Ionization Measurement and Spectroscopy of ThS and ThS⁺

Joshua H. Bartlett, Ivan O. Antonov, Michael C. Heaven

Emory University, Department of Chemistry Atlanta, GA

Applications

• Fundamental interest of actinides

Few existing studies, 5*f* electron roles unclear

 Actinide "hard versus soft" chalcogen ligand properties

Comparison with ThO

• Relativistic theory assessment

Experimental data to evaluate performance of ECPs

 Advanced separation processes

Relevant to nuclear fuel technology

Previous Work

Heavy molecules & ions studied in the gas phase by the Heaven group:

ThN, ThO, ThF, HfO, HfS, UO, UF, UO₂

Mass spectrometry gas phase actinide study with DFT calculations (Pereira *et. al.*)

 $D_0(ThS^+) = 5.7(1) \text{ eV}, \text{ IP (ThS)} = 6.7(2) \text{ eV}$

Matrix-isolated study of ThS with DFT calculations (Liang & Andrews)

X ($^{1}\Sigma^{+}$) $\Delta G_{1/2}$ = 474.7 cm⁻¹, $^{3}\Delta$ state predicted at 3200 cm⁻¹

Barker, B. J., Antonov, I. O., & Heaven, M. C. (2012) *Journal of Molecular Spectroscopy*, 275 Goncharov, V., Kaledin, L. A., & Heaven, M. C. (2006). *J Chem Phys*, 125(13) Liang, B., & Andrews, L. (2002) *The Journal of Physical Chemistry A*, 106(16) Pereira, C. C., Marsden, C. J., Marcalo, J., & Gibson, J. K. (2011) *Phys Chem Chem Phys*, 13(28)

Outline

H ¹		Periodic Table of the Elements										©w	ww.eler	nentsda	atabase	.com	2 He
3 Li	Be											B B	C ⁶	N N	8	9 F	10 Ne
11 Na	12 Mg											13 Al	14 Si	15 P	16 <mark>S</mark>	17 Cl	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 50	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 <mark>Sn</mark>	51 <mark>Sb</mark>	52 Te	53	54 Xe
55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 <mark> </mark>	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	89 Ac	104 Unq	105 Unp	106 Unh	107 Uns	108 Uno	109 Une	110 Unn								

58	59	60	61	62	Eu	64	⁶⁵	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
90	⁹¹	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

- Experimental details
- Spectral results for ThS/ThS⁺
- Computational results (CASSCF/MRCI/SO, (R)CCSD(T))
- Comparison of properties to ThO/ThO⁺, HfS/HfS⁺, HfO/HfO⁺
 - All numbers reported are in units of cm⁻¹ unless otherwise noted.

Outline

Th: [Rn]6d²7s²

- Experimental details
- Spectral results for ThS/ThS⁺
- Computational results (CASSCF/MRCI/SO, (R)CCSD(T))
- Comparison of properties to ThO/ThO⁺, HfS/HfS⁺, HfO/HfO⁺
 - All numbers reported are in units of cm⁻¹ unless otherwise noted.

- Experimental details
- Spectral results for ThS/ThS⁺
- Computational results (CASSCF/MRCI/SO, (R)CCSD(T))
- Comparison of properties to ThO/ThO⁺, HfS/HfS⁺, HfO/HfO⁺
 - All numbers reported are in units of cm⁻¹ unless otherwise noted.

Outline

- Experimental details
- Spectral results for ThS/ThS⁺
- Computational results (CASSCF/MRCI/SO, (R)CCSD(T))
- Comparison of properties to ThO/ThO⁺, HfS/HfS⁺, HfO/HfO⁺
 - All numbers reported are in units of cm⁻¹ unless otherwise noted.

- Experimental details
- Spectral results for ThS/ThS⁺
- Computational results (CASSCF/MRCI/SO, (R)CCSD(T))
- Comparison of properties to ThO/ThO⁺, HfS/HfS⁺, HfO/HfO⁺
 - All numbers reported are in units of cm⁻¹ unless otherwise noted.

- Experimental details
- Spectral results for ThS/ThS⁺
- Computational results (CASSCF/MRCI/SO, (R)CCSD(T))
- Comparison of properties to ThO/ThO⁺, HfS/HfS⁺, HfO/HfO⁺
 - All numbers reported are in units of cm⁻¹ unless otherwise noted.

Molecular Constants from LIF Data

State	Origin	В	q (·10 ⁻³)
$X^1\Sigma^+$	0.0	0.111(2)	0
{18.26}1	18259.0(3)	0.104(2)	0
{18.53}1	18529.4(3)	0.106(2)	1.6(1)
{18.69}1	18689.5(3)	0.104(2)	1.9(2)
{21.54}1	21543.0(3)	0.103(2)	0.21(3)
{21.94}1	21938.8(3)	0.103(2)	0.8(3)
{22.02}1	22024.8(3)	*	*
[22.12]1	22117.5(3)	0.106(2)	0.14(7)
{23.15}1	23148.7(3)	*	*
{23.59}1	23585.9(3)	0.105(2)	0.8(4)

Molecular Constants from LIF Data

State	Origin	В	q (·10 ⁻³)
$X^1\Sigma^+$	0.0	0.111(2)	0
{18.26}1	18259.0(3)	0.104(2)	0
$\{18.53\}1$	18529.4(3)	0.106(2)	1.6(1)
{18.69}1	18689.5(3)	0.104(2)	1.9(2)
{21.54}1	21543.0(3)	0.103(2)	0.21(3)
{21.94}1	21938.8(3)	0.103(2)	0.8(3)
{22.02}1	22024.8(3)	*	*
[22.12]1	22117.5(3)	0.106(2)	0.14(7)
{23.15}1	23148.7(3)	*	*
{23.59}1	23585.9(3)	0.105(2)	0.8(4)

ThS⁺ State Energies

Vibronic state	T_{e}	State: ω_{e} , $\omega_{e}x_{e}$
${}^{2}\Sigma^{+}_{v=0}$	0.0	² Σ ⁺ : 517(2), 1.2(3)
${}^{2}\Sigma^{+}_{v=1}$	523(3)	
${}^{2}\Sigma^{+}_{v=2}$	1030(3)	
${}^{2}\Sigma^{+}_{v=3}$	1537(3)	
² Σ ⁺ _{v=4}	2048(3)	
$^{2}\Delta_{_{3/2,\nu=0}}$	2136(3)	² Δ _{3/2} : 489(4), **
${}^{2}\Sigma^{+}_{v=5}$	2554(3)	
² Δ _{3/2, v=1}	2627(3)	
${}^{2}\Sigma^{+}_{v=6}$	3059(3)	
² Δ _{3/2, v=2}	3115(3)	
² Σ ⁺ _{v=7}	3556(3)	
$^{2}\Delta_{3/2, v=3}$	3603(3)	

	Calculations											
		ThS					ThS⁺					
State	T _e	ω _e	B _e	r _e (Å)	State	T _e	ω _e	B _e	r _e (Å)			
$X^{1}\Sigma^{+}$	0 (0)	477 (479)	0.1074 (0.1079)	2.363 (2.358)	X²Σ+	IP= 53709 (53928)	502 (508)	0.1114 (0.1115)	2.321 (2.318)			
${}^{3}\Delta_{1}$	3940	454	0.1047	2.394	² Δ _{3/2}	2499	479	0.1084	2.353			
$^{3}\Delta_{2}$	4856 (4923)	453 (457)	0.1048 (0.1052)	2.393 (2.388)	$^{2}\Delta_{5/2}$	4730	487	0.1087	2.350			
³ Δ ₃	5811	455	0.1050	2.391	${}^{2}\Pi_{1/2}$	8803	475	0.1063	2.375			
					² Π _{3/2}	10313	472	0.1063	2.375			

CASSCF/MRCI/SO calculations using an ECP and basis sets for Th from Cao and Dolg^a. Parenthesis indicate CCSD(T) (RCCSD(T) for the ion) method. For S, the aug-cc-pVTZ basis set was used.

^ACao, X., M. Dolg, H. Stoll, *J. Chem. Phys.* 118, 487 (2003)

		ThS					ThS ⁺						
State	T _e	ω _e	B _e	$r_{\rm e}$ (Å)	State	T _e	ω _e	B _e	r _e (Å)				
$X^1\Sigma^+$	0 (0) 0	477 (479) 480(20)	0.1074 (0.1079) 0.111(2)	2.363 (2.358)	$X^2\Sigma^+$	IP= 53709 (53928) 54425(3)	502 (508) 517(2)	0.1114 (0.1115)	2.321 (2.318)				
${}^{3}\Delta_{1}$	3940 3655(20)	454	0.1047	2.394	$^{2}\Delta_{3/2}$	2499 2136(3)	479 489(4)	0.1084	2.353				
³ Δ ₂	4856 (4923) 4580(20)	453 (457)	0.1048 (0.1052)	2.393 (2.388)	$^{2}\Delta_{5/2}$	4730	487	0.1087	2.350				
³ Δ ₃	5811	455	0.1050	2.391	² Π _{1/2}	8803	475	0.1063	2.375				
					² Π _{3/2}	10313	472	0.1063	2.375				

CASSCF/MRCI/SO calculations using an ECP and basis sets for Th from Cao and Dolg^a. Parenthesis indicate CCSD(T) (RCCSD(T) for the ion) method. For S, the aug-cc-pVTZ basis set was used. Experimental value.

^ACao, X., M. Dolg, H. Stoll, *J. Chem. Phys.* 118, 487 (2003)

Properties

	IP	${}^{3}\Delta_{1} {}^{2}\Delta_{3/2}$	${}^{3}\Delta_{2} {}^{2}\Delta_{5/2}$	SO energy	B_{e}
^a ThO	53254	5316.6	6127.9	811.3	0.3326(6)
^a ThO ⁺	-	2933.7	5814.4	2880	0.3450(6)
ThS	54425(3)	3655(20)	4580(20)	925(28)	0.111(2) [0.1074]
ThS⁺	-	2136(3)	[4730]	2594	[0.1114]

Brackets denote calculated values.

a. Goncharov, V., Kaledin, L. A., & Heaven, M. C. (2006) *J Chem Phys*, 125(13)

Properties

	IP	ω _e	$(\omega_e^{+}/\omega_e^{-})^2$	ΔD_0	B_{e}
^a ThO	53254	895.77	1.137	-2385.09	0.3326(6)
^a ThO ⁺	-	954.97	-	-	0.3450(6)
ThS	54425(3)	480(20)	1.16(10)	-3556(2)	0.111(2) [0.1074]
ThS ⁺	-	517(2)	-	-	[0.1114]

Brackets denote calculated values.

a. Goncharov, V., Kaledin, L. A., & Heaven, M. C. (2006) J Chem Phys, 125(13)

Properties

	IP	ω _e	$(\omega_e^{+}/\omega_e^{-})^2$	ΔD_0	B_{e}
^a ThO	53254	895.77	1.137	-2385.09	0.3326(6)
^a ThO ⁺		954.97			0.3450(6)
ThS	54425(3)	480(20)	1.16(10)	-3556(2)	0.111(2) [0.1074]
ThS⁺		517(2)			[0.1114]
^{b,c} HfO	63760	974.09	1.081	-8807.77	0.386537(7)
°HfO+		1013			0.403(5)
^d HfS	61933	526.848	1.109	-6685.71	0.13336(4)
^d HfS ⁺		554.9			0.130(8)

a. Goncharov, V., Kaledin, L. A., & Heaven, M. C. (2006) *J Chem Phys, 125(13)* b. Jonsson, J., Edvinsson, G., and Taklif, A. G. (1995) *J Mol Spec, 172* c. Merritt, J. M., Bondybey, V. E., Heaven, M. C. (2009) *J Chem Phys, 130* d. Barker, B. J., Antonov, I. O., & Heaven, M. C. (2012) *J Mol Spec, 275*

Conclusions

Electronic spectra have revealed rotational and vibrational parameters for ThS as well as state energies for the lowest electronic level of the neutral molecule. Ionization spectra confirm theoretical predictions, and two vibronic progressions of the cation have been characterized. Rotational structure for the ion could not be obtained.

Results from previous works concerning the molecule are validated, especially with regard to QR-DFT studies. Calculations illustrate very good agreement between theory and experiment.

ThS properties are consistent with other heavy diatomic molecules, indicating only minor changes in bonding character moving from 2nd to 3rd row monatomic ligands for Th.

Acknowledgments

Dr. Ivan Antonov, for substantial calculation and experimental assistance

Dr. Michael Heaven & the Heaven group for moral and technical support:

Michael Sullivan, Kyle Mascaritolo, Dr. Jiande Han, Dr. Keith Freel

U.S. Department of Energy grant, DE-FG02-01ER15153

Cherry Emerson Center for Scientific Computing

Parameters

	${}^{3}\Delta_{1} {}^{2}\Delta_{3/2}$	${}^{3}\Delta_{2} {}^{2}\Delta_{5/2}$	SO energy	r _e (Å)	
^a HfO	9230.77	10152.31	921.54	1.285	
HfO ⁺	[8175]				
^b HfS	6631.2	7596.6	965.4	2.191	
^b HfS ⁺	5187(3)	7986(3)	2754	2.215	
^c ThO	5316.6	6127.9	811.3	1.881	
ThO⁺	2933.7	5814.4	2880	1.360	
ThS	3655(20)	4580(20)	925	2.363	
ThS⁺	2136(3)	[4730]	2594	2.321	

a. Jonsson, J., Edvinsson, G., and Taklif, A. G. (1995) *Journal of Molecular Spectroscopy, 172* b. Barker, B. J., Antonov, I. O., & Heaven, M. C. (2012) *Journal of Molecular Spectroscopy, 275* c. Goncharov, V., Kaledin, L. A., & Heaven, M. C. (2006) *J Chem Phys, 125(13)*

	ThS ⁺ , ThO ⁺ , HfS ⁺										
State	V	ThO⁺	T _e (cm⁻¹) HfS⁺	ThS⁺							
$^{2}\Sigma^{+}$	0	(IP=53254)	(IP=61933)	(IP=54428)							
	1	950	552	511							
	2	1895	1101	1022							
	3	-	1648	1534							
	4	-	2191	2039							
	5	-	2732	2546							
	6	5627	3270	3049							
	7	6547	3805	3551							
²ک_ 3/2	0	2934	5265	2132							
	1	3846	5791	2626							
	2	-	6313	3115							
Goncharov, V., Kaledin, L. A., & Heav Barker, B. J., Antonov, I. O., & Heave	zen, M. C. (2006). J Cha n, M. C. (2012) Journa	em Phys, 12 5(43 5 7 I of Molecular Spectroscopy,	6832 275	3682							