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Much research has focused on developing sensors which 
are selective to either acetone or ethanol. Of the 
materials investigated, TiO2 has demonstrated great 
potential as a resistive-type gas sensor used to detect 
hydrocarbons and volatile organic compounds (VOCs). 
The sensitivity of gas sensors is dependent upon its 
surface area and interfacial potentials.  
 
This experiment is exploring the gas-sensing ability of 
MOX powders containing TiO2 nanorods. Nanorods are 
high surface area structures and alter the potential at the 
interfaces and surfaces of the powders.  

Research Motivation 

Conclusions: 
• Growing TiO2 nanorods on the MOX powders 

significantly improves the sensors’ responses 
• The TiO2 nanorods on the CoO surface caused the CoO 

sensor to exhibit n-type sensing behavior 
• The CoO-H (p-n junction) exhibited the largest 

response when exposed to both gases 
• Increasing the testing temperature made the CoO-H 

sensor more selective towards acetone than ethanol, 
demonstrating promise for selectivity 

Future Works: 
• Analyze the temperature dependence of response in 

greater detail  
• Determine if nanorod/powder interfaces improve 

response compared to powder/powder interfaces 
• Optimize sensor performance of most promising 

material through better processing and the testing 
temperature 

Conclusions and Future Work 

• Materials: TiO2 aerogel, CoO, TiO2, NiO, and SnO2 
• Hydrothermal Recipe: 300 psi, 150˚C, 15 min. 
• Paste  Composition: 12.9 wt% metal oxide, 6.4 wt% 

ethyl cellulose, and 80.7 wt% alpha-terpineol  
• Laboratory Mixer: 4.0 min. 
• Hand Brushing 
• Firing: 500˚C for 8 hours 
• Testing: Ethanol and Acetone at 350˚C, 400˚C, 425˚C 

 
 
 
 
 
 

Sensor Fabrication 

SEM Microscopy 
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SEM micrographs of (a) TiO2 hybrid powder (b) SnO2 hybrid 

powder (c) CoO hybrid powder (d) TiO2 nanorods 

Hydrocarbon Selectivity 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
*Response = ΔR/Rg 

 

• The SnO2–H sensor exhibited higher responses in both 
gases compared to the base SnO2 sensor 

• The measured responses of both SnO2 sensors 
increased with increasing temperature and did not 
display noticeable selectivity towards acetone 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
*Response = ΔR/Rg for CoO-H, Response = ΔR/Ra for CoO 
 

• The responses of the CoO-H sensor are about an orders 
of magnitude larger than the CoO sensor responses 

• The CoO-H sensor was more selective to acetone than 
ethanol at a testing temperature of 425˚C 

• The response of the Co-H sensor in acetone increased 
with increasing temperature, while the response in 
ethanol decreased with increasing temperature 

0.5% sat. 

P-N Junction Effects 

 
 
 
 
 
 
 
 
 
 
 
 
• The TiO2 nanorods on the CoO surface caused the CoO 

sensing behavior to change from p-type to n-type 
• Since TiO2 is n-type, the CoO-H sensor response is likely 

controlled by the TiO2 nanorods 
• The depletion region formed at the p-n junction 

between the TiO2 and CoO significantly increased the 
resistance, allowing for a larger response value 
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Improving Response 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
*Response = ΔR/Rg for n-type 

 

• Growing the TiO2 nanorods of the surface of the MOX 
powders increased the response of the sensors relative 
to the best base sensor, TiO2 

500 nm 2.0 μm 

2.0 μm 1.0 μm 
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Application 

Noninvasive Breath Analyzer for Disease Diagnosis 
• Acetone is a biomarker for diabetes when present in 

high concentrations in human breath[4] 

 
Application Requirements: 
• Able to detect acetone in low concentrations (1 ppm) 

in a moist environment 
• Selectivity to acetone when other VOCs and 

hydrocarbons are present 
• Cost effective and patient friendly 

0.5% Acetone Saturation at 400˚C 

Sample TiO2 TiO2-H SnO2-H CoO-H 
Response* at 350˚C 4.66 5.40 4.75 - 
Response* at 400˚C 5.32 5.19 5.88 10.80 
Response* at 425˚C 5.16 5.32 6.69 12.04 

0.5% Acetone 
Saturation 

0.5% Ethanol 
Saturation 

Sample CoO CoO-H CoO CoO-H 

Response* at 350˚C 1.07 - 1.08 - 

Response* at 400˚C 1.09 10.80 1.06 10.76 

Response* at 425˚C 1.07 12.04 1.07 8.14 

0.5% Acetone 
Saturation 

0.5% Ethanol 
Saturation 

Sample SnO2 SnO2-H SnO2 SnO2-H 

Response* at 350˚C 2.72 4.75 2.88 5.03 

Response* at 400˚C 3.06 5.88 3.43 5.71 

Response* at 425˚C - 6.69 3.49 7.17 
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