Internal Mixing, Phenyl Ring Torsion and Excitonic Interaction in Diphenylmethane

Nathan R. Pillsbury*, Jaime A. Stearns*, <u>Christian W. Müller</u>*, Aloke Das*, Talitha M. Selby*, Timothy S.Zwier*, David F. Plusquellic[‡]

> *Department of Chemistry Purdue University West Lafayette, IN

[‡]National Institute of Standards and Technology Gaithersburg, MD

Motivation

Excitonic Coupling & Flexible Degrees of Freedom in Bichromophores

Motivation

Diphenylmethane: A prototypical flexible bichromophore

Calculated Normal Coordinates of the ${\rm S}_0$ State

B3LYP/6-31+G(d)

(Loading DPM-T.avi)

(Loading DPM-Tbar.avi)

Experimental Setup

- Fluorescence Excitation Spectroscopy
- Single Vibronic Level Fluorescence (SVLF) Spectroscopy
- Resonance Enhanced Two-Photon Ionization (R2PI) Spectroscopy
- UV-UV Holeburning Spectroscopy

Unraveling the Vibronic Structure of States ${f S}_0,\,{f S}_1$ and ${f S}_2$

- Assignment Process
- Results

Internal Mixing & Internal Conversion

- Evidence for Internal Mixing
- A New Qualitative Picture

Experimental Setup

- Fluorescence Excitation Spectroscopy
- Single Vibronic Level Fluorescence (SVLF) Spectroscopy
- Resonance Enhanced Two-Photon Ionization (R2PI) Spectroscopy
- UV-UV Holeburning Spectroscopy

Unraveling the Vibronic Structure of States ${f S}_0,\,{f S}_1$ and ${f S}_2$

- Assignment Process
- Results

Internal Mixing & Internal Conversion

- Evidence for Internal Mixing
- A New Qualitative Picture

Fluorescence Excitation and SVLF Spectroscopy

Experimental Conditions

- Diphenylmethane: Sigma-Aldrich
- Stagnation temperature: $\sim 60^{\circ} {
 m C}$
- Stagnation pressure: 2 bar of Helium
- Pulsed expansion: 20 Hz
- Nozzle orifice diameter: $d = 800 \, \mu \mathrm{m}$
- FES resolution: $\sim 0.2\,{\rm cm}^{-1}$
- SVLF resolution: $6-8 \,\mathrm{cm}^{-1}$

Resonance Enhanced Two-Photon Ionization

Experimental Conditions

- Diphenylmethane: Sigma-Aldrich
- Stagnation temperature: $\sim 60^{\circ} {
 m C}$
- Stagnation pressure: 2 bar of Helium
- Pulsed expansion: 20 Hz
- Nozzle orifice diameter: $d = 400 \,\mu \text{m}$
- R2PI resolution: $\sim 0.2 \, \mathrm{cm}^{-1}$

UV-UV Holeburning Spectroscopy

Conformation-specific Excitation Spectrum

• All transitions are due to one conformer.

• Electronic origin red-shifted by 144 cm^{-1} from $S_1 \leftarrow S_0$ origin of toluene^{*}.

* T. Aota et al., J. Phys. Chem., 1989, 93, 3519.

Outline

Experimental Setup

- Fluorescence Excitation Spectroscopy
- Single Vibronic Level Fluorescence (SVLF) Spectroscopy
- Resonance Enhanced Two-Photon Ionization (R2PI) Spectroscopy
- UV-UV Holeburning Spectroscopy

Unraveling the Vibronic Structure of States ${f S}_0,\,{f S}_1$ and ${f S}_2$

- Assignment Process
- Results

Internal Mixing & Internal Conversion

- Evidence for Internal Mixing
- A New Qualitative Picture

Fluorescence Excitation Spectra under Different Conditions

Totally Symmetric Torsion T

Assignment of the Butterfly Motion β

Forthcoming...

The detailed analysis of the vibronic structure of the electronic ground state and the first two excited singlet states of Diphenylmethane is currently peer reviewed at *J. Chem. Phys.*

- The electronic origin of the S_2 state lies only $123 \, \mathrm{cm}^{-1}$ above that of the S_1 state.
- DPM possesses C₂ symmetry in all three electronic states.
- The orbital symmetries are A for S₀, B for S₁, and A for S₂.
- All totally symmetric (a) fundamentals are allowed, whereas only even-quanta overtones and combination bands of the non-totally symmetric (b) fundamentals possess non-vanishing intensity.

Diphenylmethane-d₁₂

Toluene

Forthcoming...

The detailed analysis of the vibronic structure of the electronic ground state and the first two excited singlet states of Diphenylmethane is currently peer reviewed at *J. Chem. Phys.*

- The vibronic structure at *high frequencies* was assigned by comparison with the ring modes of toluene.
- The vibronic structure at *low frequencies* was assigned by combining information from four sources:
 - (1) Cold excitation and SVLF spectra
 - (2) Hot excitation and SVLF spectra
 - (3) The saturated excitation spectrum
 - (4) The excitation spectrum of DPM- d_{12}

Diphenylmethane-d₁₂

Low-frequency normal modes: Torsions and Butterfly Motion

lsotopomer	State	$T \left[\mathrm{cm}^{-1} \right]$	$\overline{T} [\mathrm{cm}^{-1}]$	$\beta [\mathrm{cm}^{-1}]$
$DPM-d_0$	S_0	19	16.5	64
	S_1	29	21.5	~ 56
	S_2	13	22	—
B3LYP/6-31+G(d)	S_0	25	19	64
MP2/6-311++G(d,p)	S_0	28	7	54
$DPM-d_{12}$	S_0	18	15	60
	S_1	25	20	54

Low-frequency normal modes: Torsions and Butterfly Motion

lsotopomer	State	$T \left[\mathrm{cm}^{-1} \right]$	$\overline{T} [\mathrm{cm}^{-1}]$	$\beta [\mathrm{cm}^{-1}]$
$DPM-d_0$	S_0	19	16.5	64
	S_1	29	21.5	~ 56
	S_2	13	22	—
B3LYP/6-31+G(d)	S_0	25	19	64
MP2/6-311++G(d,p)	S_0	28	7	54
$DPM-d_{12}$	S_0	18	15	60
	S_1	25	20	54

Yet, we have not understood all available vibronic structure so far!

Low-frequency normal modes: Torsions and Butterfly Motion

lsotopomer	State	$T \left[\mathrm{cm}^{-1} \right]$	\overline{T} [cm ⁻¹]	$\beta [\mathrm{cm}^{-1}]$
$DPM-d_0$	S_0	19	16.5	64
	S_1	29	21.5	~ 56
	S_2	13	22	—
B3LYP/6-31+G(d)	S_0	25	19	64
MP2/6-311++G(d,p)	S_0	28	7	54
$DPM-d_{12}$	S_0	18	15	60
	S_1	25	20	54

Yet, we have not understood all available vibronic structure so far!

Some intensities, especially of progressions of \overline{T} in several SVLF spectra, cannot be fully accounted for.

Low-frequency norma	modes:	Torsions and	Butterfly	Motion
---------------------	--------	--------------	-----------	--------

lsotopomer	State	$T \left[\mathrm{cm}^{-1} \right]$	\overline{T} [cm ⁻¹]	$\beta [\mathrm{cm}^{-1}]$
$DPM-d_0$	S_0	19	16.5	64
	S_1	29	21.5	~ 56
	S_2	13	22	—
B3LYP/6-31+G(d)	S_0	25	19	64
MP2/6-311++G(d,p)	S_0	28	7	54
$DPM-d_{12}$	S_0	18	15	60
	S_1	25	20	54

Yet, we have not understood all available vibronic structure so far!

Some intensities, especially of progressions of \overline{T} in several SVLF spectra, cannot be fully accounted for.

Particularly intriguing are the $S_2 0_0^0$, $S_2 \overline{T}_1^1$, $S_2 T_0^1$ and $S_2 \overline{T}_0^1$ SVLF spectra at $123 \,\mathrm{cm}^{-1}$, $129 \,\mathrm{cm}^{-1}$, $136 \,\mathrm{cm}^{-1}$ and $145 \,\mathrm{cm}^{-1}$.

Outline

Experimental Setup

- Fluorescence Excitation Spectroscopy
- Single Vibronic Level Fluorescence (SVLF) Spectroscopy
- Resonance Enhanced Two-Photon Ionization (R2PI) Spectroscopy
- UV-UV Holeburning Spectroscopy

Unraveling the Vibronic Structure of States ${f S}_0,\,{f S}_1$ and ${f S}_2$

- Assignment Process
- Results

Internal Mixing & Internal Conversion

- Evidence for Internal Mixing
- A New Qualitative Picture

Comparison between the $S_1 0_0^0$ and $S_2 0_0^0$ SVLF Spectra

Comparison between the $S_1 0_0^0$ and $S_2 0_0^0$ SVLF Spectra

$\mathrm{S}_2 \, \mathrm{0}^0_0$ SVLF Spectrum in the "Clump" Region

Experimental and Interpolated Vibronic Levels at Low Energies

S_1 Vibronic Levels Near the S_2 Electronic Origin

 $|\Psi(123\,\mathrm{cm}^{-1})\rangle = c_{\mathrm{S}_{2},000}|\mathrm{S}_{2},000\rangle + c_{\mathrm{S}_{1},050}|\mathrm{S}_{1},050\rangle + c_{\mathrm{S}_{1},230}|\mathrm{S}_{1},230\rangle + c_{\mathrm{S}_{1},410}|\mathrm{S}_{1},410\rangle + c_{\mathrm{S}_{1},031}|\mathrm{S}_{1},031\rangle$

SVLF Spectra Originating in Different S_2 Vibronic Levels

Internal Mixing & Internal Conversion

Classification of Intramolecular Level Structure

Internal Mixing & Internal Conversion

DPM: Internal Mixing in the Sparse Coupled Level Structure Limit

Internal Mixing in the Sparse Coupled Level Structure Limit

A Little Mathematical Background: The Vibronic Coupling Matrix Element V

S_1 level	$\Delta \mathcal{E}$	$\Delta v_{\rm T}$	$\Delta v_{\overline{\mathrm{T}}}$	Δv_{β}
$ 050\rangle$	-14	0	5	0
$ 230\rangle$	-3	2	3	0
$ 410\rangle$	+9	4	1	0
$ 031\rangle$	-2	0	3	1

$$\begin{split} V \approx \gamma \, \left[1 - \frac{\mathcal{E}_{v'}^{\mathbf{S}_{2}} - \mathcal{E}_{v''}^{\mathbf{S}_{1}}}{E_{\mathbf{S}_{2}}(Q_{0}) - E_{\mathbf{S}_{1}}(Q_{0})} \right] \, \left\langle \chi_{v_{\mathrm{T}}'}^{\mathbf{S}_{2}} \left| \chi_{v_{\mathrm{T}}'}^{\mathbf{S}_{1}} \right\rangle_{Q_{\mathrm{T}}} \left\langle \chi_{v_{\mathrm{T}}'}^{\mathbf{S}_{2}} \right| Q_{\overline{\mathrm{T}}} \right| \chi_{v_{\mathrm{T}}''}^{\mathbf{S}_{1}} \rangle_{Q_{\overline{\mathrm{T}}}} \prod_{j \neq \overline{\mathrm{T}} \neq \mathrm{T}}^{3N-6} \left\langle \chi_{v_{j}'}^{\mathbf{S}_{2}} \left| \chi_{v_{j}''}^{\mathbf{S}_{1}} \right\rangle_{Q_{j}} \right. \\ \left. \gamma = \left\langle \psi_{\mathbf{S}_{2}}(q;Q_{0}) \right| \left(\frac{\partial U(q,Q)}{\partial Q_{\overline{\mathrm{T}}}} \right)_{Q_{0}} \left| \psi_{\mathbf{S}_{1}}(q;Q_{0}) \right\rangle_{q} \end{split}$$

Jortner & Berry, J. Chem. Phys., 1968, 48, 2757. Scharf, Chem. Phys., 1975, 7, 478.

Sharf & Silbey, Chem. Phys. Lett., 1971, 9, 125.

Internal Mixing in the Sparse Coupled Level Structure Limit

A Little Mathematical Background: The Vibronic Coupling Matrix Element V

S_1 level	$\Delta \mathcal{E}$	Δv_{T}	$\Delta v_{\overline{\mathrm{T}}}$	Δv_{β}
$ 050\rangle$	-14	0	5	0
$ 230\rangle$	-3	2	3	0
$ 410\rangle$	+9	4	1	0
$ 031\rangle$	-2	0	3	1

$$V \approx \gamma \left[1 - \frac{\mathcal{E}_{v'}^{S_2} - \mathcal{E}_{v''}^{S_1}}{E_{S_2}(Q_0) - E_{S_1}(Q_0)} \right] \left\langle \chi_{v_T}^{S_2} \left| \chi_{v_T'}^{S_1} \right\rangle_{Q_T} \left\langle \chi_{v_T'}^{S_2} \right| Q_T \left| \chi_{v_T''}^{S_1} \right\rangle_{Q_T} \prod_{j \neq T \neq T}^{3N-6} \left\langle \chi_{v_j'}^{S_2} \right| \chi_{v_j''}^{S_1} \right\rangle_{Q_j} \right]$$
$$\gamma = \left\langle \psi_{S_2}(q;Q_0) \right| \left(\frac{\partial U(q,Q)}{\partial Q_T} \right)_{Q_0} \left| \psi_{S_1}(q;Q_0) \right\rangle_q$$

Jortner & Berry, J. Chem. Phys., 1968, 48, 2757. Sharf & Silbey, Chem. Phys. Lett., 1971, 9, 125. Scharf, Chem. Phys., 1975, 7, 478.

Finally...

Conclusion

- DPM possesses an excitonic splitting of only $123 \, \mathrm{cm}^{-1}$.
- Due to this small splitting the S_2 electronic origin is immersed into a very sparse density of S_1 vibronic levels. As a result, the low-lying S_2 vibronic levels show mixed electronic state character due to internal mixing with near-degenerate S_1 levels.
- The quantum number changes in \overline{T} upon internal mixing $(\Delta v_{\overline{T}} = +1, +3, +5)$ suggest that additional to the internal conversion transitions accounted for by the Jortner-Berry $\Delta v = \pm 1$ propensity rule higher order vibronic mechanisms have to be considered as well.

Scharf, Chem. Phys., 1975, 7, 478.

Outlook

- Currently, CASSCF calculations of the S₁ and S₂ torsional PES are underway to elucidate intensity discrepancies we attribute to mechanical deformations of the PES.
- We currently pursue the study of other bichromophores in which the energy separation between S1 and S2 is varied systematically.

Prof. David F. Plusquellic (NIST)

Prof. Timothy S. Zwier Dr. Esteban E. Baquero Dr. V. Alvin Shubert Tracy A. LeGreve Nathan R. Pillsbury William H. James III Josh J. Newby Chirantha P. Rodrigo Joshua A. Sebree Evan G. Buchanan

Deutsche Akademie der Naturforscher LEOPOLDINA

Department of Energy

