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We revisit the calculation of a heavy-quark potential in N ¼ 4 supersymmetric Yang-Mills theory at

finite temperature using the AdS/CFT correspondence. As is widely known, the potential calculated in the

pioneering works of Rey et al. [Nucl. Phys. B527, 171 (1998)] and Brandhuber et al. [Phys. Lett. B 434,

36 (1998)] is zero for separation distances r between the quark and the antiquark above a certain critical

separation, at which the potential has a kink. We point out that by analytically continuing the string

configurations into the complex plane, and using a slightly different renormalization subtraction, one

obtains a smooth nonzero (negative definite) potential without a kink. The obtained potential also has a

nonzero imaginary (absorptive) part for separations r > rc ¼ 0:870=�T. Most importantly, at large

separations r the real part of the potential does not exhibit the exponential Debye falloff expected

from perturbation theory and instead falls off as a power law, proportional to 1=r4 for r > r0 ¼ 2:702=�T.
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The heavy-quark potential is a very important quantity
in gauge theories at finite temperature. It also has great
phenomenological relevance in connection with experi-
mental programs in heavy ion collisions at the
Relativistic Heavy Ion Collider and at the upcoming
Large Hadron Collider. The melting of heavy mesons in
a medium is considered to be one of the main experimental
signatures for quark-gluon plasma formation, the ultimate
goal of such experiments. Current analyses of available
experimental data indicate that the matter formed in such
collisions is strongly coupled. Thus, the study of the heavy-
quark potential requires strong-coupling techniques, such
as the anti–de Sitter space/conformal field theory (AdS/
CFT) correspondence [1–4]. The main goal of this work is
to improve the current description of the heavy-quark
potential at finite temperature in the AdS/CFT framework.

Until recently the heavy-quark potential has been calcu-
lated either analytically at small coupling using perturba-
tion theory, or numerically using lattice simulations. With
the advent of AdS/CFT correspondence [1–4], it became
possible to analytically calculate the heavy-quark potential
at strong coupling, albeit only forN ¼ 4 supersymmetric
Yang-Mills (SYM) theory.

The first calculation of a heavy-quark potential in vac-
uum for N ¼ 4 SYM theory was carried out by
Maldacena in [5]. Soon after [5] calculations of the
heavy-quark potential for N ¼ 4 SYM theory at finite
temperature appeared in [6,7]. In [5] the heavy-quark
potential was obtained from the expectation value of a
static temporal Wilson loop and in [6,7] from the correlator
of two Polyakov loops. They are calculated by extremizing
the world sheet of an open string attached to the quark and
antiquark located at the edge of the AdS5 space in the

background of the empty AdS5 space in [5] and in the
background of the AdS5 black hole metric in [6,7].
The zero-temperature heavy-quark potential obtained in

[5] is of Coulomb type due to conformal invariance of
N ¼ 4 SYM theory:

V0ðrÞ ¼ �
ffiffiffiffi
�

p
2�c20r

(1)

with � the ’t Hooft coupling and c0 ¼ �2ð14Þ=ð2�Þ3=2. Here
r is the distance between the quark and the antiquark in the
boundary gauge theory.
The finite-temperature heavy-quark potential obtained

in [6,7] starts out at small r being close to the vacuum
potential of Eq. (1), but rises steeper than the vacuum
potential, becoming zero at a separation r� ¼ 0:754=�T.
For larger separations, i.e., for r > r�, the authors of [6,7]
argue that the string ‘‘melts,’’ and the dominant configura-
tion corresponds to two straight strings stretching from the
quark and the antiquark down to the black hole horizon.
The resulting potential is thus zero for r > r� and has a
kink (a discontinuity in its derivative) at r ¼ r�.
To clarify the definition of the heavy-quark potential at

finite temperature T, let us first define the Polyakov loop
for SUðNcÞ gauge theory at the spatial location ~r by

Lð ~rÞ ¼ 1

Nc

Tr

�
P exp

�
ig

Z �

0
d�A4ð ~r; �Þ

��
(2)

with � the Euclidean time and � ¼ 1=T. The connected
correlator of two Polyakov loops can be written as [8,9]

hLð0ÞLyð~rÞic ¼ e��V1ðrÞ þ ðN2
c � 1Þe��VadjðrÞ

N2
c

: (3)

Equation (3) is the definition of singlet V1ðrÞ and adjoint
VadjðrÞ potentials in Euclidean time formalism. With the*yuri@mps.ohio-state.edu
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appropriate modification of Eq. (2), Eq. (3) also applies to
N ¼ 4 SYM.

To calculate the Polyakov loop correlator in AdS space,
one follows the standard prescription outlined in [5–7] and
connects open string(s) to the positions of Polyakov loops
at the boundary of the AdS space in all possible ways. The
two relevant configurations are shown in Fig. 1 and labeled
‘‘hanging string’’ and ‘‘straight strings.’’

The two string configurations shown in Fig. 1 give two
different saddle points of the Nambu-Goto action. In the
large-Nc large-� limit the integral over all string configu-
rations, and hence the Polyakov loop correlator as well, is
equal to the sum of the contributions of the different saddle
points. Actually, as was argued in [10], the two straight
strings on the right of Fig. 1 have Chan-Paton labels
indicating which D3-brane each string ends on. Therefore
the straight strings configuration actually represents of the
order of N2

c extrema corresponding to the different ways
the two straight strings connect to Nc D3-branes. Summing
over all the saddle points we write (in Euclidean space)

hLð0ÞLyð ~rÞic / e�Shanging
NG þ ðN2

c � 1Þe�Sstraight
NG

N2
c

(4)

with S
hanging
NG and S

straight
NG the Nambu-Goto actions of the

hanging and straight string configurations.
Comparing Eq. (4) with Eq. (3) we conclude that the

hanging string configuration gives V1ðrÞ, while the two
straight strings stretching to the horizon give VadjðrÞ.
However Vadj itself is N

2
c suppressed and repulsive, while

V1 is of order 1 in Nc counting and attractive [8].
Renormalizing the Nambu-Goto actions in Eq. (4) by sub-
tracting the actions of the string configurations at infinite

quark–antiquark separations, one obtains SstraightNG;ren ¼ 0,

which implies that Vadj is zero at leading order in N2
c .

The first nontrivial contribution to Vadj is given by graviton

exchanges between the strings in the bulk calculated in
[10]. If exponentiated (eikonalized), they would indeed
give N2

c-suppressed contributions in the exponent, as ex-
pected for VadjðrÞ. Here we will calculate the singlet po-

tential V1ðrÞ. In lattice simulations it is usually V1ðrÞwhich
is understood as the heavy-quark potential at finite tem-

perature [11]. In the real-time formalism V1ðrÞ is given by
the expectation value of a static (temporal) Wilson loop via

hWi ¼ e�iT V1ðrÞ (5)

with the temporal extent of the Wilson loop T ! 1. Note
that when calculating the Wilson loop (5) in Minkowski
space, only the hanging string configuration contributes, as
the quark and the antiquark are projected onto a color-
singlet state at initial and final times.
To find V1ðrÞ [henceforth referred to as VðrÞ] we will

study the behavior of the hanging string solution found in
[6,7] for r > r�. As is well known, for r > rc ¼ 0:870=�T
the string coordinates of the solution [6,7] become com-
plex valued. This simply indicates that the saddle point of
the Nambu-Goto action lies in the complex string coordi-
nate region: it does not invalidate the saddle point approxi-
mation and the results obtained with it. Similar complex-
valued solutions were recently observed by the authors in
[12], where the scattering amplitude of a quark–antiquark
dipole on a shock wave was calculated. In [12] the
complex-valued string coordinates were instrumental for
finding the unitary solution for the scattering cross section.
Inspired by that example, below we will analytically con-
tinue the potential of [6,7] into the complex region of string
coordinates. The resulting potential is smooth. The corre-
sponding force on the quarks is a continuous function of r.
By modifying the UV subtraction we obtain a potential
which is nonzero for all separations r. The potential devel-
ops an imaginary part, corresponding to the decay of the
quark–antiquark singlet state: similar results have been
seen in finite-temperature perturbation theory in [13,14].
Finally, instead of Debye screening leading to exponential
falloff of the potential at large distances, we find the power-
law falloff Re½VðrÞ� � 1=r4 at large r.
We want to calculate a temporal Wilson loop in a finite-

temperature N ¼ 4 SYM medium. We shall define the
real-time heavy-quark potential in the same way as in [13].
Following [6,7] we start with theAdS5 black hole metric in
Minkowski space [1,15,16],

ds2 ¼ L2

z2

�
�
�
1� z4

z4h

�
dt2 þ d~x2 þ dz2

1� z4

z4
h

�
(6)

where d~x2 ¼ ðdx1Þ2 þ ðdx2Þ2 þ ðdx3Þ2, z is the coordinate
describing the 5th dimension, and L is the curvature of the
AdS5 space. The horizon of the black hole is located at z ¼
zh with zh ¼ 1=�T.
We want to extremize the open string world sheet

for a string attached to a static quark at x1 ¼ r=2, x2 ¼
x3 ¼ 0 and an antiquark at x1 ¼ �r=2, x2 ¼ x3 ¼ 0.
Parametrizing the static string coordinates by

X� ¼ ½X0 ¼ t; X1 ¼ x; X2 ¼ 0; X3 ¼ 0; X4 ¼ zðxÞ� (7)

we write the Nambu-Goto action as

hanging string straight strings

FIG. 1. Two configurations of open strings corresponding to a
Polyakov loop correlator. The solid horizontal line denotes the
boundary of the AdS space, while the dashed line denotes the
location of the black hole horizon.
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SNGðr; TÞ ¼ �
ffiffiffiffi
�

p
2�

T
Z r=2

�r=2
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z02

z4
� 1

z4h

s
; (8)

where z0 ¼ dzðxÞ=dx.
The Euler-Lagrange equation corresponding to the ac-

tion (8) is

ð2þ zz00Þðz4 � z4hÞ � 2z02ðz4 þ z4hÞ ¼ 0 (9)

with z00 ¼ d2z=dx2. Solving Eq. (9) with the boundary
conditions zðx ¼ �r=2Þ ¼ 0, one gets

xþ r

2
¼ z3

3z2hz
2
max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z4h � z4max

q
F1

�
3

4
;
1

2
;
1

2
;
7

4
;
z4

z4h
;
z4

z4max

�

(10)

where F1 is the Appell hypergeometric function. Here zmax

is the constant of integration corresponding to the maxi-
mum of the string coordinate along the fifth dimension of
the AdS5 space, whose boundary is located at z ¼ 0. It is
given by the solution of the following equation,

rc0 ¼ zmax

z2h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z4h � z4max

q
F

�
1

2
;
3

4
;
5

4
;
z4max

z4h

�
(11)

with F the hypergeometric function. Indeed, in the T ! 0
limit zh ! 1 and Eq. (11) gives us zmax ¼ rc0 in agree-
ment with Maldacena’s vacuum solution [5].

The action in Eq. (8) contains a UV divergence, which
has to be subtracted out. Usually, the subtraction contains a
finite piece as well [5–7], which may be temperature
dependent in the case at hand. Here we will use the
following subtraction, different from the one used in
[6,7]: we define the quark–antiquark potential by

VðrÞ ¼ �fSNGðr; TÞ � Re½SNGðr ¼ 1; TÞ�g=T : (12)

This subtraction insures that the real part of the potential
VðrÞ goes to zero at infinite separations. Our subtraction
(12) is consistent with that used in [5] to find the heavy-
quark potential at zero temperature.

Using the solution from Eq. (10) in Eqs. (8) and (12), we
obtain the following expression for the heavy-quark poten-
tial of N ¼ 4 SYM theory at finite temperature:

VðrÞ ¼
ffiffiffiffi
�

p
2c0�

�
� 1

zmax

�
1� z4max

z4h

�
F

�
1

2
;
3

4
;
1

4
;
z4max

z4h

�
þ 1

zh

�
:

(13)

Equation (15) below is also needed to obtain Eq. (13). Our
subtraction prescription resulted in the 1=zh term on the
right of Eq. (13) instead of 2c0=zh, which would corre-
spond to the subtraction done in [6,7]. Equation (13), along
with Eq. (11), gives us the heavy-quark potential as a
function of the separation r and temperature T ¼ 1=�zh.

As can be readily checked numerically, zmax given by
Eq. (11) becomes complex for r > rc ¼ 0:870zh, leading
to complex-valued zðxÞ and the potential VðrÞ. This led the
authors of [6,7] to abandon their solution for r > rc (in

fact, the solution was abandoned even earlier, for r > r�).
We suggest, however, to interpret the complex-valued
saddle points as corresponding to quasiclassical configura-
tions in the classically forbidden region of string coordi-
nates. This is similar to the method of complex trajectories
used in quasiclassical approximations to quantum mechan-
ics [17].
The complexification of the string coordinates simply

indicates that the saddle point of the integral over string
coordinates becomes complex. According to the standard
AdS/CFT prescription [5], in the large-Nc large-� limit the
integral over string coordinates is still dominated by the
saddle point, even if it is complex. Therefore, the fact that
string coordinates at the saddle point become complex
does not undermine the validity of the approximation.
Below we will extend the solution of Eqs. (11) and (13)
to r > rc, allowing for complex-valued zmax.
First we note that the extension of the solution for zmax

following from Eq. (11) to r > rc is not unique. The two
most important roots of Eq. (11) found in [6,7] are shown
in Fig. 2, which depicts real and imaginary parts of zmax as
functions of separation r. There are other roots of Eq. (12)
that are not shown in Fig. 2: they are either negatives of the
roots in Fig. 2 or the complex conjugates of the roots in
Fig. 2 and of their negatives. Such extra roots lead to
physically irrelevant configurations and are not shown in
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FIG. 2 (color online). Real and imaginary parts of the roots
of Eq. (11) plotted as a function of the quark–antiquark separa-
tion r.
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Fig. 2. To determine which root gives the correct potential
from first principles, one has to (at least) calculate quantum

oð1= ffiffiffiffi
�

p Þ corrections to the quasiclassical results shown
above. While such a calculation is necessary, it would be
rather tedious and is left for future work. Here we will
demand that the correct root maps on the Maldacena
vacuum solution [5] in the zero-temperature limit. In addi-
tion, we will impose unitarity to single out the right root.

Of the two roots shown in Fig. 2, only one (denoted by
the solid line) maps onto Maldacena’s solution behavior of
zmax ¼ rc0 at small r [5]. Since, on physical grounds, we
want our potential to recover the zero-temperature result
[5] at small r we will keep this root, and discard the other
root denoted by the dash-dotted line in Fig. 2. The root
given by the solid line develops a positive imaginary part
for r > rc, as shown in the bottom portion of Fig. 2. As the
complex conjugate of this root would also be a solution of
Eq. (12), while mapping onto Maldacena’s solution for
small r, the question arises about the choice of one root
over its complex conjugate. To select the root we note that
the quantum-mechanical time-evolution operator in the

Minkowski metric is e�iEt � eIm½E�t. Demanding that the
probability of a state does not exceed 1, we obtain Im½E�<
0, leading to Im½VðrÞ�< 0. This condition allows us to
single out the solid line in Fig. 2 over its complex conjugate
as the physically relevant root.

Using the solid line root of Fig. 2 in Eq. (13), we can plot
the real and imaginary parts of the resulting potential. The
plots are shown in Fig. 3. In the top panel of Fig. 3 we show
the real part of the heavy-quark potential for two nonzero
temperatures, along with the zero-T curve for comparison.
One can see that the nonzero-temperature curves are in-
deed strongly screened compared to the zero-temperature
case, but remain nonzero at all r. The subtraction scheme
proposed above in Eq. (12) insures that Re½VðrÞ� given by
Eq. (13) approaches zero at large r. The use of the sub-
traction scheme proposed in [6,7] would have led to
Re½VðrÞ� going to a positive constant as r ! 1.

As is clear from the lower panel in Fig. 3, the heavy-
quark potential develops an imaginary part for r > rc. This
means the potential becomes absorptive, as the q �q singlet
state may melt in the medium. The rate of absorption
increases with r, as larger pairs are more likely to decay.
The existence of an imaginary part in the heavy-quark
potential has been previously observed in perturbation
theory in [13,14]. While Re½VðrÞ� in Fig. 3 does not have
a kink, there is a region near r ¼ rc where the slope of the
curve changes very fast. This rapid change is due to the
potential developing an imaginary part, which should
quickly reduce the force on the quarks.

As one can explicitly check from Eq. (13), at small r we
recover the zero-temperature potential of [5],

VðrÞ
��������rT�1

� �
ffiffiffiffi
�

p
2�c20r

: (14)

At large separations r we first use Eq. (11) to write

zmax

��������rT�1
¼ r

�c0
þ 1þ i

�c20
zh þ �3c30

3

z4h
r3

� ð1þ iÞ 6
5
�3c20

z5h
r4

þ o

�
z6h
r5

�
: (15)

Using Eq. (15) in Eq. (13) we obtain

Re ½VðrÞ�
��������rT�1

¼ ��3c30
4

ffiffiffiffi
�

p z3h
r4

þ o

�
z4h
r5

�
(16)

and

Im ½VðrÞ�
��������rT�1

¼ �
ffiffiffiffi
�

p
�

1

2zh

�
r

zh
� 1

c0
þ o

�
zh
r

��
: (17)

As one can see from Eq. (16), instead of the exponential
falloff with r characteristic of Debye screening, which
would have been expected from small coupling perturba-
tion theory and which was postulated for N ¼ 4 SYM
theory at strong coupling in [10], the real part of the heavy-
quark potential falls off as a power, Re½VðrÞ� � 1=T3r4, at
large r. If our hypothesis of using the complex string
configurations is confirmed, this would be an interesting
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FIG. 3 (color online). The real and imaginary parts of the
heavy-quark potential plotted as functions of the separation r
for several different temperatures. We put � ¼ 10.
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new type of screening for the potential. However, the large
negative imaginary part of the potential (17) leads to ex-
ponential decay with time of the initial (built in by con-
struction) color correlation between the quark and the
antiquark in the Wilson loop.

Combining the large- and small-r asymptotics in
Eqs. (14) and (16), we can interpolate the real part of the
potential to write an approximate formula,

Re ½VðrÞ� � �
ffiffiffiffi
�

p
2�c20r

r30
ðr0 þ rÞ3 (18)

with the new scale r0 equal to

r0 ¼ zh�c0

�
�c20
2

�
1=3 � 2:702

�T
: (19)

Equation (18) fits the curves on the upper panel of Fig. 3
quite well. The parameter r0, defined by Eq. (18) and given
in Eq. (19), can be interpreted as the screening length.

While our power-law screening Re½VðrÞ� � 1=T3r4 is
very different from the exponential falloff due to Debye
screening Re½VðrÞ� � expð�mDrÞ in coordinate space, the
difference is not so profound in momentum space. Define a
Fourier transform of the potential,

~VðqÞ ¼
Z

d3re�i ~q	~rVðrÞ: (20)

Using the small-r asymptotics (14) one can easily show
that at large q ¼ j ~qj the Fourier transform of the potential
scales as ~VðqÞ � 1=q2, in agreement with the standard
perturbative result. At small q

~Vðq ¼ 0Þ ¼
Z

d3rVðrÞ � r20 �
1

T2
: (21)

Such asymptotic behavior is very similar to the Debye
screening in the IR, given by the screened propagator
~VDðqÞ � 1=ðq2 þm2

DÞ in perturbation theory with Debye
massmD � T � 1=r0. Hence our ~VðqÞ has qualitatively the
same UV and IR asymptotics as the standard perturbative
Debye-screened potential. The main difference is in the
shape of ~VðqÞ at finite q: unlike ~VDðqÞ our ~VðqÞ is concave
at all q.
To summarize, we proposed a method of calculating the

heavy-quark potential in the finite-T, strongly coupled
N ¼ 4 SYM theory in the region of separations r and/or
temperatures T where the classical string configuration
does not exist. We used an analogue of the complex
trajectories method in the quasiclassical quantum mechan-
ics [17] and analytically continued the string configura-
tions into the region of complex coordinates. This allowed
us to obtain a potential which is physically meaningful for
all values of r and T. The potential develops an imaginary
absorptive part. We would like to stress that instead of
Debye screening at large separations the real part of the
potential falls off as a power of the separation, which is a
new and never before observed phenomenon in relativistic
quantum field theories.
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