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ABSTRACT 

The phylogeny of freshwater crayfish, including both fossil and extant taxa, is assessed 

using morphologic analysis and nucleotide sequencing. Based on external morphologic 

characters, primarily characters of the carapace and appendages, the crayfish are reconfirmed as 

a monophyletic group. The nearest sister taxon to the crayfish is the Chilenophoberidae. Within 

the crayfish, the longstanding distribution of species among three families is supported. The 

superfamily Astacoidea is redefined to include three families, Astacidae, Cambaridae, and 

Parastacidae. By including the Parastacidae in the Astacoidea, the superfamily Parastacoidea 

becomes superfluous and is now suppressed. The Astacoidea is characterized by several 

synapomorphies: a diaresis of the telson, mobility of the last thoracic segment, and carapace 

groove pattern. Species in the Parastacidae are characterized by change in calcification of the 

telson. Species in the Cambaridae are characterized by the apomorphous annulus ventralis in the 

female and hooks on the ichiopodites of one or more pereiopods. in the male. Species in the 

Astacidae are characterized by an apomorphous medial rostral ridge. Nucleotide sequencing (18s 

and 16s ribosomal mtDNA) of extant crayfish species supports the phylogenetic pattern inferred 

from character analysis. 
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INTRODUCTION 

The freshwater crayfish are decapod crustaceans belonging to the infraorder Astacidea 

(Fig. 1; Hobbs, 1988). Crayfish are generally freshwater aquatic to terrestrial in habit. Crayfish 

are historically classified among three families and two superfamilies (Table 1). The 

superfamilies are Astacoidea and Parastacoidea (Hobbs, 1988). The Astacoidea historically 

comprises the families Astacidae and Cambaridae. The Parastacoidea contains the family 

Parastacidae. Members of the Parastacidae are confined to the Southern Hemisphere, and 

members of the other two families are confined to the Northern Hemisphere. Modern crayfish 

are a relatively small group of organisms. The extant crayfish, 29 genera, embracing 

approximately 478 species, are recognized (Holdrich and Lowery, 1988). Fossil crayfish have 

been assigned to eight species divided among seven genera. Only one known genus of crayfish is 

extinct. The number and diversity of species vary among the three families and show a 

correlation to the diversity of habitats occupied. 

Crayfish are an economically important biologic crop throughout much of the world. 

Various species are cultured and harvested for human consumption. They also provide food for 

other animals. Most research about modern crayfish concerns their ecology, fecundity, and 

disease, all which are of interest for the purposes of aquaculture management. 

Modem crayfish inhabit every continent except Africa and Antarctica; they also inhabit a 

number of islands, such as Madagascar and Cuba (Fig. 2; Hobbs, 1988). The family Astacidae 

has a geographical distribution ranging across Europe, eastern and western Asia, and western 

North America. The geographic range of the Cambaridae includes North America east of the 

Rocky Mountains, Central America, and the Caribbean. The Parastacidae range through South 



America, Madagascar, Australia, New Zealand, and Indonesia. 

Crayfish live in a variety of habitats. The number and diversity of different habitats 

occupied vary among the families. The Astacidae reside in streams and lakes. Their burrows 

extend only into the nearby stream beds and banks (tertiary burrowing) (Hobbs, 1988). The 

Cambaridae exhibit the greatest ecological diversity. In addition to the environments inhabited 

by the Astacidae, the Cambaridae may reside in caves, remain completely in burrows throughout 

their life cycle (primary burrowing), or exhibit burrowing behavior intermediate to the primary 

and tertiary burrowers (secondary burrowing) (Hobbs, 1988). The Parastacidaes include species 

that live in stream and lake environments as well as in burrows (at all three levels). In fact, some 

parastacids may even be considered terrestrial in that they burrow in only dry or moist soil 

(Hogger, 1988). 

Little has been published concerning fossil crayfish and the zoological affinities of the 

group. This is largely because of the scarcity of pre-Cenozoic fossils from freshwater habitats 

(Gray, 1988). Crayfish have a poor fossil record beyond 30 million years, although the clade that 

includes the crayfish putatively dates to the late Paleozoic or early Mesozoic (Schram, 1977; 

Hobbs, 1988; Miller and Ash, 1988; Babcock et al., 1998). 

The purpose of this thesis is to reconstruct the phylogeny of freshwater astacideans, 

including both extinct and extant species. Relationships between the freshwater crayfish and 

several sister groups of marine lobsters are evaluated. Relationships are assessed cladistically 

using morphological criteria and through nucleotide sequencing. New information provides 

clues to the ancestry of crayfish and clarifies relationships within the group. Freshwater 

astacideans are interpreted here as a monophyletic group. In addition to providing information 

about the evolutionary history of freshwater crayfish, this work provides further insight into the 
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relationships among all astacidean groups, including the marine lobsters (chilenophoberids and 

nephropids) and the marine to freshwater erymids. This work adds support to the hypothesis that 

various decapod crustacean groups (crayfish, erymids, and brachyurans) invaded freshwater 

habitats separately and at different times during geologic history. 
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APPROACHES TO THE CLASSIFICATION AND PHYLOGENY OF 

FRESHWATER CRAYFISH 

With the development and implementation of new procedures and technologies in the 

biological sciences, the approaches to the classification of crayfish and many other organisms, 

and subsequently the interpretations of phylogeny, have changed. For crayfish, traditional 

methods of investigation were centered around comparative morphology (Huxley, 1880; Faxon, 

1885; Riek, 1972; Hobbs, 1988), whereas more recent methods place emphasis on nucleotides 

and other molecular indicators of evolutionary history (see summary in Crandall, 1998). In the 

work reported here, both approaches have been followed. This methodology allows comparative 

information from recent and ancient species to be integrated with current molecular information 

obtained from recent species. 

Using comparative morphology, Huxley (1880) produced one of the earliest 

interpretations of the evolutionary history of crayfish (Fig. 3). Huxley's classification of genera 

into suprageneric categories relied primarily on gill structure and ornamentation of the carapace. 

Following the work of Huxley, crayfish phylogeny received little attention until the work of 

Hobbs (1942, 1974, 1988) and Riek (1969, 1971, 1972). These investigators also based 

inferences about taxonomic relations (Fig. 4) on morphology. Hobbs dealt primarily with the 

taxonomy of the Cambaridae and Astacidae, whereas Riek worked with the Parastacoidea. In the 

classification of Hobbs (1988), the primary characters used to classify modem crayfish (Fig. 5) 

are accessory appendages and branchial arrangement. External characters, such as rostral 

appearance and cheliped morphology, were also used but carried less taxonomic weight. In the 

classification of Riek (1969, 1972), the primary characters used to classify modem crayfish (Fig. 
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6) were the extent of separation between grooves, the resting position of the chelae, telson 

structure, and carapace ornamentation. In a cladistic study of morphologic characters in 

decapods, Scholtz and Richter (1995; Fig. 7) provided support for the separation of the 

Nephropoidea (or Homarida) and freshwater crayfish, and reassigned the crayfish to either: 1, a 

clade containing the Brachyura, Anomala, and Thalassinida; or 2, a branch that emerged from the 

Thalassinida. 

As studies of molecular markers became more common in the 1980s and 1990s, a number 

of studies of crayfish phylogeny based on several different markers were published (Patak et al, 

1989; Austin, 1995; Crandall and Fitzpatrick, 1996; Crandall and Cronin, 1997; Lawler and 

Crandall, 1998; Crandall et al., in press). Chromosome variation, allozyme variation, and 

nucleotide variation were some of the factors studied. In general, more research about the 

phylogeny of parastacid crayfish was generated than was research about the astacid and cambarid 

crayfish. Researchers working on the Astacidae and Cambaridae have concentrated on genetic 

variation within populations, and less on the phylogeny of the group (Crandall, 1998). 

Within the Parastacidae (the Southern Hemisphere crayfish species) a number of 

phylogenies based on evidence from molecular methods have been published in recent years. 

Patak and Baldwin (1984) studied electrophoretic and immunochemical markers among genera. 

Patak et al. ( 1989) published another immunochemical analysis of parastacid genera (Fig. 8). 

Austin (1995) used allozymes to reconstruct the phylogeny of several parastacids (Fig. 9). At 

least three published studies (Lawler and Crandall, 1998; Ponniah and Hughes, 1998; Crandall et 

al., in press) used 16s mitochondrial DNA to reconstruct the phylogeny of parastacid crayfish 

(Fig. 10 and 11). 

Within the Astacidae and Cambaridae (the Northern Hemisphere crayfish species, almost 
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all phylogenetic research based on molecular information has concerned the Cambaridae. 

Cambarid phylogeny has been assessed using 16s mitochondrial DNA (Crandall and Fitzpatrick, 

1996; Crandall, 1998). Crandall and Cronin (1997) examined the molecular evolution of 

rhodopsin, a visual pigment, in four cambarid genera and produced a phylogenetic hypothesis 

(Fig. 12). 

Relevant supporting studies of crayfish phylogeny includes studies that involved 

teloblasts, sperm ultrastructure, and 18s ribosomal RNA (rRNA) to address issues related to the 

evolutionary origin of the group. In studies of teloblasts (cells in the posterior growth zones of 

embryos) and sperm ultrastructure, Scholtz (1993) and Jamieson (1991) discovered evidence 

supporting a monophyletic origin for the crayfish. In a study of 18s rRNA among decapods, Kim 

and Abele (1990) showed that Procambarus has a close common ancestry with Callinectes 

(infraorder Brachyura). 
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TAXONOMY OF THE INFRAORDER ASTACIDEA 

Tables 1 and 2 summarize the current classification of crayfish species. Table 1 

summarizes the major crustacean groups relevant to understanding crayfish relationships 

(together with salient morphological features of each group), and Table 2 lists species of crayfish 

and closely related decapod crustaceans. Despite recent technological innovations that improved 

our ability to resolve relationships among biological organisms, the current classification (and 

inferred phylogeny) of decapod groups remains remarkably similar to classifications published 

decades ago (e.g., Glaessner, 1969) 

Relationships within the crayfish 

The evolutionary origin of the freshwater crayfish is a longstanding unresolved issue. 

The central question, that of a monophyletic versus polyphyletic origin, has been debated for 

more than a century. Early investigators, such as Huxley (1880), viewed crayfish as polyphyletic, 

an interpretation supported by the modem geographical separation of the superfamilies. On the 

other hand, recent investigations into embryology and postembryonic development yielded 

information suggesting a monophyletic origin of the freshwater crayfish (Scholtz, 1998). 

Studies, such as those of Huxley (1880), predate the acceptance of plate tectonic theory. 

Because the continents were viewed as immobile, the simplest and most understandable reason 

for the two groups of freshwater crayfish is separate invasions of the freshwater habitat. Indeed, 

this view held even after the acceptance of plate tectonics due to the strong separation of the 

crayfish families between Gondwanan and Laurasian habitats (Hobbs, 1974; Albrecht, 1983). 

Traditional interpretations of the taxonomy of the freshwater crayfish are based solely on 
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modern genera. Primary characters used in the classification of modern crayfish include 

accessory appendages and branchial arrangement. Secondary characters used in classification 

include rostral appearance and cheliped morphology. These external characters can also be used 

to classify fossil material; however, the great emphasis of neo-astacologists on characters that do 

not readily fossilize makes the connection between modern and some ancient crayfish uncertain. 

A monophyletic origin of crayfish was proposed during the early Twentieth Century 

(Ortmann, 1902), but during the following decades, this hypothesis fell out of favor. However, 

during the past decade, biological studies based on development and nucleotide sequences tended 

to support a monophyletic origin of the freshwater crayfish. Several studies of developmental 

and reproductive phases of the life cycle provided support for a common ancestor for both 

Northern Hemisphere and Southern Hemisphere groups (Jamieson, 1991; Scholtz, 1993). For 

example, the posterior growth zone of decapod embryos is composed of teloblasts, large cells 

that produce smaller cells through unequal division in the anterior direction. For malacostrocan 

decapods, the original number of teloblasts was 19 ectoteloblasts and eight mesoteloblasts. 

However, in crayfish a derived character of approximately 40 ectoteloblasts are present, while the 

original eight mesoteloblasts are maintained (Scholtz, 1993). This character is interpreted as a 

synapomorphy that defines the freshwater crayfish. 

Studies based on nucleotide sequence data have led to new progress in understanding the 

phylogeny of freshwater crayfish. However, most studies have been limited in scope addressing 

only the relationships between several genera (Crandall and Fitzpatrick, 1996; Crandall, 1998; 

Lawler and Crandall, 1998; Ponniah and Hughes, 1998). Some recent studies examined 

nucleotide sequences in a larger context (Lawler and Crandall, 1998; Crandall, in press). These 

studies tended to support the higher taxonomic groupings of the freshwater crayfish but also 
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showed several distinct differences from traditional taxonomy at the generic level (e.g., Lawler 

and Crandall, 1998). 

Relationships with other decapods 

Although evolutionary relationships are not well known within Astacidea, the 

superfamilies Astacoidea and Parastacoidea historically have been interpreted as sister groups to 

the Nephropoidea, the marine clawed lobsters (Glaessner, 1969; Tshudy and Babcock, 1997). In 

this interpretation, the Erymidae are considered the ancestral group to the Astacidae. However, a 

number of recent authors considered the Northern and Southern Hemisphere groups to have 

evolved independently from an erymid stock (Albrecht, 1983; Scholtz, 1998). 

The relationships between freshwater crayfish and other clades of decapod crustaceans 

have also been included in recent studies involving nucleotide sequencing and phylogenetic 

methods (Kim and Abele, 1990; Scholtz and Richter, 1995). Although monophyly of the 

freshwater crayfish was supported, their phylogenetic position within the repantian decapods 

remains unclear (Scholtz and Richter, 1995). Interpretations such as that of Scholtz and Richter 

(1995) disputed the traditional assignment of the Nephropidae (clawed lobsters) as a sister group 

to the modem freshwater crayfish. 

Along with the study of modem crayfish genera, some interest has been taken in the fossil 

record of crayfishes. Albrecht (1983) proposed a new family, Protastacidae, as direct ancestors to 

modem crayfish on the basis of suture patterns. The Protastacidae were thought to have been 

derived from an erymid ancestor; protastacids include the genera Pseudastacus and Protastacus 

(Albrecht, 1983). In a revision of the Nephropidae, Tshudy and Babcock (1997) created a new 

family, Chilenophoberidae, containing the genera Chilenophoberus, Paleophoberus, Tillocheles, 
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and Pseudastacus. The Chilenophoberidae were considered an earlier derivative of the erymids 

than the nephropid lobsters (Tshudy and Babcock, 1997). The Chilenophoberidae contains one 

genus formerly included in the Protastacidae by Albrecht (1983). Potentially, either the 

Protastacidae or Chilenophoberidae could have given rise to the freshwater crayfish. 
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FOSSIL AST ACIDS 

Freshwater astacids have a poor fossil record. Only nine described species in eight genera 

are currently recognized. One of the fossil astacids is an erymid. Some of the fossil species were 

described based on a single, incomplete specimen (i.e., Miller and Ash, 1988; Feldmann and 

Pole, 1994). However, a few of the described species are represented by a large number of 

specimens (Aguirre-Urreta, 1992; Garassino, 1997). 

Marine members of the Astacidea have a more substantial fossil record than the 

freshwater members of the infraorder. These groups of animals resided on the continental shelf 

or, less commonly, in brackish water. Because these types of environments are more likely to 

preserve body fossils than terrestrial environments, the diversity and record of these groups are 

more extensive than those of the crayfish. 

Of the fossil crayfish species, most are assigned to Northern Hemisphere families. 

Species described from North America are Pacifastacus chenoderma (Cope, 1870), an astacid, 

and Procambarus primeavus (Packard, 1880), a cambarid. An additional unidentified cambarid 

of Teritiary age was collected in Oklahoma (Feldmann and May, 1991). Two species, described 

as Astacus licenti van Straelen, 1928 and Astacus spinirostris Imaizumi, 1938, have been 

described from Mongolia and Jehol, respectively. Although originally assigned to Astacus, A. 

licenti and A spinirostris require of generic reevaluation. European fossil crayfish belong to the 

family Astacidae. They are assigned to Austropotamobius and Astacus. However, several of the 

proposed Astacus species were reassigned recently to potentially ancestral decapod groups, such 

as the chilenophoberids and protastacids. Three parastacid fossils have been described so far: 
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Lammuastacus longirostris Aguirre-Urreta, 1992, Paranephropsfordycei Feldmann and Pole, 

1994, and a claw resembling a member of the modern genus Euastacus (Sokal, 1987). 

Because the generic scheme of modern crayfish has changed greatly in the past 60 years, 

many of the original generic names for the fossil crayfish are outdated. During the late 

Nineteenth and early Twentieth centuries, all astacid and cambarid crayfishes were assigned to 

the genus Astacus Linnaeus. However, although the recent taxa were reclassified, most of the 

fossil species were not reassigned. Two species that have been reassigned are Astacus 

chenoderma, reassigned to Pacifastacus (Hobbs, 1974), and Cambarus primaevus, reassigned to 

Procambarus (Feldmann et al., 1981). Recent descriptions of new crayfish species have primarily 

placed these animals into extant genera, with the exception of Lammuastacus longirostris 

(Aguirre-Urreta, 1992). 

Several other freshwater or brackish-water decapods have been described. The most 

recent of these is Enoploclytia porteri Miller and Ash, 1988, an erymid, from the Triassic (late 

Carnian) of the Colorado Plateau. Several other crayfish-like creatures have also been collected 

from brackish-water deposits in Europe. These include the genera Protastacus, Pseudastacus, 

and Palaeastacus (Albrecht, 1983). 
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HISTORICAL INTERPRETATIONS OF THE TIMING AND PATTERN OF 

CRAYFISH EVOLUTION 

Historically, crayfish are thought to have evolved from nephropid lobsters at low 

paleolatitudes during the early Mesozoic (Hobbs, 1988; Schram, 1977), although, the first 

definitive appearance of crayfish is in the Late Jurassic or Early Cretaceous (Imaizumi, 1938). 

Body fossils (Miller and Ash, 1988) and trace fossils (Hasiotis and Mitchell, 1993) collected 

from the Upper Triassic of the Colorado Plateau were considered support for this interpretation 

(Hasiotis and Mitchell, 1993). These strata were located in low paleolatitudes during of 

deposition (Babcock et al., 1998). The interpretation of crayfish evolution and distribution 

based on these fossils suggests that astacids invaded freshwater during the early Mesozoic Era 

(-230 mya). Body fossils from the Colorado Plateau sites are the erymid, Enoploclytia porteri 

Miller and Ash (1988). Although erymids are commonly interpreted as crayfish (e.g., Gall and 

Fischer, 1965; Miller and Ash, 1988, Hasiotis and Mitchell, 1993), this view has not received 

universal support (e.g., Glaessner, 1969; Feldmann, 1979). Based on phylogenetic studies 

reported here, the erymids are considered to be a sister group of crayfish. Therefore, the 

Colorado Plateau specimens are not useful for interpretations of crayfish evolution. Crustacean 

remains from the Permian of Antarctica (Babcock et al., 1998) are too fragmentary to render 

definitive judgment. However, work based on recently collected material indicates that they 

represent another sister group to the crayfish (L.E. Babcock, personal communication, 1999). 

The first comprehensive approach to understanding the evolutionary distribution and 

paleobiogeographic movements of the crayfish was by Ortmann (1902). In fact, this view was so 

widely accepted that it was not challenged for more than 50 years (Hobbs, 1988). Ortmann 
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(1902) advocated a monophyletic origin for freshwater crayfish. He hypothesized, without 

benefit of physical evidence, that the ancestral crayfish lived in Sino-Australia and Antarctica 

during the Early Cretaceous. During the Middle Cretaceous, the hypothetical ancestral crayfish 

migrated to Madagascar, giving rise to Astacoides. During the Late Cretaceous, the Astacoidea 

(genus Potamobius) and Parastacoidea diverged. The Astacidae extended their range into North 

America. During the Early Tertiary, Potamobius gave rise hypothetically to the genus Cambarus 

and the Parastacidae became into a South American group and an Australian group. During the 

Late Tertiary, the Astacidae from eastern Asia reached Europe, and the Parastacidae became 

restricted to their present ranges (Ortmann, 1902). 

Although the interpretation by Ortmann (1902) has several inconsistencies with modern 

data, a further attempt was not made to synthesize an evolutionary hypothesis for crayfish until 

the work of Hobbs (1988). In this more recent attempt to explain crayfish evolution, Hobbs 

(1988) followed the example of Huxley (1880) in postulating separate ancestries for the two 

superfamilies. Hobbs (1988) hypothesized that crayfish (Astacidae) invaded freshwater in the 

Ponto-Caspian basin during the Cretaceous. The origin of the Cambaridae was unclear to Hobbs 

(1988), but the genus Procambarus was regarded as the ancestral stock for the family. The 

parastacids were considered an entirely independent group of animals, but the evolutionary 

pathway that gave rise to them was unclear to Hobbs (1988). 

A recent attempt to explain the distribution of crayfish families based on a monophyletic 

ancestry was proposed by Scholz (1998). Scholz (1998) advocated a single invasion into 

freshwater occurring possibly as late as the Triassic, before the breakup of Pangea. With the 

separation of Pangea during the Jurassic, the superfamilies separated with the Astacidae and 

Cambaridae becoming restricted to the Northern Hemisphere continents and the Parastacoidea 
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becoming restricted to the Southern Hemisphere continents. 
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METHODS 

Crayfish phylogeny was investigated using a phylogenetic approach incorporating both 

morphological characters and nucleotide sequences. Relationships within modem taxa of 

crayfish are commonly inferred from the external morphology of appendages (especially 

reproductive appendages), development of sutures, and other external characteristics (Hobbs, 

1981). These external characters are the same as those used in cladistic analysis of fossil 

material. Therefore, analyses that include both the modem and ancient taxa are appropriate. 

Phylogenetic relationships of extant species can also be identified through the comparison of 

nucleotide signatures and other biochemical methods. Comparison of the similarities between 

large ribosomal nucleotide sequences at specific locations provides data that are useful for 

determining the degree of relatedness between groups (Field et al., 1988). Because these 

molecules tend to be conservative in organisms over geologic time, they are suitable for 

phylogenetic reconstruction (Raff, 1988). However, these molecules are not preserved in fossil 

material, so this analysis can only be applied to extant taxa. The combination of morphological 

phylogenetic analysis and molecular methods provides a more complete data set on which to base 

phylogenetic interpretations (Budd, 1996). 

Morphological phylogenetic analysis 

Morphologic analysis was performed on available fossil and representative modem 

species as a prelude to phylogenetic analysis. Representative species of both modem and fossil 

taxa were obtained from museums and collections. Character states used in the morphological 

analysis include external characters based primarily on features of the carapace and appendages 

16 



(Table 3). One species per genus was chosen as a representative for each modem crayfish genus. 

These species were most commonly the type species, unless only an alternate species was 

available from museum or personal collections. Genera in which preserved specimens could not 

be directly observed were scored based on published descriptions and illustrations. All described 

fossil crayfish species were included based on data extracted from publications. Additional taxa 

were analyzed as potential ancestral groups. These additional taxa include members of the 

families Chilenophoberidae, Nephropidae, Erymidae, and Protastacidae, and Palaeopalaemonidae 

(Table 1). 

Phylogenetic analysis or cladistics, is the method of reconstructing phylogenies using 

synapomorphies, or shared derived characters (Wiley, 1981). Taxa are grouped into 

monophyletic groups, or clades, by the possession of these shared adaptations, not by overall 

similarities and differences. The strength of this type of analysis is that relationships are 

interpreted based only on characters that reflect phylogeny, not merely on the overall similarities 

of organisms (Wiley, 1981). The weaknesses of this type of analysis is that homology of all 

characters, particularly in ancient organisms, is not always easy to determine. Homoplasy, or 

character convergence, or parallelism can be difficult to distinguish, especially among fossils. 

Character reversal poses another problem in phylogenetic interpretation. Data sets that include a 

large number of characters can be used to overcome the problems of homoplasy and reversal. 

Characters that are determined to be homoplastic after initial analysis can be easily removed from 

the data set (Swofford, 1993). Maximum parsimony methods may be used to produce a 

phylogenetic interpretation of the taxa. This method allows for phylogenetic construction using 

the least number of evolutionary changes (Maddison and Maddison, 1992). 

Cladistic (phylogenetic) interpretation of relationships was performed using PAUP 
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(Phylogenetic Analysis Using Parsimony) 3.1.1 (Swofford, 1993). A heuristic search under 

standard settings was performed on the data set (Table 4). Characters were unordered and 

unweighted with multiple character states interpreted as polymorphism. Character states were 

polarized using the outgroup method. Palaeopalaemon newberryi, the oldest known decapod 

(Schram et al., 1978), was used as the outgroup taxon for the initial analyses. In more refined 

analyses less distantly related sister groups were used as outgroups for polarizing data. 

Nucleotide analysis 

Nucleotide analysis is performed in a very similar manner to that of cladistic analysis of 

morphology. Following the acquisition of sequences of nucleotide bases, the sequences were 

aligned. Alignment compensates for sequences of different lengths of bases (Thompson et al., 

1994). The length differences may be due to different preparations of the nucleotides for 

sequencing (such as incomplete isolation of the nucleotide fragment, loss of material during 

preparation, or poor condition of original material from which to extract the nucleotides) 

(Crandall and Fitzpatrick, 1996). Alignment produces a set of nucleotide sequences that are most 

closely related to each other by shifting bases through inserting gaps (Thompson et al., 1994). 

This alignment is controlled by parameters of the alignment program, but errors in sequencing 

may lead to inaccurate results (Thompson, et al., 1994). Once the sequences are aligned, they 

can be analyzed in the same manner as morphological data using maximum parsimony methods 

to produce a phylogenetic interpretation (Swofford, 1993). 

The use of nucleotide sequences has proved to be a useful tool for clarifying phylogenetic 

relationships; however, the phylogeny produced is not always consistent with morphological data 

(Budd, 1996). Nucleotide sequences undergo molecular evolution randomly. The rate of change 
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is commonly considered to be relatively constant, although this is not always the case (Raff, 

1988). The rate of change varies both among organisms and among molecules (Wilson et al., 

1988). Therefore, either sudden rapid changes in nucleotide structure or slower changes may 

alter a phylogenetic interpretation. Problems with aligning sequences produced by various 

methods, such as different oligonucleotide primers, may also hinder phylogenetic interpretation 

(Thompson et al, 1994 ). Another weakness of nucleotide analysis is that analysis is limited to 

modem or very recent organisms, because genetic material normally breaks down quickly (using 

evolutionary time scales for reference) (Raff, 1988). 

Nucleotide analysis was performed based on published data sets of both the 16s and 18s 

regions of mitochondrial nucleotides (Table 5) (GenBank, 1999; Crandall, 1996; Crandall, in 

press). Neither nuclear region has published sequences for all three crayfish families. The 

parastacid genera have been widely sequenced in the 16s mitochondrial DNA (mtDNA) region, 

but no published data exist for the 18s nuclear region. A few genera of the Cambaridae have 

been sequenced for both the 16s and 18s regions. In the Astacidae, only Astacus astacus has 

been sequenced for the 18s region. 

Nucleotide sequences were aligned using Clustal W 1.4 (Thompson et al., 1994). 

Aligned nucleotide sequences are presented in Tables 6 and 7. Aligned sequences were analyzed 

using PAUP 3.1.1 (Swofford, 1993). All changes were assigned equal weight. The 18s data set 

was analyzed using an exhaustive search. The 16s data set, because of its larger size, was 

analyzed using a heuristic search under standard settings. The nephropid lobster, Nephrops 

norvegicus was used as the outgroup. Additional possible outgroups were considered, but 

provided neither further resolution nor changes in any positions within the most-parsimonious 

trees. 
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RESULTS 

Results of the morphological and phylogenetic analysis (Fig. 13) support longstanding 

ideas of higher order classification within the freshwater crayfish; they also provide new insight 

into crayfish ancestry. The majority-rule consensus tree (Fig. 13) of the morphological data set 

supports three clades of freshwater crayfish that roughly correspond to the established family

level taxonomic groupings. The nearest sister group to the crayfish is Chilenophoberus, 

suggesting an evolutionary origin different from the historically interpreted sister group, the 

Nephropidae. Additional most-parsimonious arrangements of data sets with certain sister group 

taxa eliminated result in minor rearrangements of some sister taxa and some inferred 

relationships of parastacid genera. However, the general topology of all discovered trees is 

consistent with the consensus tree presented in Figure 13. The majority-rule consensus tree (Fig. 

13) groups most cambarid and all parastacid crayfish into well-defined clades. Similarly, 

astacids appear as a well-defined clade. 

Each clade in the morphological phylogenetic interpretation is distinguished by one or 

more synapomorphy. The Erymidae are characterized by a synapomorphous pattern of carapace 

grooves that includes three parallel, essentially linear, grooves along the lateral side of the 

carapace, the cervical, post-cervical, and branchiocardiac grooves. The Nephropidae possess 

synapomorphies of marginal tel son spines, a shortened cervical groove, and converging post

cervical and branchiocardiac grooves. The Chilenophoberidae are characterized by a 

synapomorphous groove pattern in which the cervical groove extends across the dorsal surface, 

and both the post-cervical and branchiocardiac grooves are reduced. The Astacoidea possess a 

synapomorphous diaresfs of the telson, movable fifth thoracic segment, and groove pattern. The 
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family Astacidae is characterized by a synapomorphous a medial rostal ridge. Species in the 

family Cambaridae are characterized by an apomorphous annulus ventralis in the female and 

hooks on the ichiopodites of one or more pereiopods in the male. The family Parastacidae is 

characterized by a reduction resulting in the lack of first pair of abdominal appendages and a 

synapomorphous change in calcification in the distal portion of the telson .. 

The most-parsimonious arrangement of the 16s nuclear region is given in Figure 14. In 

general, there is reasonably good agreement between the morphology-based consensus tree (Fig. 

13) and the nucleotide-based tree (Fig. 14). The clustering of Engaewa into the cambarid clade, 

which differs from its placement within in the morphological consensus tree, may be due to 

either sequencing problems or convergent evolution. The inferred clustering of parastacids based 

on nucleotide sequences differs from the clustering based on morphology. Most notable are the 

positions of Gramastacus, Tenuibranchiurus, and Parastacoides. Several factors may contribute 

to the difference in positions of these genera between Figures 13 and 14, including missing 

regions of DNA or homoplasy in the morphological data set. 

The 18s DNA data set provided essentially no information about the phylogenetic 

affinities of the crayfish (Fig. 15). Each of the three possible tree arrangements within the 

crayfish was equally parsimonious, and the consensus tree has a polytomy in the crayfish clade. 

In part, the lack of clear resolution of relationships using 18s DNA is due to the large gaps in the 

sequences of some of the taxa evaluated in the study (Table 7). 
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INTERPRETATION 

The three data sets used in this study provide various levels of insight into crayfish 

relationships. Morphological information is especially useful for interpretation of the ancestry of 

crayfish and for crayfish relationships at the family level. Within the Astacoidea, information 

about generic relationships is also provided by morphological information. The 16s nucleotide 

data provide high resolution of generic relationships within the Parastacidae, but the data provide 

relatively little information about the Astacoidea in general. The 18s nucleotide data provide 

little specific information about the phylogenetic relations of astacoidean genera. 

Crayfish ancestry and monophyly 

The morphological data (Fig. 13) support the interpretation of the crayfish as a 

monophyletic group. The Chilenophoberidae represents the most likely sister taxon to the 

Astacoidea. The Chilenophoberidae share a close common ancestry with the Nephropidae, and 

the Nephropidae share a close common ancestry with the Erymidae. 

Nucleotide data provide further support for the monophyly of the freshwater crayfish. All 

crayfish families analyzed in either study were shown to be more closely related to each other 

than to the Nephropidae, the closest living relatives. Due to the limitations of molecular data, 

extinct groups such as the chilenophoberids and erymids could not be analyzed 

Contrary to previous interpretations (e.g., Glaessner, 1969; Albrecht, 1983), the crayfish 

are interpreted as having an ancestor among the chilenophoberid lobsters. Previously, erymid 

lobsters were usually considered to have given rise to\he crayfish (Glaessner, 1969; Albrecht, 

1983). However, shared modifications in carapace groove patterns: extension of the cervical 
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groove, reduction of the post-cervical groove, and horizontal trend of the branchiocardiac groove, 

suggest a chilenophoberid-to-crayfish evolutionary pathway. By constast, erymid lobsters lack 

this character state. The evident monophyletic origin of crayfish lends support to the hypothesis 

(Ortmann, 1902; Scholz, 1993) that crayfish or their immediate ancestors invaded freshwater 

habitats only once. 

Due to the well-supported monophyly of the freshwater crayfish, reassignment of all 

families into a single superfamily is warranted. Because the previous classification placed the 

Southern Hemisphere group and Northern Hemisphere groups in separate superfamilies within 

the Astacidea, each were give equal rank with the nephropid lobsters and interpreted as equally 

closly related to the nephropids as to each other. Placement of the crayfish into a single 

superfamily illustrates the monophyletic origin of the group. Assignment of all crayfish families 

to a single superfamily will also place the crayfish at equal taxonomic ranking with the nephropid 

and erymid superfamilies. The superfamily Parastacoidea is suppressed due to its monofamilial 

status and all three families are placed into the redefined superfamily Astacoidea. 

Several other reassignments may be warranted among the outgroup taxa. The family 

Protastacidae is not supported, because its contained species are grouped within the crayfish 

clade rather than elsewhere. Protastacus, which was previously defined as the type genus for the 

family Protastacidae (Albrecht, 1983), is included in the crayfish clade. Here, Protastacus is 

interpreted as an astacid crayfish. Among sister groups of the crayfish, some decapods generally 

considered to be erymids cluster in separate regions of the majority-rule consensus tree (Fig. 13). 

Pending further investigation, two genera, Paleastacus and Pseudastacus, are tentatively 

reassigned to the Chilenophoberidae (Fig. 13). 

The interpretation of crayfish ancestry presented here is supported by the inferred 
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evolution of carapace suture patterns (Fig. 16). The pattern of sutures probably represents sites 

of muscle attachment and potential somite boundaries (Glaessner, 1969; Chong and Foster, 1976; 

Albrecht, 1983; Tshudy and Babcock, 1997). In the Erymidae, three grooves extend across the 

dorsal surface in a nearly parallel manner (Fig. 16b). The suture patterns of the nephropids and 

chilenophoberids are both derivations of this basic three-suture pattern. Evolution of suture 

patterns in the Nephropoidea involved reduction of the cervical, inferior, and gastro-orbital 

grooves (Fig. 16c). The postcervical groove extended across the dorsal surface, and the 

branchiocardiac groove became more horizontal near the dorsal surface. In the 

Chilenophoberidae, the cervical groove extended across the dorsal surface, whereas the 

postcervical groove became reduced and joined with the cervical groove laterally (Fig. 16d). The 

branchiocardiac groove became Jess strongly impressed laterally and more horizontally trending 

near the dorsal surface. In both the Astacoidea and Parastacoidea, the suture pattern appears to 

be a further modification of the chilenophoberid condition (Fig. 16f). The hepatic, inferior, and 

gastro-orbital grooves became obsolete. The postcervical groove is further reduced and is 

present only near the dorsal surface where it branches from the cervical groove. The cervical 

groove became more sinuous in shape along the lateral side. The branchiocardiac groove is only 

present as a horizontal groove near the dorsal surface. Minor modifications of the basic crayfish 

suture pattern occur within the clade (Fig. 17). For example, in the Cambaridae, the postcervical 

groove is weekly impressed. The extent of separation between the postcervical and 

branchiocardiac grooves also varies, especially within the Parastacidae. Reconstructions of the 

suture patterns in the Protastacidae are not different from the crayfish condition (Fig 16e). 

The monophyly and ancestry of the crayfish are also expressed in the development of the 

telson (Fig. 16). Over evolutionary time, the shape of the telson changed from triangular (Fig. 
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16a) to more quadrate in shape (Fig. 16f). This change was accompanied by the development of 

marginal spines in the Nephropidae. In the freshwater crayfish, a diaresis was developed; the 

diaresis allows for bending of the telson. In the Parastacidae, bending the telson is accomplished 

by a change in calcification, such as in distal membranous sections of the exoskeleton. The 

Astacoidea have an actual break between the proximal and distal portions of the tel son. The 

Protastacidae also possess a diaresis of the tel son. None of the marine lobsters possesses a 

diaresis. 

Several additional characters unite the crayfish as a monophyletic taxon. One of these is 

the mobility of the last thoracic sternite. In the Nephropoidea and the Erymidae, the last thoracic 

sternite is fused rather than mobile. The lack of a longitudinal medial suture along the carapace 

(Fig. 17) also separates the crayfish from all additional groups in the analysis. Developmental 

aspects, such as lack of a larval stage and number of ectoteloblasts in the embryonic growth zone, 

further support a monophyletic grouping of freshwater crayfish (Table 2; Albrecht, 1983; 

Scholtz, 1995). 

Relationships among the freshwater crayfish families 

Data presented in the morphological and 16s nucleotide study support the division of 

crayfish in to two super-familial groups. The separation of the crayfish into two clades is based 

on several apomorphic characters. Synapomorphies uniting the crayfish of the Southern 

Hemisphere include the diaresis of the telson marked by a change in calcification. Characters 

such as modification of the first pair of pleopods in the male for sperm transport and presence of 

a true diaresis of the telson unite the crayfish of the Northern Hemisphere. Within the Northern 

Hemisphere group, two clades are present. The clade including Cambarus is united by a number 
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of synapomorphies including the presence of an annulus ventralis in the female and hooks 

present on the ischia of one or more pereiopods of the male. The clade containing Astacus is 

united by the presence of an apical median ridge on the rostrum and the absence of the annulus 

ventralis and hooks on the ischia of the male pereiopods. 

Grouping freshwater crayfish genera into these three clades reflects, to a large extent, the 

historical interpretation of crayfish relationships. The three clades have been interpreted as 

separate families, the Parastacidae, Cambaridae, and Astacidae (Hobbs, 1988). The monophyly 

of each of these groups is strongly supported by the morphological data. Monophyly of the 

Astacidae has been questioned based on the lack of good apomorphic characters and the question 

of evolutionary distribution (Scholtz, 1998). However, the morphological data presented here 

strongly support monophyly of the Astacidae (Fig. 13). The 18s nucleotide data set, however, 

does raise some questions (Fig. 15). The genetic difference is not greatly different between 

members of the same cambarid genus (P. clarkii and P. leonensis) and Astacus, a member of the 

Astacidae, because all arrangements between the three taxa were equally parsimonious. 

However, due to the limited data set of 18s nucleotide sequences, the morphological data may 

provide better resolution for phylogenetic relationships. 

Relationships among genera of the Parastacidae 

The Parastacidae are separated into two clades in the morphological interpretation of 

phylogeny and several small clades in the 16s nucleotide interpretation. The placement of 

Gramastacus as the sister group to the other freshwater crayfish in the morphological analysis is 

not supported by the nucleotide interpretation. Much
1 

of the groupings and tree topology of the 

two trees are similar; however, key differences are in the placement of Tenuibranchiurus, 
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Parastacoides, and Engaewa. Part of the reason for the change in relative positions of the taxa 

may be due to the incorporation of more species within the morphological data set, including the 

South American genera Virilastacus, Samastacus, and Parastacus. Support for some of the 

placements within the Parastacoidea is not strong, as is shown by a low percentage of trees 

supporting a particular grouping (Fig. 15). 

Both phylogenetic interpretations differ from historical interpretations. Although the 

number of clades in the interpretation by Riek (1972; Fig. 6) is not consistent with the 

interpretations from these data sets, several relationships have been preserved to some degree, 

especially within the morphological interpretation. Some of the Riek (1972) groupings, for 

example, the Tenuibranchiurus, Engaewa, Engaeus, and Parastacus group, are each included in 

the same clade within the morphological interpretation. The 16s nucleotide data set matches well 

with the Crandall et al. (in press) interpretation. Crandall separates the Parastacidae into three 

clades: the first containing Cherax, Geocherax, Gramastacus, Tenuibranchiurus, and Engaeus; 

the second containing Paranephrops, Parastacoides, Euastacus, and Astacopsis; and the third 

clade containing Engaewa. This division is closely approximated in the 16s investigation, 

although the placements of Cherax and Engaewa are different. Placement of Engaewa within 

the cambarid crayfish clade is due to an arbitrary effect based on the amount of separation from 

the remainder of the parastacids. 

Relationships among genera of the Cambaridae 

Historical interpretations of the Cambaridae recognized three subfamilies, Cambarellinae, 

Cambaroidinae, and Cambarinae. Cambarinae encompasses the majority of the genera, with both 

of the other two subfamilies being monogeneric (Fig. 5) (Hobbs, 1974). The Cambarellinae 
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included the genus Camharellus, and Cambaroidinae included Cambaroides. The morphological 

study did not support the concept of three distinct subfamilies. In fact, Cambaroides was placed 

within the Astacidae but in a sister group position to the remainder of the astacid genera. The 

Cambaroidinae as previously viewed were a transitional group between the two families of the 

Astacoidea (Hobbs, 1988) due to the presence of only a partial suite of cambarid characters. The 

phylogenetic position of Cambaroides in the consensus tree reinforces that interpretation. The 

placement of Cambarellus within the remainder of the Cambaridae reflects the lack of significant 

characters for separation of the subfamily. Initial separation was based on a slightly different 

branchial formula, mobility of the annulus ventralis, and placement of ischial hooks on the 

pereiopods (Hobbs, 1974). These features are relatively plastic as is shown by the variation of 

these characters within the subfamily Cambarinae (Hobbs, 1974). 

Relationships among genera of the Astacidae 

Within this study, the Astacidae have been reconstructed to include the modern astacids, 

Cambaroides, and all crayfish fossils known from the Northern Hemisphere. The relationships 

between the three extant genera, Astacus, Austropotamobius, and Pacifastacus are identical to 

those proposed by Hobbs (1988). The incorporation of Cambaroides was discussed earlier in 

this thesis. Placing all of the Northern Hemisphere fossil species into one clade has interesting 

implications in terms of crayfish evolution. Only one of the fossil species was originally placed 

in another family. Procambarus primeavus was originally interpreted as a cambarid. However, 

this species does possess the synapomorphic medial rostral ridge of the Astacidae (Feldmann et 

al., 1981). In the case of P. primeavus, it is uncertainiwhether the species should be reassigned 

taxonomically because preserved fossils lack some key morphological characters. Recent 
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interpretation of Protastacus politus by Albrecht (1983) placed this brackish-water organism into 

Protastacus; however, the original generic designation was Astacus. The fact that the this 

species was collected from brackish-water deposits does not negate its affinities with true 

crayfish, for several modem species along the Pacific coast migrate into brackish water during 

part of their yearly life cycle (Hobbs, 1988). As a result of including Protastacus in the 

Astacidae, the family Protastacidae is abandoned. 

Evolutionary considerations 

It is likely that crayfish only invaded the freshwater environment once. Although a 

monophyletic origin does not necessarily imply a single invasion, it certainly provides support for 

this interpretation. The fact that crayfish have quite similar habitats suggests that the ancestor 

lived in the same way. The loss of a free-living larval state is a condition common to freshwater 

arthropods (Grey, 1988). However, the crayfish, are united in several characteristics of the young 

hatchlings. Hatchlings possess all appendages except the first pleopods and the uropods, the 

telson has the adult shape, and the pereiopods are without setose exopods (Schram, 1993). 

Although the fossil record of freshwater crayfish is poor, some interpretations can be 

made regarding the timing of evolution within the group. The Chilenophoberidae, from which the 

crayfish diverged, probably arose from an erymid ancestry by the end of the Permian (Tshudy and 

Babcock, 1997). The oldest definitive crayfish fossils date from the Late Jurassic to Early 

Cretaceous (Table 8) (Imaizumi, 1938). These fossils, Astacus licenti and A spinirostris, 

represent crayfish that possess good astacid characters, indicating that the radiation of crayfish 

into separate families had already occurred. Scholz (1998) proposed a Triassic invasion of 

freshwater by astacoideans. This invasion was followed by establishment of separate families as 
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the supercontinent Pangea separated during the Jurassic (Scholz, 1998). Further dispersal and 

diversification of the two crayfish stocks into families and genera remains unclear due to 

insufficient fossil evidence. These features, along with the inferred monophyletic origin of 

crayfish, suggest a single invasion into freshwater. 
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SUMMARY 

Cladistic and nucleotide sequence analysis of all fossil and modern crayfish provides 

information about crayfish affinities and relationships. The closest relatives of the freshwater 

crayfish are the Chilenophoberidae. The Chilenophoberidae and the Nephropoidea are 

interpreted to have evolved from an erymid ancestor. The family Protastacidae groups within the 

crayfish clade, which leads to the suppression of the name Protastacidae. Primary support for 

crayfish ancestry is based the evolution of carapace groove patterns. 

The freshwater crayfish are a monophyletic group consisting of three families. 

Monophyly of the crayfish is established based on diaresis of the telson, carapace groove pattern, 

mobility of last thoracic sternite, and developmental characters. The three monophyletic families 

within the freshwater crayfish are each recognized by a set of synapomorphies. These families 

are consistent in a general way with the traditional interpretation of the Parastacidae, Astacidae, 

and Cambaridae. The subfamilies within the Cambaridae were not supported by this study. A 

single freshwater invasion by crayfish is supported by the similarity of habitats and 

developmental adaptations. On the best available evidence, the timing of the astacid invasion of 

freshwater is inferred to have occurred during the Triassic. 
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Figure 1. Dorsal (a) and ventral (b) views of male Pacifastacus leniusculus (Holdrich and Reeve, 
1988). 
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Figure 2. Global distribution of freshwater crayfish (from Scholz, 1998). Symbols: Astacidae, black; Cambaridae, stippled; Parastacidae, striped. Based on information presented here, Cambaridae from eastern Asia are reassigned to the Astacidae. 
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Figure 3. Classification of crayfish proposed by Huxley (1880), based on comparative 
morphologic criteria. 
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( 1972). Relationships were assessed using 
morphologic criteria. 
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Figure 7. Cladogram showing relationships among major groups of repantian decapods. Numbers refer to apomorphies listed in the original paper (Scholtz and Richter, 1995). 
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Figure 14. Majority-rule consensus tree based on 6 most-parsimonious trees of the 16s mtDNA data set (see Table 6) determined using a heuristic search. Tree length equals 669. Sequences from Genbank (1999), Crandall and Fitzpatrick (1996), and Crandall et al. (in press). 
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Figure 15. Majority-rule consensus tree based on 3 most-parsimonious trees of the 18s mtDNA data set (see Table 7) determined using a heuristic search. Tree length equals 113. Sequences from Genbank (1999), Crandall and Fitzpatrick (1996), and Crandall et al. (in press). 
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Figure 16. Generalized carapace suture patterns and telson structure of taxa included in the 
morphological study: A) Palaeopalaemonidae (after Schram et al., 1978); B) Erymidae (after 
Glaessner, 1969); C) Nephropidae (after Tshudy and Babcock, 1997); D) Chilenophoberidae 
(after Chong and Forster, 1976); E) Protastacidae (after Albrecht, 1983); F) Astacoidea and 
Parastacoidea. Grooves are identified as follows: a, antennular; be, branchiocardiac; c, cervical; 
g, gastro-orbital; h, hepatic; i, inferior; pc, postcervical. 
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Figure 17. Lateral and dorsal views of freshwater crayifsh suture patterns: A) Chreax 
preisii; B) Cambarus bartonii bartonii; C) ProcallJ:barus blandigii blandigii; D) Astacus 
astacus; E) Pacifastacus gambellii. 

50 



Table 1. Selected crustacean groups and their key morphological characters 

This is a list of the families of freshwater crayfish, selected sister groups, and nomenclatural 
categories of both crayfish and lobsters (as currently recognized) above the family level. Key 
morphological characters of each taxonomic group are included. 

Subphylum Crustacea (Glaessner, 1969; Hobbs, 1988) 
-arthropods that in at least one stage in their life history possess two pairs of antennae and three 
pairs of pastoral appendages 
-typically gill-bearing and aquatic 

Class Malacostraca (Glaessner, 1969; Hobbs, 1988) 
-body composed of eight thoracic and six abdominal segments 
-female genital aperture on the sixth thoracic segment, male genital aperture located on the 
eighth thoracic segment 
-carapace enveloping thoracic region 
-movable paired stalked eyes 
-biramous antennules 
-flattened scale-like exopod on the antennae 
-generally elongate, ventrally flexed abdomen 
-commonly developed tail fan composed of uropods and the telson 

Order Decapoda (Glaessner, 1969; Hobbs, 1988) 
-carapace is fused dorsally with all of the thoracic segments 
-gills are typically arranged into three series: podobranchiae, arthrobranchiae, 
pleurobranchie 
-first 3 pairs of thoracic appendages modified as maxillopods 
-no more than 5 pairs are locamotory pereiopods 
-one or more pairs of pereiopods are chelate, with the first pair commonly strongly 
chelate 
-exopods of pereiopods are typically lost in adults 

lnfraorder Astacidea (Glaessner, 1969; Hobbs, 1988) 
-cephalothorax subcylindrical, rarely strongly compressed 
-rostrum well developed 
-antennae with five-segmented stalk and scale 
-carapace not fused with epistome 
-abdomen extended and bears well developed pleura and uropods 
-abdominal pleura well deveoloped 
-uropod lateral ramus divided by diaresis (transverse suture) 
-first three pairs of pereiopods chelate 
-all pleopods lack an appendix intema 
-genital openings coxal 
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Family Erymidae (Glaessner, 1969) 
-carapace with well developed, roughly parallel cervical, postcervial, and 
branchiocardiac grooves 
-typically with median suture and fusiform intercalated plate 

Family Chilenophoberidae (Tsudy and Babcock, 1997) 
-carapace with well developed cervical and branciocardiac grooves and 
weakly developed post-cervical and inferior grooves 
-lack of fusiform, intercalated plate 
-medial carina present on the cepahalic region 

Superfamily Nephropoidea (Glaessner, 1969; Hobbs, 1988) 
-carapace median longitudinal suture or spiniform ridge 
-first abdominal segment of male with pleopods that serve together to transport 
spermatophore to female 
-young hatch as larvae 
-carapace with well developed postcervical and branchiocardiac grooves 
-sternal plate between fifth pereiopods is fused to the anterior complex sternal 
element 
-embryo with 19 ectoteloblasts in posterior growth zone (Scholtz, 1995) 

Superfamily Astacoidea (Glaessner, 1969; Hobbs, 1988) 
-lack of medial longitudinal suture 
-carapace with well developed cervical and branchiocardiac grooves 
-some podobranchiae provided with bilobed plaited laminae 
-first rami of antennules subequal in size 
-telson and exopods of uropods with diaresis, 
-podobranchiae of second and third maxillipeds and first three pereiopods with 
broad plaited laminae 
-embryo with around 40 ectoteloblasts in posterior growth zone (Scholtz, 1995) 
-pleopods in male modified for individual sperm transfer 

Family Astacidae (Hobbs, 1988) 
-distal part of first pereiopod is subtubular and devoid of ornamentation 
other than apical spoon-like lobes 

-young hatch as miniatures of the adult and are attached to the pleopods of the 
mother by a telson thread 
-first pair of male pleopods modified for individual sperm transfer 
-pleopods of male second abdomi11:al segment posses spiral appendix to the 
endopod 

Family Cambaridae (Hobbs, 1988) 
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-cyclic dimorphism present in males in which distal part of pleopod bears a 
shallow (open) or deeply embedded sperm groove and ornamentation often 
consisting of spines, plates, knobs, or setal tuffs 
-hooks present of ischia of one or more pereiopods 
-females (except for Cambaroidinae) with annulus ventralis in median 
between fourth and fifth pereiopods 
-absence of postcoxal lappets on articular membrane just posteriodorsal to 
base of fourth pereiopod 

-young hatch as miniatures of the adult and are attached to the pleopods of the 
mother by a telson thread 
-first pair of male pleopods modified for individual sperm transfer 
-pleopods of male second abdominal segment posses spiral appendix to the 
endopod 

Family Parastacidae (Hobbs, 1988) 
-pleopods absent from first abdominal segment 
-pleopods on second segment of male lack spiral appendix, 
-podobranchiae provided with rudimentary laminae 
-young hatch as miniatures of adult, but cling to the pleopods of the mother 
by their pereiopods 
-telson usually without transverse suture, but diaresis is marked by change in 
calcification 
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Table 2. Classification of species included the morphological study 

Phylum Arthropoda Siebold and Stannius, 1845 
Subphylum Crustacea Pennant, 1777 

Class Malacostraca Latreille, 1806 
Order Decapoda Latreille, 1803 

Infraorder Caridea Dana, 1852 
tFamily Palaeomonidae Rafinesque, 1815 

tPalaeopalaemon newberyii Whitfield, 1880 
Infraorder Palinura Latreille, 1803 

tFamily Eryonidae de Haan, 1841 
t Eryon arctiformis (van Schlotheim, 1820) 

Infraorder Astacidea Latreille, 1802-1803 
tFamily Erymidae Van Straelen, 1924 

t Eryma fosteri Feldmann, 1979 
t Enoploclytia porteri Miller and Ash, 1988 

Family Nephropidae Dana, 1852 
Homarus americanus Milne Edwards, 1837 
tHoploparia stokesi (Weller, 1903) 
tMetanephrops rossensis Feldmann, Tshudy, and Thomson, 1993 

tFamily Chilenophoberidae Tshudy and Babcock, 1997 
tChilenophoberus actacamensis Chong and Forster, 1976 
t Pseudastacus pustulosis (Munster, 1839) 

tFamily Chilenophoberidae? Tshudy and Babcock, 1997 
t Palaeastacus argoviensis Forster and Rieber, 1982 [tentatively 

reassigned from family Eryimidae Van Straelen, 1924] 
t Erymastacus bordenensis Copeland, 1960 [tentatively reassigned 

from family Eryimidae Van Straelen, 1924] 
Superfamily Astacoidea De Haan, 1841 

Family Astacidae Latreille, 1802 
Astacus astacus (Linnaeus, 1758) 
t Astacus licenti (van Straelen, 1928) 
tAstacus spinirostris (Imaizumi, 1838) 
t Austropotamobius llopsi (Via, 1971) 
Austropotamobius torrentius (Schrank, 1803) 
Cambaroides similis (Koebel, 1892) [reassigned from family 

Cambaridae, subfamily Cambaroidinae Villalobos, 1955] 
Pacifastacus gambelli (Girard, 1852) 
t Pac(fastacus chenoderma (Cope, 1870) 
t Protastacus politus (Schlliter, 1868) [reassigned from tFamily 

Protastacidae Albrecht, 1983] 
Family Cambaridae Hobbs, 1942 [formerly subfamily Cambarinae Hobbs, 

1942] , 
Barbicambarus cornutus (Faxon, 1884) 
Bouchardina robisoni Hobbs, 1977 
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Cambarellus montezumae (Saussure, 1857) [reassigned from 
subfamily Cambarellinae Laguarda, 1961] 

Cambarus bartonii (Fabricius, 1798) 
Distocambarus crockeri Hobbs and Carlson, 1983 
Fallicambarus Joidens (Cottle, 1863) 
Faxonella clypeata (Hay, 1899) 
Hobbseus orconectoides Fitzpatrick and Payne, 1968 
Orconectes rusticus (Girard, 1852) 
Procambarus blandingii (Harlan, 1830) 
t Procambarus primeavus (Packard, 1880) [assignment uncertain] 
Troglocambarus maclenei Hobbs, 1942 

Family Parastacidae Huxley, 1879 

t denotes an extinct taxon 

Astacoides madagascarensis Petit, 1923 
Astacopsis franklinii Huxley, 1878 
Cherax preisii (Erichson, 1846) 
Engaeusfossor(Erichson, 1846) 
Engaewa subcoerulea Riek, 1967 
Euastacoides setosus Riek, 1956 
Euastacus armatus (van Martens, 1866) 
Geocherax gracilis Clark, 1936 
Gramastacus insolitus Riek, 1972 
t Lammuastacus longirostris Aguirre-Urreta, 1992 
t Paranephrops fordycei Feldmann and Pole, 1994 
Paranephrops planifrons White, 1842 
Parastacoides tasmanicus (Erichson, 1846) 
Parastacus pugnax (Poeppig, 1865) 
Samastacus spinifrons (Philippi, 1882) 
Tenuibranchiurus glypticus Riek, 1951 
Virilastacus araucanius (Faxon, 1914) 
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Table 3. Character states used in morphological study 

1) rostral ornamentation 
0-smooth, no indication of 

break between acumen and 
rest of rostrum 

I-margins interrupted without 
bearing lateral spines 

2-with lateral spines 
3-serrate, spiny 
4-rostrum absent 

2) apical median ridge of rostrum 
0-absent 
I-present 

3) rostrum length 
0-long 
I-reduced 

4) lateral ridges on rostrum 
0-absent 
I-present 

5) pereiopods with chelae 
0-one through four 
1-one through three 

6) chelae of the first pereiopod 
(length/width) 
0-elongate (>2.5) 
I-slender (1.5-2.5) 
2-ovate, broad (<1.5) 

7) ventro-lateral margin of the chelae 
0-without tubercles 
1-with few tubercles 
2-with many tubercles 
3-tubercles arranged in 

discrete rows 

8) medial portion of dactyl 
0-without tubercles 
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1-with randomly arranged 
tubercles 

2-one row of tubercles 
3-two rows of tubercles 

9) interior spines on the carpus 
0-absent 
I-present 
2-reduced 

10) transverse suture across the telson 
0-absent 
I-partial 
2-complete 

11) transverse suture on exopods of uropods 
0-absent 
I-present 

12) distomedial spine of mesial uropod 
ramus 
0-absent 
I-present 

13) hooks on ishiopodites of pereiopods 
0-absent 
1-only on third 
2-on second and third 
3-on third and fourth 

14) annulus ventralis 
0-absent 
I-present 

15) first pair of pleopods in male 
0-present 
I-absent 
2-modified for sperm transport 

16) carapace medial ridge 
0-present 



I-absent 

17) fifth throracic segment 
0-fused to fourth segment 
I-moveable 

19) lateral view of main groove 
0-straight 
I-sinuous 

20) post-cervical groove 
0-u-shaped 
1-too close to cervical groove 

to differentiate 
2-v-shaped 

21) antennular groove 
0-present 
I-absent 

22) areola 
0-absent 
1-broad, but curving inward 
2-joined together 

23) pairs of post-orbital ridges 
0-none 
1-one, prominent 
2-two, prominent 
3-one, greatly reduced 
4-three 

24) post-orbital spine 
0-absent 
I-present 

25) cervical spine 
0-absent 
I-present 

26) branchiostegal spine 
0-absent 
I-present 
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18) dorsal aspect of cervical groove 
0-u-shaped 
1-v-shaped 
2-absent (lateral grooves do not 

join) 

27) ventral keel 
0-absent 
I-present 

28) hepatic groove 
0-present 
I-absent 

29) gastro-orbital groove 
0-present 
I-reduced 
2-absent 

30) antenna! carina 
0-carina present with or 

without spines 
I-spines only 
2-spines and carina absent 

31) trend of branchiocardiac groove 
0-vertical 
1-horizontal 



Table 4. Data matrix for morphological study 

I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

I +Palaeopalaemonidae newberri 0 0 0 0 2 I 0 0 0 0 0 0 0 0 0 2 +Eryma fosteri 0 0 0 0 I 2 I I 0 0 I ? 0 0 0 3 +Erymastacus bordenensis 2 0 0 0 I I I I ? ? ? ? 0 0 0 4 +Enoploclytia porteri 3 I 0 ? I 0 I 0 0 0 0 0 0 0 0 5 +Palaeastacus argoviensis 2 0 0 0 I I 2 I 0 0 0 I 0 0 0 6 +Chilenophoberus actacamensis ? ? ? ? I 0 0 0 0 0 I ? 0 0 0 7 +Pseudastacus pustulosis 2 0 0 0 I I 2 0 0 0 I ? 0 0 0 8 +Protastacus politus ? ? ? ? I ? ? ? ? I I 0 0 0 0 9 +Metanephrops rossensis 2 0 0 0 I I 0 0 0 0 0 0 0 0 0 IO +Hoploparia stokesi 3 0 0 I I 0 2 I 0 0 I 0 0 0 0 11 Homarus americanus 2 0 0 0 I 2 2 0 0 0 I 0 0 0 0 12 +Astacus licenti 0 I 0 0 I I I I l I I I ? ? 2 13 +Astacus spinirostris 2 0 0 0 I I 3 ' 2 I I I ? ? 2 14 Astacus astacus 2 I 0 I I · 2 I I 2 2 I I 0 0 2 15 +Austropotamobius llopsi 2 I 0 0 I . I 2 I 0 2 I l 0 0 2 16 Austropotamobius torrentius 2 I 0 I I 2 2 I 2 2 I I 0 0 2 17 +Pacifastacus chenoderma 0 0 0 I I 2 2 I 0 2 I I 0 0 2 18 Pacifastacus gambelli 2 I 0 I I 2 2 I 0 I I l 0 0 2 19 +Procambarus primeavus 2 I 0 I I 2 2 I 0 2 I I ? I 2 20 Procambarus b. blandingii 2 0 0 I I 0 I I I 2 I I 3 I 2 21 Cambarus b. bartonii 0 0 0 I I I 0 0 I 2 I I 3 I 2 22 Barbicambarus comutus 2 0 0 I I 2 3 0 I 2 I I I 0 2 
23 Distocambarus crockeri 0 0 0 I I I 3 2 2 2 I I I I 2 24 Fallicambarus foidens 0 0 0 I I I 0 2 I 2 I I I I 2 
25 Faxonella clypeata 0 0 0 I I I 0 0 2 2 I I I I 2 
26 Hobbseus orconectoides 0 0 I 0 I I 2 0 I 2 I I I I 2 
27 Orconectes r. rusticus 2 0 0 I I I 0 I I 2 I 1 I I 2 28 Troglocambarus maclenei 0 0 0 0 I 0 0 0 0 2 I 0 3 1 2 
29 Bouchardina robisoni 

"• 1 0 0 1 1 0/1 0 0 I 2 1 ? I I 2 
30 Cambarellus montezumae 2 0 0 0 I 0 0 0 0 2 1 ? 2 I 2 
31 Cambaroides similis 0 0 0 0 I 2 0 1 I 0 I I 012 OIi 2 
32 +Lammuastacus longirostris 3 0 0 1 I 0/1 3 I 2 ? I I 0 0 I 
33 +Paranephrops fordycei 3 0 0 1 I 0 3 2 I 0 I ? 0 0 I 
34 Engaeus fossor 0 0 I I I 0/1 0 2 0 0 1 I 0 0 I 
35 Engaewa subcoerulea 2 1 I 0 I I 0 0 0 0 I I 0 0 I 
36 Gramastacus insolitus 2 0 0 I I I 0 0 0 0 I ? 0 0 I 
37 Parastacus pugnax 0 0 I I I I OIi 0 2 0 I ? 0 0 I 
38 Tenuibranchiurus glypticus 0 0 I 0 I 0/1 0 I 0 0 1 ? 0 0 I 
39 Geocherax gracilis 0 0 0 0 I I 2 0 1 0 l I 0 0 I 
40 Astacoides madagascarensis 2 0 I 0 I 0 I 0 I Oil I ? 0 0 I 
41 Astacopsis franklinii 2 I 0 1 I 1 3 2 I 0 I I 0 0 I 
42 Cherax preisii 0 0 0 0 I OIi 3 0 I 0 I 1 0 0 I 
43 Eustacoides setosus 0 0 0 0 I I 3 2 I I 1 0 0 0 I 
44 Euastacus armatus 3 0 0 1 I I 3 0 I I l 0 0 0 I 
45 Paranephrops planifrons 3 0 0 0 I ( 0 3 I I 0 I ? 0 0 I 
46 Parastacoides tasmanicus 0 0 I 0 I I 0 I 0 0 I ? 0 0 I 
47 Samastacus spinifrons 2 0 0 0 I 2 0 I 2 0 I ? 0 0 I 
48 Virilastacus araucanius 0 0 I I 1 2 2 l 2 0 I I 0 0 l 
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+Palaeopalaemonidae newberri 0 
+ Eryma fosteri 0 
+Erymastacus bordenensis 0 
+Enoploclytia porteri I 
+Palaeastacus argoviensis 0 
+Chilenophoberus actacamensis 0 
+Pseudastacus pustulosis 0 
+Protastacus politus 0 
+Metanephrops rossensis 0 
+Hoploparia stokesi 0 
Homarus americanus 0 
+Astacus licenti I 
+Astacus spinirostris I 
Astacus astacus I 
+Austropotamobius llopsi 0 
Austropotamobius torrentius I 
+Pacifastacus chenoderma I 
Pacifastacus gambelli I 
+Procambarus primeavus I 
Procambarus b. blandingii I 
Cambarus b. bartonii I 
Barbicambarus cornutus I 
Distocambarus crockeri I 
Fallicambarus foidens I 
Faxonella clypeata I 
Hobbseus orconectoides I 
Orconectes r. rusticus I 
Troglocambarus maclenei I 
Bouchardina robisoni I 
Cambarellus montezumae I 
Cambaroides similis I 
+Lammuastacus longirostris I 
+Paranephrops fordycei I 
Engaeus fossor I 
Engaewa subcoerulea I 
Gramastacus insolitus I 
Parastacus pugnax I 
Tenuibranchiurus glypticus I 
Geocherax gracilis I 
Astacoides madagascarensis I 
Astacopsis franklinii I 
Cherax preisii I 
Eustacoides setosus I 
Euastacus armatus I 
Paranephrops planifrons I 
Parastacoides tasmanicus I 
Samastacus spinifrons I 
Virilastacus araucanius I 

17 18 19 20 21 

0 I 0 2 0 
0 I 0 2 0 
? 0 0 2 0 
? I 0 2 0 
0 0 0 2 0 
0 0 I 0 0 
? 0 I 0 0 
? 0 I I 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
I I I I 0 
I 0 I I 0 
I 0 I 0 0 
I 0 I I 0 
I 0 I 0 0 
I 0 I 0 0 
I 0 I 2 0 
I 0 I 0 0 
I 0 I I 0 
I 0 I I 0 
I 0 I I 0 
I 0 I 2 0 
I 0 I I 0 
I 0 I I 0 
I 0 I I 0 
I 0 I I 0 
I 0 I 0 0 
I 0 I I 0 
I 0 I I 0 
I 0 I I 0 
I 0 I 0 0 
I 0 I 0 0 
I I I 2 0 
I 0 I I 0 
I 0 I 0 0 
I I I 0 0 
I 0 I I 0 
I 0 I 0 0 
I 0 I I 0 
I 0 I 0 0 
I 0 I I 0 
I 0 I I 0 
I 0 I 0 0 
I 0 I 0 0 
I 0 I 0 0 
I 0 I I 0 
I I I 2 0 
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22 23 24 25 26 27 28 29 30 

0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 I 
0 0 0 0 0 0 I 2 0 
0 0 0 0 0 0 I I I 
I 0 0 0 0 0 0 I 0 
I 0 0 I 0 0 0 I I 
? I 0 0 I 0 I 2 I 
o· 4 I 0 0 0 0 0 0 
0 I 0 I I 0 0 0 0 
0 0 0 0 0 0 0 0 0 
I I 0 0 I 0 I 2 1/2 
I 0 0 0 0 0 I 2 1/2 
I 2 I I 0 0 I 2 2 
I I 0 0 0 0 I 0 I 
I I 0 0 0 0 I 2 2 
I 2 I 0 0 0 I 2 1/2 
I 2 0 0 0 0 I 2 2 
2 I I 0 0 0 I 2 1/2 
I 0 I I I 0 I 2 2 
3 I 0 0 0 0 I 2 2 
I 0 I I 0 0 I 2 2 
2 I 0 0 I 0 I 2 2 
3 0 0 I 0 0 I 2 2 
I I Oil 0 I 0 I 2 2 
I I 0 0 0 0 I 2 2 
I 0 I I 0 0 I 2 2 
I I 0 0 0 0 I 2 2 
I I I 0 I 0 I 2 2 
I I Oil 0 0 0 I 2 2 
I I 0 0 0 0 I 2 2 
I I . I 0 0 0 I 2 0 
I I I I I 0 I 2 0 

1/2 3 0 0 0 I I 2 2 
I 0 I 0 0 I I 2 2 
I I 0 0 0 0 I 2 2 
I I 0 0 0 0 I 2 2 
2 3 I 0 0 I I 2 2 
I I I 0 0 I I 2 2 
I I I I I 0 I 2 2 
2 I I 0 0 I I 2 2 
I I 0 0 0 I I 2 2 
2 I I 0 0 I I 2 2 
2 I I I I I I 2 2 
I I I I I 0 I 2 2 
I I I 0 0 0 I 2 2 
I I I 0 0 0 I 2 2 
I 0 0 0 0 0 I 2 2 



liLl 
1 +Palaeopalaemonidae newberri 0 
2 +Eryma fosteri 0 
3 +Erymastacus bordenensis 0 
4 +Enoploclytia porteri 0 
5 +Palaeastacus argoviensis 0 
6 +Chilenophoberus actacamensis I 
7 +Pseudastacus pustulosis I 
8 +Protastacus politus I 
9 +Metanephrops rossensis 0 
10 +Hoploparia stokesi 0 
11 Homarus americanus 0 
12 +Astacus licenti I 
13 +Astacus spinirostris I 
14 Astacus astacus I 
15 +Austropotamobius Ilopsi 1 
16 Austropotamobius torrentius 1 
17 +Pacifastacus chenoderma 1 
18 Pacifastacus gambelli I 
19 +Procambarus primeavus I 
20 Procambarus b. blandingii I 
21 Cambarus b. bartonii I 

f---22 Barbicambarus comutus I 
23 Distocambarus crockeri 1 
24 Fallicambarus foidens 1 
25 Faxonella clypeata I 
26 Hobbseus orconectoides 1 
27 Orconectes r. rusticus I 
28 Troglocambarus maclenei 1 
29 Bouchardina robisoni 

.. 
1 

30 Cambarellus montezumae I 
31 Cambaroides similis I 
32 +Lammuastacus longirostris I 
33 +Paranephrops fordycei I 
34 Engaeus fossor 1 
35 Engaewa subcoerulea 1 
36 Gramastacus insolitus I 
37 Parastacus pugnax I 
38 Tenuibranchiurus glypticus I 
39 Geocherax gracilis 1 
40 Astacoides madagascarensis 1 
41 Astacopsis franklinii I 
42 Cherax preisii I 
43 Eustacoides setosus I 
44 Euastacus armatus I 
45 Paranephrops plani frons I 
46 Parastacoides tasmanicus I 
47 Samastacus spinifrons I 
48 Virilastacus araucanius 1 
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Table 5. Species analyzed in nucleotide study 

Species analyzed in 16S mtDNA phylogeny 

Infraorder Astacidea 
Superfamily Nephropoidea 

Nephrops novegicus 
Superfamily Parastacoidea 

Astacopsis franklinii 
Cherax destructor 
Cherax quadraticus 
Engaeus cunicularis 
Engaewa subcoerulea 
Euastacus armatus 
Euastacus australasinsis 
Geocherax falcata 
Gramastacus insolitus 
Paranephrops planifrons 
Parastacoides pulcher 
Tennuibranchiurus glypticus 

Superfamily Astacoidea 
Family Cambaridae 

Orconectes rusticus 
Cambarus macualata 
Procambarus acutus 

Species analyzed in 18S mtDNA phylogeny 

Astacidea 
Nephropoidea 

Nephrops norvegicus 
As taco idea 

Family Astacidae 

096083 (GenBank, 1999) 

(Crandall et al, 1999) 
(Crandall et al, 1999) 
(Crandall et al, 1999) 
(Crandall et al, 1999) 
(Crandall et al, 1999) 
(Crandall et al, 1999) 
(Crandall et al, 1999) 
(Crandall et al, 1999) 
(Crandall et al, 1999) 
(Crandall et al, 1999) 
(Crandall et al, 1999) 
(Crandall et al, 1999) 

(Crandall and Fitzpatrick, 1996) 
(Crandall and Fitzpatrick, 1996) 
(Crandall and Fitzpatrick, 1996) 

Y14812 (GenBank, 1999) 

Astacus astacus 
Family Cambaridae 

Procambarus clarkii 
Procambarus leonensis 

033181 (GenBank, 1999) 

X90672 (GenBank, 1999) 
M34363 (GenBank, 1999) 

*letter-number combinations refer to GenBank accession numbers 
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Table 6. CLUSTAL W(l.4) multiple sequence alignment of 16s 
mitochondrial nucleotide sequences. Sequence length is 559 bases. 

Nephrops_n 
Astacopsis 
Cherax_des 
Cherax_qua 
Engaeus_cu 
Engaewa_su 
Euast_anna 
Euast_aust 
Geocharax_ 
Grarnastacu 
Paranephro 
Parastacoi 
Tennuibran 
Orconectes 
Cambarus_m 
Procambaru 

Nephrops_n 
Astacopsis 
Cherax_des 
Cherax_qua 
Engaeus_cu 
Engaewa_su 
Euast_anna 
Euast_aust 
Geocharax_ 
Grarnastacu 
Paranephro 
Parastacoi 
Tennuibran 
Orconectes 
Cambarus_m 
Procambaru 

Nephrops_n 
Astacopsis 
Cherax_des 
Cherax_qua 
Engaeus_cu 
Engaewa_su 
Euast_anna 
Euast_aust 
Geocharax_ 
Grarnastacu 
Paranephro 
Parastacoi 
Tennuibran 
Orconectes 
Cambarus_m 
Procambaru 

-------------------------------------------GGCCGCGGTATTTTAAC 
----------------------------------------------CGCGGTATATTGAC 
----------------------------------------------CGCGGTATTATGAC 
----------------------------------------------CGCGGTATTTTGAC 
----------------------------------------------CGCGGTATTTTGAC 
----------------------------------------------CGCGGTATTATGAC 
----------------------------------------------CGCGGTATAGTGAC 
----------------------------------------------CGCGGTAT-GTGAC 
----------------------------------------------CGCGGTATTTTGAC 
----------------------------------------------CGCGGTATTTTGAC 
----------------------------------------------CGCGGTATTATGAC 
----------------------------------------------CGCGGTATTGTGAC 
----------------------------------------------CGCGGTATTTTGAC 
TGAGAGATATATAAAGTCTGACCTGCCCATTGGAAAACTAAAAGGCCGCGGTATTATGAC 
TGAGAGATTTATAAGGTCTGACCTGCCCATTGGAGAACTAAAAGGCCGCGGTATTATGAC 
TGAGAGGNNTATAAAGTCTAACCAGCCCATTGG-GAACTAAAAGGCCGCGGTATTATGAC 

******** * ** 

CGTGCGAAGGTAGCATAGTCACTAGTCTCTTAATTGGAGGCTTGTATGAATGGTTGGACA 
CGTGCGAAGGTAGCATAATCATTAGTCTTTTAATTGAGGGCTTGCATGAATGGTTAGACG 
CGTGCGAAGGTAGCATAATCATTAGTCTTTTAATTGAGGGCTGGTATGAAGGGTCGGACA 
CGTGCGAAGGTAGCATAATCATTAGTCTTTTAATTGGAGGCTGGAATGAATGGTTGGACG 
CGTGCGAAGGTAGCATAATCATTAGTCCTTTAATTGGGGGCTTGTATGAAGGGTTGGACG 
CGTGCAAAGGTAGCATAATCATTAGTTTTTTAATTGAAGGCTAGAATGAATGGTTGGACA 
CGTGCGAAGGTAGCATAATCATTAGTCTTTTAATTGAAGGCTTGTATGAATGGTTGGACG 
CGTGCGAAGGTAGCATAATCATTAGTCTTTTAATTGAAGGCTTGTATGAATGGTTGGACG 
CGTGCGAAGGTAGCATAATCATTAGTCTTTTAATTGAAGGCTTGTATGAAGGGTTGGACG 
CGTGCGAAGGTAGCATAATCATTAGTCTTTTAATTGAAGGCTTGTATGAAGGGTTAGACG 
CGTGCAAAGGTAGCATAATCATTAGTCTTTTAATTGGGGGCTTGTATGAATGGTTGGACG 
CGTGCGAAGGTAGCATAATCATTAGTCTTTTAATTAAAGGCTTGTATGAATGGTTGAACG 
CGTGCGAAGGTAGCATAATCATTAGTCTTTTAATTGAAGGCTTGTATGAAGGGTTGGACG 
CGTGCGAAGGTAGCATAATCATTAGTTTTTTAATTGAAGGCTAGAATGAATGGTTGGACA 
CGTGCAAAGGTAGCATAATCATTAGTTTTTTAATTGAGGGCTAGAATGAATGGTTGGACA 
CGTGCAAAGGTAGCATAATCATTAGTTTTTTAATTGAAGGCTAGAATGAATGGTTGGACA 
***** *********** *** **** ****** **** * ***** *** ** 

AGAAGTAAGTTGTCTCAA-GTACAAAAATTGAATTTGACTTTTAAGTGAAAAGGCTTAAA 
AGAAGCGGACTGTCTTTA-TTGGGACAATTGAATTTAACTTTTTAGTGAAAAGGCTTAAA 
AAAAATGAGCTGTCTTAAATTTTGAAAATTGAATTTAACTCTTAAGTGAGAAGGCTTAAA 
AGAAGGAAGCTGTCTCTA-TCTCGGAGATTGAATTTAACTTTTAAGTGAAAAGGCTTAAA 
AGAAATTAGCTGTCTTTA-TAAAAAAAGTAGAATTTAACTTTTAAGTGAGAAGGCTTAAA 
AGAAATAATCTGTCTTAA-TTAAAGATATTGAATTTAACTTTTTAGTGAAAAGGCTTAAA 
AGAAGTAATCTGTCTCTG-TTGAAAAAATTGAATTTAACTTTTAAGTGAGAAGGCTTAAA 
AGAAGTAATCTGTCTCTA-TTAAAAAAATTGAATTTAACTTTTGAGTGAGAAGGCTCAAA 
AGAAATTAGCTGTCTTTA-TAGGAGAAATAAAATTTAACTTTTAAGTGAGAGGGCTTAAA 
AGAAGTCAGCTGTCTTTA-TTGAAAAGATGGAATTTAACTTTTAAGTGAGAGGGCTTAAA 
AGAAGTTAGCTGTCTCTA-ATTAATGAATTGAATTTAACTTTTAAGTGAAAAGGCTTAAA 
AGGAATAAGCTGTCTCTA-TTAGGCTAGTTGAACTTAACTTTTAAGTGAAAAGGCTTAAA 
AGAAATTAGCTGTCTTTG-TATGAAAGATGGAACTTCACTTTTAAGTGAAAAGGCTTAAA 
AGAAATAATCTGTCTTAA-ATTAAGATATTGAATTTAACTTTAAAGTGAAAAGGCTTTAA 
AGAGATAGGCTGTCTTAG-ATTAAGATATTGAA.TTTAACTTTTGAGTGAAAAGGCTTAAA 
AGAAATAATCTGTCTTAA-ATTAATATATTGAATTTAACTTTTAAGTGAAAAGGCTTAAA 
* ***** * ** ** *** * ***** * **** ** 
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Nephrops_n 
Astacopsis 
Cherax_des 
Cherax_qua 
Engaeus_cu 
Engaewa_su 
Euast_arrna 
Euast_aust 
Geocharax_ 
Gramastacu 
Paranephro 
Parastacoi 
Tennuibran 
Orconectes 
Carnbarus_m 
Procarnbaru 

Nephrops_n 
Astacopsis 
Cherax_des 
Cherax_qua 
Engaeus_cu 
Engaewa_su 
Euast_arrna 
Euast_aust 
Geocharax_ 
Gramastacu 
Paranephro 
Parastacoi 
Tennuibran 
Orconectes 
Carnbarus_m 
Procarnbaru 

Nephrops_n 
Astacopsis 
Cherax_des 
Cherax_qua 
Engaeus_cu 
Engaewa_su 
Euast_arrna 
Euast_aust 
Geocharax_ 
Gramastacu 
Paranephro 
Parastacoi 
Tennuibran 
Orconectes 
Carnbarus_m 
Procarnbaru 

Nephrops_n 
Astacopsis 
Cherax_des 
Cherax_qua 

TATTTTAAAGGGACGATAAGACCCTATAAAGCTTAATAATTTAATATATAACCAGATAAA 
TGATCCAGGGGGACGATAAGACCCTATAAAGTTTAACATAATAAGGA-TAAA-AAATTAA 
TAGGCTAGGGGGACGATAAGACCCTATAAAGTTTG-ACACTAAATTAATTAA-GGGTGAT 
TAAGTTAGAGGGACGATAAGACCCTATAAAGTTTATACATGAAGTTGGTTAA-GAGTGAT 
TAATCTAAGGGGACGATAAGACCCTATAAAGTTTAACATATTTGTTATTAAA-AAAAAAA 
TAATCTGAAGGGACGATTA-ACCCTATAAAACTTTATATTTG-AAAG-TAGA-AATTAGT 
TAATCTAGAGGGACGATAAGACCCTATAAAGTTTAATATTATAACAA-TAGA-GAATTAA 
TGACCTAGAGGGACGATAAGACCCTATAAAGTTTAACATTATAACAA-CAAC-AGGTTAA 
TACTCTAAAGGGACGATAAGACCCTATAAAGTTTGACACTTTATCTTTTGTT-GAGTCAG 
TATTCTAAGGGGACGATAAGACCCTATAAAGTTTGATATTTAATTTTTTAAA-AAATAAG 
TGATCTAGAGGGACGATAAGACCCTATAAAGCTTTACATTGAATTTACTAAA-AAGTAAA 
TGATCTAGAGGGACGATAAGACCCTATAAAGTTTTACATCACATCTATTATA-AAATGGG 
TGTTCTAAAGGGACGATAAGACCCTATAAAGTTTGACGGTCTGGGTCTTAGA-AGACAAG 
TGATCTAATGGGACGATAAGACCCTATAAAACTTTATATTTT-AATG-TAGA-AGTTAAT 
TAATCTGAAGGGTCGATAAGACCCTATAAAACTTTATATTGA-GAGG-TGAG-AGGTAAT 
TAATCTGAAGGGACGATAAGACCCTATAAAACTTTATATTTATAAGA-TAGT-AGCTAGT 
* *** **** * ********** ** 

TTAAAAGTTTAATATTCTTTATATATTAAATTATTTCGTTGGGGCGACGATGATATAATT 
TTAGGTTTATAAAGTTTATTATTACAAATAATGTTTTGTTGGGGCGACAAGAATAAAAGT 
TTAGGTAATAAAGTCTTATTATTA-TATAAGTGTTTAGTTGGGGCGACTAGGATATAAGT 
TTAAGGTGTTAAAGTTTATTATCA-GCAGGGTGTTTAGTTGGGGCGACTAGGATATAAAT 
ACAAAAAGGTAAATTTTATTAGTA-GGAGATTGTTTGGTTGGGGCGACTAGGATATAAAT 
TT---CATTTAAAGGTTACTATTT--AAAAATGTTTGGTTGGGACNACAAGGATAGAAGG 
TTAGGTT-ATAAGATTTATTATTGTAGGTAGTATTTTGTTGGGGCGACAAGAACATAAAT 
TTGGGTT-ATAGAATTTATTATTGTGAATAGTGTTTTGTTGGGGCGACAAGAATATAAAT 
A---ATAATTAAAGTTTATCAGGA-GCAAG-TGTTTTGTTGGGGCGACAAGAATATAAAT 
ATAAATAGGTAAAGTTAGTTAGAA-AAAAGATGTTTTGTTGGGGCGACAAGAATATAAAT 
TTAAATAATAAAAGTTTATTAGTA-AAGAGATGTTTTGTTGGGGTGACAAGAATATAATA 
TTGGATAAAAAAGATTTGCTAGTA-GTTCGATGTTTTGTTGGGGTGACAAGAATATAAGG 
TTAGGTAATTAGAGTTTGTTAGGA-GCGGGGTGTTTTGTTGGGGCGATAAGAATATAAAT 
TT---TATTTTAAGTTCACTATTT--TAAAATTTTTTGTTGGGGCGACAAGGATATAAAA 
TT---TGTTTAAAAGTTATTGCTT--TAAAGTATTTGGTTGGGGCGACAAGGATACAAGG 
TT---TATTTAAAAGT-ATTATTT--TGGAGTATTTGGTTGGGGTGACAAGGATAAAATA 

* * *** ****** * * * * ** 

TGT----AACTGTTTAAATTT-TAAATACAGAGATATTTGTGTGTAATGATCCTTTTTAT 
AATTTNNAACTGTTCNTTTTTNNTTAATCAAAAATATTTGGGT-GGGTGATCTTTTCTAA 
TATTT--AACTGTTTCTTCAC-TCGAATCAAAAATTTTTGATT-TTATGATCCTTTTTTA 
TATAT--AACTGTTT-TTTGT-TTAAATCAGAGATATTTGTTC-ATATGGTCCCTTTTTA 
AATTT--AACTGTTC-TATA-TTATAAACAGGGATATCTGTGT-TCTTGAACCTTATTAG 
TTAGGNTAACTNTCTNTTTTTTTNNNTACAGTAATATTTGGTT-TAATGATCCTAA-AAG 
AATTT--AACTGTTCTTTTTTGT---ATCAAAAATATTTGAGT-TGATGATCTTTT-TAA 
AGTTT--AACTGTTCTTTTTTGT---ATCAAAGATATTTGAAT-TAATGACTCTTT-TAA 
AATTT--AACTGTCTTTATG--TAGCTATAAAGATAATTGAAT-TTATGGTCCTTATTAA 
TATAT--AACTGTTTTTATA--TTCATACAACGATAATTGAAT-TTATGAACCTTTGTAA 
AATAT--AACTGTTCTTTTTTATTT---CAAAAATATTTGAAT-AGGAGATCCTTAATAA 
GATGT--AACTGTTCTTTAAAAAC----CAAATATATTTGTTT-AAGTGATCTTGAATTT 
GATTTNNAACTGTTTNTATGGTTAGAGACAAAGGTAGTTGGGT-TTATGATCCTTGTTAA 
A-ATGATAACTATCTTTTATTTT---TACAATAATATTTGATT-TATTGATCCTAA-AAG 
T-AAAGTAACTGTTTTTTTTTTC---TACAATAATGTTTGAGT-GAATGATCCTAA-GAT 
T-AAAATAACTGTCTTTTTTTTT---TACAGTAATGTTTGGTT-TAATGATCCTAA-AAG 

**** * * * ** * 

TGATTAAAAATTTAAGTTACTTTAGGGATAACAGCGTTATTTATTTTGAGAGTTCATATC 
-AAGTATTAGAGTAAATTACTTTAGGGATAACAGCGTAATTTTTTTTGAGAGTTCTTATC 
-GGATATTAGAGTAAATTACTTTAGGGATAACAGCGTAATTTTTTTTGAGAGTTCTTATC 
-GGATTAGAGAATAAATTACTTTAGGGATAACAGCGTAATTTTTTTTAAGAGTTCTTATC 
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Engaeus_cu 
Engaewa_su 
Euast_arma 
Euast_aust 
Geocharax_ 
Gramastacu 
Paranephro 
Parastacoi 
Tennuibran 
Orconectes 
Carnbarus_rn 
Procarnbaru 

Nephrops_n 
Astacopsis 
Cherax_des 
Cherax_qua 
Engaeus_cu 
Engaewa_su 
Euast_arma 
Euast_aust 
Geocharax_ 
Gramastacu 
Paranephro 
Parastacoi 
Tennuibran 
Orconectes 
Carnbarus_rn 
Procarnbaru 

Nephrops_n 
Astacopsis 
Cherax_des 
Cherax_qua 
Engaeus_cu 
Engaewa_su 
Euast_arma 
Euast_aust 
Geocharax_ 
Gramastacu 
Paranephro 
Parastacoi 
Tennuibran 
Orconectes 
Carnbarus_rn 
Procarnbaru 

Nephrops_n 
Astacopsis 
Cherax_des 
Cherax_qua 
Engaeus_cu 
Engaewa_su 
Euast_arma 
Euast_aust 

AGATAAT-AGAATAAATTACTTTAGGGATAACAGCGTAATTTTTTTTGAGAGTTCTTATC 
GGATTAAA-GATTAGGTTACTTTAGGGATAACAGCGTAATTTTCTTTGAGAGTTCTTATC 
-GAGTATTAGAGTAAATTACTTTAGGGATAACAGCGTAATTTTTTTTGAGAGTTCTTATC 
-GAGTATTAGAGTAAATTACTTTAGGGATAACAGCGTAATTTTTTTTGAGAGTTCTTATC 
AGAGTGA-AGAGTAAATTACTTTAGGGATAACAGCGTAATTTTTTTTAAGAGTTCATATC 
AGGTAAT-AGAGTAAATTACTTTAGGGATAACAGCGTAATTTTTTTTGAGAGTTCTTATC 
-AGATGTTAGAGTAAGTTACTTTAGGGATAACAGCGTAATTTTTTTTGAGAGTTCTTATC 
TAAGTGCTAGAATAAATTACTTTAGGGATAACAGCGTTATTTTTTTTAAGAGTTCTTATC 
AGATTATTAGAATAAATTACTTTAGGGATAACAGCGTAATTTTTTTTGAGA-TTCTTATC 
GGATTAAA-GATTAAGTTACTTTAGGGATAACAGCGTAATTTTCTTTGAGAGTTCTTATC 
GGATTAAAAGATTAAGTTACTTTAGGGATAACAGCGTAATTTTCTTTAAGAGTTCTTATC 
GGATTAAA-GATTAAGTTACTTTAGGGATAACAGCGTAATTTTCTTTAAGAGTTCTTATC 

** ********************* **** *** *** *** **** 

GACAAAAAAGTTTGCGACCTCGATGTTGAATTAAAAA-TTNNCCATGGCG---------
GACAAAATAGTTTGCGACCTCGATGTTGAATTAAAGG-GTCTTTATAATGTAGGAGTTAT 
GATAAAAGAGTTTGCGACCTCGATGTTGAATTAAAA-TTTCTTTGTAATGCAGCAGTTAC 
GACAAGAGAGTTTGCGACCTCGATGTTGAATTAAAAATTTCTCTGTGGTGTAGCGGTTAC 
GACAGAAAAGTTTGCGACCTCGATGTTGAATTAAAGAATTCTTTGTAGCGAAGAGGTTAC 
GACAGGAAAGTTTGCAACCTCGATGTTGAATTAAAGG-TTCTTTATAGAGT-GAGACTAT 
GACAAAAGAGTTTGCGACCTCGATGTTGAATTAAAG--TTCTTTATAGCGCAGAAGTTAT 
GACAAAAGAGTTTGCGACCTCGATGTTGAATTAAAGA-TTCTTTATAGTGTAGCAGTTAT 
GATAAAAAAGTTTGCGACCTCGATGTTGAATTAAAGG-TTCTTTGTAATGTAGAAGTTAC 
GACAAAAAAGTTTGCGACCTCGATGTTGAATTAAAG--TTCTTTGTAATGTAGCAGTTAC 
GACAGAAAAGTTTGCGACCTCGATGTTGAATTAAAGA-TTCTTTATAATGTAGAAGTTAT 
AACAAAAAAGTTTGCGACCTCGATGTTGAATTAAAGG-CTCTTTGAGATGCAGAGGTCTC 
GACAAAGAAGTTTGCGACCTCGATGTTGAATTAAAAG-TTCTTTGTGGCGTAGCAGTTAG 
GACAAGAAAGTTTGCGACCTCGATGTTGAATTAAAGG-TTCTTTATAGAGTAGAGACTAT 
GACAAGAAAGTTTGCGACCTCGATGTTGAATTAAAAG-TTCTTTATGGAGTAGAGACTAT 
GACAAGAAAGTTTGCGACCTCGATGTTGAATTAAAAG-TTCTTTATAGAGTAGAGACTAT 

* * ******* ******************* * * 

A--AGAAGGTCTGTTCGACC-TTTAAATCTTTACATGATTTGA----------------
AAGAGAGGGTCTGTTCGACCCTTTAAATTTTTACATGATTTGA----------------
AGGAGAAGGTCTGTTCGACCCTTTAAATTTTTACATGATTTGA----------------
AGAAGAAGGTCTGTTCGACC-TTTAAATCTTTACATGATTTGA----------------
AATAGAAGGTCTGTTCGACC-TTTAACATTTTACATGATTTGA----------------
ATAAGAAGGTCTGTTCGCCC-TTTAAATCTTTACATGATTTGA----------------
ATAAGAAGGTCTGTTCGACC-TTTAA-TCTTTACATGATTTGA----------------
AGAAGAAGGTCTGTTCGACC-TTTAAATCTTTACATGATTTGA----------------
AGGAGAAGGTCTGTTCGACC-TTTAA-TCTTTACATGATTTGA----------------
ATGAGAGGGTCTGTTCGACC-TTTAAATCTTTACATGATTTGA----------------
AAAAGAGGGTCTGTTCGACC-TTTAAATCTTTACATGATTTGAGTTCAAACCGGTGTGAG 
GAGAGAAGGTCTGTTCGACC-TTTAAATTTTTACATGATTTGA----------------
AAAAGAAGGTCTGTTCGACC-TTTAAAGTTTTACATGATTTGAGTTCAGACCGG-----
AAGAGAAGGTCTGTTCGACC-TTTAAAATTTTACATGATTTGAGTTCAGACCGG-----
AACAGAAGGTCTGTTCGACC-TTTAAAATTTTACATGATTTGAGTTCAGACCGG------
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Geocharax_ 
Gramastacu 
Paranephro 
Parastacoi 
Tennuibran 
Orconectes 
Cambarus_m 
Procambaru 

CCAGGTTGGTTTCTATCTA 

--represents a gap in the sequence 
* represents uniformity of a base at a specific locus 
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Table 7. CLUSTAL W(l.4) multiple sequence alignment of 18s 
mitochondrial nucleotide sequences. Sequence length is 1878 bases. 

Nephrops_n 
Astacus_as 
P._clarkii 
P. leonens 

Nephrops_n 
Astacus_as 
P._clarkii 
P._leonens 

Nephrops_n 
Astacus_as 
P._clarkii 
P._leonens 

Nephrops_n 
Astacus_as 
P ._clarkii 
P. leonens 

Nephrops_n 
Astacus_as 
P._clarkii 
P. leonens 

Nephrops_n 
Astacus_as 
P._clarkii 
P._leonens 

Nephrops_n 
Astacus_as 
P._clarkii 
P. leonens 

Nephrops_n 
Astacus_as 
P._clarkii 
P._leonens 

Nephrops_n 
Astacus_as 
P._clarkii 
P. leonens 

Nephrops_n 

---CTGGTTGATTCTGCCAGTAGTCATATGCTTGTCTCAAAGATTAAGCCATGCATGTGT 
AACCTGGTTGATCCTGCCAGTAGTCATATGCTTGTCTCAAAGATTAAGCCATGCATGTGT 

AAGTACAAGCCGATTTAAGGCGAAACCGCGAATGGCTCATTAAATCAGCTATGTTTCATT 
AAGTACAAGCCGAGTTAAGGCGAAACCGCGAATGGCTCATTAAATCAGCTATGTTTCATT 
----------------------AAACCGCGAATGGCTCATTAAATCAGCTATGTTTCATT 

GGATCTGTAAACCCACTTACTTGGATAACTGTGGCAATTCTAGAGCTAATACATGCATTT 
GGATCTGTAAACCCACTTACTTGGATAACTGTGGTAATTCCAGAGCTAATACATGCATCA 
GGATCTGTAAACCCACTTACTTGGATAACTGTGGTAATTCTAGAGCTAATACATGCATCA 

AGTCTCTGACCGCAAGG-AAGAGCGCTTTTATTAGTTCAAAACTGGTCGGGCCTCGGTCC 
CGTCTCTGACCGCAAGGGAAGAGCGCTTTTATTAGTTCAAAACTGGTCGGGCCTCGGTCC 
CGTCTCTGACCGCAAGGGAAGAGCACTTTTATTAGTTCAAAACTGGTCGGGCCTCGGTCC 

GT-AACCCACCTGTGGTGAATCTGAATAACTTCCGGCTGAGCGCACGGTCTCCGCACCGG 
GTTAACCCACCCGTGGTGAATCTGAATAACTTTTTGCTGAGCGCACGGTCTCCGCACCGG 
GTTAACCCTCCCGTGGTGAATCTGAATAACTTTTTGCTGAGCGCACGGTCTCCGCACCGG 

CGCCGCTTCTTTCAAGTGTCTGCCTTATCAGCTTTCGATTGTAGGTTATGCGCCTACAAT 
CGCCGCATCCTTCAAGTGTCTGCCTTATCAGCTTTCGATTGTAGGTTATGCGCCCACAAT 
CGCCGCATCCTTCAAGTGTCTGCCTTATCAGCTTTCGATTGTAGGTTATGCGCCTACAAT 

GGCTATAACGGGTAACGGGGAATCAGGGTTCGATTCCGGAGAGGGAGCCTGAGAAACGGC 
GGCTATAACGGGTAACGGGGAATCAGGGTTCGATTCCGGAGAGGGAGCCTGAGAAACGGC 
GGCTATAACGGGTAACGGGGAATCAGGGTTCGATTCCGGAGAGGGAGCCTGAGAAACGGC 

TACCACATCTAAGGAAGGCAGCAGGCACGCAAATTACCCACTCCCGGCACGGGGAGGTAG 
TACCACATCTAAGGAAGGCAGCAGGCACGCAAATTACCCACTCCCGGCACGGGGAGGTAG 
TACCACATCTAAGGAAGGCAGCAGGCACGCAAATTACCCACTCCCGGCACGGGGAGGTAG 

TGACGAAAAATAACGATGTGAGTCTCATCNGAGGCCTCGCAATCGGAATGAGTACACTTT 
TGACGAAAAATAACGATGCGAGACTCATCCGAGGCCTCGCAATCGGAATGAGTACACTTT 
TGACGAAAAATAACGATGCGAGACTCATCCGAGGCCTCGCAATCGGAATGAGTACACTTT 
----------------TGCGAGACTCATCCGAGGCCTCGCAATCGGAATGAGTACACTTT 

** *** ****** ****************************** 

AAATCCTTTAACGAGTATCCATTGGAGGGCAAGTCTGGTGCCAGCAGCCGCGGTAATTCC 
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Astacus_as 
P._clarkii 
P._leonens 

Nephrops_n 
Astacus_as 
P._clarkii 
P._leonens 

Nephrops_n 
Astacus_as 
P._clarkii 
P. leonens 

Nephrops_n 
Astacus_as 
P._clarkii 
P._leonens 

Nephrops_n 
Astacus_as 
P._clarkii 
P. leonens 

Nephrops_n 
Astacus_as 
P._clarkii 
P._leonens 

Nephrops_n 
Astacus_as 
P._clarkii 
P. leonens 

Nephrops_n 
Astacus_as 
P._clarkii 
P._leonens 

Nephrops_n 
Astacus_as 
P._clarkii 
P. leonens 

Nephrops_n 
Astacus_as 
P._clarkii 
P._leonens 

AAATCCTTTAACGAGGATCTATTGGAGGGCAAGTCTGGTGCCAGCAGCCGCGGTAATTCC 
AAATCCTTTAACGAGGATCTATTGGAGGGCAAGTCTGGTGCCAGCAGCCGCGGTAATTCC 
AAANCCTTTAACGAGGATCTATTGGAGGGCNAGTCTGGTGCCAGCAGCCGCGGTAATTCC 
*** *********** *** ********** ***************************** 

AGCTCCAATAGCGTATATTAAAGTTGTTGCGGTTAAAAAGCTCGTAGTTGGATCTCAGTT 
AGCTCCAATAGCGTATATTAAAGTTGTTGCGATTAAAAAGCTCGTAGTTGGATCTCAGTT 
AGCTCCAATAGCGTATATTAAAGTTGTTGCGGTTAAAAAGCTCGTAGTTGGATCTCAGTT 
AGCTCCAATANNGTATATTAAAGTTGTTGCGGTTNNAAAGCTCGTAGTTGGATCTCAGTT 
********** ******************* ** ************************ 

CCGGACTGACGGTGCACCGCCCGGTGTTTACTGTCACGCTCCGAACAGCC-----GCCCC 
CCGGACTGACGGTACACCGCCTGGTGCTTACTGTCACGTTCCGAACAGCTAACTAGCCCC 
CCGGACTGACGGTACACCGCCTGGTGCTTACTGTCACGCTCCGAACAGCTAACTAGCCCC 
CCGGACTGACGGTACAC-GCNNGGTGCTTACTGTCACGCTCCGAACAGCTAACTAGCCCC 
************* *** ** **** *********** ********** ***** 

GCCGGCTCGCACGGGATGCTCTTTGTCGAGTGTCCCGAGTGGCCGG-AGGTTTACTTTGA 
GCCGGCTCGCACGGGGTGCTCTTCATCGAGTGTCCCGAGTGGCCGGCACGTTTACTTTGA 
GCCGGCTCGCACGGGGTGCTCTTCATCGAGTGTCCCGAGTGGCCGGCACGTTTACTTTAA 
GCCGGCCAG--TGGGGTGCTCTTCATCGAGTGTCCCGAGTGGCCGGNNCGTTTACTTTGN 
****** * *** ******* ********************* ********* 

AAAAATTAGAGTGCTCAGAGCAGGCTATTTGAATGGCCCGAATGGTGATGCA-TGGAATA 
AAAAATTAGAGTGCTCAGAGCAGGCTACTTTAATGGCCTGAATGTCTATGCA-TGGAATA 
AAAAATTAGAGTGCTCAGAGCAGGCTACTTTAATGGCCTGAATGTCTATGCA-TGGAATA 
NNNNATTAGAGTGCTCAGAGCNGGCNNCNNNNATGGCCTGAATGTCTATGCACTGGAATA 

***************** *** ****** ***** ***** ******* 

ATGGAATAGGACCTCGGTTCTATTTTGTTGGTTTTCGGAACCAGAGGTAATGACTAATCG 
ATGGAATAGGACCTCGGTTCTATTTTGTTGGTTTTCGGAACCTGAGGTAATGACTAATAG 
ATGGAATAGGACCTCGGTTCTATTTTGTTGGTTTTCGGAACCTGAGGTAATGACTAATAG 
ATGGAATAGGACCTCGGTTCTATTTTGTTGGTTTTCGGAACCTGAGGTAATGACTAATAG 
****************************************** *************** * 

GAACAGGCGGGGGCATTCGTATTGCGACGCTAGAGGTGAAATTCTTGGACCGTCGCAAGA 
GAACAGGCGGGGGCATTCGTATTGCGACGCTAGAGGTGAAATTCTTGGACCGTCGCAAGA 
GAACAGGCGGGGGCATTCGTACTGCGACGCTAGAGGTGAAATTCTTGGACCGTCGCAAGA 
GAACAGGCGGGGGCATTCGTATTGCGACGCTAGAGGTGAAATTCTTGGACCGTCGCNAGA 
********************* ********************************** *** 

CGAACTACTGCGAAAGCATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGAG 
CGAACTACTGCGAAAGCATTTGCCAAGGATGTTTTCATTAATCAGGAACGAAAGTTAAAG 
CGAACTACTGCGAAAGCATTTGCCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGAG 
CGAACTACTGCGAAAGCATTTGCCAAGGATGTTTTCATTAATCAAGAANGAAAGTTAGAG 
******************************************** *** ******** ** 

GTTCGAAGGCGATCAGATACCGCCCTAGTTCTAACCATAAACGATGCCAACTAGCGATCC 
GTTCGAAGGCGATCAGATACCGCCCTAGTTCTAACCATAAACGATGCCAACTAGCGATCC 
GTTCGAAGGCGATCAGATACCGCCCTAGTTCTAACCATAAACGATGCCAACTAGCGATCC 
GTTCGAAGGCGATCAGATACCGCNCNNGTTNNAACCATAAACGATGCCAACTAGCGATCC 
*********************** * *** **************************** 

GCCGGCGTTATTCCCATGACCCGGCGGGCAGCTTCCGGGAAACCAAAGTCTTTGGGTTCC 
GCCGGCGTTATTCCCATGACCCGGCGGGCAGG:TTCCGGGAAACCAAGGTCTTTGGGTTCC 
GCCGGCGTTATTCCCATGACCCGGCGGGCAGCTTCCGGGAAACCAAAGTCTTTGGGTTCC 
GCCGGCGTTATTCCCATGACCCGGCNGNCAGCTTCCGGGAAACCAAAGTCTTTGGGTTCC 
************************* * ****************** ************* 
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GGGGGAAGTATGGTTGCAAAGCTGAAACTTAAAGGAATTGACGGAAGGGCACCACCAGGA 
GGGGGAAGTATGGTTGCAAAGCTGAAACTTAAAGGAATTGACGGAAGGGCACCACCAGGA 
GGGGGAA-----------------------------------------------------
GGGGGAAGTATGGTTGCAAAGCTGAAACTCAAAGGAATTGACGGNNNNNNNNNNNNNNN 
******* 

GTGGAGCCTGCGGCTTAATTTGACTCAACACGGGA-AACCTCACCAGGCCCAGACACCGG 
GTGGAGCCTGCGGCTTAATTTGACTCAACACGGGGGAACCTCACCAGGCCCAGACACCGG 

NNJNNl!JNl'JNI\INNNNJNNIDINNINNNNIIJN.AACACGGGG-AACCTCACCAGGCCCAGACACCGG 

AAGGATTGACAGATTGAGAGCTCTTTCTCGATTCGGTGGGTGGTGGTGCATGGCCGTTCT 
AAGGATTGACAGATTGAGAGCTCTTTCTCGATTCGGTGGGTGGTGGTGCATGGCCGTTCT 

AAGGATNGACAGATTGAGAGCTCTTTCTCGATTCGGTGGGTGGTNGTGCATGGCCGTTCT 

TAGTTGGTGGAGCGATTTGTCTGGTTAATTCCGATAACGAACGAGACTCTGGCCTACTAA 
TAGTTGGTGGAGCGATTTGTCTGGTTAATTCCGATAACGAACGAGACTCTGGCCTATTAA 

TAGTTGGTGGAGCGATTTGTCTGGTTAATTCCGATNNNNNNNGAGACTCTGGCCTATTAA 

GTAGTCGACGGATCTCCAGAAAATGGTGTCCAGTTCGCAACTTCTTCTTAGAGGGATAAG 
CTAGTCGACGGATCTCCAGCAATTGGTGTCCAGTTCGCAACTTCTTCTTAGAGGGATTAG 

CTAGTCGACGGATCTCCAGCNNTTGGTGTCCAGTTCGCAACTTCTTCTTAGAGGGATTA-

CGGCAATTCTAGCCGCACGAGATTGAGCAATAACAGGTCTGTGATGCCCTTAGATGTTCT 
CGGCAATTCTAGCCGCACGAGATTGAGCAATAACAGGTCTGTGATGCCCTTAGATGTTCT 

CGGCAATTCTAGCCGCACGAGATTGAGCAATAACAGGTCTGTGATGCCCTTAGATGTTCT 

GGGCCGCACGCGCGCTACACTGAAGGGATCAACGAGTTTTCCCCCTCCGAGAGGAGCGGG 
GGGCCGCACGCGCGCTACACTGAAGGGATCAACGTGTTCTCCCCCTCCGAGAGGAGCGGG 

GGGC-GCACGCGCGCTACACTGAAGAGATCAACGTGTTCTCCCCCTCCGAGAGGAGCGGG 

TAACCCGTTCAAAGCCTTTCTTGATAGGGATTGGGGCTTGCAATTGTTTCCCATGAACGA 
TAACCCGTTCAAACCCCTTCATGATAGGGATTGGGGCTTGCAATTGTTTCCCATGAACGA 

NAACCCGTTCAATCCCCTTCATGATAGGGATTGGGGCTTGCAATTGTTTCCCATGAACGA 

GGAATTCCCAGTAAGTGCAAGTCATCAGCTTGCGCTGACTACGTCCCTGCCCTTTGTACA 
GGAATTCCCAGTAAGTGCAAGTCATCAGCTTGCGCTGATTACGTCCCTGCCCTTTGTACA 

GGAATTCCCAGTAAGTGCAAGTCATCACGTTGCGCTGATTNNGTCCCTGCCCNTTGTACA 

CACCGCCCGTCGCTACTACCGATTGAATGATTTAGTGAGGCCTTCGGACTGGCGCTCTTG 
CACCGCCCGTCGCTACTACCGATTGAATGATTTAGTGAGGCCTTCGGACTGGCGCTCTTG 
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CACNNNNNNTCGCTACTACCGATTGAATGATTI'AGTGAGGCTTCGGACTGGCGCTC'ITGG 

GATTGTCTGCCCCGTAGCCCGCAAGGGTTTI'CTGGGGTCGTCGCCTCGAGCTGACGGAAA 
GATGTI'CTACCCCTCGCGTCTCGGCG----CAGGGGGTI'CTCGCCTCGAGCTGACGGAAA 

ATGTTCTACCCCTCGCGTCTCGGCGC-----AAGGNNNTCTCGCCTCGAGCTGACGGAAA 

GATGTCCAAACTTGATCATI'TAGAGGAAGTAAAAGTCGTAACAAGGTTTCCGTAGGTGAA 
GATGTCCAAACTTGATCATI'TAGAGGAAGTAAAAGTCGTAACAAGGTTTCCGTAGGTGAA 

GATGTCCAAACTTGATNNNNNNNNNNNNNNGTCGTAACAAGGTNNNNNNNNNNNNN 

CCTGCAGAAG-------
CCTGCAGAAGGATCA---

NNNNNNNNNNNNNNN 

--represents a gap in the sequence 
* represents uniformity of a base at a specific locus 
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Table 8. Geological ages of fossil species 

Palaeopalaemonidae 
Palaeopalaemon newberryi Late Devonian 

Erymidae 
Erymafosteri 
Erymastacus bordenensis 
Enocloplytia porteri 

Late Jurassic (Callovian) 
Early Jurassic (Sinemurian) 
Late Triassic (Carnian) 

Nephropoidea 
Hoploparia stokesi 
Metenephrops rossensis 

Late Cretaceous (Campanian) to Paleocene 
Late Cretaceous (Campanian) 

Chilenophoberidae 
Chileophoberus atacamensis 
Pseudastacus pustulosis 

Astacoidea 
Astacus licenti 
Astacus spinirostris 
Austropotamobius llopsi 
Protastacus politus 
Pacifastacus chenoderma 
Procambarus primeavus 
Lammuastacus longirostris 
Paranephrops fordycei 
Euastacus? sp. 

Late Jurassic (Oxfordian) 
Early Jurassic (Tithonian) 

Late Jurassic to Early Cretaceous 
Late Jurassic to Early Cretaceous 
Early Cretaceous (Barremian) 
Late Cretaceous 
Miocene to Pliocene 
Eocene 
Oligocene 
Miocene 
Paleocene 
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