.54-6.56) can be calculated analytically. Only the integrals themselves have to be
determined numerically. In section 6.6.4 a cubic potential is studied. Here all steps
have do be done numerically, as described in section 6.4.6.

The approximated escape rates are compared to those obtained from solving the
Fokker-Planck equation (6.11). For this purpose, standard numerical procedures can
be used. We have used two different methods. For the first method the partial dif-
ferential equation has to be discretized in space using finite differences. It is then
evolved in time employing an implicit Cranck-Nicolson scheme [PTVF92]. The spa-
tial discretization in the second method is performed using a Chebyshev collocation
method. By the method of lines the partial differential equation is reduced to a system
of ordinary differential equations which is then solved by standard methods. Whereas
for the first scheme a self-written algorithm has been used, for the second method
a commercial algorithm from the NAG (National Algorithms Group) library (routine
d03pdc) has been employed [BD91]. Both methods yielded essentially the same re-
sults. The curves shown in this work have been calculated with the algorithm from
the NAG library.
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6.6.1 Piecewise parabolic potential: General case with time-dependent
coefficients

Our first example is the piecewise parabolic potential jointed at x = 0. In its most
general form, this is given by

V (x, t) = U(x, t) − f(t)x , (6.142)

U(x, t) =
1

2

{

hs(t)λs

(

x̄2
s(t) − (x − x̄s(t))

2
)

for x ≤ 0

hu(t)λu

(

x̄2
u(t) − (x − x̄u(t))2

)

for x > 0
,

where

x̄s(t) < 0, hs(t)λs < 0 , (6.143)

x̄u(t) > 0, hu(t)λu > 0 , (6.144)

and where hs,u(t), x̄s,u(t), and f(t) are time-dependent functions. The force field
F (x, t) = −∂/∂xV (x, t) has to be continuous at x = 0. This requires

hs(t)λsx̄s(t) = hu(t)λux̄u(t) . (6.145)

Defining a new force f̃(t) = f(t)− hs(t)λsx̄s(t) thus allows us to rewrite F (x, t) corre-
sponding to (6.142) in the form

F (x, t) =

{

hs(t)λsx + f̃(t) for x ≤ 0

hu(t)λux + f̃(t) for x > 0
, (6.146)

where the three independent functions hs,u(t) and f̃(t) are a priori arbitrary, with the
only condition that the deterministic dynamics ẋ(t) = F (x(t), t) exhibits a stable orbit
xs(t) < 0 and an unstable orbit xu(t) > 0 (cf. section 6.2.1).
The particular form of the potential suggests to choose the intermediate level

x1 = 0 . (6.147)

With this choice the calculation of each of the needed quantities becomes quite easy.
We first determine the first passage time density Ψt0(t1). As long as the optimizing

path x∗(t) has not crossed the intermediate level x1, i.e., x∗(t) ≤ 0, the linearization
(6.81) of the force field F (x, t) is exact. Consequently, also equations (6.82-6.88) and
(6.94-6.96) are the exact solutions of the optimizing path.
It is convenient to choose the reference time in equations (6.94-6.96) as ts = t1.

With this choice the optimal path becomes

x∗(t) = xs(t) − xs(t1)e
Λs(t1,t) Is(t)

Is(t1)
, (6.148)

p∗(t) = −xs(t1)
eΛs(t1,t)

Is(t1)
, (6.149)
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and hence

ẋ∗
t0(t1) = −2

xs(t1)

Is(t1)
+ f̃(t1) . (6.150)

From equations (6.31,6.88,6.96) and (6.149) the action of the path readily follows

Φ∗
t0(t1) =

1

2

xs(t1)
2

Is(t1)
, (6.151)

and the prefactor is given by equation (6.105). Combing equations (6.32,6.77,6.148-
6.151), the zeroth order approximation to the first passage time density is

Ψt0(t1) =

(

−2xs(t1)

Is(t1)
+ f̃(t1)

)

1
√

2πDIs(t1)
e−xs(t1)2/(2DIs(t1)) . (6.152)

We note that this approximation is only valid if ẋ∗
t0(t1) in equation (6.150) is strictly

positive for all times, i.e., if the modulation of the potential is not too strong. Oth-
erwise the path would have been in the region x > 0, where the linearization of the
force field is different to that used in order to derive the expressions.
In full analogy we can determine the transition probability ρ(xf , tf |x1, t1). As the
reference time tu in equations (6.90,6.91) for the optimizing path is arbitrary, one can,
in particular, choose tu = t1 and integrate p∗(t)2 from t1 to tf , yielding the action of
the path:

Φ∗
t1(tf ) = −1

2

xu(t1)
2

Iu(t1, tf )
. (6.153)

The prefactor follows from equation (6.102) with tu = t1 and the relation Iu(tf , t1) =
− exp(2Λu(tf , t1))Iu(t1, tf ):

Q∗
t1(tf ) = Iu(tf , t1)/2 . (6.154)

It depends solely on the initial and final times, but not on the initial and final coor-
dinates x1 and xf , respectively. A direct consequence is that the derivative Z∗

t1(tf ) of
the prefactor, and hence Γ1(tf ), vanish for all times. This can also be seen from equa-
tions (6.44-6.46) determining the derivative. For the piecewise parabolic potential,
the right-hand side of the differential equation (6.45) vanishes in the whole regime
x > 0. The differential equation is thus homogeneous, and the initial conditions (6.46)
can only be satisfied by Z∗(t) = 0.
Finally, using equations (6.148-6.154), the instantaneous escape rate (6.55) is

Γ(tf ) ≈ 1

2πD

∫ tf

−∞
dt1

(

−2xs(t1)

Is(t1)
+ f̃(t1)

)

xu(t1)e
2Λu(t1,tf )

Is(t1)1/2 |Iu(t1, tf )|3/2
exp

(

−Φ∗
t0(t1, tf )

D

)

,

(6.155)
with the generalized action

Φ∗
t0(t1, tf ) =

1

2

(

x2
s(t1)

Is(t1)
− x2

u(t1)

Iu(t1, tf )

)

. (6.156)
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For the explicit evaluation of the functions Is,u and Λu, defined via equations (6.87,6.88)
and (6.96), usually numerical methods have to be employed.
We mention that the case f(t) = 0 and time-periodic hs(t) = hu(t) was also treated

in [BG04]. However, as already discussed at the end of section 6.4.1, their approach
could not be directly generalized to other potentials.

6.6.2 The piecewise parabolic potential: Periodic tilting

Let us now consider the special case of a periodically tilted, piecewise parabolic
potential V (x, t). We start from equation (6.142) and choose a static contribution
U(x, t) = U(x) and a periodic function f(t + T ) = f(t), resulting in

V (x, t) =
1

2

{

λs

(

x̄2
s − (x − x̄s)

2
)

− f(t)x for x ≤ 0

λu

(

x̄2
u − (x − x̄u)2

)

− f(t)x for x > 0
. (6.157)

Compared to equation (6.142), the functions hs,u(t) and x̄s,u(t) are constant, and
without loss of generality we can choose hs,u(t) = 1. Furthermore, condition (6.145),
guaranteeing that the force is continuous at x = 0, can be written in the form

λsx̄s = λux̄u =

√

2V0 |λs|λu

λu + |λs|
, (6.158)

with barrier height V0 := V (xmax, t) − V (xmin, t) for f(t) = 0. The potential is, hence,
determined by the three independent parameters λs, λu, and V0.
For this special choice, the functions Λs,u and Is,u can be easily calculated with the

result:

Λs,u(t, t̃) = λs,u(t − t̃) , (6.159)

Is(t) = −1/λs , (6.160)

Iu(t, t̃) = − 1

λu

(

1 − e2λu(t−t̃)
)

. (6.161)

The approximation (6.155,6.156) for the instantaneous escape rate can then be written
in a form depending solely on the models parameters:

Γ(tf ) ≈
√

|λs|λu

2πD

∫ tf

−∞
dt1

(2λsxs(t1) − λsx̄s + f(t1))λuxu(t1)e
−2λu(tf−t1)

(

1 − e−2λu(tf−t1)
)3/2

(6.162)

× exp

[

1

2D

(

λsxs(t1)
2 − λuxu(t1)

2

1 − e−2λu(tf−t1)

)]

.

This is still true for an arbitrary f(t). The driving force enters the approximation (6.162)
not only via the term in the numerator of the integrand, but also via the stable and
unstable orbit xs,u(t). In order to give an explicit numerical example, we have to fix
f(t). Here we choose

f(t) = A sin(ωt) . (6.163)
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Figure 6.5: The instantaneous escape rate Γ(tf ) for the piecewise parabolic potential
(6.157) with driving force (6.163) for different driving frequencies ω. The
parameters of the potential are V0 = 1, λs = −1, λu = 1, A = 0.5, and the
noise strength is D = 0.05. The escape rates, obtained from numerically
solving the Fokker-Planck equation, are shown as red solid lines and the
approximation (6.162) as blue, short-dashed lines. For the frequencies
ω ≥ 0.5 the green, long-dashed lines show the approximations according
to equations (6.168-6.175).
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Figure 6.6: Time-averaged escape rate Γ̄ for the piecewise parabolic potential (6.157)
as a function of the driving frequency ω. The parameters are the same as in
figure 6.5. The numerical solution of the Fokker-Planck equation is shown
as the red, solid line and the approximation (6.162) as blue crosses.

For this driving term the periodic orbits are found to be:

xs,u(t) = x̄s,u − A[λs,u sin(ωt) + ω cos(ωt)]

λ2
s,u + ω2

. (6.164)

For various driving frequencies we have determined the instantaneous escape rates
and compared them to approximation (6.162). The results are shown in figure 6.5.
The approximation is very good for all these examples. For low frequencies, like
ω = 0.1, the escape rate strongly synchronizes with the driving force (6.163). We
are in the adiabatic regime, and the peak of the escape rate has the same symmetry
about its maximum as the driving force f(t). With increasing ω the height of the peak
shrinks more and more, and it is no longer synchronized with f(t). For intermediate
frequencies the peak is strongly asymmetric, and the escape rate (6.162) converges for
ω → ∞ towards the escape rate of the un-driven potential, i.e., f(t) = 0.
In figures 6.6-6.8 the time-averaged escape rate (6.14) is depicted as a function of

the driving frequency ω, amplitude A, and of the noise strength D. Again, the approx-
imation (6.162) is very good, with a relative error that does not exceed a few percent
for all shown combinations of parameters. It increases with increasing amplitude and
noise strength and with decreasing driving frequency. The reason for this behavior is
that the ratio Φ∗

opt/D of the globally minimal action and the noise strength – and thus
the quality of the saddle point approximation – decreases in all these cases.
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Figure 6.7: Time-averaged escape rate Γ̄ for the piecewise parabolic potential (6.157)
as a function of the amplitude A of the driving force (6.163) for a driving
frequency ω = 1. The remaining parameters are the same as in figure 6.5.
The numerical solution of the Fokker-Planck equation is shown as the red,
solid line and the approximation (6.162) as blue crosses.
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Figure 6.8: Time-averaged escape rate Γ̄ for the piecewise parabolic potential (6.157)
as a function of the noise strength D. The frequency of the driving term
f(t) is ω = 1. The remaining parameters are the same as in figure 6.5.
The numerical solution of the Fokker-Planck equation is shown as the red,
solid line and the approximation (6.162) as blue crosses.
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6.6.3 The piecewise parabolic potential: Moderately fast driving

For some limiting cases the instantaneous escape rate can be further approximated.
As shown for a general potential in section 6.5, this approximation reduces to the
Kramers formula (2.19) in the adiabatic and in the high frequency limit. For the piece-
wise parabolic potential, an alternative derivation of this result is given in appendix
B.3, where we start from the integral in equation (6.162) and show that it can be fur-
ther approximated in the limit of adiabatically slow driving. In this section we show
that one recovers another known approximation [LRH00b] in the case of moderately
strong and moderately fast driving.
We remind that the argument of the exponential function in equation (6.162) equals

minus the total action Φ∗
t0(t1, tf ) = Φ∗

t0(t1) + Φ∗
t1(tf ), divided by the noise strength D.

We rewrite the total action for the potential (6.157) in the following form:

Φ∗
t0(t1, tf ) = Φper

t0 (t1) + ∆Φt0,tf (t1) , (6.165)

Φper
t0 (t1) =

1

2
(λsxs(t1)

2 − λuxu(t1)
2) , (6.166)

∆Φt0,tf (t1) =
1

2

e−2λu(tf−t1)

1 − e−2λu(tf−t1)
λuxu(t1)

2 . (6.167)

Obviously, Φper
t0 (t1) is periodic, i.e., Φ

per
t0 (t1 + T ) = Φper

t0 (t1), and ∆Φt0,tf (t1) vanishes
for tf − t1 → ∞. For moderately strong and moderately fast modulations, the pe-
riodic function Φper

t0 (t1) develops distinct minima at times t∗n = t∗ + nT . For small
noise strengths D, the integral (6.162) can then approximated by the Laplace method,
yielding

Γ(tf ) ≈
√

Dγopte−Φopt/Dκ(tf ) , (6.168)

with

Φopt = Φper
t0 (t∗) , (6.169)

γopt =
1

T

√

|λsλu|
2πΦ̈per

t0 (t∗)
ẋ∗

t0(t
∗)λuxu(t∗) , (6.170)

κ(tf ) =
T
D

Ntf
∑

n=−∞

e−2λu(tf−t∗n)

(1 − e−2λu(tf−t∗n))3/2
e−∆Φt0,tf

(t∗n)/D . (6.171)

Here Ntf denotes the largest integer n for which t∗n < tf .
Approximation (6.168) is formally equivalent to that in [LRH00b]. Moreover, for

the concrete choice (6.163) of the driving force, we can explicitly evaluate equations
(6.168-6.171) and show that both approximations are not only formally equivalent,
but coincide up to very small terms. The calculation is somehow lengthy and not very
enlightening. As it is also straightforward, we omit the details here and just give the
final result. The extrema of Φper

t0 (t1) are given by the relation

tan(ωt1) =
1

ω

λuλs − ω2

λs + λu
, (6.172)
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for λs 6= −λu [the equality can be treated as a limiting case]. This equation has two
solutions in [0,T ), one corresponding to a maximum of the action, the other one to
a minimum. We need the latter and denote it by t∗. Evaluating (6.166) at this time
yields

Φopt = V0

(

1 −
∣

∣

∣

∣

A2(|λs| + λu)λsλu

2V0ν4

∣

∣

∣

∣

1/2
)2

, (6.173)

ν2 =
√

(λs
s + ω2)(λ2

u + ω2) . (6.174)

The time-independent factor γopt is given by

γopt =
1

T √
π

|λs|λu

|λs| + λu

√

√

√

√Φopt + Φopt 3/2
ν2

|A|ω2

√

2 |λs|λu

|λs| + λu
, (6.175)

and κ(tf ) follows from equations (6.167,6.171) and (6.172). Figure 6.5 shows this
approximation for various frequencies. For the intermediate and large ω it is relatively
good. But with increasing T the deviations from the exact result rapidly grow.
We mention that by further approximating the denominators (1 − e−2λu(tf−t∗n))µ

[µ = 1, 3/2] in equations (6.167) and (6.171) by 1, the approximation exactly coincides
with that from [LRH00b].

6.6.4 The cubic potential

Our second example is the linear-cubic potential:

V (x, t) = U(x) − A sin(ωt)x , (6.176)

U(x) = −a

3
x3 +

b

2
x2 , (6.177)

with a, b some constants. The minima of the static potential U(x) are located at

xmin = 0 , xmax = b/a , (6.178)

and the barrier hight is

V0 = ∆U =
1

6

b3

a2
. (6.179)

Alternatively to a, b one can thus also characterize the potential by the two parameters
V0 and ∆x = xmax − xmin. The potential is point symmetric about its inflection point
at xinf = b/(2a). This suggests to place the reference level x1 in this region.
We have already mentioned at the beginning of this section that all steps necessary
for approximating the escape rate for the linear-cubic potential have to be accom-
plished numerically, as detailed in section 6.4.6. In figure 6.9 (a) we compare the
contributions of the two terms, Γ0 and Γ1, to the approximation (6.54-6.56) for one
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Figure 6.9: The instantaneous escape rate for the linear-cubic potential (6.176,6.177).
The parameters of the potential are V0 = 1, ∆x = 1.5, A = 0.3, ω = 1, and
the noise strength is D = 0.05. In (a) the reference level is placed at the
inflection point at x1 = 0.75, and the different contributions to the ap-
proximation of the escape rate Γ(t) = Γ0(t) + Γ1(t) are compared. The
solid line shows the exact result, obtained from numerically solving the
Fokker-Planck equation (6.11). The dashed line corresponds Γ0(t) as de-
fined in equation (6.55) and the dashed-dotted line to the first-correction
Γ1(t) from equation (6.56). The dotted line is the sum of these terms. The
points correspond to the approximation in terms of the asymptotic paths,
as described in section 6.4.6. In (b) the exact result (solid line) is compared
to the approximations Γ(t) obtained for different reference levels: x1 = 0.6
(dotted), x1 = 0.75 (dashed-dotted), and x1 = 0.9 (dashed). In both figures
the inset shows an amplification of the peak.
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Figure 6.10: Time-averaged escape rate Γ̄ for the linear-cubic potential (6.176,6.177)
as a function of the driving frequency ω for different modulation ampli-
tudes A. The parameters of the potential are V0 = 1, ∆x = 1.5, and the
noise strength is D = 0.05. The lines correspond to the exact result and
the points to the approximation in terms of the asymptotic paths. The
reference level was placed at x1 = 0.9.
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set of parameters. Although the noise strength D = 0.05 for this example is rather
small compared to V0, the first correction Γ1 is still not negligible. For other sets of
parameters and the same V0/D, the situation is very similar. On the other hand, ap-
proximating the quantities further in terms of the asymptotic paths (cf. section 6.4.5)
yields nearly the same result as the full approximation. In figure 6.9 (b) the influence
of the reference level is examined. The dependence of the approximation on this
choice is rather small as long as x1 is not too close to either the stable or the unstable
orbit. Again, the situation does not change much when approximating the quantities
in terms of the asymptotic paths (data not shown).
In figure 6.6.4 we have determined the time-averaged escape rate (6.14) as a func-

tion of the driving frequency ω for various modulation amplitudes A. For the whole
range of parameters the approximation in terms of the asymptotic paths is very good.
The approximation scheme was also tested for other potentials, like cosine or double-

well potentials of the form V (x, t) = ax4 − bx2 − f(t)x. The results for these potentials
are comparable to the results shown in this section for the linear-cubic potential.

6.7 Time-dependent temperatures

Let us again consider the Langevin equation (6.1) with a time-dependent noise strength
D(t) = Dg(t), i.e.,

ẋ(t) = F (x(t), t) +
√

2Dg(t)ξ(t) , (6.180)

lim
t→∞

1

t

∫ t

0
dt g(t) = 1 , g(t) > 0 . (6.181)

In section 6.2.3 we have discussed that, by introducing an auxiliary time t̂ and an aux-
iliary force F̃ via equations (6.17,6.19), this problem can be mapped to an equivalent
problem (6.18) with a time-independent noise strength D. Then, the instantaneous
rate Γ̃(t̂) of escape from the auxiliary force field in the auxiliary time can be approxi-
mated as described in section 6.4, and the escape rate for the original problem (6.180)
follows as Γ(t) = g(t)Γ̃(t̂(t)), cf. equation (6.20).
That means, in order to approximate the escape rate, again, the differential equa-

tions (6.28,6.29,6.33,6.40,6.41,6.44) have to be solved, but now in the auxiliary time
t̂ and for the effective force field F̃ . For practical purposes, it may, however, be more
convenient to transform these equations back to the original time t and the original
force F , so that the mapping t → t̂ does not have to be inverted. Doing so, the
equations for the optimizing path read:

ẋ∗(t) = 2g(t)p∗(t) + F (x∗(t), t) , (6.182)

ṗ∗(t) = −p∗(t)F ′(x∗(t), t) , (6.183)

with x∗(t0) = x0 and x∗(tf ) = xf , and Dx,Dp are determined by

Ḋx(t) = F ′(t)Dx(t) + 2g(t)Dp(t) , (6.184)

Ḋp(t) = −p∗(t)F ′′(t)Dx(t) − F ′(t)Dp(t) , (6.185)
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6 A unified approach to the approximation of escape rates

with Dx(t0) = 0 and Dx(tf ) = 1. The action along the optimizing path becomes

Φ∗(xf , tf |x0, t0) =

∫ tf

t0

dt g(t)p∗(t)2 . (6.186)

Analogously, we find the differential equation for the prefactor Q∗:

1

2

d

dt

[

Q̇∗(t)

g(t)

]

=
d

dt

[

Q∗(t)F ′(t)

g(t)

]

− Q∗(t)p∗(t)F ′′(t) , (6.187)

with
Q∗(t0) = 0, Q̇∗(t0) = g(t0) , (6.188)

and the equation for its derivative Z∗ with respect to the final position:

1

2

d

dt

[

Ż∗(t) − 2F ′(t)Z∗(t)

g(t)

]

+ p∗(t)F ′′(t)Z∗(t) = H(t) , (6.189)

with

H(t) =
d

dt

[

F ′′(t)Q∗(t)Dx(t)

g(t)

]

− F ′′(t)Q∗(t)Dp(t) − F ′′′(t)p∗(t)Q∗(t)Dx(t) , (6.190)

and initial conditions
Z∗(t0) = 0, Ż∗(t0) = 0 . (6.191)

Finally, the instantaneous escape rate follows according to equations (6.54-6.56) and
(6.20) as:

Γ(tf ) = Γ0(tf ) + Γ1(tf ) + Γ0(tf ) ∗ O(D) , (6.192)

Γ0(tf ) = g(tf )

∫ tf

t0

dt1 Ψt0(t1)
p∗t1(tf )e−Φ∗

t1
(tf )/D

√

4πDQ∗
t1(tf )

, (6.193)

Γ1(tf ) = g(tf )

∫ tf

t0

dt1 Ψt0(t1)
DZ∗

t1(tf )e−Φ∗

t1
(tf )/D

2Q∗
t1(tf )

√

4πDQ∗
t1(tf )

, (6.194)

Ψt0(t1) = ẋ∗
t0(t1)

e−Φ∗

t0
(t1)/D

√

4πDQ∗
t0(t1)

. (6.195)

Examples for the escape of Brownian particles from static potentials in a time-dependent
thermal environment will be discussed in the next chapter.
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7 Escape from time-dependent systems
with multiple metastable states:
Suppression of thermally activated
escape by heating

In the previous chapter we have considered Brownian particles in a force field with a
single metastable state. Both, the thermal environment, modeled by a Gaussian white
noise and a friction force, and the force field were allowed to be time-dependent. We
have worked out an approximation scheme for the instantaneous escape rate and
shown that it deviates strongly from the Kramers rate for fast modulations. In this
chapter we extend this discussion to potentials with multiple metastable states. Par-
ticular attention will be paid to Brownian particles in a static potential under the
influence of a time-dependent thermal environment [LCH97, ER04a, IW08, LHL08].
While for small, constant noise strengths always the energetically lowest metastable
state is preferentially occupied, we show that this situation may change for time-
dependent temperatures. Especially, the effective escape rate from a potential with
several metastable states may decrease upon temporally increasing the temperature.
Indeed, given that thermal noise is indispensable to escape, one would expect that an
“extra dose” of noise should always enhance escape. The result is thus unexpected and
counter-intuitive. Similar previous findings were always obtained for quite different
types of systems: Dissipative quantum tunneling in the deep cold [GZC92], models
without a barrier against deterministic escape [MS96b, Rei96], or non-dynamical sys-
tems [VR01].

7.1 Model

7.1.1 Dynamics

Let us consider a Brownian particle in a potential V (x, t) which should depend on
time solely via a multiplicative, strictly positive function h(t), i.e.,

F (x, t) = −V ′(x, t) = −h(t)U ′(x) . (7.1)

Experimentally, such a situation may be realized by colloidal particles in a suitably
designed potential landscape. This can be achieved by exploiting light [ADBC86,
BSPB04, LLPG05, BRB07], dielectrophoretic [RSAP94, FL95], or magnetic [HW00,

117



7 Suppression of thermally activated escape by heating

(a)

U
(x

)

x
min,1

x
max,2x

min,2

State 2 State 1

∆ U

(b)

U
(x

)

State 1State 2

x
max,1

x
a

x
min,2

x
max,2

x
min,1

Figure 7.1: (a) Schematic sketch of a potential with two metastable states. The poten-
tial in (b) has an additional potential barrier and an absorbing boundary.
Both potentials were built up of jointed parabolas.

EMRJ03, ER04b, Gij04, Pam06] forces. The potential U(x) is assumed to have N ≥
2 minima xmin,i, i = 1 . . . N . We will distinguish the cases that (i) the potential is
confining with N − 1 maxima xmax,i, i = 2 . . . N , and:

xmin,N ≤ xmax,N ≤ xmin,N−1 ≤ · · · ≤ xmax,2 ≤ xmin,1 , (case 1) , (7.2)

and that (ii) the potential has an additional maximum xmax,1 and an absorbing bound-
ary at xa > xmax,1, with

xmin,N ≤ xmax,N ≤ · · · ≤ xmin,1 ≤ xmax,1 ≤ xa , (case 2) . (7.3)

Examples for the two cases with N = 2 are shown in figure 7.1. Due to the chosen
form of the time-dependence of the potential, the minima correspond to stable orbits
of the deterministic dynamics and the maxima to unstable orbits. We can, therefore,
define N distinct basins of attraction:

A1 :=

{

{x ∈ R | x > xmax,2} , (case 1)

{x ∈ R | xmax,2 < x < xmax,1} , (case 2)
, (7.4)

Ai := {x ∈ R | xmax,i+1 < x < xmax,i} , i = 2 . . . N − 1 , (7.5)

AN := {x ∈ R | x < xmax,N} , (7.6)

and we will say that the system is in state i if x ∈ Ai (cf. figure 7.1).
The dynamics of the Brownian particle in a time-dependent (spatially homoge-
neous) thermal environment can be modeled by equations (6.180,7.1), i.e.,

ẋ(t) = −h(t)U ′(x(t)) +
√

2Dg(t)ξ(t) , (7.7)

with Gaussian white noise ξ(t) or, as discussed in sections 2.3 and 6.2, equivalently
by the Fokker-Planck equation (6.11). We will assume in the following that h(t) and
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g(t) are time-periodic with a common period T . In presence of the fluctuation force
√

2Dg(t)ξ(t), transitions between states i and i ± 1 are allowed. If these transitions
are rare events, the dynamics can alternatively also be described by a one-step master
equation:

ṅ1(t) =

{

−Γ1,2(t)n1(t) + Γ2,1(t)n2(t) , (case 1)
−(Γ1,2(t) + Γ1,0(t))n1(t) + Γ2,1(t)n2(t) , (case 2)

, (7.8)

ṅi(t) = −(Γi,i−1(t) + Γi,i+1(t))ni(t) + Γi−1,i(t)ni−1(t) (7.9)

+Γi+1,i(t)ni+1(t) , i = 2 . . . N − 1 ,

ṅN (t) = −ΓN,N−1(t)nN (t) + ΓN−1,N (t)nN−1(t) , (7.10)

where ni(t) denotes the probability to find the system in state i at time t, Γi,j(t),
i, j ≥ 1, the instantaneous transition rate from state i to state j, and Γ1,0(t) the instan-
taneous escape rate from state 1 over the potential barrier at xmax,1. These rates can
be approximated as described in chapter 6. In the following, we will write equations
(7.8-7.10) in the form

ṅ(t) = −G(t)n(t) , (7.11)

where n(t) = (n1(t), . . . , nN (t)) is an N-dimensional vector and G(t) a tridiagonal
N × N matrix.
If
∫ T
0 dt Γi,j(t) ≪ 1 for all i, j, the rates in equations (7.8-7.10) may also be replaced

by the concomitant time-averaged rates Γ̄i,j = 1/T
∫ T
0 dt Γi,j(t), and the probabilities

by the averaged probabilities n̄i(t) = 1/T
∫ t+T /2
t−T /2 dt′ ni(t

′), leading to the following
dynamics:

˙̄n(t) = −Ḡn̄(t) , (7.12)

where Ḡ corresponds to the matrix G(t) in equation (7.11).

7.1.2 Case 1: Equilibrium condition

Let us first study case 1 of a confining potential [cf. figure 7.1(a)]. Obviously, the
probability

n(t) :=

N
∑

i=1

ni(t) , (7.13)

to find the particle in any of the N states is 1 for all times. However, for time-
dependent functions h(t) and g(t), in general, no stationary solution n(t) of equation
(7.11) exists. This situation changes when considering the time-averaged dynamics
(7.12). Then, one can show that n̄(t) equilibrates to a stationary distribution neq =
(neq,1, . . . , neq,N ), independently of the initial condition. As can be easily seen from
the dynamics, this stationary distribution obeys detailed balance:

Γ̄i,i+1neq,i = Γ̄i+1,ineq,i+1 , i = 1, . . . ,N − 1 . (7.14)
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7 Suppression of thermally activated escape by heating

For time-independent potentials and noise strengths, i.e., h(t) = g(t) = 1, the single
transition rates are given by the Kramers rate (2.19). Denoting the stationary distribu-
tion for this case by nstat, equation (7.14) becomes

nstat,i

nstat,j
=

√

U ′′(xmin,j)

U ′′(xmin,i)
exp(−(U(xmin,i) − U(xmin,j))/D) , (7.15)

showing that with decreasing noise strength D and temperature, respectively, prefer-
entially the energetically lowest state is occupied. Making further use of the normal-
ization of nstat, one gets

nstat,k =
1

∑N
i=1

√

U ′′(xmin,k)
U ′′(xmin,i)

exp(−(U(xmin,i) − U(xmin,k))/D)
, (7.16)

for all k = 1, . . . , N .

7.1.3 Case 2: Effective escape rate

If the potential has an additional maximum at xmax,1 and an absorbing boundary at
xa, the total probability n(t) is a monotonically decreasing function of time. How-
ever, if the potential barrier at xmax,1 is the dominant one, i.e., U(xmax,1) much
larger than all other U(xmax,i), the time-averaged distribution n̄(t) will at first relax
to a quasi-stationary distribution neq(t), which approximately obeys detailed balance
(7.14). Then, the effective time-averaged escape rate from the potential can be defined
as

Γ̄ :=
neq,1(t)

n(t)
Γ̄1,0 , (7.17)

where neq,1(t)/n(t) is, according to our above assumption, time-independent for suf-
ficiently large times t. Alternatively, if U(xmax,1) is not much higher than the other
maxima (but still the highest), the time needed to reach the quasi-equilibrium state
can be of similar order as the typical time 1/Γ̄1,0, which a particle starting in state
1 needs to escape over the potential barrier xmax,1 if transitions to other states are
prohibited. Then, depending on the initial distribution n(t0), it can take a very long
time for the right-hand side of equation (7.17) to become time-independent. In this
case, it is advantageous to define the effective time-averaged escape rate as the lowest
eigenvalue of the matrix Ḡ, i.e.,

Γ̄ := min(Eig(Ḡ)) , (7.18)

and the quasi equilibrium distribution neq(t) as the corresponding eigenvector (with
time-dependent normalization constant). If the barrier at xmax,1 is the dominant one,
this definition becomes equivalent to (7.17) so that in the following definition (7.18)
will be used.
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Figure 7.2: Time-dependence of the noise strength D(t) = Dg(t).

For time-independent noise strengths and potentials, the Kramers approximation
(2.19) and equation (7.16) can be used again, and if xmax,1 is the dominant barrier,
equation (7.17) becomes

Γ̄ =

√

|U ′′(xmax,1)|
2π

exp(−U(xmax,1)/D)
∑N

i=1

√

1
U ′′(xmin,i)

exp(−U(xmin,i)/D)
. (7.19)

Hence, in the time-independent case the effective escape rate is an increasing function
of the noise strength and temperature, respectively.

7.1.4 Temperature modulations

In section 6.2.3 we have discussed that the problem of an overdamped particle in a
fluctuating potential is equivalent to that of an overdamped particle in a static poten-
tial with an effective time-dependent noise strength D(t) = Dg(t). We can, therefore,
without loss of generality, restrict our discussions to the case of a static potential, i.e.,
h(t) = 1 in equation (7.1). Furthermore, from a practical point of view, this situa-
tion can be realized more easily in real experiments. One may, for example, think of
short laser pulses which heat the neighborhood of the particle. If the period between
the laser pulses is sufficiently large, the heat can dissipate to the environment after
switching off the laser, so that the original temperature (or noise strength) is reached
before the next laser pulse. Another possible realization is a second heat bath which
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can be temporarily switched on.1 This bath can be a “magnetic bath” where a random
magnetic field interacts with a paramagnetic particle or an “acoustomechanical bath”
generated by piezo elements [CSJG07], to name only two possibilities.
In this chapter we consider a rectangular variation of the noise strength where g(t)
periodically switches between the values 1 and 1 + ∆g (see figure 7.2):

g(t) = 1 + ∆g Θ(τ − (t mod T )) , (7.20)

with Θ(·) the Heaviside step function and mod the modulus-function. The pulse
strength is denoted by ∆g and the pulse length by τ which should be shorter than the
period T .

7.1.5 Model potential

For the calculations in this chapter we use a potential of jointed parabolas (for an
example see figure 7.1). Assuming that the force is continuous, we have discussed
in section 6.6.1 (for N = 1) that such a potential is uniquely characterized by the
values of the potential U(xmin,max,i) at the extrema and by the values of curvature
λs,u,i = −U ′′(xmin,max,i) at these points. This choice has the advantage that, up to a
simple numerical integration, all calculations can be done analytically.

7.2 Transition rate

Next, we will derive approximations for the transition rates Γi,i±1(t) and Γ̄i,i±1, re-
spectively. As already discussed, for sufficiently small noise strengths (meaning that
the potential barrier is large compared to Dg(t) for all times), these rates can be ap-
proximated as described in chapter 6 (particularly in section 6.7). Considering only
period lengths T ≫ τ and T ≫ τR, we can focus on a single pulse

gs(t) = 1 + ∆g Θ(t) Θ(τ − t) . (7.21)

The transition rates for the single pulse will be denoted by Γs
i,i±1(t) and Γ̄s

i,i±1, respec-
tively. The rates for our original time-periodic problem are then approximately

Γi,i±1(t) = Γs
i,i±1(t mod T ) , (7.22)

Γ̄i,i±1 = Γ̄s
i,i±1 =

1

T

∫ T

0
dt Γs

i,i±1(t) . (7.23)

Without loss of generality, we can restrict our discussions to transitions from state i to
state i − 1, i.e., from a minimum at xmin,i over a barrier of height ∆Ui,i = U(xmax,i) −
1 Two heat bathes at different temperatures, with fluctuation forces modeled by Gaussian white noises,
can be replaced by an effective heat bath with an effective temperature.
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U(xmin,i) at xmax,i.2 The condition that the force is everywhere continuous requires
that the parabolas are jointed at qi with [cf. equation (6.158)]

λs,i(xmin,i − qi) = λu,i(xmax,i − qi) =

√

2∆Ui,i|λs,i|λu,i

|λs,i| + λu,i
. (7.24)

Having now completely specified the problem, the transition rate can be approx-
imated by solving the set of differential equations given in section 6.7. Again, if
|U(qi) − U(xmin,max,i)| is sufficiently large compared to the noise strength, the refer-
ence level x1 = qi can be chosen. For this choice a straightforward calculation shows
that the solutions for the optimal path, action, and the prefactor have the same func-
tional form as in equations (6.148-6.151,6.153,6.154) for the case of a time-dependent
potential with a constant noise strength (section 6.6.1). The only difference is that
xs,u(t1) in these equations have to be replaced by xmin,i − qi and xmax,i − qi, respec-
tively, and that the functions Is,u = Is,u,i have a slightly different definition, namely

Is,i(t) := 2

∫ t

−∞
dt′ g(t′)e2Λs,i(t,t

′) , (7.25)

Iu,i(t, t̃) := 2

∫ t

t̃
dt′ g(t′)e2Λu,i(t,t

′) , (7.26)

Λs,u,i(t, t̃) := λs,u,i(t − t̃) , (7.27)

As in the case of a time-independent noise strength, the derivative Z∗
t1(tf ) of the

prefactor vanishes, and together with equations (6.182,6.193,6.195) we arrive at the
following approximation for the transition rate:

Γi,i−1(t) = −g(t)(xmin,i − qi)(xmax,i − qi)

2πD
(7.28)

×
∫ t

−∞
dt1

[

2g(t1)

Is,i(t1)
+ λs,i

]

e−2λu,i(t−t1)

√

|Is,i(t1)I3
u,i(t1, t)|

e−Φ∗

t0
(t1,t)/D ,

Φ∗
t0(t1, t) =

1

2

(

(xmin,i − qi)
2

Is,i(t1)
− (xmax,i − qi)

2

Iu,i(t1, t)

)

. (7.29)

Hence, the instantaneous transition rate (7.28) is the product of a continuous function
in t (the integral) and the discontinuous g(t) and is hence discontinuous itself. Fur-
thermore, for the special choice (7.21) for g(t) the functions Is,i(t) and Iu,i(t, t̃) can be
explicitely evaluated with the result:

Is,i(t1) = − 1

λs,i











1 if t1 ≤ 0

1 + ∆g − ∆g e2λs,it1 if 0 < t1 ≤ τ

1 + ∆g e2λs,it1(e−2λs,iτ − 1) else

(7.30)

2 The transition rate from state i to a state i + 1 follows from considering the potential U(−x).
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Figure 7.3: Time-dependent transition rates for a piecewise parabolic potential with
a well at xmin,i = 0, a barrier at xmax,i = 1, curvatures λs,i = −4, λu,i = 4,
and barrier height ∆Ui,i = 1. The escape rates were calculated for D =
∆gD = 0.1, and τ = 0.05, τ = 0.1, τ = 0.2, τ = 0.4, τ = 0.8 (bottom up).
Squares: Precise numerical solutions obtained from numerically solving the
Fokker-Planck equation. Solid lines: Analytical approximation (7.28-7.31).
Dashed lines: Kramers rates (2.19) for D (bottom) and (1 + ∆g)D (top).

and

Iu,i(t1, t) = −1 − e−2λu,i(t−t1)

λu,i
− ∆g

λu,i































e2λu,it1(1 − e−2λu,it) if t1 ≤ 0 < t ≤ τ

e2λu,it1(1 − e−2λu,iτ ) if t1 ≤ 0 < τ < t

1 − e−2λu,i(t−t1) if 0 < t1 < t ≤ τ

1 − e−2λu,i(τ−t1) if 0 < t1 < τ ≤ t

0 else

. (7.31)

The remaining integrals for the instantaneous transition rate in equation (7.28) and for
the time-averaged rate in equation (7.23) have to be calculated numerically.
As an example, we consider the piecewise parabolic potential with a well at xmin,i =

0, a barrier at xmax,i = 1, curvatures λs,i = −4, λu,i = 4, and barrier height ∆Ui,i = 1.
Already for the moderately small noise strength used in figure 7.3, the accuracy of the
analytical approximation (7.28-7.31) is quite good. We found that it quickly improves
even further upon decreasing temperatures. Up to small errors, the Kramers rate is
recovered until the temperature pulse sets in at t = 0. Then, the rate rapidly increases
and approaches the Kramers rate corresponding to (1+∆g)D, provided the pulse lasts
sufficiently long. Finally, an analogous relaxation back to the original Kramers rate
follows. While the initial transients are well understood [Shn97, BDKA99, SSLM01],
to the best of our knowledge no previously existing analytical approximation would
be able to faithfully describe the “perturbed and interfering transients” for largely
arbitrary pulses and pulse-sequences.
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The discontinuity of the rates at the beginning and at the end of the pulses, which
has been discussed below equation (7.29), can be observed for all pulse lengths, for
both, the approximation and the exact solution obtained from solving the Fokker-
Planck equation (for reasons of better visibility only a few points are depicted). In the
case of very short pulses (e.g. τ = 0.1), the instantaneous rate increases again after
this sudden drop at the end of the pulse, resulting in the spikes which can also be
observed in the exact solution. At first glance these peaks might appear unnatural,
but the physical mechanism behind them is clear. A particle can benefit most from
the additional energy provided by the pulse if it is during the pulse in the region
of the steepest slope of the potential (the largest repulsive force). There, most of
the action is accumulated. Such a particle following the optimal path reaches the
maximum after the end of the pulse. Hence, the probability to find the particle at the
unstable orbit is a continuous function of time. But also the noise, which determines
the average absolute value of the velocity, enters the expression for the transition
rate. This function is by choice not continuous. The rate is thus the product of a term
which reaches its maximum value after the pulse and a term which suddenly drops at
the end of the pulse, resulting in the observed time-dependence for small τ .
We note that the analogous case of a time-independent noise strength and a fluc-

tuating potential can be treated in the same way. The resulting formulas and approxi-
mations are derived in appendix C.

7.3 The quasi-stationary distribution

Having discussed how the transition rates between the single states can be approxi-
mated for a piecewise parabolic potential in presence of a fluctuating noise strength,
we now study how the (quasi) stationary distribution neq, introduced in section 7.1.2,
depends on the pulse length τ , the pulse strength ∆g, and the un-modulated noise
strength D.
Let us consider the potential shown in figure 7.4(a) with just two metastable states,

i.e., N = 2. As discussed above, this potential is fully specified by the values of the
potential at the extrema: U(xmin,2) = 0, U(xmax,2) = 1, and U(xmin,1) = 0.2 and
by the values of the curvature: (λs,2, λu,2, λs,1) = (−5, 5,−1). In figure 7.4(b) the
instantaneous transition rates are depicted for a pulse strength ∆g = 1.0, a pulse
length τ = 4, and D = 0.05. As a consequence of the smaller noise strength, the
error of the approximation is smaller than that in figure 7.3 [data not shown]. After
“switching on” the additional noise, the time scales on which the single rates converge
to the Kramers rate corresponding to the noise strength (1 + ∆g)D are quite different
for the two transitions. Γ2,1(t) initially increases much faster than Γ1,2(t) and reaches
accordingly the final value faster. This can be understood by considering the intrinsic
time scales of the potential for the two transitions. These are −1/λs,1 and 1/λu,2 for
the transition from state 1 to state 2, and −1/λs,2 and 1/λu,2 for the transition from
state 2 to state 1. A comparison with equations (7.28-7.31) shows that these are
indeed the relevant time scales which enter the approximation of the instantaneous
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Figure 7.4: (a) The piecewise parabolic potential is specified by the values of the po-
tential at the extrema: U(xmin,2) = 0, U(xmax,2) = 1, and U(xmin,1) = 0.2
and by the values of the curvature: (λs,2, λu,2, λs,1) = (−5, 5,−1). (b) The
instantaneous transition rates between the two states of the potential have
been calculated according to equation (7.28). Γ1,2(t) is shown in red and
Γ2,1(t) in green. The pulse length was τ = 4, the noise strength D = 0.05,
and the pulse strength ∆g = 1.

escape rate. Hence, as −1/λs,2 < −1/λs,1 it is intuitively clear that Γ2,1(t) converges
faster than Γ1,2(t).
Furthermore, for times t ∈ [0.15; 0.6], Γ2,1(t) is even larger than Γ1,2(t). Conse-
quently, for small pulse lengths τ also the time-averaged rate Γ̄2,1 from state 2 to state
1 is larger than the reverse rate, despite the fact that state 2 is energetically favor-
able. As the quasi equilibrium distribution neq is determined by relation (7.14), for
these pulse lengths state 1 is preferentially occupied, contrarily to what one would
intuitively expect.
In figure 7.5(a) the ratio neq,1/neq,2 = Γ̄2,1/Γ̄1,2 is plotted as a function of the pulse
length τ for various pulse strengths ∆g for a fixed D = 0.05 and a fixed period T = 20.
While in the un-modulated case, ∆g = 0 (and τ = 0, respectively), nearly the whole
probability is accumulated in state 2 (neq,1/neq,2 ≈ 0.05), this ratio shifts towards larger
values when applying the noise pulses. Naively, one would think that this ratio should
always be smaller than the ratio (7.15) of the Kramers rates for the stationary noise
strength (1+∆g)D. This is, however, not the case. For strong pulses this ratio, consid-
ered as a function of the pulse length τ , has a prominent maximum at small τ values.
In figure 7.5(b) the pulse strength ∆g = 0.9 was held fixed, but the noise strength D
was varied. For small D the ratio neq,1/neq,2 again shows a distinct maximum at small
pulse length. Furthermore, it is a non-monotonic function of the noise strength D (for
a fixed pulse length and pulse strength), in contrast to the case of a stationary noise
strength discussed below equation (7.15). In particular, for τ ≈ 0.35 the probability
to find the system in the energetically unfavorable state 1 increases with decreasing
noise strength (and temperature, respectively). This is not in contradiction to the laws
of thermodynamics. As we are dealing with a systems far from equilibrium, these laws
are not applicable to our system.
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Figure 7.5: (a) Ratio of the probabilities to find the system in the single states in
the (quasi) stationary distribution as a function of the pulse length τ for
different pulse strengths ∆g. The potential was the same as in figure 7.4.
The ratio has been calculated according to equations (7.14,7.22,7.23,7.28).
For all curves a noise strength D = 0.05 and a period T = 20 was used. (b)
The same for different noise strengthsD for a fixed pulse strength∆g = 0.9.

In summary, for small noise strengths D, short but strong temperature pulses can
significantly alter the quasi equilibrium distribution neq if the intrinsic time scales of
the potential are different for the metastable states. Then, a particle which escapes
from a state with a fast time scale can use the additional energy, provided by the short
temperature pulse, better than a particle which escapes from a state with a slow time
scale. We note that these temperature pulses cannot only be used to shift the quasi
equilibrium distribution neq towards an energetically unfavorable state, but also to
nearly completely empty a state. Examples for this will be given in the next section.

7.4 Non-equilibrium stabilization by heating

Let us now study the second case of a non-confining potential and restrict our dis-
cussion, again, to just two metastable states. The particular example shown in figure
7.6(a) is specified by the values of the potential at the extrema (U(xmin,2), U(xmax,2),
U(xmin,1), U(xmax,1)) = (0, 1, 0.1, 1.1) and by the values of the curvature (λs,2, λu,2,
λs,1, λu,1) = (−1, 10, −10, 1). When applying the noise pulses (7.21) (with ∆g > 0),
all single transition rates Γ̄i,i±1 increase. For a fixed pulse strength, period, and noise
strength D, the time-averaged rates as a function of the pulse length are depicted in
figure 7.6(b). The comparison to the result obtained from solving the Fokker-Planck
equation shows that our approximation is again very good, but does not preserve
the invariance of the time-averaged rates under a supersymmetric transformation
[MSZ88, Jun93, Jun96]. The latter can be deduced from the results for the rates
Γ̄2,1 and Γ̄1,0. These are slightly different for the approximation, while the exact rates
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Figure 7.6: (a) The piecewise parabolic potential is specified by the values of the
potential at the extrema: (U(xmin,2), U(xmax,2), U(xmin,1), U(xmax,1)) =
(0, 1, 0.1, 1.1) and by the values of the curvature: (λs,2, λu,2, λs,1, λu,1) =
(−1, 10, −10, 1). (b) The time-averaged transition rates between the sin-
gle states (Γ̄1,2 green, Γ̄2,1 red, Γ̄1,0 blue) as a function of the pulse length
τ have been calculated according to equation (7.28) (solid lines) and by
solving the Fokker-Planck equation (points). The results for Γ̄2,1 and Γ̄1,0,
obtained from solving the Fokker-Planck equation, are identical up to very
small numerical errors. The effective escape rate Γ̄ (pink) was calculated
employing equation (7.18). The pulse strength was ∆g = 1, the period
length T = 20, and the noise strength D = 0.05. The ratio of the effective
escape rate Γ̄ = Γ̄(τ) as a function of τ to the effective escape rate for
the un-modulated noise strength Γ̄(0) is shown in (c) and the ratio of the
occupation probabilities neq,i in (d).

128



7.4 Non-equilibrium stabilization by heating

 0.01  0.1  1  10  100
Γ
_

(∆g,τ) / Γ
_

(0,0)

0.1 0.2 0.3 0.4 0.5

τ

 0

 0.5

 1

 1.5

 2

∆g

Figure 7.7: The effective escape rate Γ̄ = Γ̄(∆g, τ) as a function of the pulse strength
∆g and of the pulse length τ was calculated according to equations
(7.20,7.28) for the same potential, period, and noise strength D as in figure
7.6.

are identical.3

Also shown in figure 7.6(b) and (c) is the effective escape rate Γ̄ which has been
calculated according to equation (7.18). It is a non-monotonic function of the pulse
length τ . Furthermore, for small τ it is even smaller than the escape rate in the
un-modulated case. That means, by temporarily heating the system, the metastable
potential becomes more stable, in contrast to what one expects and in contrast to
equation (7.19) which holds for an adiabatically slow modulation of the noise strength.
The physical origin of this effect is the same as that of the effect described in the
previous section. Different intrinsic time scales of the potential are involved in the
transitions from one state to a neighboring one and in the backward transition. After
switching on the additional noise of strength D∆g, the instantaneous transition rates
converge to the new “equilibrium” values on different time scales [cf. figure 7.4(b)].
The result is the observed dependence of the time-averaged transition rates on the
pulse length [see 7.6(b)]. Γ̄1,2 increases for small τ much faster than the other two

3 The problem studied here is equivalent to the escape from a fluctuating potential V (x, t) for a time-
independent noise strength. It is well known that the time-averaged (but not the instantaneous)
escape rate from this potential is identical to that from the supersymmetric partner −V (−x,−t)
[MSZ88, Jun93, Jun96]. As the escape rates Γ̄2,1 and Γ̄1,0 correspond to such a supersymmetric pair
of potentials, the observation is clear.

129



7 Suppression of thermally activated escape by heating

transition rates because only the short time scales 1/λu,2 and −1/λs,1 are involved in
this transition. This results in a reduced probability neq,1 to find the system in state
1 [figure 7.6(d)]. However, a reduced probability neq,1 is necessary for the effective
escape rate to decrease, but not sufficient. This probability, considered as a function
of the pulse length, has to decrease faster than the transition rate Γ̄1,0 increases. This
can be seen by comparing figures 7.6(c) and (d). In the whole shown range of τ
values, the probability to find the system in state 1 is lower than in the un-modulated
case. For the effective escape rate this is only true for short pulses with τ . 0.4. We
verified that for these pulse lengths already a single temperature pulse indeed yields
an analogous reduction of escapes events. For longer pulses the escape rate rapidly
increases.

In figure 7.7 the dependence of the effective escape rate on both, the pulse strength
and the pulse length, is shown. In the whole green and blue parameter region a par-
ticle in the potential is stabilized by the pulses, while yellow and red indicate an in-
creased escape rate. One sees that a larger reduction of the rate is possible for strong
pulses, but at the same time the pulses have to be shorter. Our numerical calculations
showed that the “stabilization effect” rapidly vanishes, when lowering the height of
the intermediate barrier, while keeping the temperature pulses the same. It appears
again, when using stronger and shorter pulses, or when going over to lower temper-
atures [data not shown]. Furthermore, the example from figure 7.7 suggests that for
each ∆g there exists an ǫ > 0 such that Γ̄(∆g, τ) is a monotonically increasing func-
tion of the pulse length τ in [0; ǫ], but until now we were not able to mathematically
rigorously prove it.

In figure 7.8 the same has been done for two other potentials. The potential in (a)
differs from the potential used in figures 7.6 and 7.7, only in that the values of the
potential at the two minima have been exchanged so that xmin,1 is now the minimum
with the lowest energy. The effective escape rate shows qualitatively the same depen-
dence on the pulse length and the pulse strength as that in figure 7.7. In view of the
fact that for an adiabatically slow modulation of the potential and low temperatures
the minimum at xmin,2 has little influence on the escape process, this finding might be
even more surprising than that for the potential from figure 7.6. For the potential in
(b) the time scales (i.e. the curvatures), corresponding to the two minima, have been
exchanged. The result of this exchange of time scales is that the stabilization effect
does not occur which is in full agreement with our above discussion. Now, for small
pulse lengths the transition rate from state 2 to state 1 increases much faster than
the other rates, so that preferentially state 1 is occupied. The result is that now the
effective escape rate is even larger than the rate from a potential with no intermediate
barrier at xmax,2.

Hence, the response of the escape rate from a potential with several metastable
states to noise pulses depends strongly on the details of the potential, the noise
strength, the pulse length, and the pulse strength. The system can be stabilized by
the pulses if the noise strength D is sufficiently small and if the pulses are strong,
but short. The potential barriers between the single metastable states have to be of
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Figure 7.8: The effective escape rate Γ̄(∆g, τ) as a function of the pulse
strength ∆g and of the pulse length τ for different poten-
tials. The piecewise parabolic potential in (a) is specified by
(U(xmin,2), U(xmax,2), U(xmin,1), U(xmax,1)) = (0.1, 1.0, 0, 1.1) and
by (λs,2, λu,2, λs,1, λu,1) = (−1, 10, −10, 1). That in (b) by
(U(xmin,2), U(xmax,2), U(xmin,1), U(xmax,1)) = (0, 0.8, 0.1, 1.1) and by
(λs,2, λu,2, λs,1, λu,1) = (−10, 10, −1, 1). The remaining parameters are the
same as in figures 7.6 and 7.7.

similar height as the potential barrier against escape from the potential. The most im-
portant requirement is, however, that the fastest intrinsic time scales of the potential
correspond to transitions from a metastable state to a “deeper” bound state, i.e., to a
bound state which is further away from the relevant barrier against escape at xmax,1.

7.5 Discussion

In this chapter we have considered particles in potentials with multiple metastable
states under non-equilibrium conditions which are generated by fluctuations of the
potential or the noise strength, i.e., by variations of the temperature of the thermal en-
vironment. The (quasi) stationary distributions, resulting from these non-equilibrium
conditions, do not have the same restrictions as the equilibrium distributions.
We have demonstrated that, by applying short temperature pulses, the probabil-

ity to find the system in some of its metastable states can be significantly increased
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7 Suppression of thermally activated escape by heating

compared to the equilibrium case, even if these states are energetically unfavorable.
A similar effect was studied by Millonas and Chialvo in [MC96]. They considered the
eight-state linear Bezanilla-Peroso-Stefani model [BPS94] for Shaker K+ ion channels.
Each state corresponds to a conformation of the channel. In this model only transi-
tions between two neighboring states are allowed, and the transition rates are con-
trolled by the membrane potential. Millonas and Chialvo have argued that this model
is equivalent to the dynamics of an overdamped particle in a one-dimensional poten-
tial with eight metastable states and, hence, to the systems studied in this chapter.
They approximated the potential by a piecewise linear one and applied an additional
time-dependent voltage in the form of a telegraph noise which resulted in a random
tilting of the potential. By this (random) driving force the channel could be focused in
one of the eight conformational states. In comparison to the un-driven case, the prob-
ability to find the system in this state increased by a factor of 25. This effect, which
Millonas and Chialvo called “non-equilibrium kinetic focusing”, was recently observed
experimentally in [KK08]. However, the physical origin of the effect is different to the
effect discussed in this chapter. We have discussed the case of a fluctuating potential
or noise strength, where the instantaneous energy barriers are large compared to the
instantaneous noise strength at every time. The tilting forces used by Millonas and
Chialvo had to be so large that some of the barriers temporarily disappear.
The other closely related effect, which has been discussed in this chapter, is the
reduction of the escape rate from a potential with several metastable states by apply-
ing short temperature pulses. Potentials of this kind are ubiquitous in the context of
chemical reactions and play, e.g., a role for reactions which proceed in two or more
steps via one or more intermediate states (cf. chapter 5.5). An example for such a
system might be a complex of two or more (macro) molecules4 which can exist in
different metastable states. Temperature pulses could be generated as described in
section 7.1.4. Most realistic are short laser pulses [NVBG07], whose basic effects (on
the reacting molecules and their environment) may still be roughly modeled by a tem-
perature pulse. We expect that our finding will be qualitatively robust against various
modifications of the pulsed perturbation. Depending on the details of the potential
landscape, these perturbations might result in the focusing of the complex in one of
its metastable states and in a reduced effective dissociation rate. The requirement for
the appearance of the effect is that the time scale of the perturbations is similar to the
internal relaxation times of the complex in the single metastable states. Furthermore,
the fastest intrinsic time scales of the potential have to correspond to transitions from
a metastable state to a “deeper” bound state (see the discussion at the end of the
previous section). Whether this is the case or not, cannot be influenced. In general, it
is not even known, before subjecting the system to these perturbations. On the other
hand, from the response of the system to the perturbations one might learn some-
thing about the intrinsic time scales of the complex. We note that the noise pulses
are completely non-local. Hence, the macromolecules themselves do not have to be
manipulated in order to conduct such an experiment.

4 The ion channels discussed by Millonas are proteins and hence also macromolecules.
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7.5 Discussion

The systems discussed here are just two examples where effects of this kind might
play a role. There exist a number of other systems which are described within the
same framework and where the “method” proposed in this chapter is applicable to.
For example, the manipulation of colloidal particles in a suitably designed potential
landscape, as discussed in section 7.1.1, may serve as a model system for which the
above described effects can be demonstrated.
Finally, we note that it is well known that chemical reactions can be controlled by

applying properly shaped femtosecond laser pulses [NVBG07]. This is, however, a
pure quantum mechanical effect which takes place on different time scales. For the
quantum control femtosecond laser pulses are needed, whereas the effect described
in this chapter has a completely different physical origin, and one can expect that the
laser pulses can be substantially longer.
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8 Summary and outlook

The leitmotif of this thesis was thermally activated escape from a metastable state far
from thermal equilibrium. In the first part of this work, we have addressed the prob-
lem of theoretically modeling and interpreting single-molecule force spectroscopy ex-
periments. Under the specific conditions given in these kinds of experiments the in-
stantaneous escape rate is very well approximated by the Kramers rate from the frozen
potential. The second part of this work dealt with the case that either the potential or
the temperature of the thermal bath is modulated on time scales comparable to the
time scale of the internal relaxation processes. Here, Kramers’ approximation does
not apply, and finding appropriate approximations to the escape rate is a technically
challenging task. In the following, the results from each part of the work shall be
treated separately.

8.1 Single-molecule force spectroscopy

It is well accepted that the rupture of chemical bonds under application of external
forces is a thermally activated process that can be described within the general frame-
work of Kramers’ rate theory. Nevertheless, the interpretation of experimental rupture
force data, as for example obtained from single-molecule force spectroscopy by AFM,
is still a challenging task. This problem has been addressed in chapters 4 and 5 of this
thesis.
In a first step, we have considered the case that an appropriate model is given which

can satisfactorily explain the experimental data. Then, the maximum likelihood esti-
mator is an extremely simple and general method if one wishes to extract the values
of the model parameters µ from a (large) set of rupture force data. The inferred pa-
rameters are, on the average, closer to the “true” model parameters than for any other
estimator. This has been mathematically rigorously shown and demonstrated for dif-
ferent examples. Compared to the commonly used methods for parameter estimation
in the field of single-molecule force spectroscopy, the maximum likelihood method
has two further advantages. Firstly, no binning of the rupture force data to histograms
is needed. The estimates do, therefore, not depend on the somewhat arbitrary choice
of the bin-width. Secondly, the statistical uncertainties are readily available once the
parameters are estimated. For Bell’s model, even analytical expressions for these un-
certainties could be derived.
Employing the method proposed by Raible et al. [RER+04], it can be checked

whether the experimentally obtained rupture force distributions are compatible to a
one-step rate description. However, even if this is the case, one cannot reconstruct

135



8 Summary and outlook

the full potential landscape. Instead, one usually adopts some functional form for the
force-dependence of the escape rate and the potential landscape, respectively, and
estimates the involved model parameters, e.g., by the maximum likelihood method.
For a quite general such functional form, we have demonstrated that, even under
idealized conditions, no more than three model parameters can be extracted reli-
ably from single-molecule force spectroscopy experiments. A fourth parameter, which
specifies the exact dependence of the barrier height on the applied force, was found
to be largely arbitrary. As a consequence, the inferred value for the barrier height in
absence of force can strongly deviate from the “true” height of the potential barrier.
Therefore, without having further information, this quantity cannot be determined
reliably by single-molecule force spectroscopy as proposed by some authors.
In a second step, we have considered real experimental data. The rupture force dis-
tributions from all experiments studied by us and almost all published experimental
rupture force distributions are incompatible to the one-step rate description. Different
models, which might explain these findings, have been discussed. The most general
and promising explanation was the heterogeneous bond model originally introduced
by Raible et al. [REB+06]. Here this discussion has been put forward. Indeed, there
exist experimental hints for variations of the pulling geometry, and we have discussed
that these variations are, amongst others, possible physical sources of the proposed
heterogeneity. For a particular example, we have demonstrated that a randomization
of the energy barrier height as well as a randomization of the dissociation length can
explain the experimental findings. Furthermore, the theoretical rupture force distri-
bution does not critically depend on details of the distribution of model parameters.
These findings argue for the heterogeneous bond model. Any kind of variation in the
experimental conditions results in qualitatively the same rupture force distributions
and the same velocity dependence of the −v ln(n(f |v, fmin)) functions as experimen-
tally observed. At the same time, this makes it even more difficult to extract quanti-
tative information in the form of model parameters, or distributions of them, from a
single-molecule force spectroscopy experiment.
Because of the fascinating possibility of single-molecule force spectroscopy to study
interactions of biomolecules at the single-molecule level, it is likely that also in the
next years a lot of experimental and theoretical efforts will be spent in order to gain
further insight into the forced rupture of chemical bonds. For example, specially de-
signed experiments can possibly help to identify some sources for the proposed het-
erogeneity to play an important role, while others can be discarded as unimportant.
Based on such experiments a detailed theoretical modeling of the heterogeneity might
be possible.

8.2 Escape rates far from thermal equilibrium

In chapters 6 and 7 the case of fast driven systems was considered. Either the po-
tential or the temperature was allowed to be modulated on time scales comparable
to the time scale of the internal relaxation processes. An approximation scheme to
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8.2 Escape rates far from thermal equilibrium

the instantaneous escape rate in the framework of path integrals has been worked
out (chapter 6). A comparison to high precision numerical results showed for various
examples, from periodically tilted potentials (section 6.6) to static potentials with a
pulsed temperature (sections 7.2-7.4), that the resulting errors of the approximation
are, in fact, very small. To the best of our knowledge, no previously existing approxi-
mation would be applicable to such largely arbitrary potentials and perturbations.
We have, furthermore, discussed several properties of the approximation. In par-

ticular, for adiabatically slow modulations Kramers’ rate is recovered. For a piecewise
parabolic potential an explicit expression for the escape rate could be derived. The
integrals appearing in this approximation can be very efficiently solved numerically.
For other potentials the escape rate is also given by an integral, but the integrand is
only determined as the solution of a set of ordinary differential equations, making the
approximation computationally more expensive than for the piecewise parabolic po-
tential. However, for time-periodic modulations, an efficient approximation scheme
was proposed and demonstrated. Especially for very low noise strengths this scheme
is computationally favorable compared to solving the Fokker-Planck equation. Fur-
thermore, our approximation may serve as the starting point for future works.
Finally, in chapter 7 this approximation was applied to systems with two metastable

states and a pulsed temperature. As such a system is far from thermal equilibrium,
the physics is not restricted by the second law of thermodynamics, and interesting
effects can occur. Here, two of these effects have been demonstrated. For a potential
with several metastable states short temperature pulses can be employed to “focus”
the system in one of the metastable states. Depending on the intrinsic time scales
of the system, this is not necessarily the ground state, but may correspond to a local
minimum with a considerably higher energy. In the same line, these short temperature
pulses may lead to a reduction of the effective escape rate from the potential.
Different systems in which these effects can occur have been identified. While

colloidal particles in suitably designed fields of force may serve to give a proof of
principle, it is possible that these effects can also lead to interesting applications in
the field of biophysics. For example, by subjecting it to short laser pulses, a bond
between two biomolecules may be stabilized, or a protein may be focused in another
conformational state than the ground state. As these effects depend critically on the
intrinsic time scales of the relevant potential landscape, they do not occur in each
system. But from the response of the system to such fast perturbations, it may be
possible to draw conclusions about the underlying energy landscape of the system.
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Appendix A

Supplements to chapter 4

A.1 Asymptotic distribution of the maximum likelihood
estimate

In this section we prove the second main conclusion from section 4.1.2, namely that
the distribution of the maximum likelihood estimate µ∗ is Gaussian and looks, apart
from the peak position, the same as the likelihood (4.9) for one given data set f .
To keep things as simple as possible, we assume that there exist (small) integers nβ

for each of the Z pulling velocities vβ so that nβ/nγ = ρβ/ργ . Denoting by n the sum
of all nβ, the total number of rupture forces can be written as N = N ′n and the set of
N rupture forces f can be divided into N ′ subsets fk = {fk

i,β} where for fixed k, fk
i,β is

one out of the nβ rupture forces sampled at pulling velocity vβ.
Having introduced this notation, we define N ′ new random variables

Xk = Xk(fk) =
1

n

Z
∑

β=1

nβ
∑

i=1

H−1∂/∂µ ln p1(f
k
i,β|µ0, vβ) . (A.1)

We know already from our discussion in section 4.1.2 that these random variables
have an expectation value zero and a covariance matrix

〈X X†〉 =
1

n
H−1 . (A.2)

Then, from the central limit theorem [Cra46] it follows that

µ∗ − µ0 =
1

N ′

N ′

∑

k=1

Xk (A.3)

is Gaussian distributed with zero mean and covariance matrix

〈[µ∗ − µ0] [µ
∗ − µ0]

†〉 =
1

nN ′
H−1 =

1

N
H−1 . (A.4)

A.2 Statistical uncertainties for Bell’s model

In order to determine the covariance matrix of the maximum likelihood estimate for
Bell’s model, in section 4.2.1 the quantity s(µ) as defined in (4.5) had to be calculated.
Details of this calculation are given below.

141



Appendix A Supplements to chapter 4

We first calculate

E(α) := 〈eαf 〉1 =

∫ ∞

0
df eαfp1(f |µ0, v) (A.5)

=

∫ ∞

0
dfeαf eλ0+α0f

r
exp

(

−eλ0

r

eα0f − 1

α0

)

for an arbitrary loading rate r = κv and α > −α0. It is convenient to rewrite equation
(A.5) using the dimensionless quantities τ := eλ0/(rα0) and η = α/α0 and to substitute
t = τ exp(α0f), yielding

E(α) = τ−ηeτ

∫ ∞

τ
dt tηe−t . (A.6)

Using that τ ≪ 1 in typical AFM pulling experiments, we derive at

E(α) = τ−ηΓ(η + 1) + O(τ) , (A.7)

where Γ(·) denotes the Gamma function. Equation (A.7) directly gives the expected
rupture force:

〈f〉1 =
∂

∂α
E(α = 0) = − 1

α0
(C + ln τ) + O(τ) , (A.8)

with C ≈ 0.577 the Euler constant. Using equations (A.7,A.8) and the linearity of the
expectation value we obtain:

−〈ln p1(f |µ, r)〉1 =

−λ + ln(κv) + η(C + ln τ) +
eλ

κvα

1

τη
Γ(η + 1) . (A.9)

Finally, equation (A.9) together with the definition of the quantity s(µ) yields the
desired result (4.18).

A.3 Optimal bin-width for histograms

Let p1 be a probability density function with two continuous and bounded derivatives.
For a sample of size N the histogram estimate p̂1 of p1 is defined as

p̂1(f) =
ΛN (f)

NhN
, (A.10)

with ΛN (f) the number of values falling into the bin of width hN around f . Then
one can show [Sco79, Rud82] that for large sample sizes the integrated mean squared
error

IMSE =

∫

df 〈(p̂1(f) − p1(f))2〉1 , (A.11)
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considered as a function of the bin-width, is minimized by

h∗
N =

(

6
∫

df (p′1(f))2

)1/3

N−1/3 . (A.12)

Following the same lines as in Appendix A.2, we obtain for Bell’s model:

∫

df(p′1(f |µ, v))2 =
1

8
α3

(

1 + O
(

2eλ

κvα

))

. (A.13)

Inserting (A.13) into (A.12) yields the optimal bin-width:

h∗
N ≈ 3.63

1

αN1/3
. (A.14)

It should be noted that in the limit 2eλ

κvα ≪ 1, the optimal bin-width depends solely
on the sample size N and on the parameter α which determines the width of the
distribution, but neither on the force-free dissociation rate k0 = exp(λ) nor on the
pulling velocity v.
If one wishes to determine the optimal bin-width prior to parameter estimation,

one may make use of the well known result 〈(f − 〈f〉1)2〉1 ≈ π2/(6α2) and choose

hN = 2.83sNN−1/3 , (A.15)

where sN denotes the standard deviation of the measured rupture forces. This esti-
mate is pretty close to the optimal bin-width hN,Gauss ≈ 3.49sNN−1/3 of a Gaussian
distribution [Sco79].
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Appendix B

Supplements to chapter 6

B.1 Limit of the integral (6.71)

In section 6.4.2 we have considered the integral

I(y, δ) =

t′
∫

t′−δ′

ds Ψ̃t0(x1, s)
y − X̃s(t

′)

t′ − s

e
−

(y−X̃s(t′))2

2(t′−s)

√

2π(t′ − s)
, (B.1)

where X̃s(t
′) is the solution of the deterministic motion (6.5) in the rescaled time

t′ = 2Dt with initial condition X̃s(s) = x1. Hence, X̃s(t
′) ≈ x1 + F̃ (x1, s) (t′ − s) for

small (t′ − s), where F̃ (x1, s) := F (x1, s/2D)/(2D). In this appendix we will consider
the limit y ց x1 and t ց 0 of I(y, δ). The result, given in equation (6.72), was
previously derived in [DW92].
Let us first rewrite equation (B.1) as:

I(y, δ) :=

t′
∫

t′−δ′

ds Ψ̃t0(x1, s)

[

y − x1

t′ − s
+ A(s, t′)

]

e
−

(y−x1)2

2(t′−s)
+B(s,t′,y)

√

2π(t′ − s)
, (B.2)

with

A(s, t′) =
x1 − X̃s(t

′)

t′ − s
= F̃ (x1, s) + O(δ′) , (B.3)

B(s, t′, y) =
1

2
A(s, t′)(X̃s(t

′) + x1 − 2y) . (B.4)

Obviously, B(s, t′, y) is a continuous function in s and y with B(t′, t′, x1) = 0. Further-
more, one can easily convince oneself that

y − x1

t′ − s

e
−

(y−x1)2

2(t′−s)

√

2π(t′ − s)
(B.5)

converges for y ց x1 towards the delta distribution δ(t′−s) (the function is normalized
and sharply peaked at t′(−)). In this limit equation (B.1) therefore becomes:

lim
yցx1

I(y, δ) = Ψ̃t0(x1, t
′) + lim

yցx1

t′
∫

t′−δ′

ds Ψ̃t0(x1, s)A(s, t′)
e
−

(y−x1)2

2(t′−s)
+B(s,t′,y)

√

2π(t′ − s)
. (B.6)
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The integrand of the remaining integral is now bounded from above by K(t′ − s)−1/2

whereK is some constant. Hence, this integral vanishes for δ ց 0 and equation (6.72)
holds.

B.2 Series expansion of the first passage time density for a
piecewise linear potential

In this appendix we derive an upper bound for the error made by approximating the
first passage time density for a piecewise linear potential by the first n terms of the
series (6.76). Here, piecewise linear means that the potential is linear in a sufficiently
large interval around x1.
For this special potential

F (Xt1(s), s) = F (x1, s) (B.7)

holds for all considered times in the integral (6.74) and for all t1 ≤ s ≤ t, and conse-
quently:

Xt1(t) = x1 +

∫ t

t1

ds F (x1, s) , (B.8)

σ2
t1(t) = 2(t − t1) . (B.9)

We now assume that the potential is modulated continuously and that the temporal
derivative Ḟ (x1, s) is finite for all times. Its maximum absolute value is denoted by
Ḟmax. Under this assumption one can estimate

∣

∣

∣

∣

2(Xt1(t) − x1)

σ2
t1(t)

− F (x1, t)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ t
t1

ds (F (x1, s) − F (x1, t))

t − t1

∣

∣

∣

∣

∣

≤ 1

2
Ḟmax(t − t1) . (B.10)

As in section 6.4.2, we will furthermore assume that the potential is not modulated
too violently, but here this statement is quantified by the assumption that a constant
C > 0 exists such that for all times t and t1

[

∫ t
t1

ds F (x1, s)
]2

4(t − t1)
− ∆Φ∗(t, t1) > C(t − t1) . (B.11)

Combining equations (6.78-6.80,B.7-B.11), the following upper bound for the first
correction to the first passage time density follows:

∣

∣Ψ1
t0(x1, t)

∣

∣ ≤ ẋ∗
t0,max

√

Q∗
t0,max

Q∗
t0,min

Ḟmax

2
√

4πD
ρ(x1, t|x0, t0)

∫ t

t−τR

dt1
√

t − t1e
−C(t−t1)/D

≤ ẋ∗
t0,max

[√

Q∗
t0,max

Q∗
t0,min

ḞmaxDΓ(3/2)

4
√

πC3/2

]

ρ(x1, t|x0, t0) , (B.12)
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where Γ(·) denotes the Gamma-function and ẋ∗
t0,max the maximum value of ẋ

∗
t0(t1).

Similarly, one can show that the higher order terms are bounded by:

∣

∣Ψn
t0(x1, t)

∣

∣ ≤ ẋ∗
t0,max

[√

Q∗
t0,max

Q∗
t0,min

ḞmaxDΓ(3/2)

4
√

πC3/2

]n

ρ(x1, t|x0, t0) . (B.13)

Using equations (6.76,B.13), we can conclude:

Ψt0(x1, t) = ẋ∗
t0(t)ρ(x1, t|x0, t0) [1 + O(D)] . (B.14)

The errors which result from neglecting the integral in equation (6.74) are therefore
of the same order of magnitude as the terms already neglected in the saddle point
approximation (6.32).
Although the error bounds derived in this appendix do strictly apply only to the

special case of a piecewise linear potential, we can assume that the error is of a
similar order of magnitude for potentials where equation (B.7) holds approximately
for all relevant times t1 in the integral (6.74).

B.3 Escape rate for an adiabatically slowly driven, piecewise
parabolic potential

In section 6.5 we have shown that, in the limit of small noise strengths D and adi-
abatically slow modulations of the potential, approximation (6.55) for the instanta-
neous escape rate reduces to the Kramers formula (2.19). In this section an alternative
derivation is presented for the piecewise parabolic potential.
With “slow modulation” we mean that the period T of the driving force is much

larger than the other relevant time scales τs,u = 1/|λs,u|. Then, for all t1 contributing
significantly to the integral in equation (6.162) we can approximate:

xs,u(t1) ≈ xmin,max(tf ) = x̄s,u − f(tf)/λs,u , (B.15)

f(t1) ≈ f(tf ) . (B.16)

Inserting (B.15,B.16) into (6.162) yields:

Γ(tf ) = −|λsλu|3/2 xs(tf )xu(tf )

2πD
e

λsxs(tf )2

(2D) R(tf ) , (B.17)

R(tf ) =

∫ tf

−∞
dt1

e2λu(tf−t1)

(1 − e2λu(tf−t1))3/2
e
− 1

2D

λuxu(tf )2

1−e
2λu(tf−t1)

. (B.18)

For convenience we define α := λuxu(tf )2/2D. Substituting s = 1/(1 − e2λu(tf−t1)) in
equation (B.18) gives:

R(tf ) =
1

2λu

∫ ∞

1
ds

1√
s
e−αs =

1

2λu

√

π

α
[1 − erf(

√
α)] , (B.19)
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where erf(x) = 2π−1/2
∫ x
0 dye−y2

is the error function. For large arguments this can be
approximated by:

erf(x) ≈ 1 − e−x2

√
πx

, (B.20)

with an error smaller than e−x2
/(2

√
πx3) [AS65]. As for small noise strengths D the

argument
√

α of the error function will become large, we can use equation (B.20) to
approximate R(tf ) in equation (B.19):

R(tf ) =
D

λ2
uxu(tf )2

e−
λuxu(tf )2

2D [1 + O(D)] . (B.21)

Inserting equation (B.21) into (B.17) and using (6.158) finally yields

Γ(tf ) ≈
√

|λsλu|
2π

e−
∆V (tf )

D , (B.22)

with∆V (tf ) = V (xmax(tf ), tf )−V (xmin(tf ), tf ) the potential barrier of the quasi-static
potential at time tf . This is, however, exactly the Kramers formula (2.19).
In the opposite limit, T much smaller than all other relevant time scales, one can
replace xs,u(t1) and f(t1) in the integral (6.162) by the concomitant time-averaged
versions and proceed in full analogy to the adiabatic limit, also recovering the Kramers
formula.
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Escape rate from a piecewise parabolic
potential: Rectangular pulse

In section 6.6.1 approximation (6.155,6.156) for the instantaneous escape rate from a
piecewise parabolic potential with time-dependent coefficients (and a time-
independent noise strength) has been derived. In this appendix we consider the spe-
cial case of a fluctuating potential (6.142) specified by:

hs(t) = hu(t) = 1 + ∆h Θ(t) Θ(τ − t) , (C.1)

x̄s(t) = x̄s < 0 , x̄u(t) = x̄u > 0 , (C.2)

with some constant τ > 0, called the pulse length. That means, in the interval [0; τ ] the
potential barrier V0 is lowered or increased by ∆hV0 (depending on the sign of ∆h).
Obviously, the stable and unstable orbits are xs,u(t) = x̄s,u. For this special choice
the functions Λs,u and Is,u defined in equations (6.87,6.88,6.96) can be explicitely
evaluated with the result:

Λs,u(t, t̃) = λs,u(t − t̃) + λs,u∆h































t if t̃ < 0 < t < τ

t − t̃ if 0 ≤ t̃ < t < τ

τ if t̃ < 0 < τ < t

τ − t̃ if 0 ≤ t̃ ≤ τ < t

0 else

, (C.3)

Is(t1) = − 1

λs











1 if t1 < 0
1

1+∆h(1 + ∆h e2λs(1+∆h)t1) if 0 ≤ t1 < τ

1 + ∆h
1+∆he2λst1(e−2λsτ − e−2λs∆h τ ) else

, (C.4)
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and

Iu(t1, t) = − 1

λu























































1 − e2λut1

1+∆h

[

∆h + e−2λu(1+∆h)t
]

if t1 < 0 < t < τ
1

1+∆h

[

1 − e−2λu(1+∆h)(t−t1)
]

if 0 ≤ t1 < t < τ

1 + e2λut1

×
[

− ∆h
1+∆h + ∆h

1+∆he−2λu(1+∆h)τ − e−2λu(t+∆h τ)
]

if t1 < 0 < τ ≤ t

1
1+∆h + e2λu(1+∆h)t1

×
[

∆h
1+∆he−2λu(1+∆h)τ − e−2λu(t+∆h τ)

]

if 0 ≤ t1 < τ ≤ t

1 − e2λu(t1−t) else

.

(C.5)
The corresponding approximation for a static potential with a fluctuating noise strength
is derived and discussed in section 7.2.
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