

Gas-Sensing Properties of Metal Oxide Nanostructured Heterojunctions

Robert Brese; Marc Doran; Paul Sommer The Ohio State University Advised by Sheikh Akbar, PhD; Patricia Morris, PhD; Derek Miller

Research Motivation

Much research has focused on developing sensors which are selective to either acetone or ethanol. Of the materials investigated, TiO₂ has demonstrated great potential as a resistive-type gas sensor used to detect hydrocarbons and volatile organic compounds (VOCs). The sensitivity of gas sensors is dependent upon its surface area and interfacial potentials.

This experiment is exploring the gas-sensing ability of MOX powders containing TiO₂ nanorods. Nanorods are high surface area structures and alter the potential at the interfaces and surfaces of the powders.

Hydrocarbon Selectivity

Improving Response

Application

Noninvasive Breath Analyzer for Disease Diagnosis

• Acetone is a biomarker for diabetes when present in high concentrations in human breath^[4]

Application Requirements:

- Able to detect acetone in low concentrations (1 ppm) in a moist environment
- Selectivity to acetone when other VOCs and hydrocarbons are present
- Cost effective and patient friendly

Sensor Fabrication

- **Materials:** TiO₂ aerogel, CoO, TiO₂, NiO, and SnO₂
- Hydrothermal Recipe: 300 psi, 150°C, 15 min.
- **Paste Composition:** 12.9 wt% metal oxide, 6.4 wt% ethyl cellulose, and 80.7 wt% alpha-terpineol
- Laboratory Mixer: 4.0 min.

SnO₂-H in Acetone at Various Temperatures

	0.5% A Satur	cetone ation	0.5% Ethanol Saturation	
Sample	SnO ₂	SnO ₂ -H	SnO ₂	SnO ₂ -H
Response* at 350°C	2.72	4.75	2.88	5.03
Response* at 400°C	3.06	5.88	3.43	5.71
Response* at 425°C	-	6.69	3.49	7.17

*Response = $\Delta R/R_g$

- The SnO₂–H sensor exhibited higher responses in both gases compared to the base SnO₂ sensor
- The measured responses of both SnO₂ sensors increased with increasing temperature and did not display noticeable selectivity towards acetone

CoO-H at 425°C in Both Gases

0	200	400	600	800	1000	1200	1400			
Time (min)										

*Response = $\Delta R/R_g$ for n-type

Growing the TiO₂ nanorods of the surface of the MOX powders increased the response of the sensors relative to the best base sensor, TiO_2

P-N Junction Effects

- Hand Brushing
- **Firing**: 500°C for 8 hours
- **Testing**: Ethanol and Acetone at 350°C, 400°C, 425°C

SEM Microscopy

- The TiO₂ nanorods on the CoO surface caused the CoO sensing behavior to change from p-type to n-type
- Since TiO₂ is n-type, the CoO-H sensor response is likely controlled by the TiO₂ nanorods
- The depletion region formed at the p-n junction between the TiO₂ and CoO significantly increased the resistance, allowing for a larger response value

Conclusions and Future Work

Conclusions:

- Growing TiO₂ nanorods on the MOX powders significantly improves the sensors' responses
- The TiO₂ nanorods on the CoO surface caused the CoO sensor to exhibit n-type sensing behavior
- The CoO-H (p-n junction) exhibited the largest response when exposed to both gases
- Increasing the testing temperature made the CoO-H sensor more selective towards acetone than ethanol, demonstrating promise for selectivity

Future Works:

SEM micrographs of (a) TiO₂ hybrid powder (b) SnO₂ hybrid powder (c) CoO hybrid powder (d) TiO₂ nanorods

- The responses of the CoO-H sensor are about an orders of magnitude larger than the CoO sensor responses
- The CoO-H sensor was more selective to acetone than ethanol at a testing temperature of 425°C
- The response of the Co-H sensor in acetone increased with increasing temperature, while the response in ethanol decreased with increasing temperature
- Analyze the temperature dependence of response in greater detail
- Determine if nanorod/powder interfaces improve response compared to powder/powder interfaces
- Optimize sensor performance of most promising material through better processing and the testing temperature

Contact

Robert Brese The Ohio State University Email: brese.1@osu.edu

Marc Doran The Ohio State University Email: doran.78@osu.edu

References

- 1. Miller, D. H., Akbar, S. A., & Morris, P. A. (n.d.). Nanostructured metal oxide-based heterojunctions for gas sensing: A review. Unpublished manuscript, Department of Materials Science & Engineering, The Ohio State University, Columbus, OH, .
- 2. Lee, J. Gas sensors using hierarchical and hollow oxide nanostructures: Overview. Sensors and Actuators B: Chemical 140, 2009. pp. 319-336.
- 3. Zeng W., Liu T., Wang, Z. Sensitivity improvement of TiO₂-doped SnO₂ to volatile organic compounds. Physica E 43, 2010. pp. 633-639.
- 4. Gouma, P., Kalyanasundaram, K. Nanosensor and Breath Analyzer for Ammonia Detection in Exhaled Human Breath. IEEE Sensors Journal, Vol. 10, No. 1, 2010. pp. 49-53.