Understanding how real time oscilloscopes achieve > 16 GHz bandwidth

Agilent Technologies

Agilent Oscilloscope Portfolio

90000A 8 Channel Form Factor

- Highest bandwidth and signal to noise ratio at 8 and 12 GHz
- 8 channels and only 7 rack U high
- 40 GSa/s across all eight channels
- Up to 25mS of captured data (1 G memory)
- PCIe download speeds of 80 Mb/s, including Fibre connector
- Full Diskless Operation, Run Without Hard Drive

Introducing the Infiniium 90000 X-Series Oscilloscopes

Engineered for 32 GHz true analog bandwidth that delivers:

The industry's highest real-time measurement accuracy The industry's first 30 GHz oscilloscope probing system The industry's most comprehensive measurement software

The future of oscilloscopes is now	DSA-X 91604A	DSA-X 92004A	DSA-X 92504A	DSA-X 92804A	DSA-X 93204A
Analog Bandwidth	16 GHz	20 GHz	25 GHz	28 GHz	32 GHz
Max Sample Rate			80 GSa/s		
Max Memory			2 Gpt		
Probe Bandwidth	Up to 30 GHz				

Bandwidth upgradable scopes and probes

Schedule

- 1. Brief de-embedding presentation
- 2. Scope Architecture
- 3. Hardware Performance
- 4. Frequency Interleaving
- 5. DSP Boosting
- 6. Measurement Comparisons
- 7. Conclusion

A common system: Link

Familiar Sight?

Measurement Plane

Measuring Waveforms on a System

Realtime Oscilloscope= Waveform Analyzer

Simulating an Additional Channel Element

Realtime Oscilloscope= Waveform Analyzer

Realtime Oscilloscope= Waveform Analyzer

Agilent Confidential May 28th, 2009

Virtual Probing (or Measurement Plane Relocation)

Realtime Oscilloscope= Waveform Analyzer

Virtual Probing (or Measurement Plane Relocation)

What you Want...

'Simulated' Measurements?

Is it *Unreasonable* to consider that these scenarios can yield a new class of measurements where a waveform acquisition can be *TRANSFORMED* to a VIEW at another location either <u>real</u> or <u>virtual</u>??

NO!! It is NOT Unreasonable!

If we can describe the system <u>accurately</u> then it is 'just math'!

Modeling your system Virtual Probing 0 0 Source Device B D 50Ω **Digital Source**

Circuit Elements: capacitors, inductors, resistors Parameters: Z, Y, S-Parameters Time Domain: Impulse Response Frequency Domain: Transfer Functions

How a Source might be modeled:

Agilent Technologies

Agilent Confidential May 28th, 2009

Creating models in ADS (Agilent Design System)

S-Parameters: Definition

- A Matrix of S-Parameters is used to describe multi-port devices
- a1,a2 represent the waves entering ports 1,2 respectively
- b1,b2 represent the waves exiting ports 1,2 respectively
- The voltage observed on port 1 is described by the vector addition of the voltage waves described by a1,b1
- Frequency based (Sinusoids)

Agilent Confidential May 28th, 2009

S-Parameters: Time Domain View

Digital Communication Analyzer

Evaluate Wave Reflected at Port 1 vs Wave incident at Port 1... S_{11}

Evaluate Wave Transmitted through to Port 2 vs Wave incident at Port 1... S₂₁

Flip Device around and repeat for S_{22} and S_{12} .

S-Parameters: Frequency Domain View

Vector Network Analyzer

Sinusoidal Stimulus Directional Devices Pick off voltage waves A, B, C, D $S_{21} = B/A$ vector $S_{11} = C/A$ vector $S_{12} = C/D$ vector

Agilent Confidential May 28th, 2009

S-Parameters: 2 to 4 Port

Agilent Confidential May 28th, 2009

S-Parameters: 4-Port

Transfer Functions

If you want to see signal at S but can only measure at M, what do you do?

- A Transfer Function describes the ratio of a voltage wave <u>entering/exiting</u> one port to a voltage wave <u>exiting/entering</u> another port.
- An S-Parameter or combination of S-Parameters can be used as a Transfer Function.
- Transfer Functions are commonly described in the frequency domain H(s), where s=jw

Agilent Confidential May 28th, 2009

Transfer Functions, continued

An Ambiguity is what Relationship from M to S truly is:

It could be:

- 1. $S = S_{21B}^{-1} \times M$ (Simple Gain Compensation)
- 2. S = The node voltage, v(t), in the circuit (Reference Plane Relocation)
- 3. S = The node voltage, v(t), with Element B removed and 50 Ω to ground connected (Channel Element Removal or De-Embedding)

Schedule

- 1. Brief de-embedding presentation
- 2. Scope Architecture
- 3. Hardware Performance
- 4. Frequency Interleaving
- 5. DSP Boosting
- 6. Measurement Comparisons
- 7. Conclusion

Scope Architecture

This presentation will focus on the pre-amplifier and the importance of understanding its bandwidth

The future of oscilloscopes is now	Maximum Preamplifier Bandwidth	Oscilloscope Bandwidth Spec
DSP Boosting	16 GHz 🛌	20 GHz
Frequency Interleave	16 GHz 🛛 🛏	30 GHz
True Analog Bandwidth	32 GHz	32 GHz

The oscilloscope pre-amplifier

- Presents a DC coupled 50 ohm termination impedance at the scopes inputs to its full bandwidth
- 2. Provides a mean to offset the dynamic range of the input signal
- 3. Corrects the response of the oscilloscope
- 4. Provides anti-aliasing at maximum sample rate
- 5. Can drive both sampler IC and the trigger IC
- 6. Isolates the sampler IC from the trigger outputs

Agilent's proprietary multi-chip modules

Preamplifier output bandwidth determines the bandwidth of the oscilloscope

Unless:

You DSP boost

You use frequency interleaving

Hardware Performance (pre-amplifier BW)

Requires significant investment to achieve raw hardware performance to bandwidths > 16 GHz

Semiconductor Process	Cutoff Frequency (GHz)
Agilent Indium Phosphide HBT	200
IBM 8HP	207
Infineon B7HF200	200
IBM 7HP	110
ST BICMOS9MW	230
IHP SG25H1	190

Key Points of Hardware Performance

- Requires investment in state of the art chip processes
- Typically will have linear noise density to full bandwidth
- No noise penalty due to DSP
- □ Flat frequency response
- Design is still a key part of the oscilloscope performance

Data from 90000 X-Series (Hardware Perf.)

What is Frequency Interleaving

Frequency Interleaving is an RF Technique that allows for faster time to market to achieve higher bandwidth

How does frequency interleaving work?

- 2. Signal then enters a diplexer
- 3. Low frequency content goes through pre-amplifer
- 4. High frequency content is immediately down-converted
- 5. Down-converted HF content, goes through lower BW rated pre-amplifier
- 6. Signal is all put back together

Key Points of Frequency Interleaving

- Requires significant DSP processing
- Enabled by high powered PC
- Achieved through significant advances in RF design
- Down-conversion is a key part of the acquisition
- Signal is actually interleaved twice
- Allows for faster bandwidths with less investment than hardware performance

Data from frequency interleaved oscilloscope

Hardware performance vs. frequency interleaving

DSP boosting (extending the bandwidth)

- ✓ Does not extend the bandwidth as much as frequency interleaving.
- Does not require additional hardware to extend the bandwidth
- Frequency extension achieved with filters

How DSP boosting works

- Pre-amplifier bandwidth (red trace) does not achieve full bandwidth
- 2. Filter is applied that "boosts" the high frequency components of the oscilloscope (green trace)
- 3. Additional bandwidth is achieved, up to 25% bandwidth increase (blue trace)
- Bit tradeoff of the signal is the noise increase and ENOB erosion of the 2nd harmonic

Filter and software work together to achiever higher bandwidth

Key points of DSP boosting

- Requires bandwidth boosting of high frequency components through DSP processing
- Achieves up to 25% additional bandwidth without the addition of extra hardware
- Trades off measurement accuracy for extra bandwidth as the noise density is significantly increased where boosting filter is applied

Data from DSP boosted oscilloscope

Hardware performance vs. DSP boosting

DPO7000, DSA/DPO70000, and DSA/DPO70000B Series Digital Phosphor Oscilloscopes Specifications and Performance Verification Technical Reference"

Conclusion

- Agilent's 90000 X-Series oscilloscope is the only oscilloscope with >16 GHz pre-amplifier bandwidth and as a result has the lowest noise floor, highest effective bits, and flattest frequency response
- Frequency interleaving achieves the highest frequency gain, with the least pre-amplifier bandwidth, but trade-off is signal is down-converted and interleaved twice
- DSP boosting achieves higher bandwidth with little additional hardware, but tradeoff is increased noise

