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Introduction 

Features herein defined as sandstone talus caves are common geo-

morphic features at Mammoth Cave National Park and in the sun:ol.lllding 

area. Their frequent occurren.ce, restriction to a narrow stratigraphic 

horizon, association .with even more frequent depression, slumps and 

impassably small holes in the same horizon, and characteristic mor-

phology led to this investigation into their genesis and how they 

might be related to the complex cave system developed below. It was 

determined empirically that litholoy and hydrology are important 
7 

principle factors in cave morphology and distribution. Sandstone talus 

caves heve been found in intimate association with shafts, particularly 

migrated sha.:f'-ts. In such cases their genesis seems to be intimately 

associated with the development of these shafts and other voids, in-

dicating that they can form an integral pa.rt of the local vadose water 

inputs to the numerous vertical shafts in the cave systems. Sandstone 

talus caves in association with these shaft systems, constitute one of 

the principal mechanisms by which erosion and retreat of the sandstone 

cap take· place. 

Sandstone talus caves of the Central Kentucky Karst have been 

mentioned only once previously in literature. Wilson (1976), briefly 

describing th9m and associated holes blowing air above the sandstone-

limestone contact, suggests that they a.re water input points for the 

vertical shafts a.nd that they form·- by collapse of the Big Clifty Sand-

stone into solution voids in the Girkin Fonnation, 
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Several authors have discussed the clistribution and significance of 

vertical shafts relative to the edge of the sandstone cap. Pohl 

(1935, 1955) first noted the close relationship of vertical shafts and 

the edge of the sandstone cap rock, especially at heads of valleys, de­

veloped in the ridge top. He said vertical shafts also aid in the head-

ward erosion of these valleys, because the sandstone, a few feet above 

the shaft tops, weakens with weathering and collapses. Because of the 

rapid destruction occuring in them, shafts are very recent features. 

Rubble-filled sinkholes below the edge of the sandstone cap were inter­

preted to be filled shaft remnants. 

Quinlan and Pohl (1967), state that vertical shaft development is 

restricted to an approximately two-hundred-foot wide zone at the edge of 

ridges by impermeable shale and sandstone cap rock. While shaft deve-

• lopment may be especially strong near valley heads, it occurs along the 

entire· p:dimeter of the ridges. The karstificatlon below the sandstone-

• 

limestone contact can cause catastrophic collapse into the shafts, 

where the material is ground up and transported by water through the 

drains finally emerging as dissolved load and as sand and silt into 

springs along the Green River. Voids formed in this manner need not 

have surface expression as depressions or sinkholes. 

Brucker et al. (1972) restates the views expressed by the authors 

discussed above, emphasizing the concentration of the shafts under re­

entrant valleys and the fact that they are young features associated with 

the present landscape. They also indicate vertical shafts are formed by 

one of two types of chemically distinct vadose water (discussed by 

Thrailkill, 1968): 1)· vadose·flows, undersaturated with respect to 

calcite, and 2) vadose seep, which are saturated with respect to carbonate 
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and deposit tavertine • 

Field work for this study has been carried out as part of the on­

going Cave Research Foundation (CRF) surface reconnaisance project 

begun in 1974. Field notes and sketches o:f the sandstone talus caves 

and other features were prepared principally by Williara1 L. Wilson and 

Tomislav M. Gracanin. Surveys o:f some of the larger caves were com­

pleted by CRF field survey parties. 

Field data compiled in the surface reconnaissance notes·· originally 

strongly reflected the princ~~le purpose o:f finding new cave entrances, 

and evolved toward gathering data of more general geologic interest. 

Described features, principally sandstone talus caves and sinkholes, 

uere located on ten-foot contour intervals 1:12(X)O, one and one-half 

minute quadrangles enlarged fromt the 19:33 "Mammoth Cave National Park" 

map by Monbeck et al. . Detailed descriptions, plan and cross-section 

sketches of each feature were made. The data were then placed in the 

surface reconnaissance file for future reference. 

Acknowledgments: 

Special thanks go to Stephen Wells :for stimulating interest in the 

original project and to William L. Wilson, his wife Diane, and al1 the 

other people who helped with the field work. The support of the Cave 

Research Fol.llldation and the use of their facilities at Mammothr, Cave 

National Park is greatly appreciated and gratefillly received • 
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Location of the Study A:rea 

Research for this pa.per was carried out at Mammoth Cave National 

Park, Ke.ntucky. The park is located approx~tely ninety miles south 

of Louisville, Kentucky and a hundred miles north of Nashville, 

Tennessee (Figure 1). The study area is located in Barren, Fid.monson and 

Hart Counties, in the southeast portion of the national park (Figure 2). 

Field work was carried out chiefly on the eastern portion of Joppa Ridge, 

north flank of Pewee Ridge {unofficial name), and Strawberry Valley 

(including Strawberry Knob). Deer Park Avenue HoJ.low, the western end 

· of DoyleValley and pa.rt of Katy Pace Valley were also examined • 
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Regional Geology 

Mammoth Cave National Park is situated in the Central Kentucky 

Karst on the western flank of the Cincinnati Arch and southeast edge 

5 

of the Western Kentucky Coal Basin. The rstra.ta dip approximately thirty 

to seventy feet per mile to the northwest (Pa,lmer, personal communication). 

Units of Late (Middle to Late) Mississippian and E',arly Pennsylvanian age 

crop out. In general the statigraphy consists of a thick carbonate se­

quence capped °b'J elastic seciments (Figure 3). At the base of these­

quence the Mera.mecia.n St. Louis and St. Genevieve Limestone crop outo 

The Mississippian Chester series overlies these. It includes the Girkin 

Formation, Big Clifty Sandstone and Haney Limestone members of the Gol~ 

cond.a. Formation, the Ha:rdinsburg Sandstone and Glen Dean Limestone. A 

major interregional unconformity sepera.tes the Mississippian and Penn­

~ylv~'"lian Systems (Sloss 1968). Only the lower part of the Pennsylvanian 

Caseyville Formation is still present in the study area's vicinity. 

The geomo:rphic features in this part of Kentucky are strongly in­

fluenced by the lithology and differential erosion underlying rock units. 

The Central Kentucky Karst, in which the study area lies, extends from 

Munfordville west to the Barren River, and lies between the Green 

River and the Glasgow UpJand to the south. It encompasses three re­

gional physiogra.phic divisions; the Pennyroyal Plateau, Dripping Springs 

Escarpment, and the }lammo-t;.p. Cave Plateau (Livesay 1953) (Figure 4). 

The Mammoth Cave Plateau was called Chester Cuesta. by Brucker et al • 

(1972). Chester Cuesta wi11 be usec here. 
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Stratigraphy of the Central Kentucky Karst Area 
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Physiographic Units Of The Central Kentucky Karst 
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In the Central Kentucky Karst, the Pennyroyal Plateau is developed 

on the St. Louis and St. Genevieve Limestones. Due to extensive karsti­

fication of the soluble limestone, a high sinkhole density and a well:: 

integrated underground drainage network had been developed. The plateau 

is locally known as the Sinkhole· .Plain •• 

The rugged Dripping Springs Escarpment to the north and west sepa-

rates the Sinkhole Plain from the Mammoth Cave Plateau. The Chester 

Cuesta is developed on upper Chester units, and is principally 

supported by the resistant Big Clifty Sandstone. The steep erosional 

scarp to the Sinkhole Plain ranges from two hundred to three hu..~d.red 

fifty feet high. Behind the main escarpment the Big Clifty Sandstone 

capping the Mammoth Cave Plateau south of the deeply entrenched Green 

River has been extensively breached. 

• Wide sinkhole valleys have developed in the (soluble) Girkin For-

• 

mation and St. Genevieve Limestone, leaving behind long often narrow 

plateau remnants known as ridges. The degree of dissection:o.::"the plateau 

corresponds approximately with Lobeck's (1928) mature stage for a 

limestone plateau. Drainage on the .. Ch:e·st.eY':£-v.e.sta;·· -;·r::-:,: is principa,lly 

surficial near the ridgetop perimeters and entirely subterranean in the 

valleys. Surface streams and perched vadose flow sink immediately, or 

soon after flowing from the sandstone cap, into the valleys. Water de-

scends to near baselevel in cylindrical or migrated shafts, joins phreatic 

streams and rises again in springs along the Green River.(Pohl, 1955; 

Quinlan and Pohl, 1967; Brucker et al. ,r 1972) • 
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The Sandstone Talus Caves 

Sandstone talus caves are Qa.vities enterable by man :formed by 

collapse and slumping of' sandstone bedrock. They are common geomorphic 

:features in Mammoth ~ve National Park, and spot checks in4icate they 

are common on ridges with underground drainage throughout the Central 

Kentucky Karst, Their distribution is limited to a narrow stratig:ra.:phic 

horizon near the Big Clifty-Girkin (sandstone-limestone) contact. This 

horizon occurs within the shoulder slope zone (Ruhe and Walker!s 1968 

classification of' slopes in Ruhe, 1975) at the ridge top perimeter where 

erosion of the sandstone ca~ is rapidly proceeding. Their zone of 

• occu...-rence has been found to be about one-hundred feet wide. In this 

• 

zone they are associated with even more numerous subsidence inc~uding 

shall.ow depression and sandstone-coll.uvium filled sinkholes. Hydxology 

controls their distribution insofar as enough surface runnoff or vadose 

grotmd water from the Haney Limestone or Big Clifty _Sandstone must be 

available to excavate a void below the sandstone-limestone contact :f"or 

tha sandstone to cave into. As a result, though they do occur on toe 

slopes, they a_-re concentrated at heads of reentrant valleys where 

water flow ofer the edge of the sanstone cap is concentrated (Pohl, 1955; 

Brucker et al., 1972). Pohl (1955) states the positions of the reentrant 

valleys represent former stream positions on the Chester Cuesta. 

Lithology and local competence of the sandstone has some control 

over the distribution of the talus caves. Where the sandstone is massive 

competent, talus caves tend to have a wide entrance with an overhanging 
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sandstone face exposed. The entrance slope genera.l.ly a.."'lgles down at 

• seventy-five to forty-five degrees away from the hill slope (Figure Sa, b). 

Where more weathered or less competent sandstones outcrop, entrances are 

smaller, often barely entera.ble (Figure 6), and descend at angles up to 

ninety degrees as in the case of Antler Pit ( Figure ? , 8a) • Generally 

the entrance;· is flush with the ground su....-face or· in a small (five-foot 

diameter or less) depression. Where the sandstone is extremely wea-~· 

thered or incompetent it is possible that no entrances would ever form, 

yet depressionsor sinks could. 

The caves consist essentially o~ a single room at the ba.se of the 

entrance slope which contains a. drain or is floored with breakdowno The 

room can be up to fifteen feet high and forty feet wide. Often they are 

partially filled with sandstone talus. Commonly the upper few feet of 

• .the Girkin Fonnation are exposed in the bottom walls of the room. 

• 

Total passage length in all examined talus caves is very short; most 

do not have a true dark zone. Typically a cave ranges :ti:om ten to 

twenty feet long. Passage length Of seventy feet in Antler Pit , ~- _·.'.~·,.: 

(Figure?, 8a-e), the longest true sand.stone talus cave discovered to 

date, is unusually long. 

Walls and ceiling a.re composed of sandstone bedrock except near the 

bottom of the cave. The bedrock shows signs of slumping and the ceiling 

sags into the cavity beneath it. Frequently slumped blocks a.re propped 

in precarious positions in the walls and ceilings. The entrance slope 

and drain are covered with sandstone breakdown, usually cobbles, 

derived from ceiling and walls. These cobbles and; surface debris in-

put in the entrance, are transported down to the drain or breakdown •• 

Evidently the sediment and breakdown are internally consumed, :_:.-· 

. ·, ~- ·.. .., : - ". 
'· .. -1..·· . ~ ~ ... ,; ' . .:. . . .. . 

,,,., • .. - ..... -~ ,-. ~ 
-'· .. •.,. -··' ... & 
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Figure 8a. Antler Pit. Sagging 
sandstone in ceiling. 

Figure 8b. Antler Pit. Arched 
ceiling of passage to lower room 
developed in sagging, thin-bedded 
sandstone. 



Figure Be. Antler Pit. Limestone 
exposed in floor. 

Figure Be. Antler Pit. 

Figure 8d. Antler Pit. Joint 
seperation between slumped (on right) 
and in situ sandstone beds. 

The entrance. 
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indicating the presence of cavities largE"J enough to handle the influx 

of material. 

While some talus caves a.re dry, mos-'i; have some significant amounts 

of water passing through. The wetter talus caves are generally located 

on head.slopes, where water now into valleys is · '. . . concentrated. 

The amount of water flowing into talus caves after seeping 

through the porous sandstone or along fractures and joints can be quite 

voluminous after rains or snowmel ts. Seven talus caves have small 

rivulets or streams entering them at or immediate~v below the sand- -

stone-limestone contact. These streams appear to represent seepage 

along joints through the porous Big Clifty Sandstone which has become 

perched on shale units in the lower part of the Big Clifty or the upper 

few feet of the Girkin and are. flowing to the edge of'-.the ridge on these 

• shales (Figure 5b). Nearly all but the driest talus caves at least 

have some seepage entering the cave at this horizon • 

• 
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Relation of Sandstone Talus Caves to Limestone Caves 

Five sandstone talus caves discovered to date connect with under-

lying caves developed in limestone, providing a unique opportunity to 

examine the interstratal karstification processes contributing to talus 

cave and vert.ical shaft genesis and therefore, to retreat·of the sand-

stone cap, All five talus caves open initially into horizontal passages 

developed at or immediately "below the sandstone-limestone contact, From 

four talus caves at least one vertical shaft is accessible, In Deer Park 

Avenue Hollow Cave (Figure 10), Cave #11 east of Long's Cave (Figure 9), 
], 

and Reg.el Rubble Cave (Figure 11), the passages, ranging from one to 

seven feet high and two to three feet wide, have vertically flute-:1 lime-

stone walls, a sandstone ceiling, and floors littered with dissolutioned 

limestone fragments and sandstone blocks derived from the ceiling, 

Little debris from the entrance is found, A joint in the sandstone 

ceiling appears to control the passage directio~ in Retl Rubble (Figure 12a) 

and Deer Park Avenue Hollow Cave. Water seeping thro1.1gh the joia.~t 

constantly drips from the ceiling, 

No vertical shafts are accessible in Deer Park Avenue Hollow Cave 

or Cave #11. 
l'> In Reoel Rubble Cave, however, two vertical shaft systems ,.. 

are accessible. Shaft #1 (Figure 11) is reached by climbing down a 

twelve foot shaft which has a two-foot shale unit at its top. The room 

at the bottom is half filled with sandstone boulders of up to roughly 

fifteen cubic feet which have caved in from the left and above. A win-

dow on the right drops into a forty-five foot shaft whose floor and drain 

~ are covered with sandstone cobbles resting at the angle of repose, The 
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Figure 12a. Rebble Rubble Cave. 
Passage {3! feet high x 3 feet wide) 
developed below the sandstone-lime­
stone contact under a joint in the 
sandstone ceiling. 

Figure 12b. Rebble Rubble Cave. 
Slumped sandstone suspended in ceiling 
of a migrated shaft system. Sandstone 
boulder slope is at angle of repose, 

Figure 12c. Rebble Rubble Cave. 
Active headward portion of a migrated 
shaft being enlarged by a waterfall. 
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sandstone breakdown is extremely unstable; even slight disturbances set 

it moving downslope en masse. 

The second shaft system is of note because of the great depth to 

which it descends. Directly under the sandstone entrance of the cave is 

a small room entirely of sandstone boulders and blocks wedging themselves 

up to form a dome, A hole between blocks on the floor leads down to a 

forty degree slope of sandstone boulders, supported by blocks with 

dimensions up to fifteen by six by three :feet (Figure 11.l»). This slope 

descends into the :fity-foot high migrated shaft, Similarly, the ceiling 

and -wall above the slope are composed of sandstone blocks of equal size 

wedged together, The shaft has been cut back from the hillside under the 

sandstone cap by a stream (Figures 121, and c) and sandstone is now caving 

into the shaft, The points of the shaft near the hillslope are filling 

principally with sandstone colluvi~~. The shaft system ca.~ be descended 

to a depth of seventy feet below the sandstone-limestone contact through 

passages free of sandstone colluvium to the edge of a seventy foot vertical 

shaft. Instead of being free of sandstone colluvium as expected, large 

sandstone blocks are wedged in the ceiling of this shaft and the entire 

floor area is covered with cobbles, which slope steeply to the apparent 

drain, The cobbles slump into a buried cavity near the drain after 

being agitated by digglng, indicating the sand.stone is being moved deeper 

into the cave. 

The passage in CCC Quarry Cave (Figure 13) is an abandoned horizontal 

stream passage which intersects the pit pirating the water fifty feet from 

the entrance. 'I'he stream, which still occupies the upstream portion of 

the paGsa.ge across the pit, flows from the main body of Mammoth Cave 

Ridge toward the ridge perimeter perched on a shale unit three feet below 
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the Big Clifty Sandstone. The shale has been breached a few feet 

short of the edge of the sandstone cap, a...~d a fifteen-foot migrated 

sha:ft with a tall narrow drain has developed. Presumably, the stream 

flowed out of the present entra.tlce toward a now des{oyed shaft during 

a former position of the sandstone cap. Sandstone cobbles and surface 

debris slope toward the shaft from the edge of the sandstone cap, and 

also are present in the shaft bottom. The cave on the east end of 

Strawberry Valley (Figure 14) has a dry but impassable horizontal 

passage, which has been heavily modified by breakdown at the top of a 

migrated shaft to create a low wide room. Water feeding the sha..ft 

flows towa.:td the edge of the sandstone cap; the shaft has migrated away 

from the edge toward the interior of the ridge. The end of the shaft 

proximal to the sandstone cap edge is filling with sandstone colluvium 

and limestone fragments. The drain is buried by debris, and is also the 

lowest point on the floor of the sha.£t, suggesting :removal of debris from 

the shaft through the drain, 
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Genesis of the Sandstone Talus Caves 

The genesis of sandstone talus caves is directly related to 

interstratal ka...'l"'Stification processes described in abstract by Quinlan 

and Pohl (1967). Three factors necessary for the formation of these 

talus caves a.re: 1) a karst region with well integrated drainageJ 2) a 

resistant, competent rock unit such as the Big Clifty Sandstone overlying 

a soluble rock unit such as the Girkin Formationj J) a mechanism to 

concentrate flow of vadose water at specific points along the sa.ndstone­

limestone contact peripheral to ridge tops, so that dissolution voids 

form in limestone. 

Interstratal karstification at the Big Clifty-Girkin contact forms 

voids in the limestone into which the sandstone slumps. The four major 

void types include: 1) horizontal canyon-like passages with vertically 

fluted walls formed by dripping water from joints in the overlying sand­

stone; 2) horizontal-tube stream passages developed by streams perched 

on shale units in the upper few feet of the Girkin; 3) vertical shafts 

{described by Brucker et al.,, 1972: Quinlan and Pohl, 1967; and Pohl, 

1955); 4) migrated shafts, whose sinv.ous, canyon-like appearance is due 

to head.ward. erosion by the streams that feed them. Of these voids, vertical 

a.~d migrated shafts constitute the greatest volume and number. 

The Big Clifty Sandstone, weakend by remova..1 of the supporting 

Girkin, settles into these shaft systems catastrophically or at about the 

same rate as solution takes place (Quinlan and Pohl, 1967). Sandstone 

talus caves fonn when cavities in the sandstone resulting from such 

collapse open to the surface. Where such slumping of the sandstone occurs 

breaching and retreat of the sandstone cap takes place. The frequently 
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catastrophic nature of the settling is clearly shown by the shafts with 

sandstone coluvium wedged in the ceilings or fonrdng steep tt.llsta.ble 

slopes on the floors at the angle of repose. (Figures 8a, 8d, 12a). 

The distribution and morphology of the talus caves are controlled 

principally by li thologic and hydrologic factors. The control of vadose 

ground. water flow by the stratigraphic succession limits the occurrence 

of talus caves to the one-hundred foot wide zone along the ridge perimeter. 

While the sandstone cap is resistant to weathering, it does not 

present an impenneable barrier to vadose ground water. Four other 

impermeable horizons occurring in or near the sandstone cap can by 

identified. The Haney Limestone, about forty feet thick in the study 

area, is extremely soluble and extensively channeled by solution cavities 

(Brown, 1966). At its base a thin shale occurs on which water in the 

Haney perches. Many springs, some of which are used for the Mammoth Cave 

water supply, occur at this horizon. Recent hammer seismic work by 

Palmer (personal communication, 1978) indicates the Haney has been 

largely removed by interstratal karstification on Flint Ridge (Figure 2) 

leaving a residual clay layer about ·ten feet thick between Hardinsburg 

and Big Clifty Sandstones. This clay apparently exists on all the ridge 

tops a.,.~d persists as pa.rt of the soil horizon where the Haney has been 

eroded. Its presence accounts for most of the perched va.dose water 

which forms ridge top swamps. A third impermeable layer occurs as a dis­

continuous shale layer within the 'Big Clifty ( Brown, 1966) • While 1 t does 

present a barrier to vadose water it is rarely seen in outcrop and its 

exact distribution is not known. One or more shale layers in the upper 

two to ten feet of the Girkin present a fourth impermeable barrier. This 

layer is frequently encountered in some of the deeper talus caves and in 



15 

in limestone caves intersected by them such as Rebel Rubble Cave. Due 

to the presence of these impermeable units most of the surficial and va.d.ose 

wa te:r moves la tera.lly to the ridge perime·ters where these uni ts have been 

breached. Va.dose water penetrating the Big Clifty may fom small hori­

zontal passages above the shale layer in the uppermost Girkin. Such 

passages formed principally by dripping water from joints in the sand­

stone ceiling are canyon-like 1-rith vertically fluted walls (Figure 12a), 

while those fonn.ed by perched stream flow a.re typically low and tubular. 

Va.dose flow concentrated at ridge top perimeters in this manner, particu­

larly at the heads of reentrant valleys, traverses vertical joints in the 

now exposed limestone and carves vertical shaft systems (Pohl, 1955: 

Quinlan and Pohl, 1967; Brucker et al., 1972). These active shaft 

systems a.re therefore concentrated in a one-hu..~dred foot 'Wide zone at 

the edge of the sandstone cap, particularly at the heads of reentrant 

valleys. Unsupported sandstone collapses into the voids, frequently 

forming sandstone ta1us caves. 

Local lithology and extent of weathering of the Big Clifty influences 

to some degree the size and morphology of talus caves. Caves developed 

in massive, well-indurated ~'1.dstone tend to have wide entrances at the 

base of cliffs five to twenty feet high. Entrance slopes generally 

range from twenty-five to fOrty degrees. In situ sandstone bedrock sup­

ports the ceiling and walls. Ceilings step down through individual sand­

stone beds which span the entire width of the cave and can form flat 

ceilings in the terminal rooms, (Figure 5a). The cave floor consists of 

breakdown derived :from the ceiling, and surface debris. The breakdown 

fills a former void in the underlying limestona. In some cases small 
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streams entering near the sandstone-limestone contact still actively 

enlarge the solution void and actively transport material downwa.:r:d 

{Figure 5b). Deeply undercut entzance overhangs eventually weaken and 

collapse (Figure .5b), 

Thin· bedded, less competent sandstone in which talus caves may occur 

are frequently slumped, The ceilings and walls of such talus ca.ves a.re 

arched ( Figure 8b) • The weak sandstone beds sag into the underlying 

void o In several talus caves the break between the in situ and slumped 

beds is clearly visible and may be indicated by a prominent fracture 

(Figures 8d, 15). Slumping frequently disturbs bedding to such a degree 

that ceiling and walls are supported by a p~ssure arch of sandstone 

blocks and cobbles wedged together, The tops of limestone dissolution 

voids are sometimes accessible through the breakdown on the floor {Figure 

Be), or are exposed in the terminal room, The arches supporting the cave 

approach the surface as sandstone progressively caves into underlying 

solution voids and eventually intersect the surface, Since these 

entrances tend to be near the arch's apex, entrance slopes are steep 

generally ranging from forty to ninety degrees. Entrances also tend to 

be flush with the ground surface and small (Figure Be). 

Several talus caves of both norphologic types occur on ~11e uphill 

edges of sinks developed in sandstone bedrock or colluvium. Such sinks 

are u.~roofed sites of solution voids which still actively ingest sandstone 

colluvium. The resulting talus caves are essentially fissures, which form 

as sandstone creeps downhill into a sink and separates from in situ bed­

rock or well compacted colluvium at the sink edge (Figure 16). 

Cavities in sandstone fonned when slumping into solution voids occurs 

need not have entrances or be easily detectable. Quinlan.and Pohl (1967) 



Figure 15, Slumped sandstone exposed in a wall of a talus 
cave above the Cathedral Domes Entrance. Flashlight is St inches long. 
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recognize such cavities exist and call them "structural sinks." Their 

existence, location and connection with underlying shaft systems is o:ften 

indicated by detectable airflow :filtering through small holes and collu­

vium along ridge :perimeters. 

The avercige volume of water passing through talus caves and aiding 

in the enlargement of tmderlying solution voids in limestone affects 

their size and mte of fonna.tion. Volume of water passing through talus 

ca,,es ranged from essentially none to a few cubic feet per minute ( visual 

estimates) during heavy rains; most flow voltUlles ranged from a few -

hu."ldredths to a few tenths c£m. Where catch.1t1ent a.:rea.s :for surficia.l and 

vad.ose :tlow to talus caves a.re small (often less than an acre) such as 

on toe and many side slopes, the talus caves are small. Signs of recent 

collapse are rare and the interior of the caves are relatively d.l:y and 

• stable, Where moderate to large flow through talus caves occurs, such 

• 

as reentrants on head.slopes, fa.lus caves tend to be more voluminous, wet, 

and unstable. 

Large surface streams which run over the edge of the sandstone cap 

at the heads of major reentrant valleys and sink at the sandstone-limestone 

contact erode the sandstone ve:ry rapidly a.nd prevent the formation of 

large talus caves. When present the talus caves are small and extremely 

unstable. They are transient features because underlying sha:ft systems 

enlarge rapidly and much water is available to aid in the downwa:rd trans­

portation of collapsed material. During high flow conditions much 

sandstone colluvium is transported down into the valleys in high gradient 

stream channels, 

Some large relatively d..ttJ talus caves such as Antler Pit (Figure 7) 

occur on toe slopes, Water flowing through such caves has apparently 



• 

• 

• 

been pirated away, No signs of ver:y :recent collapse are evident in 

such caves. Subsidence into underlying solution voids has ceased and 

the caves are :relatively stable. Such talus :ma.y be preserved for 

relatively long periods of time, 

18 
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Evolution of Sandstone Talus Caves 

The association of sandstone talus ~ves with sinks and breathing 

holes near the se..nd.stone-limcstone contact suggests they may represent 

one phase of a dyna.rrl.c evolutionary cycle, This postulated cycle is to 

be viewed as a general dynamic process of which some phases may not apply 

to all talus caves. The evolution of the talus caves is a destructive 

process ~.ausing retreat of the sandstone cap. 

The evolutionary cycle involves four general phases, First, inter­

stratal solution creates a void in the limestone under but near the edge 

of the sandstone cap (Figure 17a). Second, unsupported sandstone begins 

to cave into the void (Figure 17b), Such voids may be completely 

undetect.able or their presence may be indicated by air filtering through 

fractures in the sandstone, Third, progressive collapse of sandstone 

into the enlarging solution void creates an entrance, forming a sandstone 

talus cave (Figm:e 17c). The collapsing sandstone and accompanying 

subsoil solution of limestone contribute to a general lowering of the 

ground surface. Finally-, further enlargement of solution ca.vi ty causes 

the talus cave's ceiling to weaken and collapse, and forms a sink (Figure 

17d). Such sinks are frequently filled with sandstone colluvium. 

Colluvium may continue to be transporled. down into the underlying 

solution void for some time. 

The resistant sandstone cap has been breached and its edge moved 

back several tens of feet, The vertical sha:ft system below the sandstone 

talus cave has been filled with colluvium and alluvium. Continued karsti­

fication below the sandstone-11.mestone contact creates new vertical shaft 

• systems and the -- cycle repeats .. 
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Suggestions for Further Research 

This study of sandstone talus caves suggests several interesting 

pro.blems on which further research could be conducted. Such problems 

include detecting cavities, determining ages for some talus caves, and 

determining a relationship between groundwater chemistry and evolution 

of talus caves. 

The detection of entranceless cavities irL sandstone is of considerable 

interest to construction projects. The existence of such cavities is 

shmm by the fact that a large collapse occu...~ed under the main highway 

into the park 300 : yards north of Sloa.'1s Crossing in 1974. Methods 

which might be ~ed to detect these cavities include seismic (methods), 

electrical resistivity, microgravity, and subsurface radar. 

Further work may uncover a relationship between the evolution rate 

and size of talus caves and the chemistry of the water passing through 

them. Water trickling through small stable talus caves nqy have a com­

position approaching Thrailkill's (1960) vadose seeps, while larger talus 

caves may have rrater composition approaching vadose flows. The changes 

in water chemist::r:y as it passes dotm from the sandstone cap through the 

vertical shaft systems could be studied in a few talus caves and their 

associated shaft systems. 

Hinimum age determinations of some talus caves my be possible. 

Skeletal remains of animals occurring in some of the drier talus caves na:y 

be d.ateable with radiocarbon techniques. Some of the remains may be of 

extinct animals whooe time of extinction is known. Further work may 

also uncover dateable Indian artifacts • 
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Summary and Conclusions 

~ Sandstone talus caves are cornmo~ features of the Chester Cuesta in 

• 

• 

the Central Kentucky Karst,·: They ·are" ~nterable ca.vi ties which :form in 

sandstone when sandstone collapses into solution voids, principally 

shaft systems, in the underlying limestona. Collapse of the sandstone 

into the shaft systems contributes significantly to the retreat of the 

sandstone cap, ~ 

Three factors are prerequisite for the formation of these talus caves: 

1) a karst area with well developed underground drainage; 2) a resistant 

rock unit such as sandstone capping ridges of soluble limestone; 3) one 

or more impenneable horizons on ridge tops which shed water toward ridge 

perimeters and thereby concentrate its flow there, These lithologic and 

hydrologic factors control the location,.distribution, and morphology of 

the talus caves, 

A general evolutionary cycle can be applied to thELsandstone talus 

Caves, 1) A solution void, usuall.Y- a vertical shaft system, developes near 

the edge of the sandstone cap, 2) Unsupported sandstone begins to collapse 

into the void, J) With further collapse of sandstone into the enlarging 

void an entrance developes, forming a sandstone talus cave, 4) Collapse 

of the talus caves forms a sink filled with sandstone colluvium, 
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Appendix 

~11IOW 

0 . • 

Survey stations. 

Vertical shafts. 
Label wit~ 

~ ;~t x diameter 

at level of survey. 
'7~

5
1w,>A"' 

nexplored passage. 
Always 1nclude di- L-~~~--~-1 
m 
r 

ensions, vertical Sloph. Lines diverge 
elationship to ~ down ill. 
urvey passage, and s 

d istance explored. L.....~~~--~--1 

~¥rupt drop in 
oor. Hatcnures 

on downward side. 
Give distance of 
drop in feet. 

Sudden drop in 
ceIIIiig. Hatchures 
point towar~ lower 
ceiling. 

Ceiling channel. 
--------t 

Slope. A more 
versatile notation. 
Lines trend straight 
down the slope. 
Short dashes show 
break at top of 
slope. 

Streams, showing 
directfon of water 
flow. 

Ponded water. 

L--~~~~~--iPaleoflow direction. Cross section. 
Short lines point 
in direction of view 
and up. Passage 
height in feet. 

From scallops, rl.Jllstone 
dams, waterfall ledges 
(Scallops work like 

. 

Passa2es crossing. 
Lower level is 
dashed or.omitted. 

·~ this.) 
tl"""'P 

Breakdown 

2J 

::(/., 
~ 

v ,. 

• .A. 

(!) • 

• 
# 

Formations. 

Flowstone. 

sta~actites. 

Stalagtllites • 

Column. (l.mbiguou 
Define this symbol, 
when you use it.) 

Gypsum flower. 

Helictite. 

Passage Terminations·. Alway~ 
write down cause of termination 
in deu:il. 

~ 
or 

=:? 
TOO 

~l'tlllllltow ?(SM"'•H) 

Too I.OW 
~C,"Ml~lof ~ ... e11:oitoc.") 

\~ 

~AN~f'c:11,111' 

IIOG,O, 
~aiut,.tc.OGw.,. 

~·-"-"It.-

0 "''"' 1.0,... 

SO\.lt) 
~(.1,.1'1'( 
~Fl\.\. 

PL.O,N~Tl)o,A; 
PLUG. 

~ 
/""'-' 

Use this symbol 
only if the passag( 
ends in a solid 
rock wall. 

Too narrow. Some­
times helps to 
note for whom it 
was too narrow! 

TOO low. 

Breakdown. 

Siphon. 

Passage fills to 
ceiling. Note type 
of fill. 

Flowstone. 

(from the Cave Research Foundation 
Personnel Manual, 1975, P 79) 

{Copyright, Cave Research Foundation, 
1975, 445 w, South College St, 
Yellow Springs, Ohio 45387) 




