LIBRARY COPY

10, Noc. RF 1838

Institute of Polar Studies Report No. 23 GOLDTHWAIT POLAR LIBRARY BYRD POLAR RESEARCH CENTER THE OHIO STATE UNIVERSITY 1090 CARMACK ROAD COLUMBUS, OHIO 43210 USA

Glaciology of the Queen Maud Land Traverse, 1964-1965 South Pole–Pole of Relative Inaccessibility

by

R. L. Cameron, E. Picciotto, H. S. Kane, and J. Gliozzi Institute of Polar Studies

April, 1968

RICHARD P. GOLDTHWAIT DEPT. OF GEOLOGY, O. S. U. 155 SOUTH OVAL DRIVE COLUMBUS 10, OHIO

The Ohio State University Research Foundation Columbus, Ohio 43212

INSTITUTE OF POLAR STUDIES

Report No. 23

GLACIOLOGY ON THE QUEEN MAUD LAND TRAVERSE, 1964-1965 SOUTH POLE-POLE OF RELATIVE INACCESSIBILITY

Ъy

R. L. Cameron E. Picciotto H. S. Kane J. Gliozzi

Institute of Polar Studies

April 1968

The Ohio State University Research Foundation Columbus, Ohio 43212

FOREWORD

The glaciological program was supported by the National Science Foundation through a grant awarded to The Ohio State University Research Foundation (NSF Grant GA-135). The glaciological work was done by Professor E. Picciotto, of the University of Brussels; Olav Dybvadskog, of the Norwegian Polar Institute; and James Gliozzi, Scott Kane, and Richard L. Cameron, of The Ohio State University Institute of Polar Studies.

The geophysical studies were conducted by personnel of the University of Wisconsin, led by Dr. Charles Bentley, and were supported by the National Science Foundation under a separate grant.

ABSTRACT

An oversnow traverse was made from the South Pole to the Pole of Relative Inaccessibility along a zigzag path of about 800 nautical miles during the period 4 December 1964 to 27 January 1965. The surface varied from very hard with many highly developed sastrugi to very soft and mooth. The average air temperature was -28.8°C, with an absolute maximum of -18.2°C on 5 January and an absolute minimum of -44.7°C on 26 January. The absolute maximum wind speed recorded was 9.0 m/s on 29 December and 17 January; there was 3 percent calm in December and 1 percent calm in January. Solar halos were frequent. Firn temperatures were taken at 29 sites; the most striking anomaly occurred on the last leg of the traverse where there was an abrupt change in slope and as the height increased the temperature anomalously increased before decreasing as expected. The temperature profile at the Pole of Inaccessibility was similar to that obtained by the Soviets in 1964. Temperature gradients were negative at the South Pole but strikingly positive in the vicinity of the Pole of Inaccessibility. Density profiles to depths of 40 m were taken at 12 sites with a neutron-scattering device; most of the density curves showed a break at a density of 0.52 to 0.54 g/cm³. Snow accumulation studies in pits showed an accumulation generally between 5 and 10 g/cm^2 . Snow accumulation measured at the anemometer mast and the instrument shelter at the Pole of Inaccessibility for the period 14 December 1958 to 30 January 1965 was 3.6 $g/cm^2/yr$.

CONTENTS

	Page
Introduction	l
Meteorology	l
General	l
Optical phenomena	l
Solar halos	7
Whiteout	8
Firn Temperature	11
General	11
Mean annual surface temperature	11
Temperature profiles	16
Pole of Relative Inaccessibility	16
Surface Conditions	22
Snow hardness	22
Surface characteristics	22
Surface cracks	22
Firn Density	29
Depths of 0-2 m	29
Depths of 0-40 m	33
Depths of 10 m	39
Pit Studies	44
Accumulation	46
Measurement of accumulation	46
Accumulation at Pole of Relative Inaccessibility	47

CONTENTS - continued

	Page
References	55
Appendix I - Meteorological Data	57
Appendix II - Snow Hardness Data	65
Appendix III - Firn Density, 0-2 Meters	69
Appendix IV - Firn Density from Neutron Scattering Data, 0-40 Meters	77
Appendix V - Pit Diagrams	90
Appendix VI - Log of the Queen Maud Land Traverse, 1964-1965	133

Table Number		Page
I	Traverse Positions, Elevations, and Glaciological Programs	6
II	Temperature and Wind Speed, 5 Dec. 1964-1 Feb. 1965	7
III	Halo Occurrence	7
IV	Temperature Measurements (-°C)	12
v	Temperature Gradients from 15 m to Bottom of Borehole	19
VI	Temperature Profiles at Pole of Relative Inaccessi- bility	20
VII	Surface Characteristics at Pit Stations	26
VIII	Spacing of Surface Cracks at Mile 185	29
IX	Average Firn Density, 0-200 cm	33
X	Density at 10 meters	42
XI	Typical Density and Grain Size of Firn Layers	46
XII	Accumulation Along Route of Queen Maud Land Traverse, 1964-1965	48

<u>Figure</u>		Page
l	Traverse route	2
2	Topography of East Antarctica	3
3	Elevation profiles of the traverse	4
4	Mean daily wind speed and mean daily temperature recorder on the traverse	5
5	Drawing of solar halo seen on 30 January 1964	9
6	Drawing of solar halo seen on 8 January 1964	9
7	Whiteout	10
8	Mean annual surface temperature plotted against eleva- tion profile of traverse route	14
9	Firn temperature (at 30 to 46 m depth) versus surface elevation	15
10	Distribution of mean annual surface temperature in East Antarctica	17
11	Temperature profiles, surface to 40 m, at ten sites on the traverse	18
12	Temperature profile at the Pole of Relative Inaccessi- bility	21
13	Smooth surface of ice sheet	23
14	Sastrugi over 1 m high on first leg of traverse	24
15	Snow surface hardness, $0-50$ cm, along the traverse route	25
16	Cracks developed in glazed snow surface	27
17	Crack 7 cm wide on the surface at Mile 285	27
18	Sketch of 1-cm-wide crack in wall of pit at Mile 680	28
19	Bifurcation of surface crack at Mile 185	30
20	Relationship of two cracks at Mile 185	31

LIST OF FIGURES - continued

Figure		Page
21	Surface crack at Mile 185 developed in a sastruga	32
22	Average snow density, 0-2 m, along traverse route	34
23	Comparison of measured density and raw neutron count rate in 10-m drill hole at Byrd Station, 10 November 1964	
	1904	37
24	Linear regression. Density probe calibration of counts per minute versus density	38
25	Depth-density curves at 12 sites along the traverse	40
26	Raw neutron count rates at Mile 48 and Mile 797	4 1
27	Snow density at 10-m depth along traverse route	43
28	Typically rough surface along first leg of traverse	45
29	Maximum annual snow accumulation along traverse route	49
30	Pole of Relative Inaccessibility	50
31	Snow accumulation at Pole of Relative Inaccessibility	51
32	Sketch map of snow accumulation stake net established on 30 January 1965 at Pole of Relative Inaccessibility	53

ERRATA

- Cover, Title Read Glaciology on
- p. iii, line 5 For mooth read smooth
- p. iv, line 4 <u>Should read</u> Optical phenomena 7
- p. iv, line 19 For Depths of 10 m read Depth of 10 m
- p. vii, line 5 (Fig. 4) For recorder read recorded
- p. vii, line 6 (Fig. 5) For 30 January 1964 read 30 December 1964
- p. vii, line 7 (Fig. 6) For 8 January 1964 read 8 January 1965
- p. 9, Fig. 6 For 8 January 1964 read 8 January 1965
- p. 16, 3rd from bottom line For Soviel read Soviet
- p. 52, line 17 For 3.6 g/cm^3 read 3.6 g/cm^2
- p. 90, line 11 <u>Should read</u> the position of the samples collected in view of isotopic measurements (fallout, Pb²¹⁰ and oxygen isotopes).

pages 95 and 96 should be transposed

Institute of Polar Studies Report 23

Cameron, Picciotto, Kane, and Gliozzi

INTRODUCTION

The Queen Maud Land Traverse left the South Pole on 4 December 1964 and made a zigzag path of 800 nautical miles, arriving at the Soviet Station Pole of Relative Inaccessibility (Lat. $82^{\circ}06'47''$ S, Long. 55° 02'02'' E) on 27 January 1965 (Figs. 1 and 2). Along the first leg of the traverse, due north on the 60° E meridian, there was a gradual increase in elevation from 2800 m at the South Pole to 3106 m at the end of this leg, Mile 185 (Fig. 3). The topography was varied with numerous distinct troughs and ridges. The second leg of the traverse remained at a constant elevation for the first 35 miles, decreased 350 m in the next 85 miles, and then decreased very gradually, 100 m in 110 miles, to the low of 2628 m, and the end of the leg (Mile 415). The third leg had a distinctive profile; the elevation increased only 50 m the first 35 miles, it remained constant for the next 70 miles, and then there was an abrupt change in slope. This change in slope could actually be seen and was indeed impressive. During the remaining 260 miles to the Pole of Inaccessibility, the elevation increased over 1000 m.

Along this traverse route, both geophysical and glaciological studies were made. The geophysical measurements consisted of gravity, magnetics, ice thickness from seismic measurements, and bedrock velocity measurements by seismic refraction. The glaciological studies were confined to the top 40 m of the ice sheet, and consisted of density measurement (0-2 m and 0-40 m); firm temperatures to 40 m; snow pit studies to determine snow accumulation; sampling of firm for oxygen-isotope, fission products, and Pb²¹⁰ measurements; surface hardness (0-50 cm); and surface features. In addition, daily meteorological observations were made.

Table I gives the position and elevation of traverse stations and the glaciological studies made at these stations. Appendix VI is a log of the traverse.

METEOROLOGY

General

Four observations were made each day (0000, 0600, 1200, and 1800 hours) of temperature, wind direction and speed, cloud cover, and visibility. Table II gives the results of these observations, and Fig. 4 is a plot of the mean daily temperatures and the mean daily wind. The detailed observations are given in Appendix I.

1

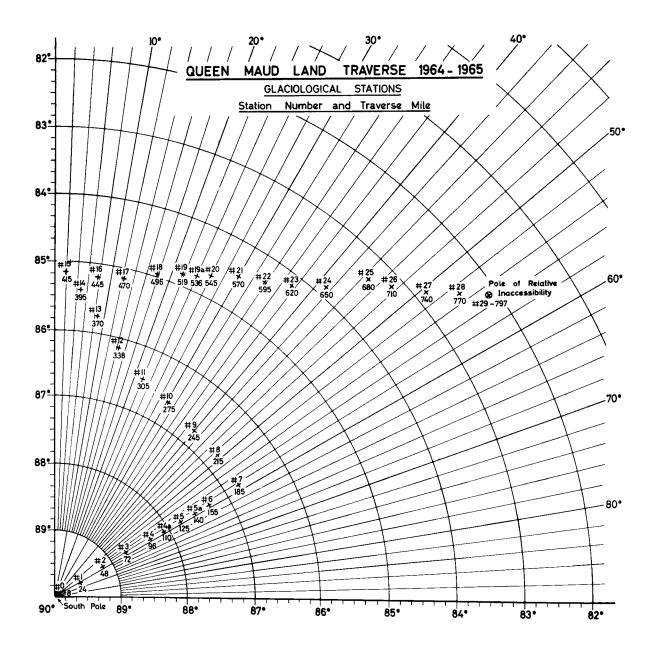


Fig. 1 - Traverse route with glaciological station number and traverse mile

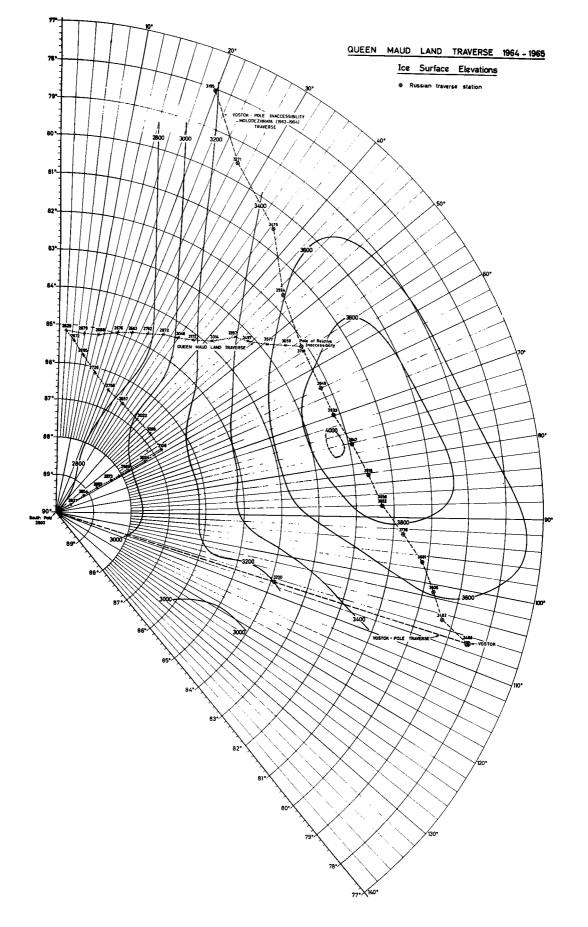


Fig. 2 - Topography of East Antarctica from ice elevation data obtained on QMLT I 1964-1965 and the Soviet Vostok-Pole of Relative Inaccessibility-Molodezhnaya Traverse 1963-1964

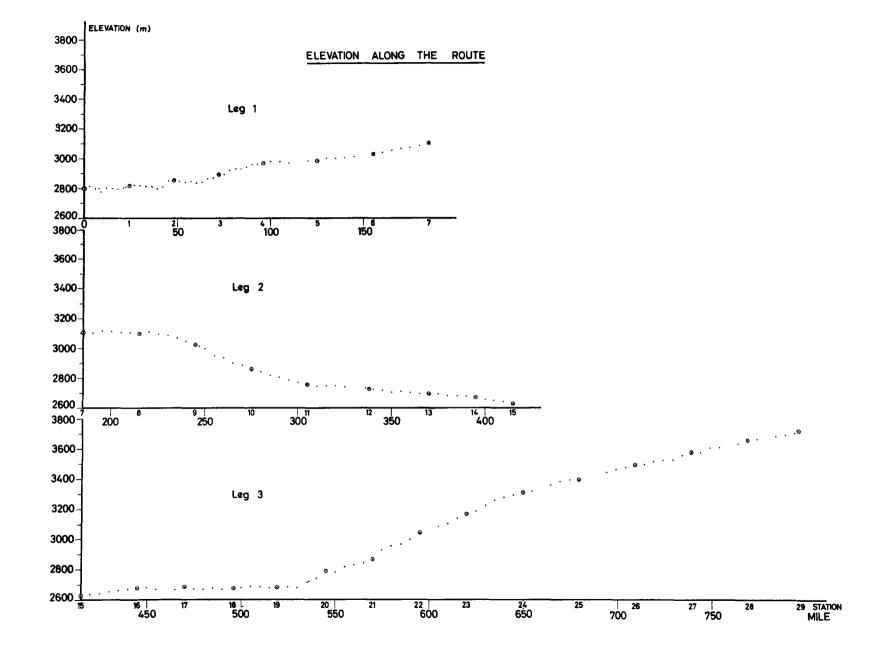
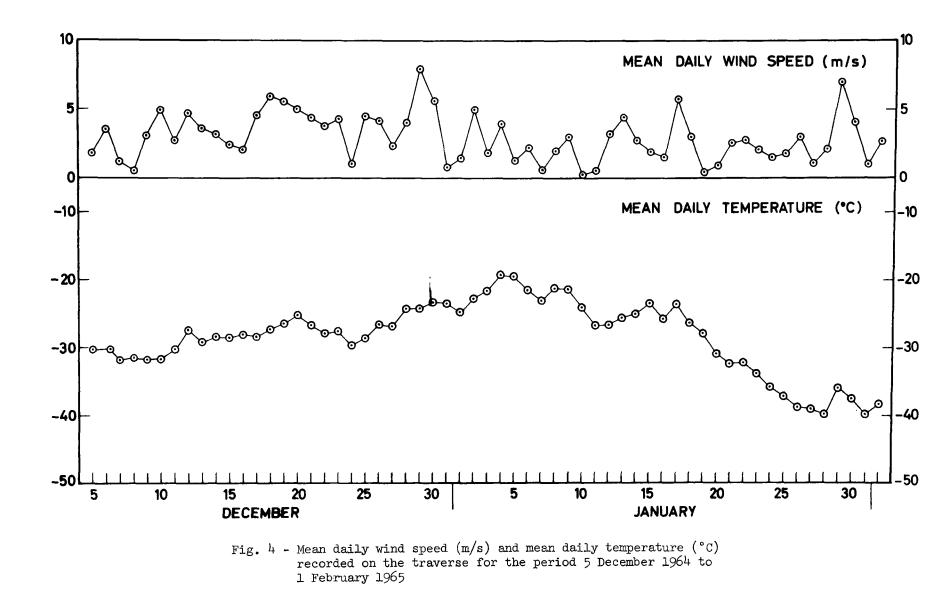



Fig. 3 - Elevation profiles of the three traverse legs of QMLT I

4

ഗ

Station	Traverse	Latitude	Longitude	Elevation	Sampling	Measurement
No.	Miles	(South)	(East)	Meters	Program	Program
					123	4567
0	8	89°52'	60°00'	2800		- +
1	24	89°35'42"	60°00'	2821	- + -	+ + - +
2	48	89°10'30"	58°30'	2854	+ + -	+ + - +
3 4	72	88°44'54"	58°00'	2893	+ + -	+ + - +
4	96	88°19'	58°54'	2973	+ + -	+ + - +
4a	110	88°05'18"	59°00'	2978	- + +	- +
5	125	87'48'18"	59'12'	2989	+ + -	+ + + -
5a	140			3006	+ + -	- + + -
6	155	87°16'48"	58°54′	3034	+ + -	+ + + -
7 8	185	86°45'	58°36′	3106	+ + +	+ + + +
8	215	86°47'48"	49°12'	3099	+ + -	+ +
9	245	86°44'30"	40°00'	3022	+ + -	+ + + -
10	275	86°37'42"	30°36′	2857	+ + +	+ + - +
11	305	86°30'	22°12'	2756	+ + -	+ - + -
12	338	86°08'54"	14°48'	2726	+ + -	+ +
13	370	85°45'48"	08°42'	2695	+ + +	+ + _ +
14	395	85°26'18"	04°42'	2672	+ + -	+ + + -
15	415	85°10'12"	01°48'	2628	+ + +	+ + + +
16	445	85°13'18"	07°42'	2679	+ + -	+ + +
17	470	85°10'48"	13°12'	2688	+ + -	+ + + +
18	496	84°58'06"	17°54'	2676	+ + +	+ + + -
19	519	84°50'48"	21°48'	2683	- + -	+ + + -
19a	536				- + -	
20	545	84°41'48"	26°00'	2792	+ + -	+ + + +
21	570	84°31'42"	30°06'	2872	+ + -	+ + + -
22	595	84°22'12"	33°54′	3046	+ + -	+ + + -
23	620	84°10'30"	37°36'	3172	+ + +	+ + + +
23 24	650	83°52'42"	41°18'	3314	+ + -	+ - + -
	680	83°20'00''	44°33'	3397	+ + -	+ + + -
25 26	710	83°10'30"	47°28'	3497	+ + +	+ + + -
	740	82°50'12"	•			
27 28		82°27'12"	50°31' 52°52'	3577 3659	+ + -	+ + + -
	770 707	82°06'47"	55°02'02"		+ + -	+ + + -
29	797	02 00 47	55 UZ UZ	3718	+ + +	+ + + +

Table I - Traverse Positions, Elevations, and Glaciological Programs

Sampling Program:	$1 = 0^{18} / 0^{16}$
	2 = Fission products
	$3 = Pb^{210}$
Measurement Program:	4 = Firn temperature
	5 = Snow accumulation from stratigraphy
	6 = 0- to 2-m densities
	7 = 0- to 40-m depth density profiles

Table II - Temperature and Wind Speed, 5 Dec. 1964-1 Feb. 1965

Temperature	°C	Wind Speed (m/s)
Average for December Average for January Average for DecJan. Average for DecFeb. Maximum daily mean Minimum daily mean Absolute maximum Absolute minimum	-28.0 -29.2 -28.6 -28.8 -19.2 on 4 January -39.8 on 28 & 31 Jan. -18.2 on 5 January -44.7 on 26 January	7.9 on 29 December 0.2 on 10 January 9.0 on 29 Dec. & 17 Jan. Percent of calm 3% in Dec.
		1% in Jan.

In general, the climate was ideal for field work. Bad days, with either high winds or poor visibility, were infrequent. Strong winds occasionally increased surface noise to interfere with seismic work, and an overcast sky hindered navigation by sun compass. Only during the last few days, at the Pole of Relative Inaccessibility, did low temperature markedly hinder field work. Near and below -40°C, outdoor work became painfully slow.

Optical Phenomena

Solar Halos. Solar halos were relatively frequent, and the displays consisted mainly of 22° halos and the lower tangential arc of the 22° halo. Occasionally, the 46° halo developed, and twice, brilliant, multi-component, halos were formed. The halos recorded here were marked displays; certainly others went unnoticed because of poor definition or because they were displayed during the short daily sleeping period. There were 14 displays between 1 December and 8 January. The data of the display and the mean temperature for that day are given in Table III.

Date	Mean Temperature (°C)
1 December 1964	-29.2*
4 December 1964	-30.0*
17 December 1964	-28.4
20 December 1964	- 25 . 3
21 December 1964	-26.7
22 December 1964	-27.8
23 December 1964	-27.6
25 December 1964	-28.6
26 December 1964	-26.6
30 December 1964	-23.2
1 January 1965	-24.8
2 January 1965	-22.6
6 January 1965	-21.5
8 January 1965	-21.3

Table III - nato Occurrenc	Table	III	-	Halo	Occurrence
----------------------------	-------	-----	---	------	------------

* Temperature at time of halo

The finest displays were on 30 December 1964 and 8 January 1965. The data for the 30 December display follow, and Fig. 5 is a sketch of the display.

30 December 1964

Mile 338 Elevation 2726 m Position 86'08'54" South Latitude 14°48' East Longitude Time 0830 to 0915 Temperature -23°C Wind 5 m/s

This display was indeed impressive and lasted for 45 minutes. During this time, the light intensity of the various components varied considerably. The display consisted of a 22° halo with brilliant parhelia, and a 46° halo as well. The upper tangential arc of the 22° halo was well developed, and the circumzenithal arc was especially brightly colored. On occasion, the parhelic circle was complete.

The most spectacular display occurred on 8 January. The data for this display follow, and Fig. 6 is a sketch of the display.

8 January 1965

Mile 445 Elevation 2679 m Position 85°13'18" South Latitude 07°42' East Longitude Time 0630 Temperature -24.2° C Wind 1.3 m/s

The optical phenomenon consisted of the 22° and the 46° halos, with an extremely well-developed upper tangential arc of the 22° halo. The infra-lateral tangential arcs of the 46° halo were visible only for a few minutes. The parhelic circle and the circumzenithal arc were both complete for an instant, with the parhelic circle remaining for some tens of minutes later. The paranthelia were developed at 120°, and directly opposite the sun were the anthelic arcs. The circumzenithal, parhelic, and anthelic arcs were white. The most persistent feature was the lower tangential arc of the 22° halo.

<u>Whiteout</u>. Whiteout conditions were infrequent, and were only well developed on two occasions. Figure 7 demonstrates the difficulties of perception without a frame of reference.

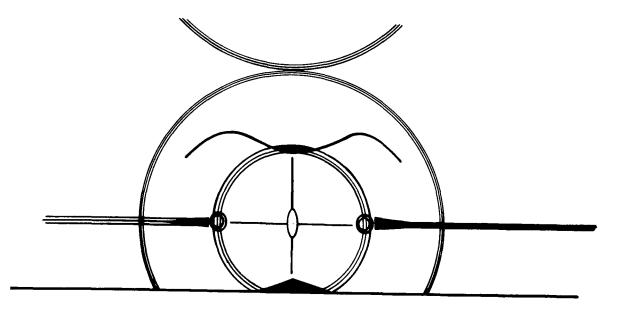


Fig. 5 - Drawing of solar halo seen on 30 December 1964. Details of display are given in text

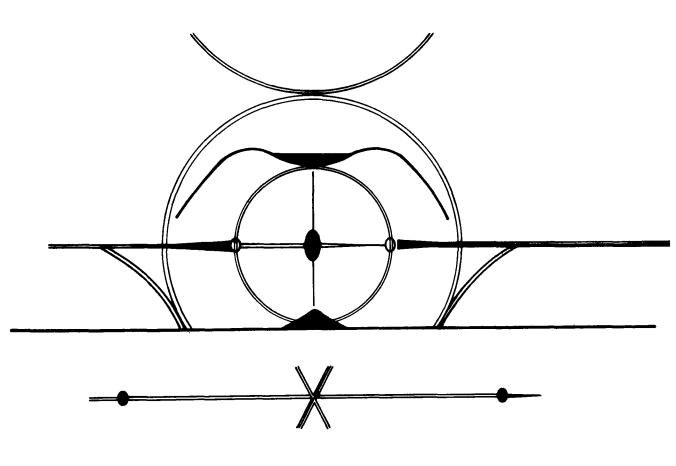


Fig. 6 - Drawing of solar halo seen on 8 January 1964. Details of display are given in text

Fig. 7 - Whiteout. Tripod seems suspended in mid-air and no horizon is discernible (Photo by R. L. Cameron)

General

Temperatures were measured in boreholes at 29 sites; 19 were bottomof-the-hole temperatures, and 10 were temperature profiles. These temperature data are given in Table IV.

Most bottom-of-the-hole temperatures were measured with a thermohm and a Leeds-Northrup direct-reading Wheatstone bridge. Two thermohm cables were used; one was 16 m long and the other was 51 m long. Usually both thermohms were placed in the hole at night, and the measurements made in the morning. The temperatures were read to the nearest 0.05°C and are considered good to 0.1°C. Temperature profiles were measured with thermistors and a Leeds-Northrup No. 4735 guarded Wheatstone bridge in conjunction with a No. 9834 null detector. Resistances were converted to the nearest 0.01°C and the temperatures were considered good to 0.05°C.

Mean Annual Surface Temperature

Figure 8 shows a plot of temperature versus the elevation profile of the traverse route, and Fig. 9 is a plot of temperature versus elevation for all stations. The temperatures used in both figures are the deepest temperature at each site (their depths varied from 30 to 46 m).

Between the South Pole and Mile 185, there was a rather constant increase in elevation. However, in contrast to the expected inverse relationship between temperature and elevation, the temperatures showed little or no trend. The difference in elevation between the South Pole (2800 m) and Mile 185 (3106 m) is about 300 m. Taking into account the usual decrease in temperature with elevation of 1.1 to $1.4^{\circ}C$ per 100 m, as determined by Crary (1963) for U. S. traverses in East Antarctica, the expected temperature would be 3.3 to $4.2^{\circ}C$ lower than the South Pole. But, in fact, the South Pole temperature is -50.7°C and at Mile 185 it is -51.6°C, a decrease of only $0.8^{\circ}C$, equivalent to a lapse rate of $0.27^{\circ}C$ per 100 m.

On the second leg of the traverse, there was a relatively constant decrease in elevation from Mile 185 (3106 m) to Mile 415 (2628 m), a drop of 478 m. Temperatures here were generally higher, but there is considerable scatter. The highest temperature (-47.8°C) occurred at 2857 m, the lowest (-52.0°C) at 3099 m. The temperature at the end of the traverse leg, which is the lowest elevation as well, was -48.4°C.

The elevation on the third leg of the traverse was fairly constant for the first 100 miles, but there was a slight increase in temperature. At this point, the surface slope increased sharply (this slope could

Depth (m)	Station Mile Date Hole Depth (m) Surface Elev. (m)	1 24 6 Dec 32.5 2821	2 48 8 Dec 38 2854	3 72 9 Dec 40 2893	4 96 11 Dec 36 2973	5 125 14 Dec 37 2989	6 155 15 Dec 38.5 3034	7 185 17 Dec 37.5 3106	8 215 21 Dec 40 3099	9 245 24 Dec 40 3022	10 2 7 5 26 Dec 40 2857	11 305 28 Dec 39.5 2756	12 338 29 Dec 16 2726	13 370 1 Jan 10 2695	14 395 2 Jan 37.9 2672	15 415 4 Jan 40 2628	16 445 8 Jan 39 2679
1 2 3									44.88 51.31 52.49	44.16	43.28	44.84				44.90	
4		50.66		50.26				52.46	52.78 52.82	50.29	48.90	49.15				49.44	
3 4 5 6 7 8 9 10									52.88 52.58 52.38	50.05	48.60	48.84				49.33	
11 12		50.45		49.67	51.40	53.50		51.52	52.25 52.04	49.59	48.20	48.42		5150		49.75	
13 14 15 16 17 18		50.53		49 .75				51.51	51.92	49.32	47.88	47.96	48.35			48.54	
19 20 21 22		50.61		49 .87				51.33	51.98	49.35	47.87	47.98				48.51	
23 24 25 26 27		50.67 50.68		49 .92				51.57	52.01	49.35	47.89	48.01				48.48	
28 29 30		50.66		49.96				51.19	52.01	49.33	47.84	48.03				48.46	
32 32		50.69						51.55									
33 34 35				49.96					52.02	49.32	47.84	48.02 48.00				48.41	
25 26 27 28 29 30 31 33 33 33 33 33 33 33 33 33 33 39 41 42			51.54		52.35 51.30		51.50 † (38.5m)		51.98	49 .2 5	47.77	47. 94		49.83	48.90 ∳ (37.9m)	48.39	49.40

Table IV - Temperature Measurements (-°C)

Depth (m)	Station Mile Date Hole Depth (m) Surface Elev. (m)	17 470 9 Jan 41.7 2688	18 496 10 Jan 41.8 2676	19 519 14 Jan 40.2 2683	20 545 15 Jan 41.0 2792	21 570 17 Jan 36.3 2872	22 595 18 Jan 40.3 3046	23 620 19 Jan 42.5 3172	24 650 23 Jan 30.1 3314	25 680 24 Jan 39.9 3397	26 710 25 Jan 39.7 3497	27 740 26 Jan 39•3 3577	28 770 27 Jan 39.2 3659	29 797 30 Jan 45.8 3718
1 2								41.98						51.53 (2.3 m)
3 4								49.16						57.18
5 6 7								49.41						(4.3 m) 58.28 (6.15m)
8 9 10 11 12								49.14						58.11
1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 10 1 12 13 4 5 6 7 8 10 1 12 13 14 5 6 7 18						46.15	47.20	48.78	51,45		54.00	55.60	56.65	57.42 (14.15m)
18 19 20 21 22								48.73						
23 24 25 26 27														57.00 (24.15m)
23 24 256 28 90 31 23 34 56 78 90 340 340								48.70	51.05 (30.3m)					56.41
33 34 35 36						46.10 (36.3m)								56.84 (34.15m)
37 38 39						(30.5m)								56.79
40		49.80 (41.7m)	48.80 (41.8m)	48.60 (40.2m)	46.70 (41.0m)		47.20 (40.3m)	48.50 (42.5m)		52.70 (39.9m)	53.60 (39.7m)	55.20 (39.3m)	56.30 (39.2m)	56.72 (45.8m)

Table IV - Temperature Measurements (-°C) - continued

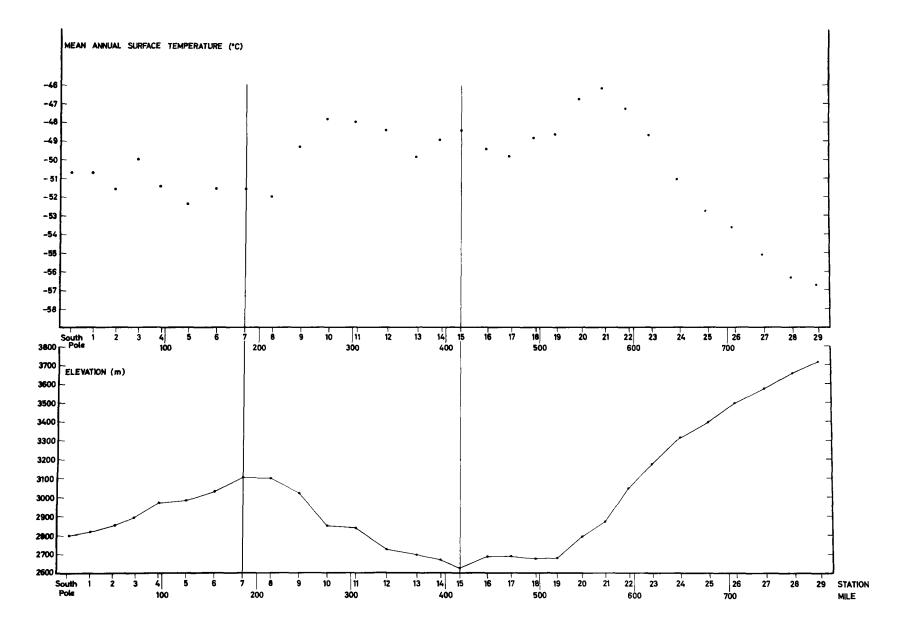
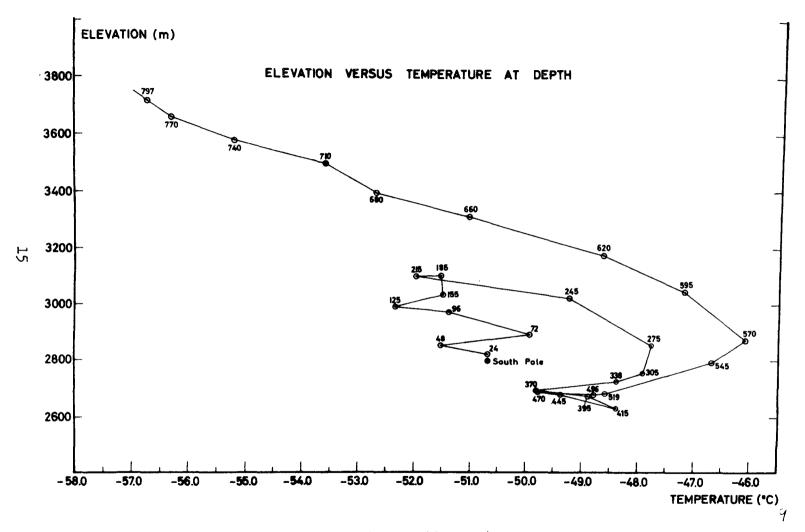
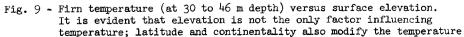




Fig. 8 - Mean annual surface temperature plotted against elevation profile of traverse route. Note striking anomaly on the third leg of the traverse where there is an increase in temperature with an abrupt increase in elevation

actually be seen), and there was a marked increase in temperature for the next 50 miles. The temperature increased from -48.6°C at Mile 519 to a maximum of -46.1°C at Mile 510, an increase of 2.5°C as the elevation increased 189 m. This corresponds to a lapse rate of +1.32°C per 100 m, indeed an anomaly; it probably results from the warming of gravity winds as they descend this slope.

From Mile 595 to the Pole of Relative Inaccessibility (Mile 797), the elevation increased 672 m and the temperature decreased 9.5°C, for a lapse rate of 1.26°C per 100 m.

The lowest mean annual surface temperature recorded (-56.7%) on the traverse was at the Pole of Relative Inaccessibility.

A map of mean annual surface temperature has been prepared, utilizing the results of this traverse and of the 1963-64 Soviet traverse (Fig. 10). The map shows the positions of the 50° and 55°C isotherms, and the locality of the anomalously warm area at the beginning of the steep slope.

Temperature Profiles

The temperature profiles were measured at 10 sites on the traverse, and the curves were plotted (Fig. 11). Temperature gradients between 15 m and the bottom of the drill hole have been obtained graphically from the thermistor temperature curves and calculated from thermohm measurements.

Table V shows that on the first leg of the traverse the first two profiles had negative gradients and the end profile was only slightly positive. The South Pole has a negative temperature gradient; negative temperature gradients have been reported from near the Pole by Crary (1963) and on the South Pole traverse of 1962-63 (Taylor, 1965).

The steepest gradients were at the end of the last leg of the traverse with a maximum of 2.01° C per 100 m at the Pole of Inaccessibility. The average of all positive gradients measured is 0.61° C per 100 m.

Pole of Relative Inaccessibility

A 47-m borehole was made at the Pole of Relative Inaccessibility in 1958. The temperature profile of this borehole was made by members of the Soviel traverse of 1963-64. Their measurements and those of the present (1964-65) traverse are compared in Table VI and in Fig. 12. The results show good agreement.

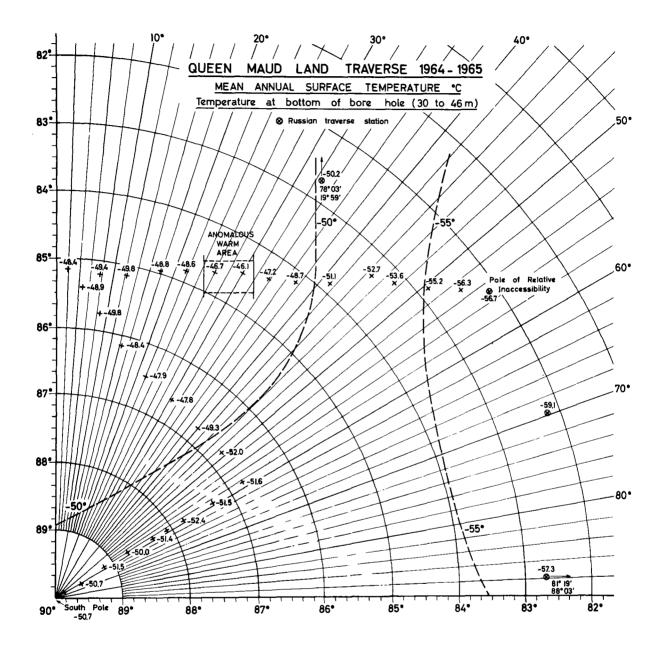


Fig. 10 - Distribution of mean annual surface temperature in East Antarctica

TEMPERATURE (°C)

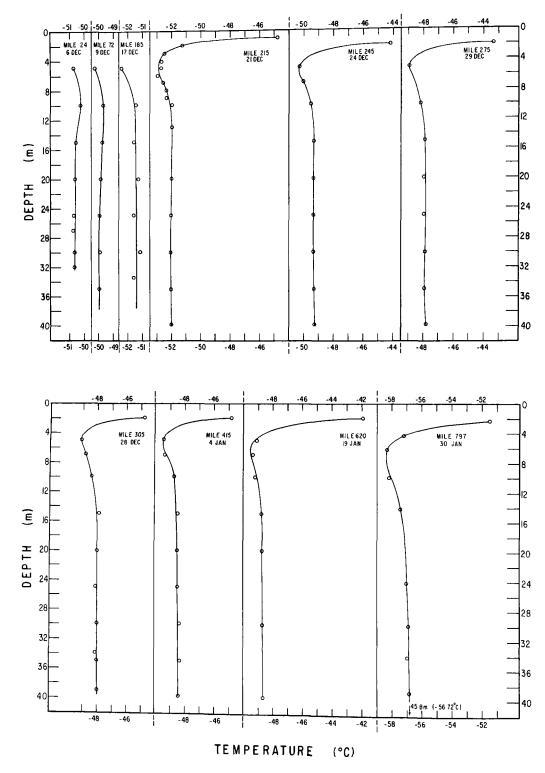


Fig. 11 - Temperature profiles, surface to 40 m, at ten sites on the traverse

18

Station	Mile	Thermistor (+) Thermohm (*)	Depth (m)	Interval (m)	Temperature Difference	Gradient (°C per 100 m)
l	24	+	15-32	17	-0.16	-0.94±0.05
3	72	+	15-35	20	-0.25	-1.25±0.05
7	185	+	15-32	17	+0.03	+0.18±0.05
8	215	+	15-40	25	+0.03	+0.12±0.05
9	245	+	15-40	25	+0.05	+0.20±0.05
10	275	+	15-40	25	+0.11	+0.44 <u>+</u> 0.05
11	305	+	15-39	24	+0.08	+0.33±0.05
15	415	+	15-40	25	+0.15	+0.60±0.05
21	570	*	15-36.3	21.3	+0.05	+0.23±0.20
22	595	*	15-40.3	25.3	0.00	0.00±0.20
23	620	+	15-42.5	27.5	+0.28	+1.02±0.05
24	650	*	15-30.3	15.3	+0.40	+2.61±0.20#
26	710	*	15-39.7	24.7	+0.40	+1.62±0.20
27	740	*	15-39.3	24.3	+0.40	+1.65±0.20
28	770	*	15-39.2	24.2	+0.35	+1.45±0.20
29	797	+	15-45.8	30.8	+0.62	+2.01±0.05

Table V - Temperature Gradients from 15 m to Bottom of Borehole

Questionable value

Depth (m)	Zotikov, Kapitsa & Sorokhtin (1965) 4 February 1964 Temperature (°C)	Cameron and Kane 30 January 1965 Temperature (°C)
0	34.0	
1 2 3 4 5 6 7 8 9 10	45.4	51.53 (2.3m) 57.18 (4.3m) 58.28
7 8 9	58.0	(6.15m)
11 12	57.2	58.11
13 14 15 16		57.42 (14.15m)
17 18 19 20	57.2	
21 22 23 24	56.7	57.00
25 26 27 28 29	56.9	57.00 (24.15m)
30 31 32	56.8	56.91
33 34 35 36 37 38	F6 9	56.84 (34.15m)
38 39 40	56.8	
41 42	56.8	56.79
43 44 45 46 47	56.8	56.72 (45.8m)

Table VI	I -	Temperature	Profiles	at	Pole	of	Relative	Inaccessibility
----------	-----	-------------	----------	----	------	----	----------	-----------------

TEMPERATURE (°C) 0 4 O SOVIET DATA 4 FEB 1964 ο 8 U.S. DATA 30 JAN 1965 12 0 16 20 (m 0 DEPTH 24 28 32 36 40 44 48 -52 -54 -56 -58

Fig. 12 - Temperature profile at the Pole of Selative fnaccessibility as determined by the Soviets, 4 February 1964 (open circles), and by the U. S. traverse, 30 January 1965 (solid circles). The curve is drawn on the U. S. data

The variability of the ice sheet surface roughness was great, ranging from smooth (Fig. 13) to sastrugi more than a meter in height (Fig. 14); the hardness (0-50 cm) ranged from a low of 10 kg/cm² to a high of 190 kg/cm². The surface was so soft at one point that one vehicle and its rolli-trailer got stuck.

Snow Hardness

The hardness of the surface snow, 0-50 cm, was measured with a Rammsonde penetrometer at 171 sites along the traverse route. Five measurements were made at each site. These hardness values and means are tabulated in Appendix II; Fig. 15 is a plot of the means. The maximum mean hardness, 137 kg/cm^2 , occurred at Miles 500 and 790. The absolute maximum was 190 kg/cm² at Mile 330, and the absolute minimum, 10 kg/cm², at Miles 500 and 750. The average snow hardness for the first leg of the traverse was 47 kg/cm²; for the second leg, 56 kg/cm²; for the third leg, 38 kg/cm²; and the average for the entire traverse was 45 kg/cm². Figure 15 clearly shows the variability of the surface snow hardness.

Surface Characteristics

The surface characteristics at the snow pit stations are given in Table VII.

Surface Cracks

Surface cracks were noted at a number of sites along the traverse route (Fig. 16). They generally occurred in glazed areas having little slope. These cracks were especially pronounced at Miles 100, 195, 250, 280-285, and 680. The cracks are a few centimeters wide and tens of meters long; the depth of one crack was 250 cm. Surface cracks have previously been reported from East Antarctica by Stuart and Heine (1%1), and by Giovinetto (1%3), who reported a 6-m-deep crack.

The cracks occur as polygonal or parallel systems. The widest surface crack, 7 cm, was at Mile 285 (Fig. 17). The cracks widen with depth. A peculiarity of the cracks when viewed in the wall of a pit is the horizontal displacement (Fig. 18).

The most extensively "cracked" area was at Mile 185. Here, a system of parallel cracks was developed perpendicular to the slope. These cracks were especially persistent, and some could be followed for 100 m. The distance between adjacent cracks was measured for a group of the cracks (Table VIII), and the spacing averaged 17.2 m.

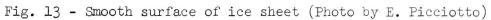


Fig. 14 - Sastrugi over 1 m high on first leg of traverse (Photo by E. Picciotto)

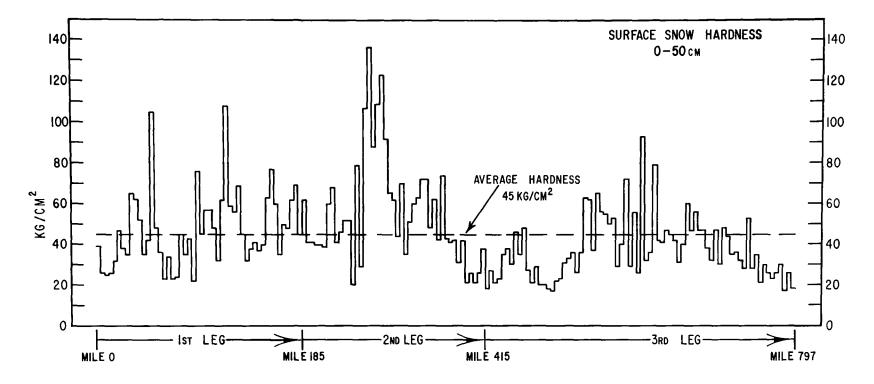


Fig. 15 - Snow surface hardness, 0-50 cm, along the traverse route

Table VII - Surface Characteristics at Pit Stations

Station	Mile	Surface Characteristics
0	8	High sastrugi
l	24	High sastrugi
2	48	Low sastrugi (15-20 cm)
3	72	Flat glazed surface
3 4	96	Dense, medium high sastrugi
4 a	110	Low sastrugi
5	125	Very few sastrugi. Flat glazed surface, without
,	/	sastrugi, icy crust above soft snow layer
5a.	140	Low sastrugi
6	155	Low sastrugi
7	185	Very low sastrugi, cracks
ė	215	No sastrugi, hard crusts alternating with loose
-	,	surfaces
9	245	No sastrugi, flat surface
lÓ	275	Wavy topography, medium high sastrugi
11	305	1- to 3-km-wide very flat strips alternating with
	0,	medium high sastrugi strips. One of the flat strips
		is composed of an icy crust lying on a 10- to 20-cm
		loose layer formed by large (5-7 mm) cup-shaped
		(sublimation) crystals
12	338	Medium high sastrugi
13	370	Medium high sastrugi
14	395	Low sastrugi, soft snow
15	415	Very low sastrugi
16	445	Low sastrugi, soft snow
17	470	No sastrugi, soft snow
18	496	Flat surface, soft snow
19	519	Medium high sastrugi
20	545	Flat surface without sastrugi, fine medium-hard snow
21	570	Flat surface, very low sastrugi, loose snow
22	595	Flat surface, very low sastrugi, loose snow
23	620	Medium high sastrugi
24	650	Flat surface, sastrugi absent or low
25	680	
26	710	Flat surface, no sastrugi
27	740	Flat surface, no sastrugi
28	770	Flat surface, no sastrugi, soft snow
29	797	Flat surface, very low sastrugi, soft snow

Fig. 16 - Cracks developed in glazed snow surface (Photo by R. L. Cameron)

Fig. 17 - Crack 7 cm wide on the surface at Mile 285. Mitten to right of crack (Photo by R. L. Cameron)

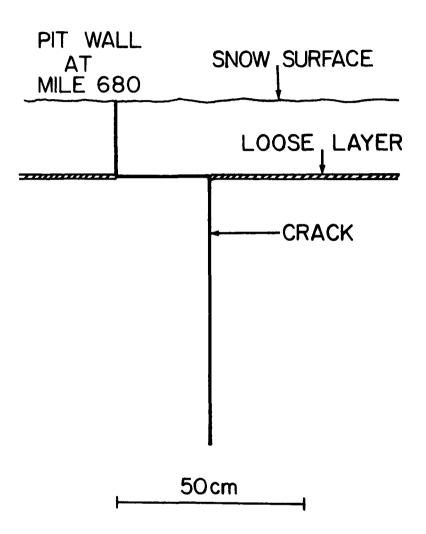


Fig. 18 - Sketch of 1-cm-wide crack in wall of pit at Mile 680

(m)	(m)	(m)
16.0	17.1	25.8
19.3	17.5	26.8
43.0	23.1	15.3
12.5	10.0	11.3
9.2	14.1	7.2
16.0	13.9	21.3
12.8	9.0	21.3 25.4 18.8
29.4 8.8	14.6	18.8
	14.6	14.6
32.0	15.0	14.9
12.4	26.0	16.2
7.3	12.3	26.9
15.5		

Table VIII - Spacing of Surface Cracks at Mile 185

These cracks often bifurcate at angles of 120° (Fig. 19); they terminate in a slight curve and another crack begins (Fig. 20); some cracks cut through sastrugi (Fig. 21).

The cracks are generally associated with relatively flat, glazed surfaces where snow accumulation is low. The polygonal crack systems may be the result of seasonal temperature differences, and the parallel crack systems (perpendicular to the slope) may be incipient minor crevasses, or they too may be thermally produced but affected by the slope.

FIRN DENSITY

Depths of 0-2 m

Snow density from the surface to a depth of 2 m was measured at 23 stations.* These data are presented in Appendix III. The average densities are given in Table IX and are plotted on the map in Fig. 22.

The densities range from 0.363 g/cm³ at Station No. 28 (at Station 29, the Pole of Inaccessibility, the density was 0.364 g/cm³), to 0.411 g/cm³ at Station No. 26. The average 0- to 2-m density was 0.385 g/cm³.

^{*} Snow samples were obtained with SIPRE density tubes, volume 500 cc, and weighed on a triple beam balance. Two density profiles were determined using horizontal sampling and the remaining using vertical sampling.

Fig. 19 - Bifurcation of surface crack at Mile 185 (Photo by E. Picciotto)

Fig. 20 - Relation of two cracks at Mile 185 (Photo by E. Picciotto)

Fig. 21 - Surface crack at Mile 185 developed in a sastruga (Photo by E. Picciotto)

Station	Mile	Density (g/cm ³)
5	125	0.3%
5 a	140	0.387
6	155	0.411
7	185	0.374
9	254	0.393
10	275	0.405
13	370	0.394
14	395	0.394
15	415	0.393
16	445	0.369
17	470	0.365
18	496	0.385
19	519	0.375
20	545	0.397
21	570	0.385
22	595	0.392
23	620	0.397
24 25 26 27 28 29	640 680 710 740 770 797	0.392 0.375 0.382 0.371 0.363 0.364 Average 0.385

Table IX - Average Firn Density, 0-200 cm

Crary (1963), in his analysis of the United States traverses in East Antarctica, computed average densities for 1-m intervals, and from these data the average density from 0 to 2 m for 40 stations is 0.397 g/cm³. For the 13 stations on the McMurdo-South Pole traverse, the average density is 0.388 g/cm³.

The areal distribution of 0- to 2-m densities shows no particular trend. The only significant points are the anomaly at Mile 470, where the density is low, 0.365 g/cm^3 , and at the end of the traverse, where the densities are again low, 0.363 and 0.364 g/cm^3 .

Depths of 0-40 m

Because 40-m holes were to be drilled at each traverse station for seismic investigations, it was decided to utilize these holes for depthdensity measurements. The boreholes were drilled with a 9-cm-diameter auger driven by a hydraulic motor mounted on the bed of the 742 Sno-Cat; in the loose firm in Queen Maud Land, this produced a hole between 9 and 12 cm in diameter.

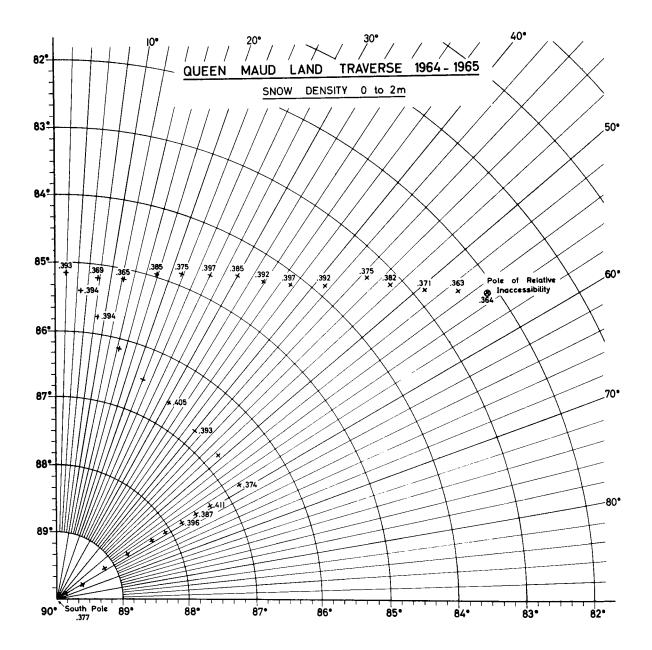


Fig. 22 - Average snow density, 0-2m, along traverse route

The only technique readily adaptable to measuring snow density at depth in a single hole of varying diameters is the neutron-neutron, or neutron scattering, method.

A probe, containing a neutron source $(Ra^{226}Be^9)$, and a detector $(BF_3 \text{ gas-filled proportional counter})$, suitable for registering the passage of low energy neutrons, are lowered down the hole. High-energy neutrons emitted by the source are moderated in the snow and returned as low-energy neutrons to the detector.

The RaBe source emits neutrons whose average energy is 5 MeV. In an elastic (billiard ball) collision, a neutron will lose the maximum amount of energy if the colliding particle is of the same mass as the neutron. The mass of a neutron is 1.00898 amu, and the mass of hydrogen is 1.00814 amu. On the average, it will take less than 30 collisions with hydrogen to reduce the neutron energy from 5 MeV to the thermal equilibrium value $\approx 1 \times 10^{-8}$ MeV. These 30 collisions will occur close to the source for a high density of hydrogen (in this case, snow), and result in a large concentration of thermal neutrons. For a lower snow density, this thermalization will occur at greater distances, resulting in a reduced concentration of thermal neutrons (Halliday, 1955, p. 215).

The probability for detection of a neutron in a BF3 detector is very great for low-energy (thermal) neutrons and very small for highenergy neutrons. Thus, the output of the BF3 detector (in counts/unit time) will be proportional to snow density.

Because of relative availability, the equipment consisted of a commercial off-the-shelf soil-moisture probe, Nuclear Chicago Model P-19, and a Nuclear Chicago portable scaler, Model 2800A. There were several difficulties with this arrangement: (1) the probe is small, since it is designed for a 4-cm hole, and thus the count rate is low compared to what it might be for a probe designed for a 9-cm hole--this low counting rate limits the statistical accuracy of the density determinations; and (2) the transistorized preamplifier was not designed for low temperatures, and a small heating element had to be built into the probe. Because of space limitations, this heater was not thermostatically controlled, and thus did not prove entirely satisfactory. New equipment has been designed for subsequent field work which has eliminated these difficulties.

In operation, the probe was held at one depth while two one-minute counts were taken, and then lowered to the next level. Readings were usually taken at 50-cm intervals. A "standard" count was taken in the probe shield, both before and after a hole-logging operation. In this way, corrections could be made for any drifting of the equipment, either during logging or from hole to hole.

The neutron technique does not uniquely determine the snow density at the sampling depth. Several factors contribute to this effect: (1) Neutrons are emitted in all directions from a point source, and therefore occupy a volume around the source. The information about the density which the count rate yields is thus the result of "integration" over this volumetric sphere of influence. The density this technique will report is a weighted average rather than the exact density at the sampling point. The correlation with the actual point density may be seen in the comparison shown in Fig. 23. As pointed out earlier, the volume of thermal neutrons (and therefore, the sampling volume) varies with density. The diameter of the "sphere of influence" is given by $d_s \simeq 30.5/\frac{3}{\sqrt{\rho}}(cm)$, where ρ is the snow density.

(2) The quantity measured (counts/unit time) is random in time, and as such is governed by the statistics of random events (Halliday, 1955, p. 209). It is generally held that the standard deviation (σ) of such a count (N) is equal to \sqrt{N} . For count N = 100: σ = 10, and $\sigma/N = 0.1 = 10\%$. For a count N = 10,000: σ = 100, and $\sigma/N = 0.01 = 1\%$. Thus, it is readily seen that the larger the number of counts (N) for a given situation the more accurately we know the actual value of N, on a percentage basis. N can be increased by counting for longer periods of time.

(3) The thermal neutron flux measured by the probe is not a simple function of snow density. It depends on many factors attributable to the density and layering of the snow. Additionally, there are effects resulting from the presence of the probe and of the hole itself. It is best to adopt an <u>operational</u> point of view to determine the relationship between count rate and density for a given configuration.

In several locations, densities were calculated by the standard technique of weighing known volumes of snow. These results were then compared with the neutron count rate (Fig. 24). A linear regression of the points from four locations yielded the equation:

 $\rho = 0.735 \times 10^{-4} \text{k} + 0.1593 \text{ g/cm}^3$

where ρ = density in g/cm³, and k = the count rate in counts/minute. The correlation coefficient for this regression is 0.958, and the standard deviation (σ_{ρ}) is 0.022 g/cm³. This large standard deviation is to be expected since the weighing technique is a "point" sample, whereas the neutron technique represents a volume average sample, as discussed above. In the surface snow layers, a weighed density has the possibility of a large deviation from the average value. A high correlation coefficient is obtained, since the variation due to point and volume sampling balances out when many values are considered. Thus, a given weighed density can vary quite a bit from the nuclear determined density, while the overall results of the regression equation are really quite valid. This equation has been used in converting all count rates to densities, and can also be used to give the standard deviation of the density (σ_{ρ}) from the standard deviation of the count (σ_{N}):

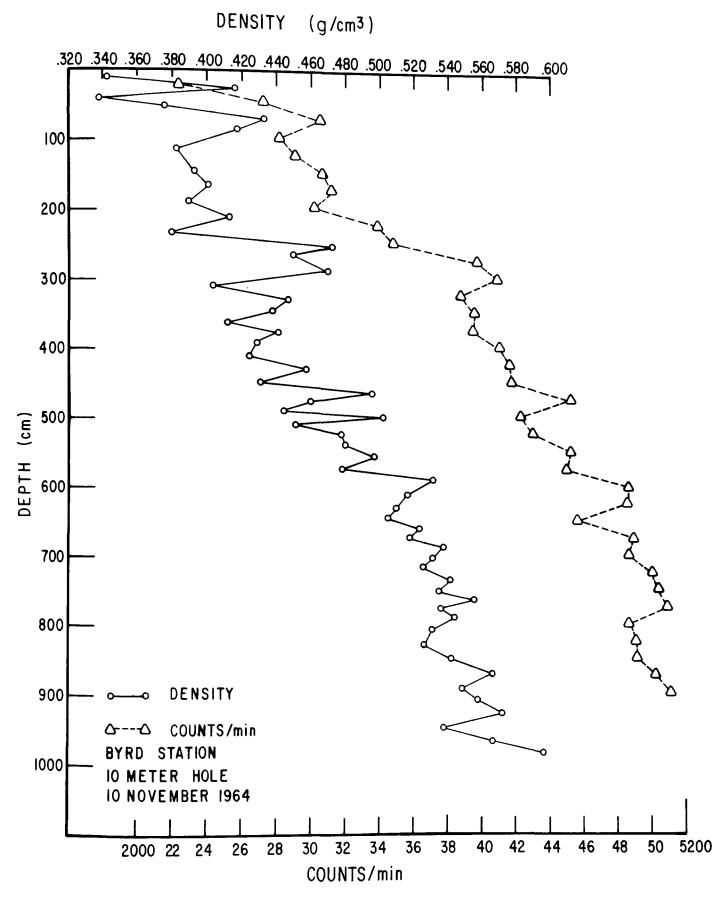


Fig. 23 - Comparison of measured density and raw neutron count rate in 10-m drill hole at Byrd Station, 10 November 1964

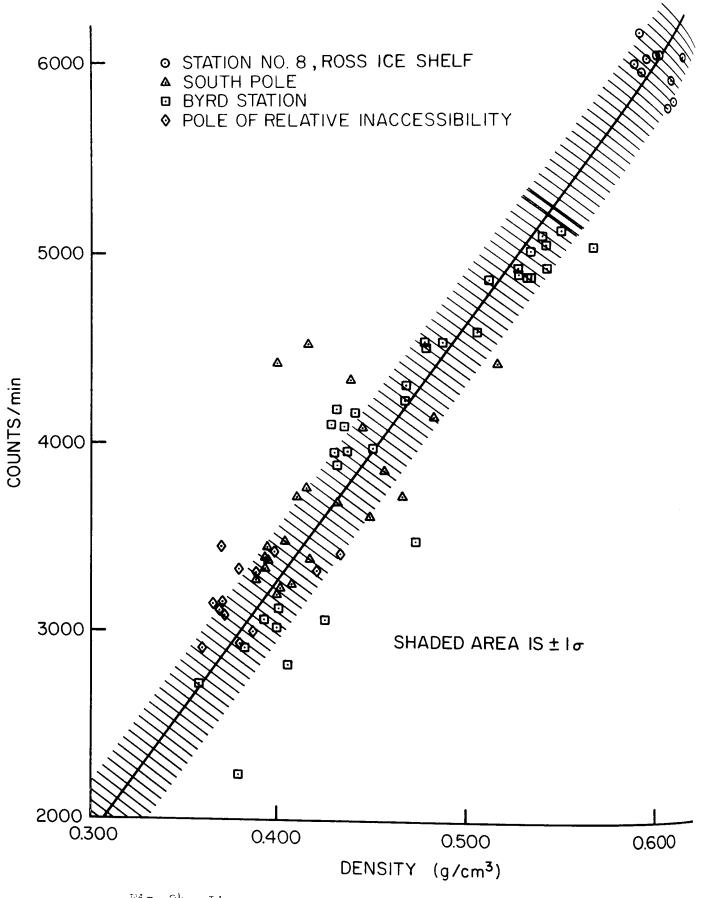


Fig. 24 - Linear regression. Density probe calibration of counts per minute versus density

$$\rho = mk = m \frac{N}{T},$$

where k = N/T = counts/unit time. Now with $\sigma_N = \sqrt{N}$, $\sigma_\rho = m \frac{\sqrt{N}}{T} = m \frac{\sigma_N}{T} = m \frac{\sqrt{N}}{T}$ = $m \sqrt{\frac{k}{T}}$. For a two-minute count, with $m = 0.735 \times 10^{-4}$ (from the regression formula), and taking an average count rate, k = 4000 counts/minute,

$$\sigma_{\rm p} = 0.735 \text{ x } 10^{-4} \sqrt{2000} = 0.0033 \text{ g/cm}^3$$

From a statistical point of view, it is 95 percent probable that the true value is within $\pm 2\sigma$ of the measured value ($\pm 2\sigma = 0.013 \text{ g/cm}^3$). This then is the statistical uncertainty of the density values resulting from the counting technique employed. An error bar ($\pm 2\sigma$) is plotted with the first density curve in Fig. 25.

Twenty depth-density curves were measured on the traverse. The count rates were recorded, and then the depth-density curves were produced by converting these rates to density according to the regression formula. Figure 26 shows the raw count rates for Miles 48 and 797; the higher counts for Mile 48 are indicative of the higher snow density.

The resultant depth-density curves are plotted in Fig. 25, and the count rate-density data are given in Appendix IV. At a number of stations where the O- to 2-m densities were measured directly in pits, the average is plotted at a depth of 1 m to show the relationship to the indirect profile measurements; in most cases, the correlation is very good. Most depth-density curves show a definite break at a density of about 0.52 to 0.54 g/cm^3 , but there are others, at Miles 470 and 710, that are relatively smooth. The scatter of points near the surface at the Pole of Relative Inaccessibility indicates an increase in density near the surface which is most likely caused by compaction of snow by vehicles and personnel movements during the installation and subsequent history of this station. The O- to 2-m pit was excavated some distance from the station, and the average falls at a point consistent with the rest of the depth-density curve.

Depth of 10 m

The densities at 10 m have been obtained graphically from the depth-density curves in Fig. 25 and are given in Table X. These values are also plotted on the map in Fig. 27. The densities range from 0.440 g/cm³, at Mile 797, to 0.486 g/cm³, at Mile 620, and average 0.460 g/cm³. This is quite a bit lower than the average of about 0.495-0.500 g/cm³ determined on the McMurdo-South Pole traverse (extrapolation of data presented by Crary, 1963).

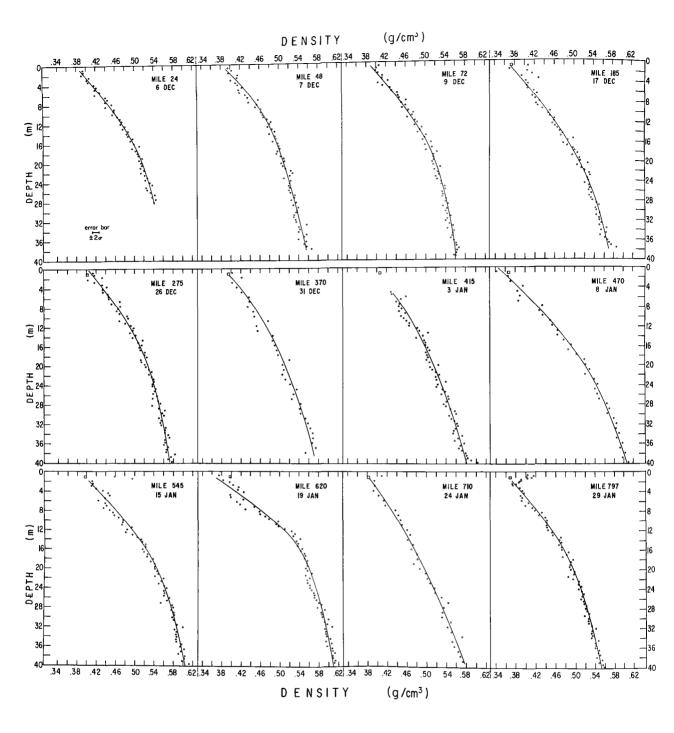


Fig. 25 - Depth-density curves at 12 sites along the traverse. Curves constructed from data obtained from neutron probe

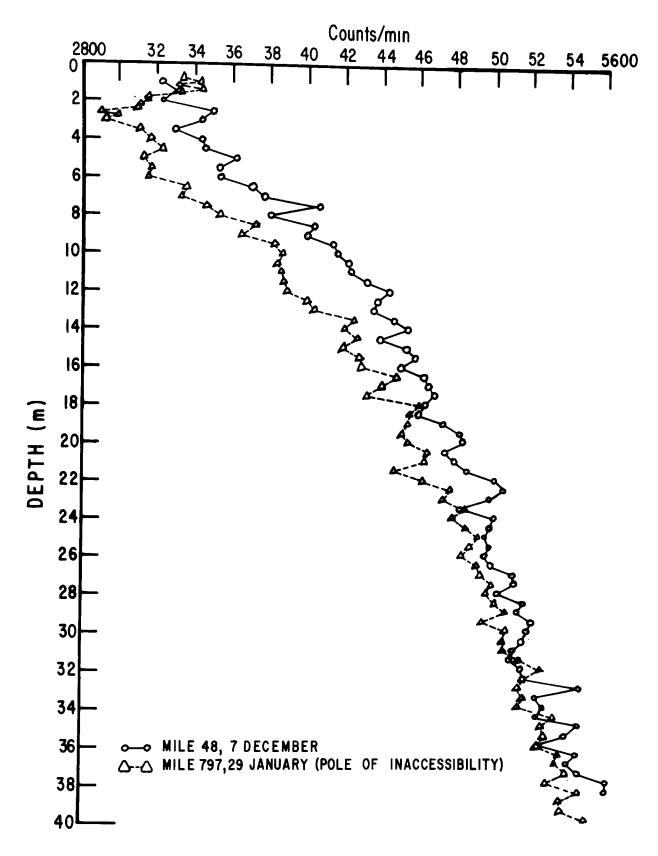


Fig. 26 - Raw neutron count rates at Mile 48 and Mile 797 reflecting the higher firn density at Mile 48

Station	Mile	Density (g/cm ³)
1	24	0.462
2	48	0.467
3	72	0.464
7	185	0.442
10	275	0.477
13	370	0.462
1 ¹ 4	395	0.454
15	415	0.465
1 7	470	0.442
20	545	0.477
23	620	0.486
26	710	0.442
29	797	0.440

Table X - Density at 10 meters

The areal distribution of 10-m densities shows no well-defined trends. The low densities occur at Mile 185 and near the end of the traverse at Miles 710 and 797. In addition, a low value, 0.442 g/cm³, occurs at Mile 470 where the 0- to 2-m density is also low.



Fig. 27 - Snow density at 10-m depth along traverse route

PIT STUDIES

Twenty-nine 2-m pits were excavated on the traverse for purposes of (1) recording the snow stratigraphy and from this, when possible, estimating the average snow accumulation; (2) measuring the snow density to obtain the average O- to 2-m density, and using these data to determine water equivalents of the snow accumulation; (3) collecting snow samples from the pit wall and from an 8- to 10-m drill hole at the bottom of the pit for determination of snow accumulation from radioactive fallout and the decay of Pb^{210} ; (4) collecting snow samples for determining $0^{18}/0^{16}$ ratio, and thus the average temperature of formation of the snowflake or snow crystal; and (5) collecting snow samples for the analysis of included microparticle contents.

In addition, pits were excavated adjacent to the U. S. Weather Bureau accumulation stakes, B and F, at the South Pole. Snow accumulation has been measured at these stakes since 14 January 1958, and the snow accumulation at stake B seemed to be quite regular, whereas snow did not accumulate at stake F during 1961. The comparison of known horizons (stake measurements) with the snow stratigraphy was an aid in understanding the stratigraphy seen on the traverse.

Stratigraphic studies consisted of measuring the vertical section, noting whether the crusts and layers were continuous or discontinuous, noting relative hardness of layers, measuring grain size in some pits, and photographing the wall of selected pits. The stratification in the pits was remarkably uniform with only slightly undulating but continuous layers, quite in contrast to the frequent rough surface (Fig. 28). Occasionally, however, the stratification was poorly defined, with layers varying greatly in thickness across the wall and sometimes pinching out altogether.

The snow layers were separated by (1) crusts, which were once the snow surface, that are generally thin (1-2 mm) but well defined; (2) thin layers of bonded grains; and (3) the most striking pit feature -- layers of depth hoar. The development of these depth hoar layers is considered to be an annual event. In an extreme case, at Mile 470, the entire snow column was transformed to hoar which essentially erased the stratigraphy. At this site, the 0- to 2-m and the 10-m densities were both anomalously low. The depositional environment here was different from anywhere else on the traverse.

An especially interesting stratigraphic feature was the occurrence of extremely hard, fine-grained layers. They were 3-15 cm thick and were encountered in numerous pits. The origin of these features is unknown.

44

Fig. 28 - Typically rough surface along first leg of traverse. Surface relief 30-40 cm (Photo by E. Picciotto)

The pit diagrams, given in Appendix V, are not accompanied by detailed written descriptions. Rather, a summary of densities and grain size for the various layers is given in Table XI.

Table XI - Typical Density and Grain Size of Firn Layers

	Density (g/cm ³)	Grain Size (mm)
New snow	0.34	0.2 - 0.4
Soft, medium	0.35 - 0.37	0.4 - 0.6
Very hard layer	0.51 - 0.52	0.3
Depth hoar layer	0.22 - 0.30	1.0 - 10.0

ACCUMULATION

Measurement of Accumulation

In this region of the polar plateau, it is difficult to determine annual accumulation from the stratigraphy. The most distinct evidence of the annual variation of climatic conditions are layers of sublimation crystals, accompanied by thin ice crusts. The interpretation of the stratigraphy and the counting of annual layers would be simple if it were certain that a sublimation layer was formed each year, and that there was only one formed for each year. Unfortunately, this does not seem to be so. The difficulties in determining annual accumulation from the stratigraphy are:

- 1. The sublimation layers are often discontinuous; they bifurcate or pinch out.
- 2. The processes forming sublimation layers sometimes affect much of the firm which represents several years of accumulation. An extreme case was Station 17, where the first 2 m of the pit consisted wholly of sublimation crystals.
- 3. Several thin sublimation layers are fairly close to one another, and it is impossible to decide whether they were formed in one year or represent several years of very small accumulation, or even absent accumulation. Gow (1965) has shown that a double sublimation layer might be formed if there is no deposition.
- 4. The sublimation layers can be missing. In certain sections, the interval between two sublimation layers is too large to represent one year of accumulation.

- 5. The uniformity of the firn can be interrupted by features other than sublimation layers, such as continuous ice crusts, very hard layers (frequently of considerable thickness), and discontinuities in hardness or grain size. The significance of these features and their relationship to annual climatic cycles is unknown.
- 6. In this region of very low accumulation, it is always possible that at some site for at least one year there was no deposition at all, either because the snow accumulation was negligible or because the deposited snow was eroded and removed by the wind.

Definite statements concerning the accumulation at each traverse station can be made only after the field samples have been subjected to geochemical analysis, especially the distribution of fission products and Pb^{210} . It now appears evident that the variations of the stable isotopes of oxygen and hydrogen cannot furnish much more information than that gained by ordinary stratigraphic techniques (Epstein and Sharp, 1965).

The snow accumulation along the traverse route, as determined by pit stratigraphy, is given in Table XII and Fig. 29. Considering the difficulties in interpreting the stratigraphy, maximum and minimum accumulation values for each pit have been given. In general, there is a tendency to underestimate the number of years, and consequently to overestimate the accumulation values. Therefore, these values should be regarded as the upper limit of annual accumulation.

Accumulation at the Pole of Relative Inaccessibility

The Pole of Relative Inaccessibility was established on 14 December 1958, and was occupied until 26 December 1958. The station was next visited in February, 1963, by a Soviet traverse led by Dr. A. Kapitsa. The first Queen Maud Land Traverse arrived at the station on 27 January 1965, and remained until 2 February 1965.

At the station, a meteorological study area was laid out on 14 December 1958 and the anemometer mast and the instrument shelter remain from this installation (Fig. 30). To determine the snow accumulation since December 1958, small snow pits were excavated at the anemometer mast and at the instrument shelter. The base plate of the anemometer mast was covered by 63 cm of snow, and the instrument shelter was covered by 60 cm of snow at the left rear leg (Fig. 31), and by 66 cm of snow at the bottom of the steps. Snow density was measured at the anemometer mast.

Station	Mile	Accumulation Maximum	(g/cm ²) Minimum
0	8	8.8	8.0
	24	8.0	8.0
2	48	9.8	9.8
1 2 3 4	72	6.6	6.6
ŭ,	96	7.2	5.6
4a	110	11.2	11.2
5	125	7.2	4.8
5 5a 6 7 8	140	5.5	5.5
6	155	8.2	6.1
7	185	6.8	2.8
8	215	6.0	2.8
9	245	6.4	5.6
10	275	7 . ⁴	7.4
11 12	305	9	$C \rightarrow$
	338 3 7 0	8.0 8.9	6.4
13 14	395	7.2	8.1 6.0
15	415	11.4	7.1
16	445	5.4	4.3
17	470	5.3	?
18	496	8.8	6.7
19	519	7.5	5.3
20	545	7.9	7.1
21	5 7 0	7.6	<u>4.</u> 4
22	595	7.0	5.4
23	620	13.3	?
24	650	?	? ?
25	680	7.6	5.7
26	710	?	5.7
27 28	740	7.8	5.3
	770 F OF	6.5	, ?
29	797	7.3	4.8

Table XII - Accumulation along route of Queen Maud Land Traverse, 1964-1965

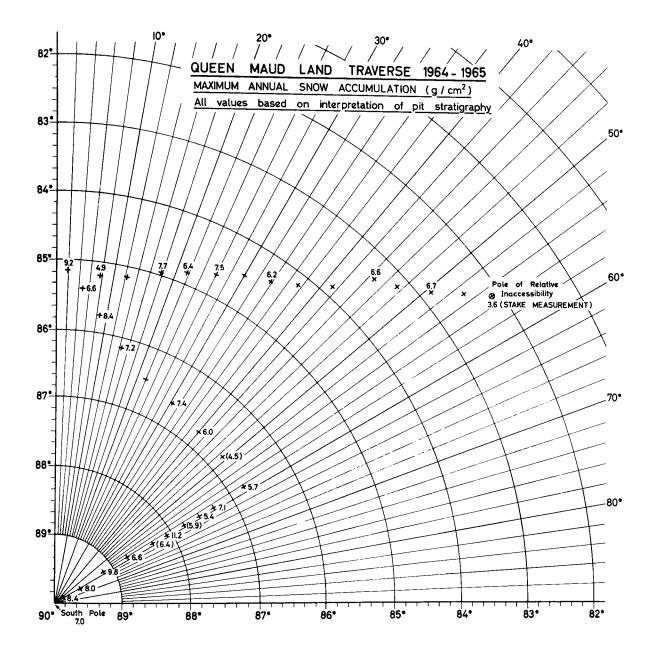


Fig. 29 - Maximum annual snow accumulation (g/cm²), along traverse route

Fig. 30 - Pole of Relative Inaccessibility. Station building (at right) and meteorological instrument screen and anemometer mast (center) (Photo by E. Picciotto)

Fig. 31 - Snow accumulation at Pole of Relative Inaccessibility. Measured at meteorological instrument screen; for period 14 December 1958 to 30 January 1965 60 cm of snow (3.4 g/cm²) (Photo by E. Picciotto)

Depth (cm)	Density (g/cm^3)
0-19	0.333
21-40	0.343
41-60	0.348

The average density from the surface to a depth of 60 cm was 0.341 g/cm^3 . Using 0.341 g/cm^3 as the average snow density and 14 December 1958 to 30 January 1965 as the time interval $(73\frac{1}{2} \text{ months}, \text{ or just over 6 years})$, the accumulation recorded here is as follows:

	Snow (cm)	Water (cm)	Annual Accumulation for 6 years (cm water)
Anemometer mast Instrument shelter (left rear leg) Instrument shelter (bottom of steps)	63 60 66	21.5 20.5 22.5	3.6 3.4 <u>3.8</u>
Average	63	21.5	3.6

Thus, for the period just over six years, the average annual accumulation was 3.6 g/cm^3 .

An attempt was made to find accumulation stakes set out by the Soviets in 1958. Although two or three stakes were found, it was impossible to tell if they had been used for accumulation studies. Those that were found seemed to be set too close to the building for accumulation stakes.

A network of accumulation stakes was set out on 30 January 1965. The network consisted of 19 bamboo poles topped with red flags and marked with a saw cut at 150 cm above the snow surface. A map of the network is shown in Fig. 32.

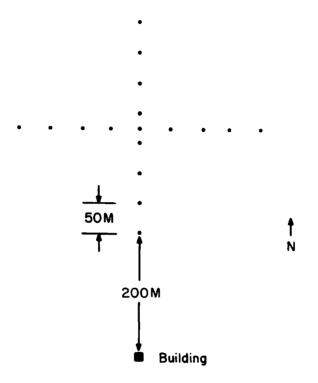


Fig. 32 - Sketch map of snow accumulation stake net established on 30 January 1965 at Pole of Relative Inaccessibility

REFERENCES

- Crary, A. P. (1963), Results of United States traverses in East Antarctica, 1958-1961: IGY Glaciological Report No. 7, World Data Center A, Glaciology, American Geographical Society, 144 p.
- Epstein, S., R. P. Sharp, and A. J. Gow (1965), Six-year record of oxygen and hydrogen isotope variations in South Pole firm: Jour. Geophys. Res., vol. 70, No. 8, p. 1809-1814.
- Giovinetto, M. B. (1%3), Glaciological studies on the McMurdo-South Pole Traverse, 1%0-1%1: The Ohio State University Research Foundation, Institute of Polar Studies Report No. 7, 38 p.
- Gow, A. J. (1965), Snow studies in Antarctica: U. S. Army CRREL Research Report 177, 20 p.
- Halliday, D. (1955), Introductory nuclear physics: John Wiley and Sons, Inc., New York, 493 p.
- Stuart, A. W., and A. J. Heine (1%1), Glaciology, Victoria Land Traverse, 1959-1%0: The Ohio State University Research Foundation, Report %8-1, 106 p.
- Taylor, L. D. (1965), Glaciological studies on the South Pole Traverse, 1962-1963: The Ohio State University Research Foundation, Institute of Polar Studies Report No. 17, 24 p.
- Zotikov, I. A., A. P. Kapitsa, and O. G. Sorokhtin (1965), Thermal regime of the ice cover of central East Antarctica: Soviet Antarctic Expedition Information Bulletin, No. 5, Vol. 5, Bulletin No. 51, p. 304-308.

APPENDIX	Ι	-	METEOROLOGICAL	DATA

		TEMPERATURE (°C)			WIND	CLOUD COVER	VISIBILITY (km)
Date	Hour	Current	Mean Daily	Speed (m/s)	Mean Daily (m/s)	(8=complete overcast)	
4 Dec	00						
1 200	06						
	12						
	18	31.4		0.5		l	inf.
5 Dec	00	30.7	30.3	1.1	1.8	0	inf.
·	06	29.7	55	2.3		0	inf.
	12	30.6		1.3		0	inf.
	18	30.0		2.5		1	inf.
6 Dec	00	29.4	30.2	3.5	3.6	6	inf.
	06	29.6	-	2.7	-	6 7	inf.
	12	30.4		3.5		7 5	inf.
	18	31.2		4.5		5	inf.
7 Dec	00		31.9		1.2		2
	06	31.5		2.5		l	8.0
	12	31.0		0.0		0	inf.
	18	33.1		1.0		1	inf.
8 Dec	00	30.9	31.5	1.0	0.4	1	15.0
	06	32.6		0.5		1	inf.
	12	31.7		0.0		1	inf.
	18	30.9	<u>^</u>	0.0		1 3 3 1	inf.
9 Dec	00	31.5	31.8	1.6	3.1	3	5.0
	06	32.3		2.6			15.0 8.0
	12	31.9		4.0		0	5.0
10 0	18	31.6	21 17	4.3	4.9	0 0	6.0
10 Dec	00	31.9	31.7	5.1 5.4	4.9	0	8.0
	06 12	31.1 31.4		4.4		0	inf.
	12	32.4		4.7		0	inf.
ll Dec	00	32.8	30.3	3.5	2.7	õ	inf.
TT Dec	00	29.8		2.6		0	15.0
	12	29.3		3.0		Ō	inf.
	18	29.3		1.6		0	inf.

APPENDIX I - METEOROLOGICAL DATA (cont'd)

Date	Hour	TEMPERA Current	TURE (°C) Mean Daily	Speed	WIND Mean Daily	CLOUD COVER (8=complete overcast)	VISIBILITY (km)
			<u></u>	(m/s)	(m/s)		
12 Dec	00	30.3	27.5	3.8	4.7	3	inf.
	06	26.7		5.4		l	15.0
	12	25.7		5.7		1	15.0
	18	27.4		4.0		0	15.0
13 Dec	00	28.1	29.1	4.0	3.6	7	
	06	29.3		4.7		1	3 8 5
	12	28.1		4.7		2	
	18	30.9		1.0		0	inf.
14 Dec	00	30.1	28.5	1.1	3.2	1	inf.
	06	28.0		4.6		l	inf.
	12	27.6		3.7		0	inf.
	18	28.4		3.5		0	inf.
15 Dec	00	29.7	28,5	2.5	2.4	l	inf.
	06	28.9		4.0		24	inf.
	12	26.3		1.2		l	inf.
	18	28.9		1.8		7	inf.
16 Dec	00	27.8	28.0	2.4	2.1	1	inf.
	06	27.1		2.8		l	inf.
	12	27.8		1.3		0	inf.
	18	29.2		1.9		0	inf.
17 Dec	00	30.3	28.4	2.9	4.6	0	inf.
	06	27.2		5.0		0	inf.
	12	27.3		4.5		0	inf.
	18	28.7		5.8		0	inf.
18 Dec	00	29.1	27.3	6.8	5.9	1	inf.
	06	26.3		6.7		2	15 8
	12	26.2		5.7		l	8
	18	27.4		4.2		1	12
19 Dec	00	27.1	26.5	3.7	5.6	l	12
	06	26.4		6.1		l	12 12
	12 18	25.9		6.9		l	12
	18	26.6		5.5		0	inf.

APPENDIX I - METEOROLOGICAL DATA (cont'd)

		TEMPERA	ATURE (°C)		WIND	CLOUD COVER	VISIBILITY (km)
Date	Hour	Current	Mean Daily	Speed (m/s)	Mean Daily (m/s)	(8=complete overcast)	
20 Dec	00	26.9	25.3	4.7	5.0	0	6
	06	25.5	-200	5.6		l	inf.
	12	24.1		5.2		5	15
	18	24.6		4.3		5 2	6
21 Dec	00	25.6	26.7	3.6	4.4		12
	06	24.7		6.6		Å	2.5
	12	27.3		5.0		7 8 8 1	2.5
	18	29.3		2.4		1	inf.
22 Dec	00	30.2	27.8	2.0	2,5	0	inf.
	06	27.4	_].0	3.4	2.0	0	inf.
	12	26.1		2.6		l	15
	18	27.3		2.1		2	10
23 Dec	00	27.4	27.6	5.0	3.1	3 7	2.5
-5 200	06	27.9	21.0	3.2	۲۰۰	7	6
	12	28.1		3.5		7	6
	18	27.1		0.5		1	inf.
24 Dec	00	29.1	29.7	0.3	1.0	7	6
	õõ	<i>L J</i> • <i>L</i>	-9•1	0.5	T.O	i	8
	12	29.4		6.1		5	10
	18	30.5		1.1		ノ マ	8
25 Dec	00	30.3	28.6	212	4.6	6	15
_, _,	06			3.7		2	10
	12	29.5 28.1		4.0		5 7 6 2 6 8 8	8
	18	26.3		5.4		8	1.5
26 Dec	00	26.1	26.6	4.7	4.2	8	3
	06	27.8		4.7		3	3 8
	12	25.5		5.2		3 6	15
	18	26.9		2.0		1	inf.
27 Dec	00	29.1	26.8	1.8	2.3	1	inf.
Ŧ	06	26.5		2.9	-	1	inf.
	12	25.3		2.3		2	inf.
	18	26.3		2.0		2	inf.

59

APPENDIX I	-	METEOROLOGICAL DATA	(cont'd)	
------------	---	---------------------	----------	--

		TEMPERATURE (°C)			WIND	CLOUD COVER	VISIBILITY (km)	
Date	Hour	Current	Mean Daily	Speed (m/s)	Mean Daily (m/s)	(8=complete overcast)		
28 Dec	00	27.2	24.3	2.5	4.0	l	inf.	
	06	22.1	5	1.0		l	inf.	
	12	23.6		7.0		ō	inf.	
	18	24.4		5.5		õ	inf.	
29 Dec	00	25.0	24.3	7.5	7.9	7		
-	06	24.9	C C	9.0		7	3 3	
	12	23.9		7.5		Ö	12	
	18	23.2		7.5		7	15	
30 Dec	00	24.2	23.2	9.0	5.7	l	6	
•	06	23.9	5	7.8			6 8	
	12	22.5		4.5		7	15	
	18	22.0		1.5		8	15	
31 Dec	00	22.7	23.5	0.5	0.8	3	15	
)	06	23.8	-3*2	0.3		3 7 8 3 7	15	
	12	23.8		1.0		7	inf.	
	18	23.6		1.5		8	5	
l Jan	00	25.2	24.8	0.5	1.5	7 8 8 8	1,5	
	06	25.2		1.5		8	1	
	12	23.6		2.0		7	10	
	18	25.2		2.0		ו 5	15	
2 Jan	00	23.9	22.6	6.0	5.0	5 7 6		
	06	22.6		4.0	<i>,</i>	6	5	
	12	22.0		4.0		7	1 5 4 5 8 3	
	18	21.9		5.8		7 8	5	
3 Jan	00	22.9	21.6	1.0	1.8	7	á	
5	06	20.2		1.0		7 8	č	
	12	21.2		3.0		7 7	inf.	
	18	22.0		2.3		(7	111.	
4 Jan	00	18.7	19.2	1.0	3.9	7 8	0.5	
, 0041	06		- <i>y</i> •-		5.7	0	0.9	
	12	18.7		6.3		8	1.5	
	18	20.2		4.3		8 6		
	10	20.2		4.3		D	5	

APPENDIX I - METEOROLOGICAL DATA (cont'd)

Date	Hour	TEMPERA Current	ATURE (°C) Mean Daily	Speed (m/s)	WIND Mean Daily (m/s)	CLOUD COVER (8=complete overcast)	VISIBILITY (km)
			· · · · · · - · - · - · - ·				
5 Jan	00	18.4	19.4	3.5	1.3	7	10
	06	22.0		0.3		3	10
	12	18.2		0.5		3 8	10
	18	18.9		1.0		8	10
6 Jan	00	22.7	21.5	1.5	2.2		10
	06	22.8	r -	6.3		7 4	6
	12	22.8		0.5		5	inf.
	18	19.7		0.3		5 6	inf.
7 Jan	00	25.0	23.2	0.5	0.6	3	inf.
	06	22.4	5	0.5		3 3 2	inf.
	12	21.8		0.5		2	10
	18	23.4		1.0		3	inf.
8 Jan	00		21.3		2.0	5	
	06	24.2	-	1.3		3	15
	12	20.0		3.0		8	1.5
	18	19.6		3.8		3 8 8	5
9 Jan	00	23.4	21.4	10.	3.0	2 8	inf.
	06	21.3		3.3		8	
	12	20.5		3,5		7	1 8
	18	20.5		4.0		7	15
10 Jan		28.2	24.2	0.3	0.2	7	inf.
	06	24.1		0.3		8	15
	12	21.7		0.0		7 8 8 8 7	0.5
	18	22.7		0.3	<i>,</i>	8	3
ll Jan		25.9	26.7	0.5	0.6		10
	06	25.1		0.5		2	15
	12	26.8		0.5		0	inf.
10 T	18	29.1		0.8	0.0	1	inf.
12 Jan	00	29.6	26.6	1.0	3.2	2	inf.
	06	27.7		3.0		2 3 7	inf.
	12 18	24.1 24.8		5.5			15
	TO	24.8		3.3		1	inf.

APPENDIX I - METEOROLOGICAL DATA (cont'd)

		TEMPERA	TURE (°C)	WIND		CLOUD COVER	VISIBILITY (km)
Date	Hour	Current	Mean Daily	Speed (m/s)	Mean Daily (m/s)	(8=complete overcast)	
13 Jan	00 06 12	27.8 25.7 24.2	25.6	2.8 5.5 5.5	4.4	0	inf. inf.
14 Jan	18 00	24.4 25.5	25.0	2.2 3.8 3.5	2.7	0 1 1	15 inf. inf.
	06 12 18	25.1 24.1 25.2		3.3 3.3 0.5		1 0 1	inf. inf. inf.
15 Jan	00 06	26.4 24.1	23.4	0.5 2.5	1.9	1 5 6	inf. inf.
16 Jan	12 18 00	21.1 21.8 26.8	25.7	4.0 0.7 0.3	1.5	6 7 2	15 10 15
	06 12 18	27.2 23.7 25.0		1.8 1.5 2.3		7 2 6 3 0	15 inf. inf.
17 Jan	00 06 12	27.3 23.9 20.9	23.5	9.0 5.5 3.0		1 6 2 8 4	15 8 inf.
18 Jan	18 00	21.8 26.7	26.5	5.5 4.3	3.1		0.5
	06 12 18	27.1 25.3 26.8		4.5 3.2 0.5		7 4 3 6	5 5 6 inf.
19 Jan	00 06 12	31.2 28.8 24.1	27.9	0.3 0.8 0.3	0.4	6 6 3 8	inf. inf. inf.
20 Jan	18 00 06 12	27.4 28.9 31.3 30.4	30.8	0.1 0.1 0.3 2.2	0.9	7 8 0	1 1 3 inf.
	18	32.4		0.8		0	inf.

APPENDIX I - METEOROLOGICAL DATA (cont'd)

		TEMPERATURE (°C)			WIND	CLOUD COVER	VISIBILITY (km)	
Date	Hour	Current Mean Daily		Speed (m/s)	Mean Daily (m/s)	(8=complete overcast)		
21 Jan	00		2 0 F					
CT Jan	00 06	35.1	32.5	3.0	2.6	0	inf.	
		32.6		3.3		0	inf.	
	12	30.0		3.0		0	inf.	
00 Tour	18	32.2		1.0		0	inf.	
22 Jan	00	34.3	32.2	1.1	2.8	0	inf.	
	06	32.3		3.8		0	inf.	
	12	3.0		4.3		l	inf.	
	18	32.2		1.8		1	inf.	
23 Jan	00	35.7	33.8	0.9	2.1	1	inf.	
	06	33.8		4.3		1	inf.	
	12	31.1		2.5		0	inf.	
	18	34.5		0.5		1	inf.	
24 Jan	00	38.1	35.8	0.8	1.5	0	inf.	
	06	35 .5 '		2.8		0	inf.	
	12	32.7		2.0		0	inf.	
	18	36.8		0.5		l	inf.	
25 Jan	00	39.2	37.3	0.8	1.8	l	inf.	
	06	36.9		1.5		l	inf.	
	12	34.3		2.5		0	inf.	
	18	38.7		2.2		0	inf.	
26 Jan	00	⁴⁴ •7	38.9	2.5	3.1	0	inf.	
	06	37.9		4.0		0	inf.	
	12	34.2		5.3		6	inf.	
	18	38.6		0.7		l	inf.	
27 Jan	00	42.9	39.1	1.0	1.1	1	inf.	
	06	38.4		2.0		1	inf.	
	12	35.1		0.5		2	inf.	
	18	40.1		0.7		1	inf.	
28 Jan	00	44.3	39.8	0.8	2.2	1	inf.	
	06 12	36.7		3.3		3	inf.	
	18	38.4		2.5		3	3	

Date	Hour	TEMPERA Current	TURE (°C) Mean Daily	Speed (m/s)	WIND Mean Daily (m/s)	CLOUD COVER (8=complete overcast)	VISIBILITY (km)
29 Jan	00 06 12 18	37.9 35.4 33.9 36.5	35•9	5.0 6.8 8.5 8.0	7.1	1 0 0 7	1.5 1.5 1
30 Jan	00 06 12 18	39.1 37.2 34.4 39.3	37.5	6.0 4.5 4.5 1.3	4.1	7 7 6 4	3 5 15 15
31 Jan	00 06 12 18	43.8 38.8 36 .7	39.8	0.9 1.0 1.5	1.1	5 1 1	15 15 inf.
l Feb	00 06 12 18	43.3 36.7 34.7 38.2	38.2	1.8 4.0 2.5 2.5	2.7	1 3 2 2	8 5 5 6

APPENDIX I - METEOROLOGICAL DATA (cont'd)

APPENDIX II - SNOW HARDNESS DATA

0-50 cm

Station	Mile	Ram	Hardr	less		Mean Ram Hardness
0	3 6 8	63 41 26 27	34 28	29 29	30 18	39 26
0	9 12 15	21 22 34 29 34 39	21 24 25	31 22 27	28 21 35	25 26 32
l	18 21 24 27 30 33 36	41 46 34 35 39 36 80 61 56 44 51 52	42 52 39 78 78 55 36	51 31 26 42 66 48	53 36 33 57 65 28 48	32 47 38 35 65 62 52
2	39 42 45 48 51 54	45 36 35 49 78 72 32 88 41 32 27 31 31 36 19 23	30 38 52 49 35 18 37 24	30 39 187 45 39 16 33 29	28 48 134 25 33 24 32 18	35 42 105 48 36 23 34 23
3	57 60 63 66 69 72 75 78 81 84	20 24 44 46 29 18 57 26 29 19 19 61 57 36 69 75 57 62	22 44 36 70 21 117 22 64 52	25 49 37 21 20 162 52 51	28 43 56 39 19 22 58 33 61	23 24 45 35 43 22 76 45 57 57
4	87 90 93 96 100	71 32 30 34 32 66 151 106 187 31	39 43 56 184 31 85	69 25 72 46 19 43	30 26 83 55 25 46	57 48 32 62 108 59 56
4a	105 110 115	61 58 46 49	52 31 28	+5 118 55 28	55 43 31 73 46	69 45 32 38 41
5	120 125 130	25 28 46 52	20 31 22 22	20 34 37 19	73 46 25	38 41 37
5 a	135 140 145 150	88 31 43 25 76 79 49 115	61 43 121	19 28 64 52	25 43 52 46	40 63 77

Station	Mile	Ram Hardness	Mean Ram Hardness
6	155 160 165 170 175	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	60 35 50 48 62 69
7	180 185 190 195 200 205	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	45 62 41 41 40 40
8	210 215 220 225 230 235 240	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	40 39 60 68 41 46 52
9	240 245 250 260 265 2 7 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	52 20 29 107 137
10	270 275 280 285 290 295 300	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109 123 92 65 62
11	305 310 315 320 325 330	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	44 70 35 51 60 63
12	338 345 350 355 360 365	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	72 72 48 62 42 74
13	370 375 380 385 390	3476431279125432828917322284043343440436125253728403140404355	43 41 42 31 42

Station	Mile	Ram Hardness	Mean Ram Hardness
14	395 400	16 19 19 22 31 46 13 22 28 19	21 26
	405 410	28 13 25 22 19	21
15	415	19 19 19 <u>31</u> 40 28 37 28 46 52	26 38
	420 425	10 16 16 19 25 34 28 28 25 22	18
	430	22 22 19 22 22	27 21
16	435 445	28 16 28 25 19	23
TO	445 450	16 40 31 31 58 19 19 37 79 37	35 38
	455	13 46 40 31 22	30
	460 465	16 28 28 52 106 40 34 28 28 46	46 35
17	470	10 16 178 19 16	35 48
	475 480	19 22 25 31 37 13 19 19 22 34	27 21
	485	22 28 28 31 34	29
	490 495	13 16 19 22 28 13 16 19 2 7 23	20 20
18	496	10 13 22 22 25	18
	500 505	16 16 19 25 10 22 16 25 22 25	17 22
	510	16 19 25 25 31	23
19	515 519	19 40 28 40 28 25 19 64 25 34	31 33
±9	520	28 25 19 46 64	36 26
	525 530	19 37 31 19 25 22 40 46 49 25	26 36
19 a	536	43 52 127 31 64	63 62
20	540 545	49 31 55 124 49 16 19 115 13 22	62 37
20	550	37 85 55 76 73	37 65
	555	52 55 58 61 55 91 31 25 85 43	56 55
	560 565	25 28 49 70 76	50
21	570	46 25 46 61 85	53
	575 580	25 34 46 34 61	40
	585	52 58 55 76 121	72
22	590 595	28 25 28 31 34	
<u> </u>	600	55 43 55 61 64	56 26
			20 93
	615	22 28 31 37 43	32
21 22	570 575 580 585 590 595 600 605 610	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	53 29 40 72 29 56 26 93

Station	Mile	<u>-</u>	Ram Hardı	ness		Mean Ram Hardness
23	620	34	46 16	37	49	36
	625 630 635	46 13	52 61 19 31	67 43 46	169 103 64	79 42 41
24	640 645 650	22 28 31	31 43 34 43 55 64	61 49	70 25	47 45
	655 660 665	28 19 34	49 40 34 22 43 40	55 34 43	40 46 40	42 31 40
	670 675 680	19 31	28 82 37 43	85 55	88 67	60 47
25	685 690	52 34 34	52 52 37 40 37 46	61 49 37	61 73 82 46	56 47 47 38
	695 700 705	31 25 28	34 37 31 28 34 31	43 37 40	40 100	32 47
26	710 715 720	22 28 37	28 40 31 46 28 43	28 64 67	34 70 46	30 48 44
	725 730 735	28 34 25	372831312831	46 31 46	34 55 28	35 36 32
27	740 745 750	25 55 28	22 34 31 55 34 40	31 46 28	28 76 10	28 53 28
	755 760 765	34 16 19	34 31 16 31 22 37	25 22 22	49 22 52	35 21 30
28	770 775 780 785	16 28 19 19	1925191922281946	19 25 46 28	49 25 13 40	26 23 26 30
29	790 795 797	16 16 22	16 16 13 28 22 16	16 31 19	22 43	50 17 26 18
<u></u>	171	<u> </u>		±9	13	TO

APPENDIX III - FIRN DENSITY, 0-2 METERS

Depth in cm, Density in g/cm^3

South Pole

Depth	<u>Density</u>	Depth	<u>Density</u>	Depth	Density
3	0.374	65	0.364	137.5	0.337
7	0.385	68	0.361	139.5	0.337
9	0.390	72	0.400	143.5	0.363
13.5	0.380	76	0.370	147.5	0.377
15	0.377	78.5	0.350	151	0.408
19	0.348	82	0.335	155	0.399
19	0.358	86	0.361	158	0.398
22	0.331	89	0.397	161.5	0.406
27	0.369	92	0.395	165	0.388
28	0.373	96	0.361 ?	168.5	0.362
33	0.373	99.5	0.391	172	0.361
34.5	0.3 6 3	102.5	0.401	176	0.334
37	0.365	108	0.382	179.5	0.334
41	0.341	109	0.387	183	0.370
42	0.302	114	0.371	186	0.379
46.5	0.400	115	0.387	190	0.399
51	0.404	121	0.407	191.5	0.426
54	0.402	125	0.411	194	0.466
58	0.387	130	0.364	199	0.442
61.5	0.385	132	0.372		

Station	5	<u>Station</u>	<u>5a</u>	Station	6
Depth	<u>Density</u>	Depth	<u>Density</u>	Depth	<u>Density</u>
0-20	0.338	0-20	0.386	0-20	0.384
20 - 40	0.350	20-40	0.360	20-40	0.398
40 - 60	0.378	40-60	0.340	40-60	0.428
60-80	0.398	60-80	0.400	60-80	0.424
80-100	0.438	80-99	0.382	80-100	0.406
100-120	0.422	100-120	0.398	102-122	0.430
120 - 140	0.416	120-139	0.386	120-140	0.428
140-160	0.366	140-159	0.448	140-160	0.410
160 - 180	0.390	160-180	0.390	160-180	0.416
180-200	0.468	180-200	0.384	180-200	0.384

Station	9	Station	10	Station	14
Depth	<u>Density</u>	Depth	Density	Depth	<u>Density</u>
0-18	0.396	7-27	0.400	0-19	0.388
20-39	0.350	27-47	0.364	19-38	0.368
37-57	0.356	4 7- 67	0.398	38-57	0.382
57-77	0.432	67-87	0.428	58 - 78	0.408
77-97	0.388	87 - 106	0.426	78 - 97	0.390
98-118	0.416	106 - 125	0.406	88-107	0.378
120-140	0.368	125 - 144	0.440	108-118	0.506*
142-162	0.418	14 7- 166	0.398	121-140	0.388
162 - 181	0.426	166-185	0.406	140 - 159	0.410
181-201	0.382	185-204	0.388	159 - 178	0.392
				180-199	0.376

*Very hard layer.

<u>Station 7</u>

<u>Depth</u>	Density	Depth	Density
3	0.370	103	0.388
9	0.360	108	0.342
11	0.360	112	0.370
17.5	0.394	117	0.342
22	0.430	120	0.360
26	0.410	125	0.342
31	0.356	130	0.394
37	0.406	134	0.336
40	0.376	140	0.368
44	0.346	143	0.368
50	0.350	148	0.350
55	0.394	152	0.414
58	0.404	155	0.446
62	0.400	160	0.400
65	0.432	164	0.354
70	0.412	169	0.334
74	0.404	173	0.342
78	0.378	178	0.350
83	0.336	182	0.380
87	0.374	187	0.320
92	0.354	193	0.328
95	0.374	199	0.356
100	0.392	202	0.400

Station 13

Depth	Density	<u>Depth</u>	Density
7	0.448	110	0.360
13	0.398	114	0.372
18	0.392	122	0.452
20	0.374	122	0.456
25	0.372	128	0.502
30	0.372	134	0.396
34	0.362	139	0.408
39	0.338	145	0.434
43	0.376	150	0.370
44	0.388	154	0.380
47 - 57	0.521*	160	0.380
59	0.410	163	0.406
63	0.400	167	0.386
67	0.382	170	0.368
72	0.420	174	0.374
76	0.428	180	0.322
80	0.382	186	0.422
84	0.362	191	0.420
88	0.356	198	0.414
92	0.368	204	0.400
96	0.358	211	0.362
102	0.368	218	0.350
106	0.306	224	0.360

*Very hard layer.

Station 15

Depth	Density	Depth	Density
6	0.328	102	0.418
8	0.366	105.5	0.412
15	0.396	110	0.406
18.5	0.394	114.5	0.426
24	0.384	119	0.388
27.5	0.402	124	0.350
30	0.398	128	0.368
37	0.274	131	0.396
38	0.380	136	0.414
42	0.374	141	0.398
45	0.322	146	0.404
50	0.446	150	0.370
53.5	0.416	156	0.356
56	0.378	160	0.402
60	0.390	166.5	0.414
64	0.394	171	0.386
67	0.396	176	0.362
71	0.408	182	0.384
75.5	0.432	185	0.430
79	0.420	192	0.436
82	0.426	196	0.388
86	0.464	202	0.368
90	0.496	207	0.354
97	0.390	212	0.348

Station	16	Station	<u>n 17</u>	Station	18
Depth	Density	Depth	Density	Depth	Density
?-21	0.340	0-23	0.258	0-25	0.368
22-41	0.370	20-40	0.352	25 - 45	0.370
41-60	0.390	38-46	0.476	45-64	0.388
60-78	0.380	42-61	0.440	64-83	0.376
78-97	0.358	60-79	0.352	85-104	0.356
97 - 117	0.368	79 - 98	0.330	104-125	0.320
118-137	0.372	99 - 118	0.408	125-144	0.442
137 - 156	0.390	118-137	0.318	144-163	0.448
156-175	0.362	138-157	0.326	163-182	0.376
176-195	0.362	160-179	0.352	182-201	0.404
195 - 214	0.368	179 - 198	0.408		

<u>Station</u>	19	Station	20	Station	<u>21</u>
Depth	<u>Density</u>	Depth	Density	Depth	<u>Density</u>
0-20	0.336	0-20	0.400	0-19	0.354
21-40	0.356	23-42	0.346	20-40	0.356
40-60	0.354	42-61	0.324	40-60	0.342
60-80	0.416	61-80	0.408	60-79	0.406
80-100	0.424	81 - 99	0.396	80-100	0.398
102-121	0.398	100-120	0.448	100-119	0.390
120-140	0.412	120-140	0.372	120-139	0.384
140-160	0.308	140-160	0.494	140-160	0.416
160-180	0.378	160-180	0.414	160-180	0.374
180-200	0.372	180-200	0.372	182-201	0.426

22	Station	23	Station	24
Density	Depth	Density	Depth	<u>Density</u>
0.312	0-20	0.332	0-19	0.414
0.394	20-40	0.486	20-39	0.360
0.388	42-62	0.372	41-60	0.372
0.388	62-81	0.346	61-90	0.386
0.434	83-102	0.402	90-99	0.422
0.388	102-121	0.378	99-118	0.428
0.372	121-140	0.366	119-138	0.374
0.456	143-162	0.374	139 - 155	0.378
0.390	165 - 185	0.516	156 - 175	0.400
0.402	185-205	0.402	176 - 195	0.406
			196-215	0.378
	0.312 0.394 0.388 0.388 0.434 0.388 0.372 0.456 0.390	Density Depth 0.312 0-20 0.394 20-40 0.388 42-62 0.388 62-81 0.434 83-102 0.388 102-121 0.372 121-140 0.456 143-162 0.390 165-185	DensityDepthDensity0.3120-200.3320.39420-400.4860.38842-620.3720.38862-810.3460.43483-1020.4020.388102-1210.3780.372121-1400.3660.456143-1620.3740.390165-1850.516	DensityDepthDensityDepth0.3120-200.3320-190.39420-400.48620-390.38842-620.37241-600.38862-810.34661-900.43483-1020.40290-990.388102-1210.37899-1180.372121-1400.366119-1380.456143-1620.374139-1550.390165-1850.516156-1750.402185-2050.402176-195

Station 25 Station 26		Station	Station 27		
Depth	Density	<u>Depth</u>	<u>Density</u>	Depth	<u>Density</u>
0-25	0.336	0-24	0.352	0-19	0.326
25-44	0.396	24-43	0.380	19-38	0.388
44-63	0.378	43-61	0.366	38-57	0.364
63-82	0.402	61-80	0.364	57-77	0.360
82-101	0.400	80-100	0.378	77-96	0.390
101-122	0.392	100-119	0.450	96-115	0.364
124 - 138	0.366	119-138	0.388	116-135	0.360
138 - 158	0.344	138-157	0.396	136-155	0.386
158-178	0.392	158-177	0.356	157 - 176	0.372
178-198	0.350	177-197	0.392	176 - 195	0.402

Station 28		Station	Station 29		
<u>Depth</u>	<u>Density</u>	<u>Depth</u>	Density		
0-19	0.360	0-20	0.356		
19-38	0.374	23-33	0.362		
38 - 57	0.370	33-53	0.370		
5 7- 76	0.338	54-74	0.332		
76 - 96	0.346	75- 94	0.364		
96-11 5	0.384	95 - 114	0.382		
115-134	0.360	114-134	0.392		
134 - 153	0.380	134-154	0.362		
153 - 173	0.370	154 -17 4	0.358		
173-193	0.352	174-194	0.366		
193-212	0.366	194 - 214	0.358		

APPENDIX IV - FIRN DENSITY FROM NEUTRON SCATTERING DATA, 0-40 METERS

Mile	24,	6	December
	f.		

Depth (cm)	Mean Count-Rate (Counts/Min.)	$rac{ extsf{Density}}{ extsf{(g/cm}^3)}$	Depth _(cm)	Mean Count-Rate (Counts/Min.)	Density (g/cm^3)
1150	4280	.473			
1300 1350 1400 1450 1500	4306 4453 4411 4450 4589	.475 .486 .483 .486 .496			
1550 1550 1600 1650	4589 4532 4629 4777	. 490 . 491 . 499 . 510			

Mile	48,	7	December
------	-----	---	----------

1503308.40320504724.502003232.39721004777.50	·512 ·506 ·509 ·514 ·525 ·529 ·523
1503308.40320504724.502003232.39721004777.50	•506 •509 •514 •525 •529 •523
200 3232 .397 2100 4777 .50	.509 .514 .525 .529 .523
	·514 .525 .529 .523
250 3494 .416 2150 4846 .51	.525 .529 .523
	.529 .523
11-0 1100 1101 112	.523
	.511
	.525
	.523
600 3532 .419 2500 4938 52	.521
650 3700 .431 2550 4964 .52	.523
700 3764 .436 2600 4936 52	.521
750 4061 .458 2650 4971 52	.524
800 3790 .438 2700 5094 .53	.533
850 4030 .455 2750 5092 53	.532
900 3988 .452 2800 5003 52	.526
950 4128 .463 2850 5142 53	.536
1000 4149 .464 2900 5066 .53	,530
1050 4208 .468 2950 5192 54	.540
1100 4218 .469 3000 5163 534	.538
1150 4310 .476 3050 5137 530	.536
1200 4430 .484 3100 5087 53	.532
1250 4382 .481 3150 5070 .53	.531
1300 4344 .478 3200 5132 .53	.535
1350 4448 .486 3250 5141 .530	.536
1400 4528 .492 3300 5441 558	.558
<u>1450 4380 .481 3350 5204 .545</u>	.541
1500 4518 .492 3400 5244 .544	.544
1550 4568 .494 3450 5210 .543	.541
1600 4486 .488 3500 5435 .558 1650 4612 498 3550 5260 5260	.558
1850 4612 .498 3550 5362 .552	.552
1750 500 5206 54	.541
1750 4668 .502 3650 5424 .55	.557
1800 4616 .498 3700 5374 .553	.553
1850 4592 .496 3750 5434 .558	.558
1950 4718 505 3800 5583 568	.568
	.568

Mile 72, 9 December

Depth (cm)	Mean Count-Rate (Counts/Min.)	Density (g/cm ³)	Depth (cm)	Mean Count-Rate (Counts/Min.)	Density (g/cm ³)
100	3350	.406	2050	4844	. 514
150	3268	.400	2100	4874	- 516
200	3248	. 398	2150	5062	. 530
250	3312	.403	2200	4892	. 518
300	3454	.413	2250	4990	. 525
350	3438	.412	2300	5026	. 528
400	3606	.424	2350	4938	. 521
450	3323	. 404	2400	4980	. 524
500	3444	.413	2450	5082	. 532
550	3662	. 428	2500	5092	.532
600	3701	. 431	2550	5184	. 539
650	3864	. 443	2600	5199	. 540
700	3876	.444	2650	5118	. 534
750	3905	. 446	2700	5125	.535
800	4088	.460	2750	5108	. 534
850	3957	. 450	2800	5218	. 542
900	4074	. 459	2850	5196	. 540
9 50	3982	. 452	2900	5259	. 545
1000	4154	. 465	2950	5136	. 536
1050	4299	. 475	3000	5246	. 544
1100	4276	.473	3050	5209	. 541
1150	4135	. 463	3100	5248	. 544
1200	4351	. 479	3150	5347	. 551
1250	4410	. 483	3200	5213	. 544
1300	4335	. 478	3250	5213	. 541
1350	4531	. 492	3300	5324	. 549
1400	4488	. 489	3350	5410	. 556
1450	4424	. 484	3400	5268	. 545
1500	4656	, 501	3450	5440	. 558
1550	4620	. 498	3500	5400	. 555 . 555
1600	4572	. 495	3550	5398	. 555
1650	4802	. 511	3600	5351	. 551
1700	4629	. 499	3650	5452	. 562
1750	4829	. 513	3700	5490	. 562
1800	4663	. 501	3750	5508	. 563
1850	4960	. 523	3800	5580	. 568
1900	4866	. 516	3850	5522	. 564
1950	4862	. 516	3900	5490	. 562
2000	4876	. 517	3950	5456	

Depth (cm)	Mean Count-Rate (Counts/Min.)	Density (g/cm ³)	Depth (cm)	Mean Count-Rate (Counts/Min.)	Density (g/cm ³)
100	4049	.457	1900	4733	.506
150	3358	.406	1950	4594	.496
200	2854	.369	2000	4786	.510
250	3330	.404	2050	4804	.511
300	3464	.414	2100	5020	.527
350	3183	. 393	2150	4712	.505
400	3650	.427	2200	4838	.514
450	3300	.402	2250	4916	.520
500	3344	.406	2300	5060	.530
550	3322	. 404	2350	5078	.531
600	3338	.405	2400	5006	.526
650	3519	.418	2450	5028	.528
700	3595	. 424	2500	4941	.521
750	3462	.414	2550	5062	.530
800	3552	. 420	2600	5079	.531
850	3666	. 429	2650	5050	. 529
900	3578	. 422	2700	5108	.534
950	3622	. 425	2750	5057	. 530
1000	3732	. 434	2800	5102	.533
1050	3958	. 450	2850	5154	. 537
1100	3914	. 447	2900	5266	. 545
1150	3951	. 450	2950	5332	. 550
1200	4076	. 459	3000	5230	.543
1250	4065	.458	3050	5264	. 545
1300	4023	. 455	3100	5347	. 551
1350	4092	. 460	3150	5265	. 545
1400	4166	. 465	3200	5338	. 550
1450	4232	. 470	3250	5352	.551
1500	4312	. 476	3300	5406	. 555
1550	4252	. 472	3350	5342	. 555
16 0 0	4603	. 497	3400	5542	.566
1650	4484	. 486	3450	5399	. 555
1700	4325	. 477	3500	5536	. 565
1750	4440	. 485	3550	5374	. 553
1800	4605	. 497	3600	5506	. 563
1850	4640	. 500	3650	5580	. 568
			3700	5631	. 572
			3750	5680	. 576
			3800	5831	
				7001	. 587

Mile 185, 17 December

Mile 275, 26 December

Depth (cm)	Mean Count-Rate (Counts/Min.)	Density (g/cm^3)	Depth (cm)	Mean Count-Rate (Counts/Min.)	Density (g/cm ³)
100	3447	.413	2000	4938	.521
150	3484	.416	2050	4968	.523
200	3714	.432	2100	5065	.530
250	3301	.402	2150	5136	.536
300	3488	.416	2200	5064	.530
350	3707	.432	2250	5138	.536
400	3844	.442	2300	5193	.540
450	3723	.433	2350	5193	.540
500	3734	. 434	2400	5169	.538
550	3880	444	2450	5168	.538
600	3904	. 446	2500	5250	.544
650	3903	• 446	2550	5240	.543
700	4209	.469	2600	5185	.539
750	3983	.452	2650	5290	.547
800	4216	. 470	2700	5166	.538
850	4163	.465	2750	5317	.549
900	4115	.462	2800	5382	.554
950	4426	.484	2850	5150	.537
1000	4206	.468	2900	5344	.551
1050	4455	.486	2950	5504	.563
1100	4204	.468	3000	5446	.558
1150	4366	.480	3050	5482	.561
1200	4542	.492	3100	5346	.551
1250	4622	.498	3150	5412	.556
1300	4588	.496	3200	5390	.554
1350	4506	. 490	3250	5421	.556
1400	4670	.502	3300	5536	.565
1450	4592	.496	3350	5526	.564
1500	4880	.517	3400	5516	.564
1550	4743	.507	3450	5599	.570
1600	4857	.515	3500	5641	.573
1650	4782	.510	3550	5522	.564
1700	4808	.512	3600	5519	.564
1750	4936	.521	3650	5484	.561 .570
1800	4923	.520	3700	5606	.570
1850	4985	.525	3750	5558	.566
1900	4824	.513	3800	5552	.584
1950	4834	.514	3850	5788	.570
			3900	5604 5714	.578
			3950	5714	0

Depth (cm)	Mean Count-Rate (Counts/Min.)	Density (g/cm ³)	Depth (cm)	Mean Count-Rate (Counts/Min.)	Density (g/cm ³)
100	3302	.402	2000	4734	.506
200	3572	.422	2100	4756	.508
300	3298	.402	2200	4712	.505
400	3426	.411	2300	4802	.511
500	3562	.421	2400	4940	.521
600	3786	.437	2500	5130	.535
700	3790	.438	2600	5048	.529
800	3732	.434	2700	4997	.525
900	3894	.445	2800	5234	.543
1000	3914	.447	2900	5204	.541
1100	4318	.476	3000	5233	.543
1200	3991	.452	3100	5375	.553
1300	4009	.454	3200	5441	.558
1400	4458	.486	3300	5510	.563
1500	4441	.485	3400	5576	.568
1600	4514	.490	3500	5574	.568
1700	4566	.494	3600	5548	.566
1800	4597	.496	3700	5652	.574
1900	4918	. 520	3800	5378	.553

Mile 370, 31 December

Depth	Mean Count-Rate	Density	Depth	Mean Count-Rate	Density
(cm)	(Counts/Min.)	(g/cm ³)	(cm)	(Counts/Min.)	(g/cm ³)
100	3360	.406	1400	4222	.470
200	3486	.416	1500	4816	.512
300	3270	.400	1600	4544	.493
400	3618	.425	1700	4618	.498
500	3700	.431	1800	4655	.501
600	3748	.435	1900	4543	.493
700	3812	.439	2000	4735	.506
800	3617	.425	2100	5010	.526
900	4080	.459	2200	4918	.520
1000	4014	.455	2300	4942	.521
1100	4011	.454	2400	5265	.545
1200 1300	4154 4301	.465	2500	5340	. 550

Mile 395, 1 January

Mile 415, 3 January

Depth _(cm)	Mean Count-Rate (Counts/Min.)	Density (g/cm ³)	Depth _(cm) _	Mean Count-Rate (Counts/Min.)	Density (g/cm ³)
100				/ 075	50/
100	4085	.460	2000	4975	.524
150	4496	.489	2050	4739	. 507
200	3946	.449	2100	4819	.512
250	3778	.437	2150	4910	.519
300	4045	.456	2200	5003	. 526
350	4166	.465	2250	4912	.519
400	3954	.450	2300	4920	. 520
450	3896	.446	2350	5183	.539
500	3660	.428	2400	4961	.523
550	3680	.430	2450	4926	.520
600	4082	.459	2500	5098	.533
650	3935	.448	2550	5174	.538
700	3812	.439	2600	5064	.530
750	3901	.446	2650	5248	.544
800	3880	.444	2700	5269	.545
850	3948	.449	2750	5192	. 540
900	3877	.444	2800	5131	.535
950	4048	.457	2850	5176	.539
1000	3932	.448	2900	5307	.548
1050	4001	.453	2950	5442	.558
1100	4082	.459	3000	5474	.560
1150	4158	.465	3050	5284	.546
1200	4154	.464	3100	5333	.550
1250	4384	.481	3150	5428	.557
1300	4435	.485	3200	5496	.562
1350	4688	.503	3250	5518	.564
1400	4550	.493	3300	5460	.559
1450	4350	.479	3350	5402	.555
1500	4579	.495	340 0	5384	.554
1550	4623	.498	3450	5630	. 572
1600	4610	.497	3500	5523	.564
1650	4678	.502	3550	5424	.557
1700	4736	. 506	3600	5686	.576
1750	4636	.499	3650	5588	.569
1800	4666	.501	3700	5552	.566
1850	4682	.503	3750	5638	.572
1900	4652	.500	3800	5723	
1950	4724	.506	3850	5756	.579
			3900		.581
			3950	5772	.583
			4000	5884	. 590
			4000	6044	.602

Mile 470, 8 January

Depth (cm)	Mean Count-Rate (Counts/Min.)	Density (g/cm ³)	Depth (cm)	Mean Count-Rate (Counts/Min.)	Density (g/cm ³)
					<u>`````````````````````````````````</u>
100	2462	.341	2100	5045	.529
200	2792	.365	2200	4922	.520
300	2860	. 370	2300	5182	.539
400	3208	.395	2400	5258	.545
500	3062	. 384	2500	5198	.540
600	3130	. 389	2600	5268	.545
700	3076	.386	2700	5312	.549
800	3744	.434	2800	5538	.565
900	3652	.428	2900	5601	.570
1000	3734	.434	3000	5548	.566
1100	3950	.450	3100	5723	.579
1200	4010	.454	3200	5808	.525
1300	4157	.465	3300	5802	.584
1400	4150	.464	3400	5874	.590
1500	4322	.477	3500	5806	.585
1600	4534	.492	3600	5970	.597
1700	4456	.486	3700	5906	.592
1800	4689	.503	3800	6058	.603
1900	4913	. 519	3900	598 4	.598
2000	4938	.521	4000	6150	.610

Depth (cm)	Mean Count-Rate (Counts/Min.)	Density (g/cm^3)	Depth (cm)	Mean Count-Rate (Counts/Min.)	Density (g/cm ³)
100	4082	.459	2100	5332	.550
150	4584	.496	2150	5220	.542
200	3440	.412	2200	5468	. 560
250	3447	.413	2250	5406	.555
300	3407	.410	2300	5334	. 550
350	3547	.420	2350	5478	.561
400	3734	.434	2400	5548	.566
450	3890	.445	2450	5478	.561
500	3936	.448	2500	5496	.562
550	3808	.438	2550	5486	.561
600	3608	.424	2600	5629	.572
650	3803	.439	2650	5560	.567
700	3832	.441	2700	5654	.554
750	3757	.435	2750	5708	.578
800	3924	.448	2800	5738	. 580
850	4027	.455	2850	5704	. 577
900	4060	.458	2900	5748	.581
950	4188	.467	2950	5746	.581
1000	4324	.477	3000	5708	.578
1050	4304	.475	3050	5754	.581
1100	4274	.473	3100	3740	.434
1150	4561	.494	3150	5830	.587
1200	4420	.484	3200	6008	.600
1250	4388	.481	3250	5783	.583
1300	4514	.495	3300	5855	.588
1350	4726	.506	3350	5828	.586
1400	4834	.514	3400	5832	.587
1450	4868	.516	3450	5816	.586
1500	4961	.523	3500	5831	.587
1550	4922	.520	3550	5974	. 597
1600	4875	.516	3600	5944	.595
1650	4912	.519	3650	6061	. 603
1700	5022	.527	3700	5966	. 597
1750	4998	.526	3750	5885	.591
1800	5168	.538	3800	6070	. 604
1850	5100	.533	3850	6056	. 603
1900	5216	.542	3900	6004	.599
1950	5218	.542	3950	6182	.613
2000	5226	.542	4000	6043	.601
2050	5286	.547	_		

Mile 545, 15 January

Mile 620, 19 January

Depth (cm)	Mean Count-Rate (Counts/Min.)	Density (g/cm ³)	Depth (cm)	Mean Count-Rate (Counts/Min.)	Density (g/cm ³)
100	2912	.373	2100	5554	.566
150	3240	. 398	2150	5376	.553
200	3022	. 382	2200	5486	.561
250	3224	. 396	2250	5415	.556
300	3307	.403	2300	5427	.557
350	3479	.415	2350	5500	.562
400	3453	.413	2400	5488	.562
450	3618	.425	2450	5536	.565
500	3231	.397	2500	5608	.570
550	3258	. 398	2550	5617	.571
600	3598	.424	2600	5618	.571
650	3421	.411	2650	5674	.575
700	3522	.418	2700	5743	.580
750	3912	.447	2750	5803	.585
800	3664	.429	2800	5694	.577
850	4070	.458	2850	5908	.592
900	4080	.459	2900	5804	.585
950	4230	.470	2950	5820	.586
1000	4341	.478	3000	5838	.587
1050	4585	.496	3050	6004	.599
1100	4541	.492	3100	5904	.592
1150	4604	.497	3150	5970	.597
1200	4788	.510	3200	6112	.607
1250	4982	.524	3250	5898	.592
1300	5068	.531	3300	5928	.594
1350	5034	.528	3350	5928	.594
1400	5220	.542	3400	5947	.595
1450	5113	.534	3450	6054	.603
1500	5173	.538	3500	5925	.594
1550	5151	.537	3550	6094	.606
1600	5282	.546	3600	5962	.596
1650	5230	.543	3650	6108	.607
1700	5342	.551	3700	6124	.608
1750	5370	.553	3750	6176	.612
1800	5344	.551	3800	6124	.608
1850	5425	.557	3850	6127	.608
1900	5414	.556	3900	6198	.613
1950	5427	.557	3950	6167	.611
2000	5380	.553	4000	6136	.609
2050	5426	.557			

Depth (cm)	Mean Count-Rate (Counts/Min.)	Density (g/cm ³)	Depth (cm)	Mean Count-Rate (Counts/Min.)	Density (g/cm ³)
100	3375	.408	2100	4612	.498
200	3176	.393	2200	4667	.501
300	3178	. 393	2300	4746	.507
400	3145	. 391	2400	4868	.516
500	3292	.401	2500	4884	.517
600	3438	.412	2600	5062	.530
700	3473	.415	2700	5232	.543
800	3766	.436	2800	5112	.534
900	3846	.442	2900	5088	.532
1000	3908	.446	3000	5076	.531
1100	393 4	.448	3100	5308	.548
1200	4072	.459	3200	5227	. 542
1300	4153	.465	3300	5337	.550
1400	4090	.460	3400	5618	.571
1500	4240	.471	3500	5366	.552
1600	4204	.468	3600	5413	.556
1700	4362	.480	3700	5524	.564
1800	4369	.480	3800	5578	.568
1900	4270	.473	3900	5647	.573
2000	4433	.485			

Mile 710, 24 January

APPENDIX IV - continued

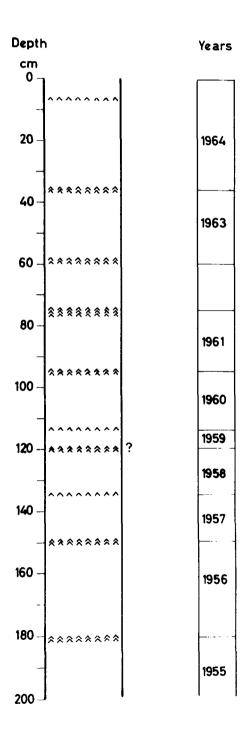
Mile 797, 29 January

Depth (cm)	Mean Count-Rate (Counts/Min.)	Density (g/cm ³)	Depth (cm)	Mean Count-Rate (Counts/Min.)	Density (g/cm ³)
300	2930	.375	2150	4450	.486
350	3111	.388	2200	4604	.400
400	3182	. 397	2250	4754	.508
450	3230	. 397	2300	4760	.508
500	3130	. 390	2350	4830	.513
550	3174	. 393	2400	4764	.508
600	3157	.393	2450	4840	.514
650	3358	.406	2500	4901	.518
700	3278	. 399	2550	4860	.515
750	3460	.414	2600	4812	.512
800	3528	.419	2650	4894	.518
850	3720	.433	2700	4914	.519
900	3642	.427	2750	4980	.524
950	3814	.440	2800	4952	.522
1000	3861	.443	2850	4991	.525
1050	3835	.441	2900	5050	.529
1100	3852	.442	2950	4919	.520
1150	3866	.443	3000	5050	. 529
1200	3883	.445	3050	5035	.578
1250	3992	.453	3100	5035	.528
1300	4030	.455	3150	5124	.535
1350	4245	.471	3200	5237	.543
1400	4195	.468	3250	5139	.536
1450	4260	.472	3300	5112	.534
1500	4182	.467	3350	5140	.536
1550	4269	.473	3400	5108	.534
1600	4277	.473	3450	5301	.548 .593
1650	4470	.487	3500	5234 5250	.544
1700	4393	. 482	3550	5220	. 542
1750	4306	.475	3600	5329	.550
1800	4588	.496	3650	5308	.548
1850	4538	. 492	3700	5366	.552
1900	4524	.491	3750	5260	.545
1950	4497	.489	3800	5431	.557
2000	4523	.491	3850	5332	.550
2050	4630	.499	3900 3950	5438	.558
2100	4616	.498	3950 4000	5466	.560
			4000	5400	

APPENDIX V - PIT DIAGRAMS

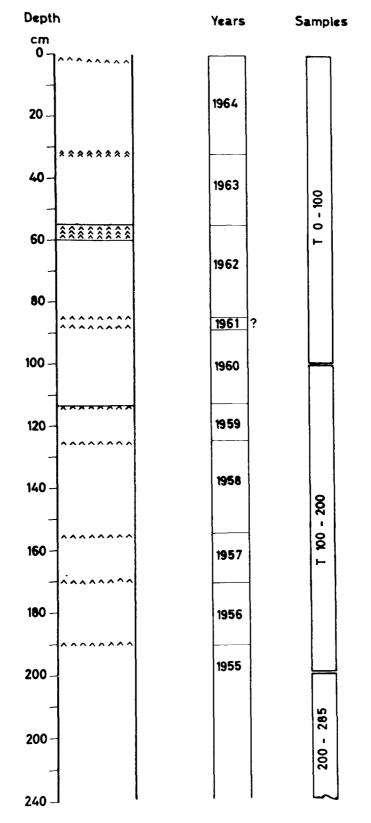
The stratigraphy of the pit is represented in the usual way in the following diagrams. From left to right, the following information is indicated for most of the pits:

- the main stratigraphic features;
- the density (g/cm^3) ;
- a tentative identification of the annual layers based on the interpretation of the stratigraphy. Since this interpretation is often ambiguous, the results of the extreme interpretations (maximum and minimum number of annual layers) are generally given;
- The position of the smaples collected in view of isotopic measurements (fallout, Pb²¹⁰ and oxygen).

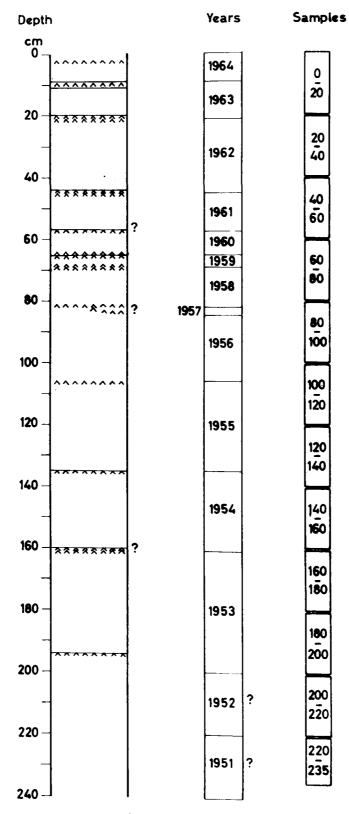

The following symbols and abbreviations are used in the pit diagram:

AAAAA depth hoar layer

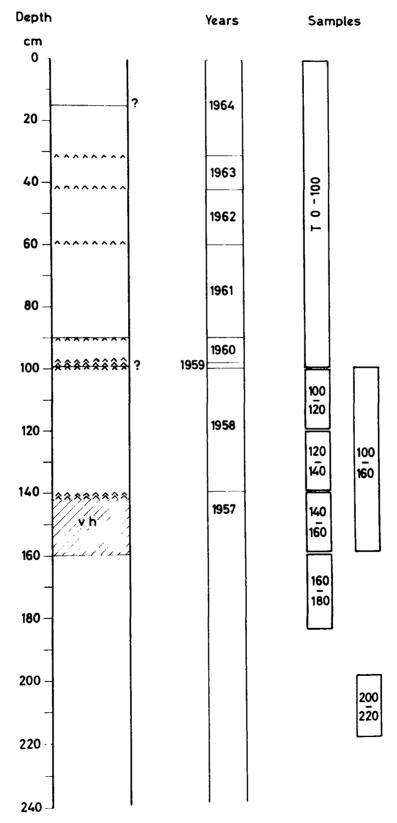
iced crust


- hard layer
- ---- bonded grain layer
 - ? discontinuous or uncertain feature
 - vs very soft
 - s soft
 - m medium
 - mh medium hard
 - h hard
 - vh very hard
 - T tube
 - C core
 - bis two parallel cores or tubes from same level

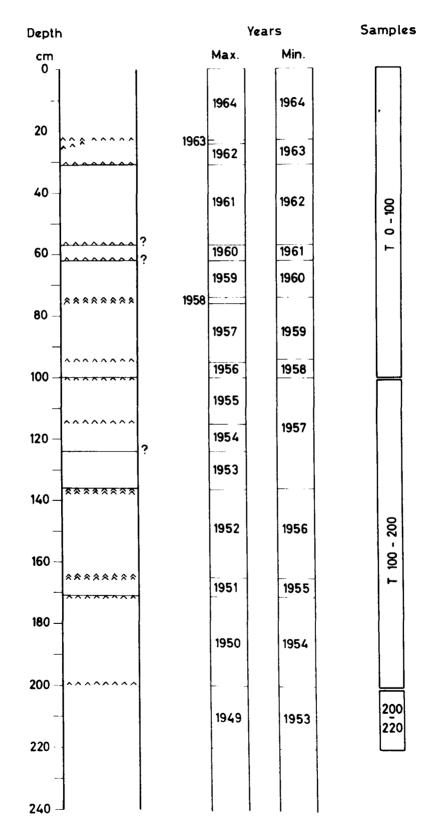
tris three parallel cores or tubes from same level



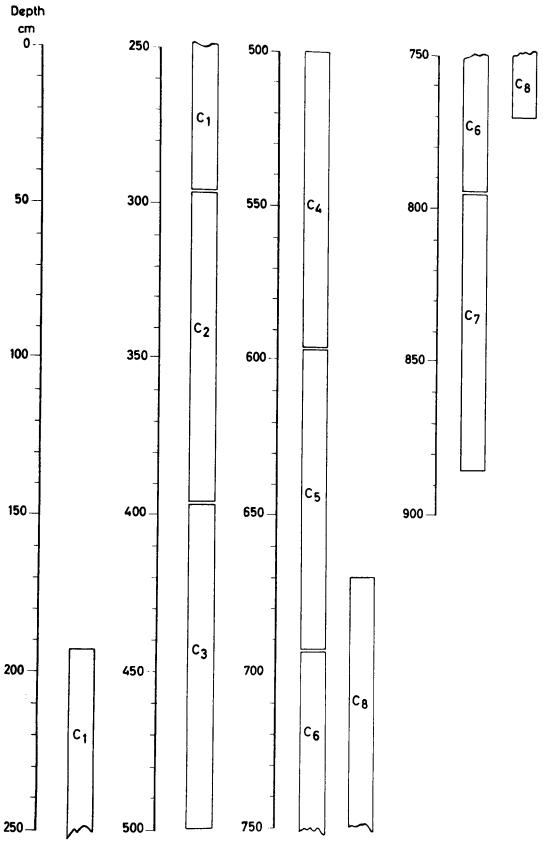
<u>St. 1_ Mi. 24</u>


Depth	Years	Samples
cm 0−j i	· ¬	 1
	1964	
20 -		
-		
40	1963	
		Q
]	001 - 0
60	1962	
	1961	
	1901	
80-1******	1960	
100 -		Ц
	1959	
120 - ^ ^ ^ ^ ^ ^ ^ ^ ^ ^	1958	
- * * * * * * * *		
140		
	1957	200
		T 100 - 200
160 - * * * * * * * * *		¥
180 -	1956	

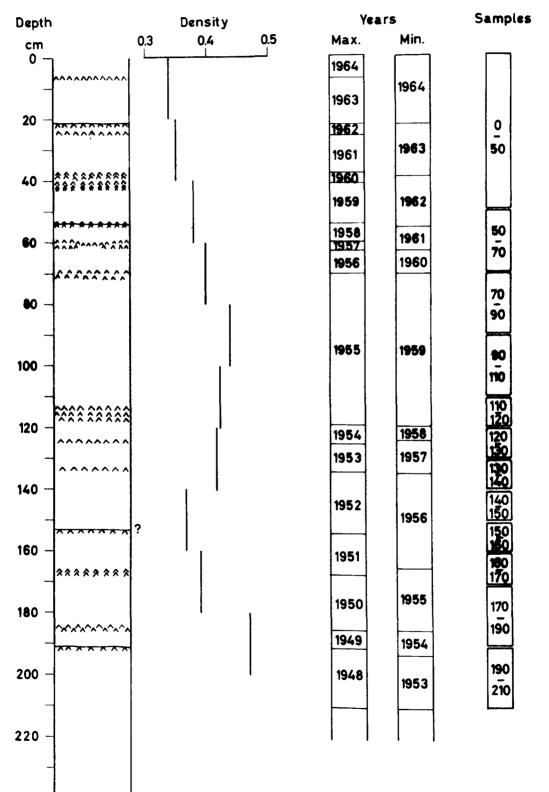
	1955	
200	1954	
-		
220	1953	300
	1952	200 - 300
	1952	8
240		
0.0		


St. 3 _ Mi. 72

<u>St. 4a _ Mi. 110</u>

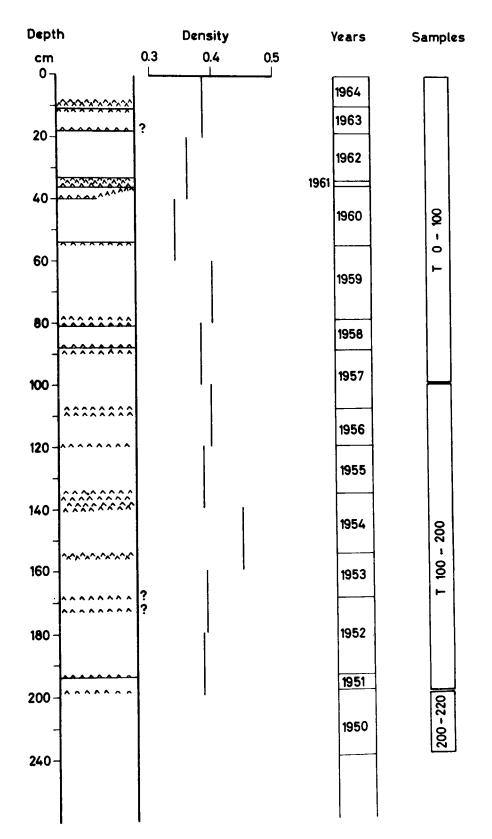


St. 4 _ Mi. 96

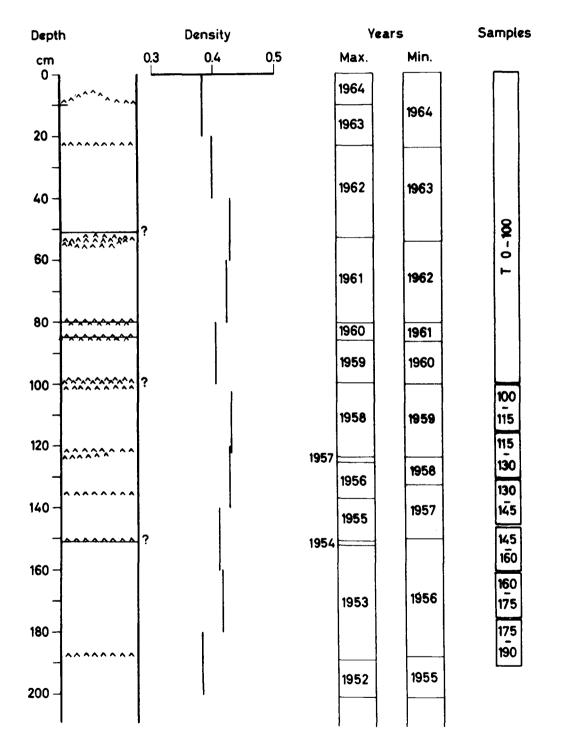


ÿб

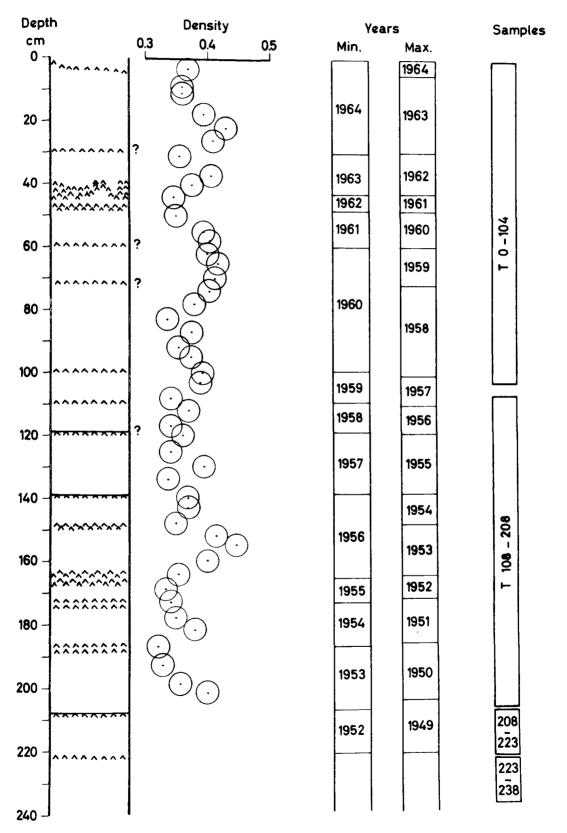
<u>St. 4a - Mi. 110</u>

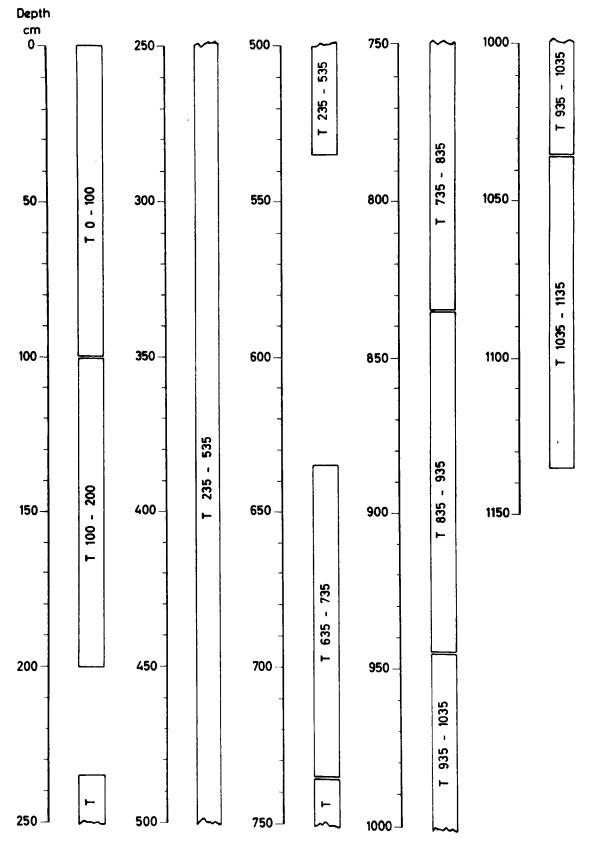


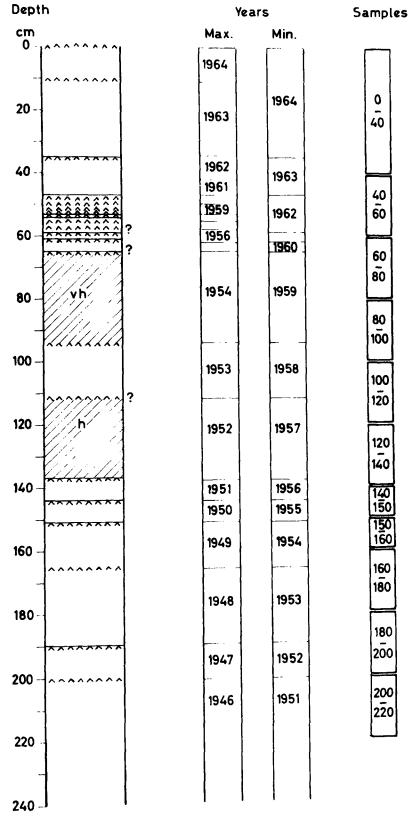
St. 5 _ Mi. 125

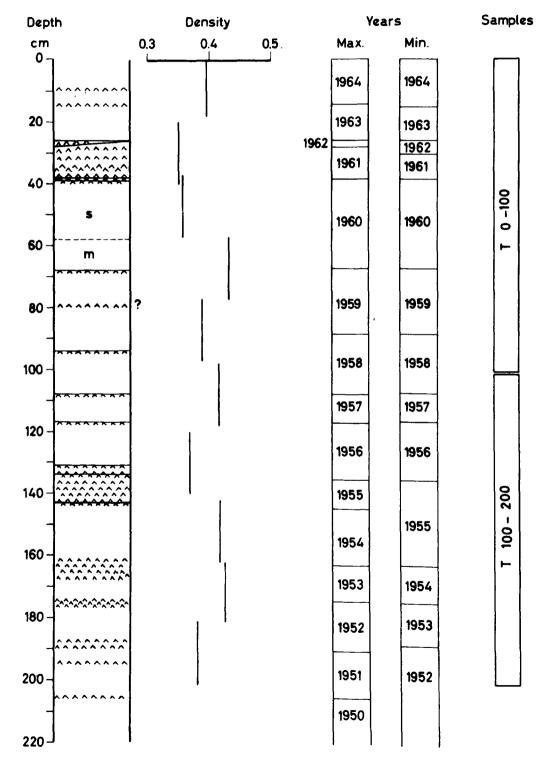


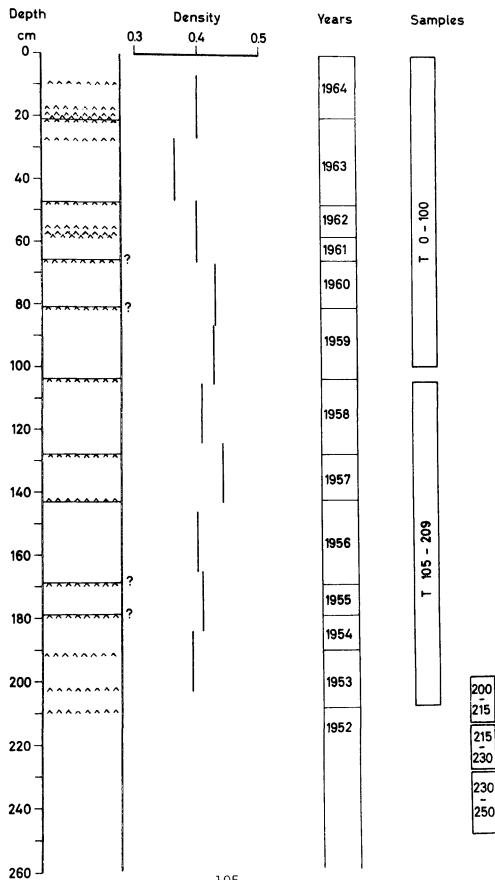
240 -

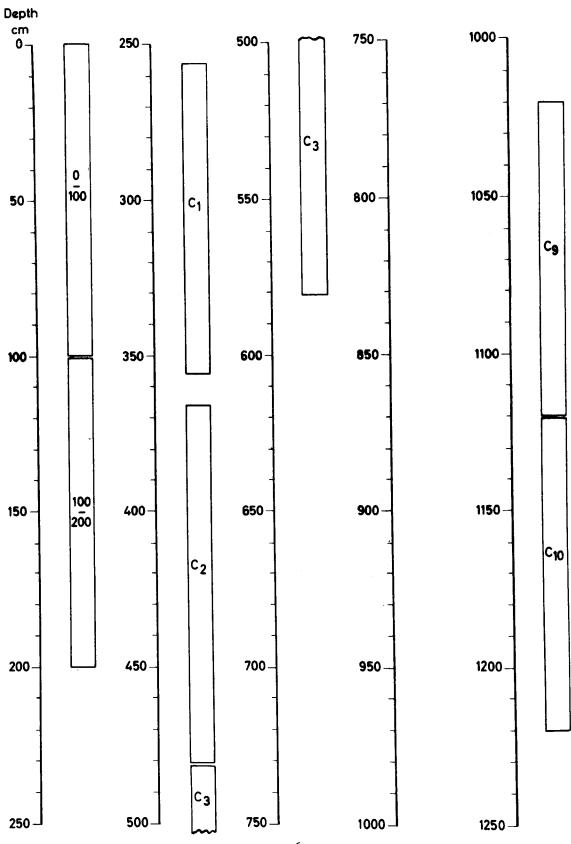

St. 5a _ Mi. 140

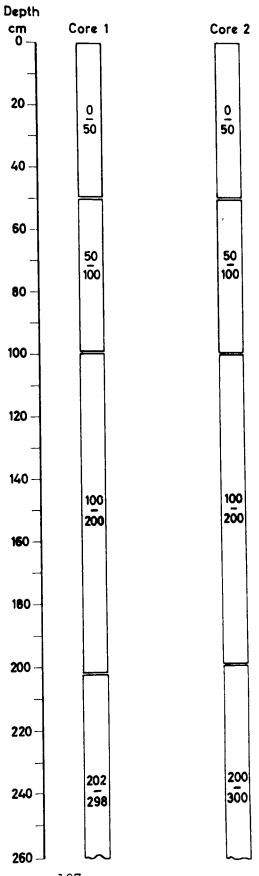

St. 6 _ Mi, 155


St. 7 _ Mi. 185

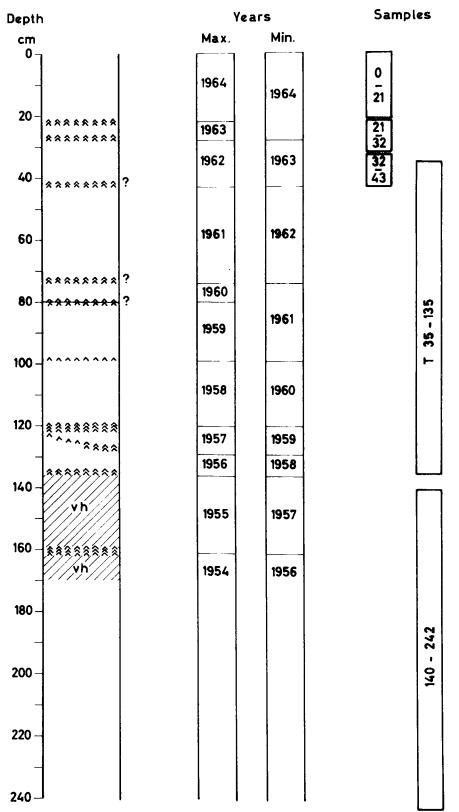

St. 7 _ Mi. 185

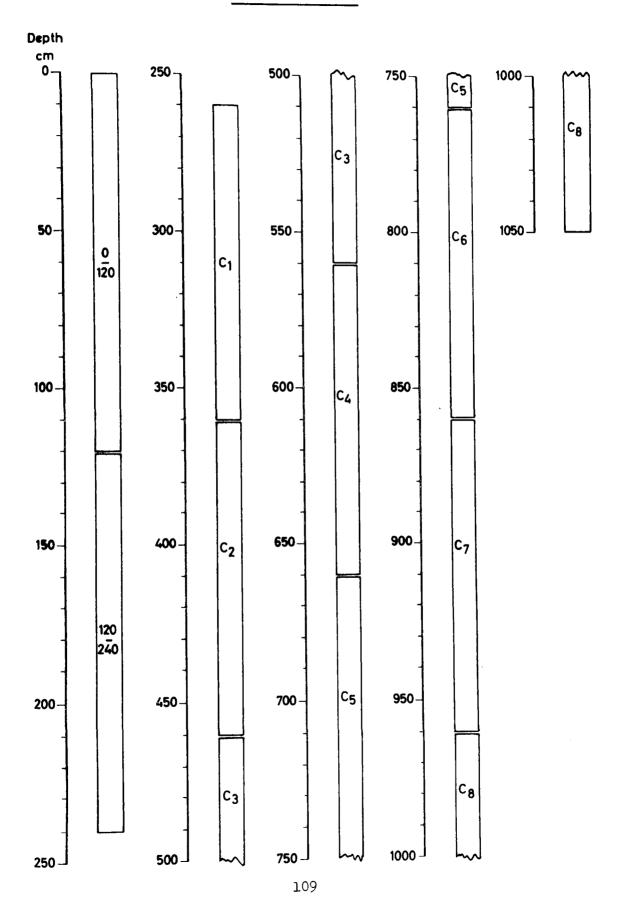

St. 8 _ Mi. 215


St. 9 _ Mi. 245

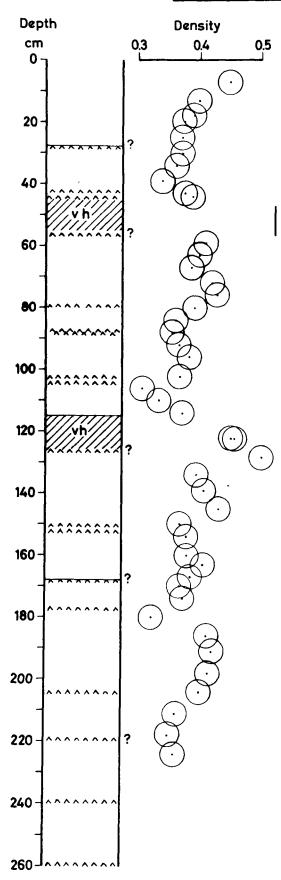


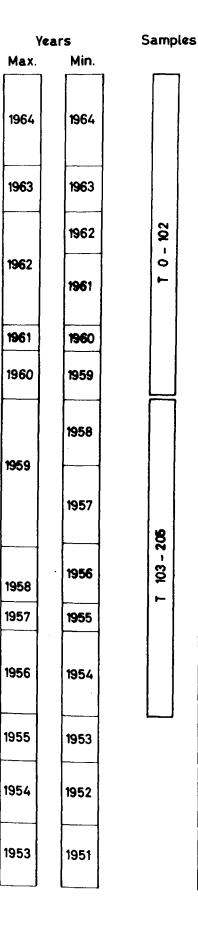
St.10 _ Mi. 275


St. 10 _ Mi. 275

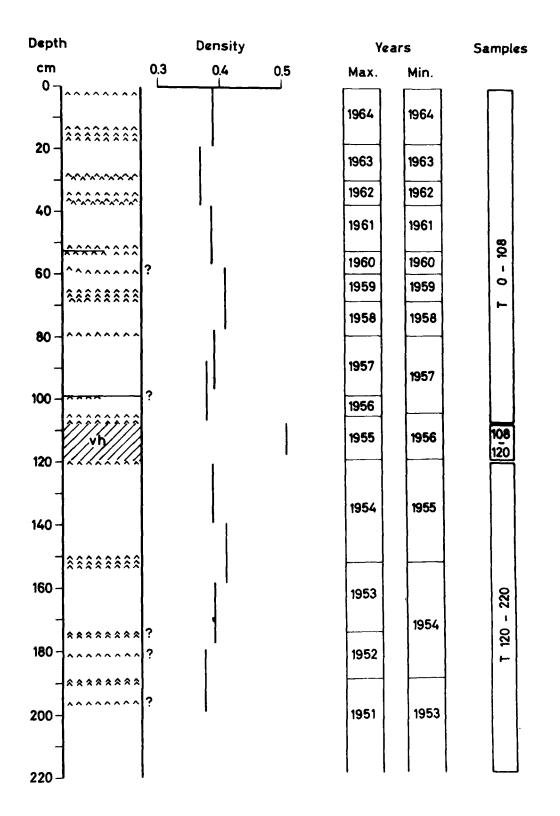


107

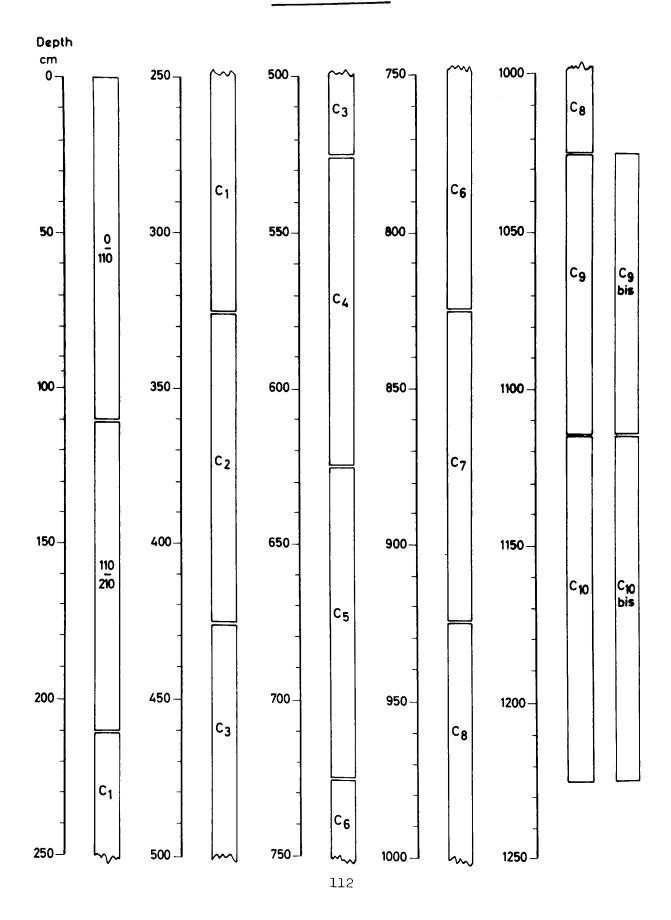

St. 12 _ Mi. 338

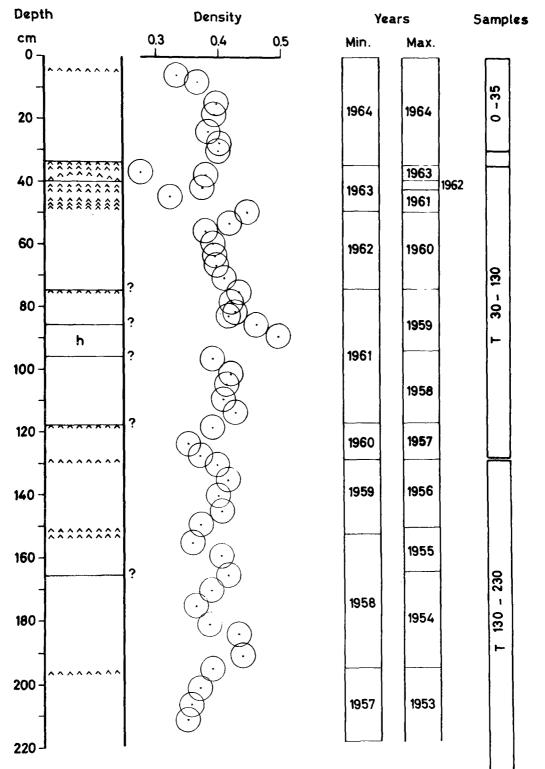


St. 13 _ Mi. 370

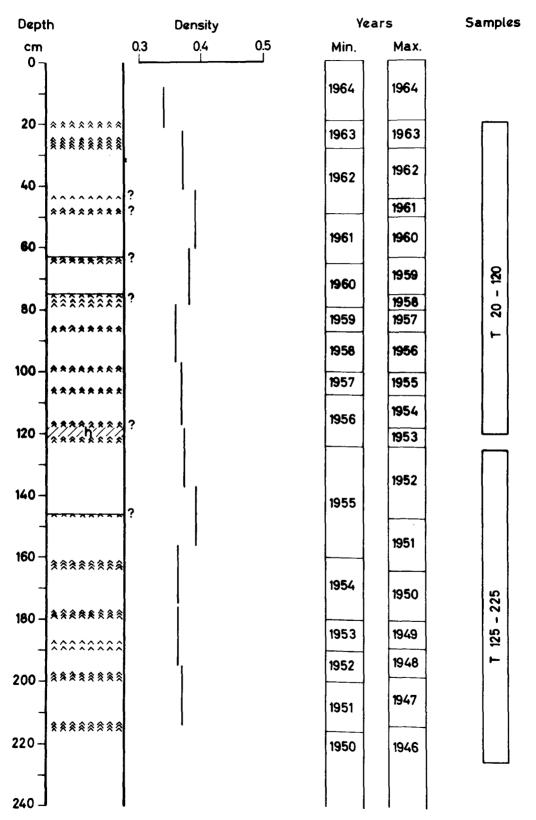


St. 13 _ Mi. 370

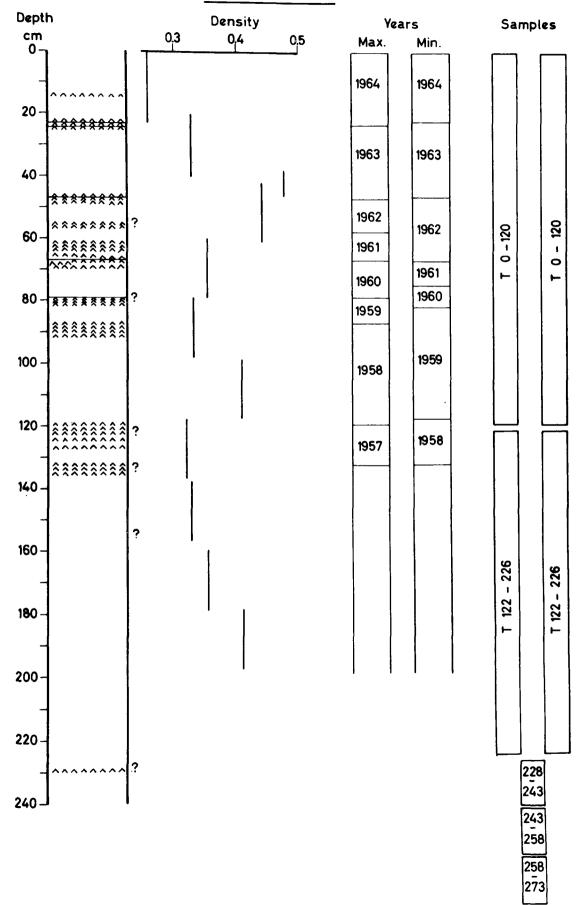


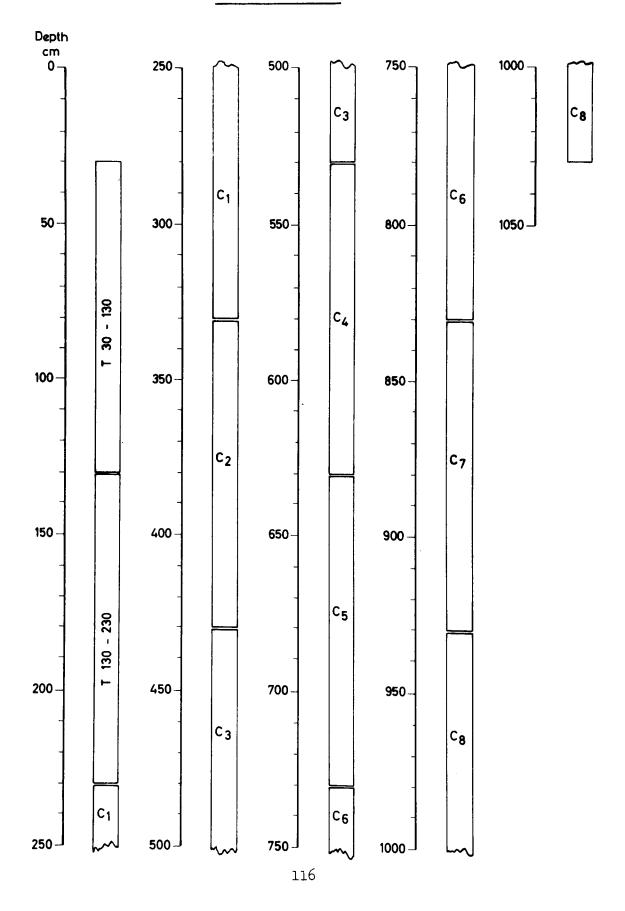


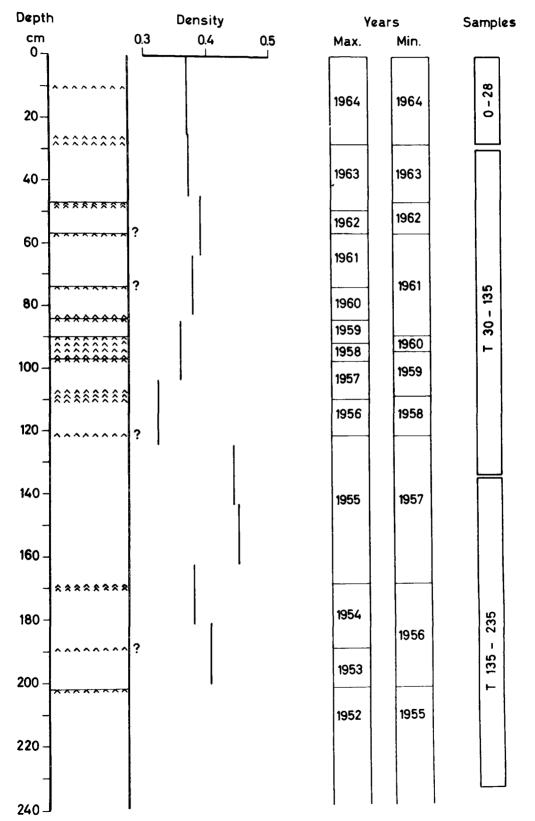
St. 14 _ Mi. 395



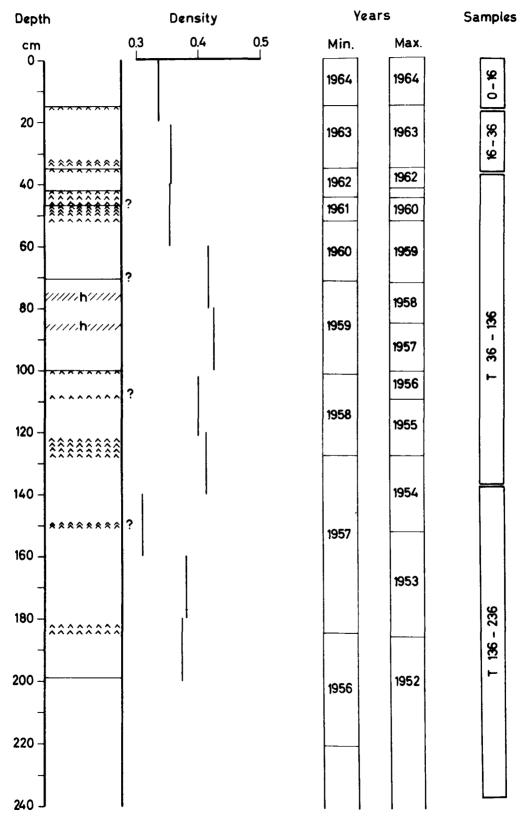
St. 15 _ Mi. 415



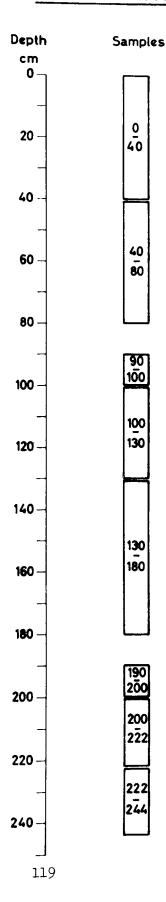

St. 16 _ Mi. 445

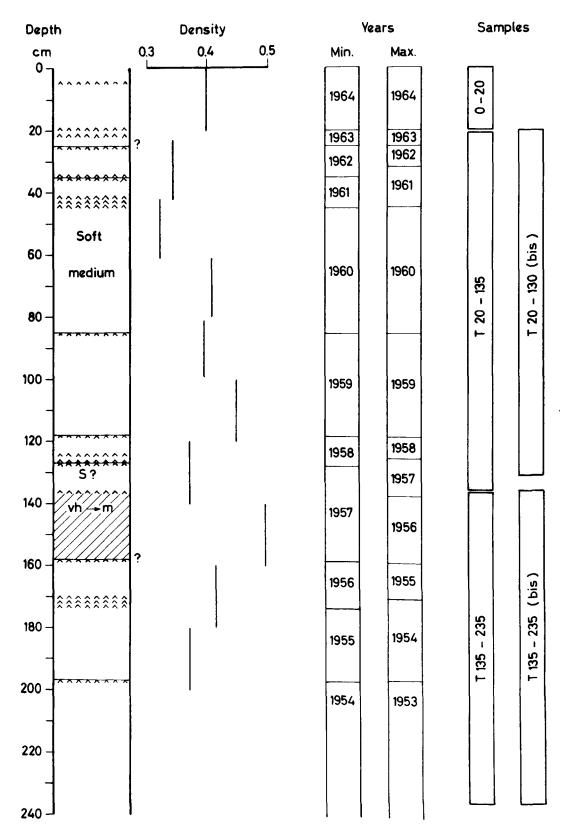


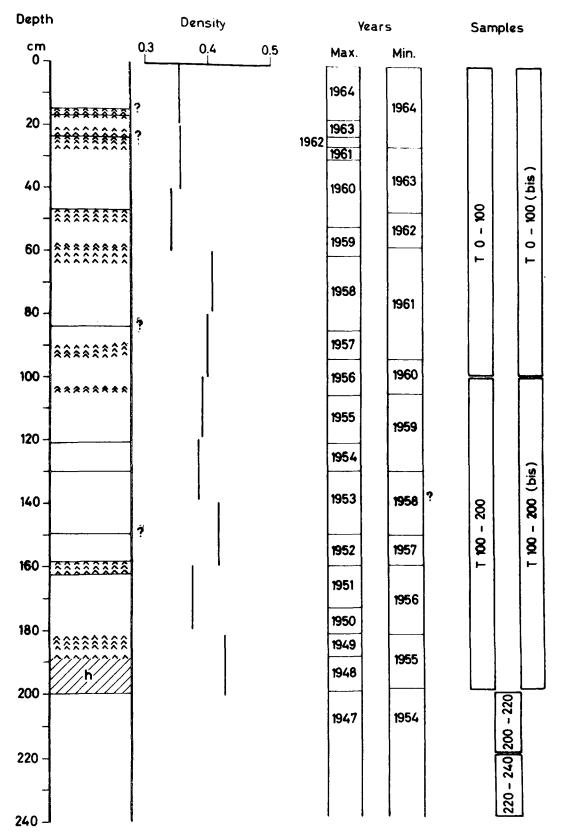
<u>St. 17 _ Mi. 470</u>

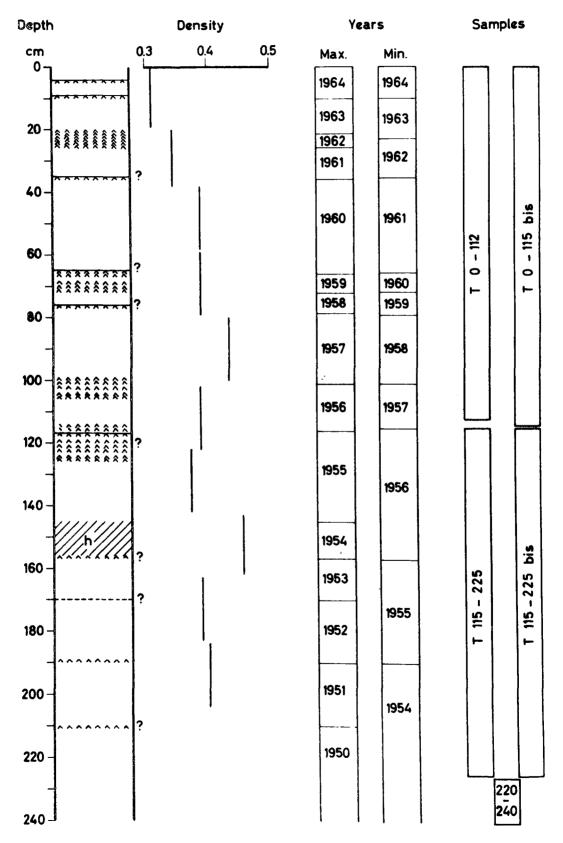


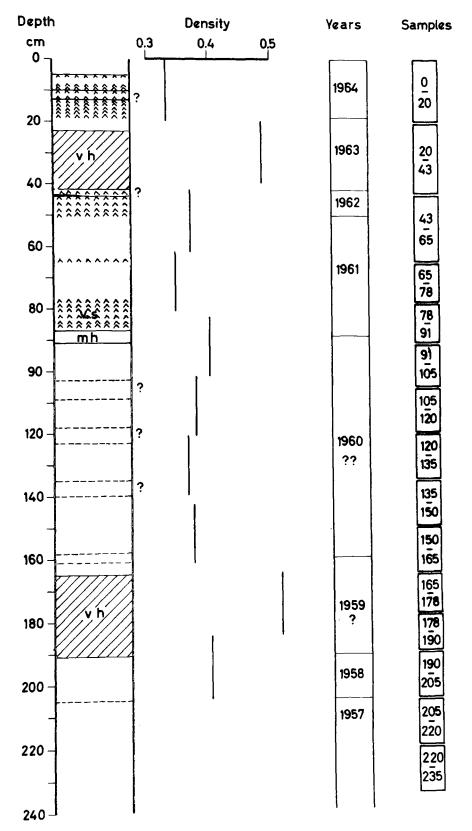
St. 18 _ Mi. 496

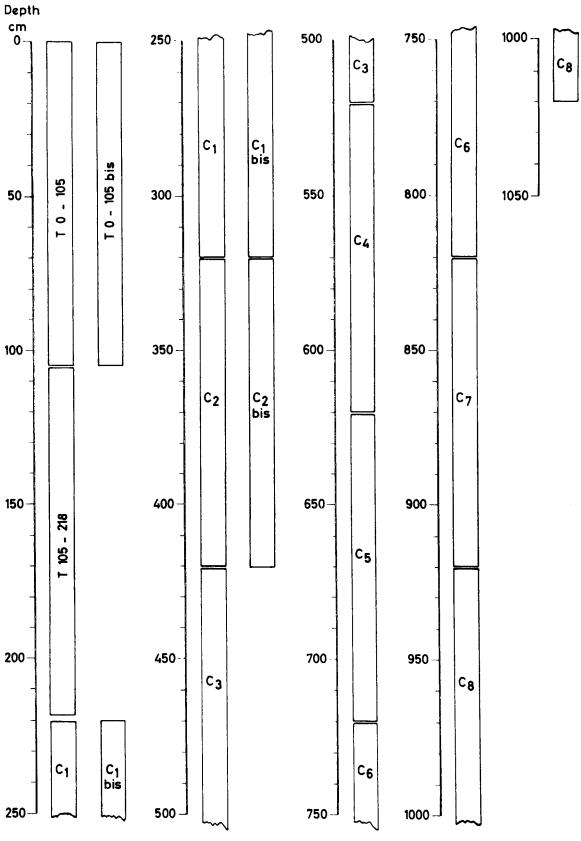



St. 19_ Mi. 519

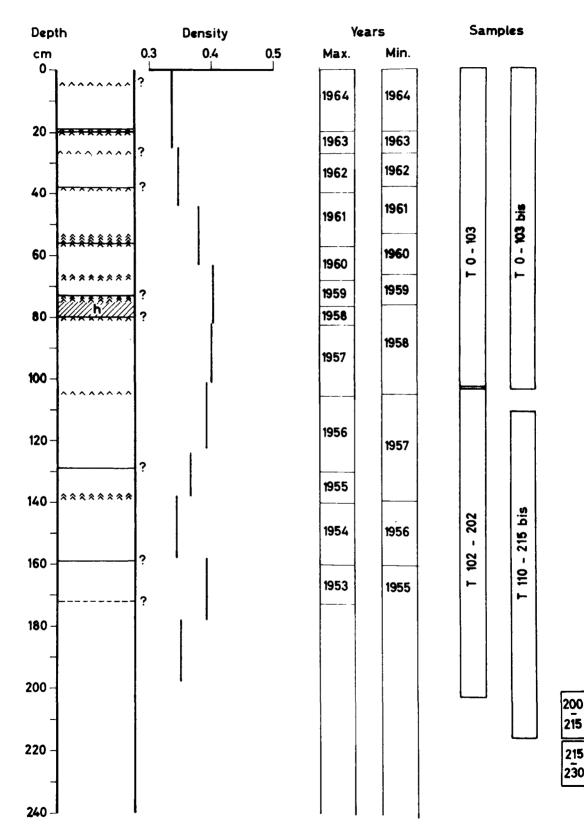

<u>St. 19 a _ Mi. 536</u>

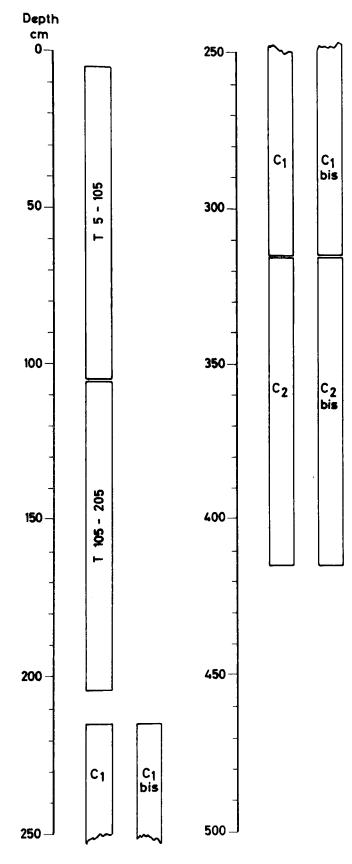

St. 20 _ Mi. 545


St. 21_ Mi. 570

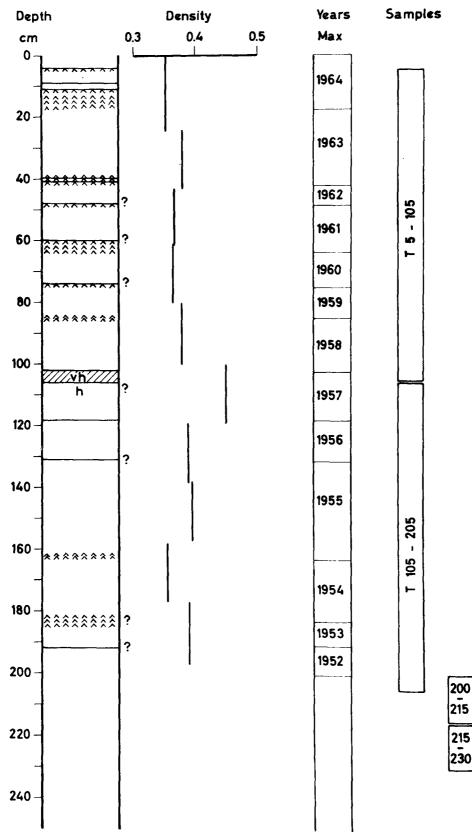

St. 22 _ Mi. 595

St. 23 _ Mi. 620

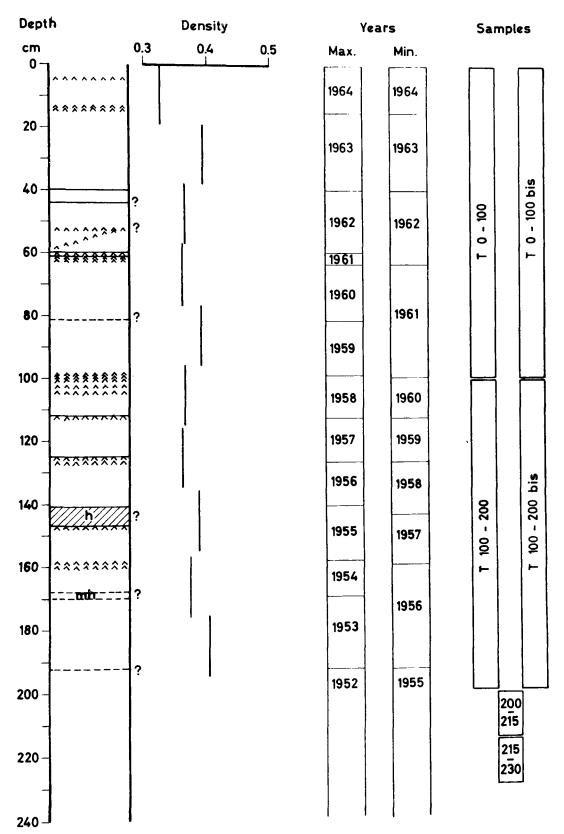

St. 23 _ Mi. 620


St. 24 _ Mi. 640

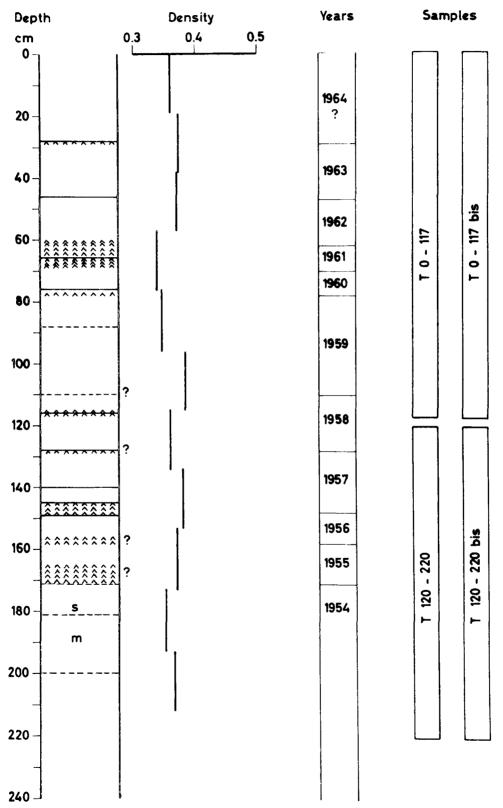
St. 25 _ Mi. 680



St. 26 _ Mi. 710

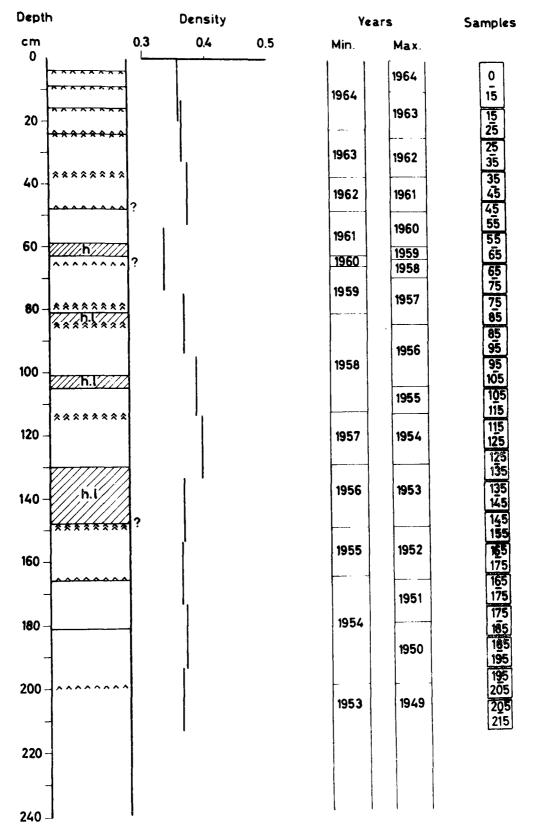


St. 26 _ Mi. 710

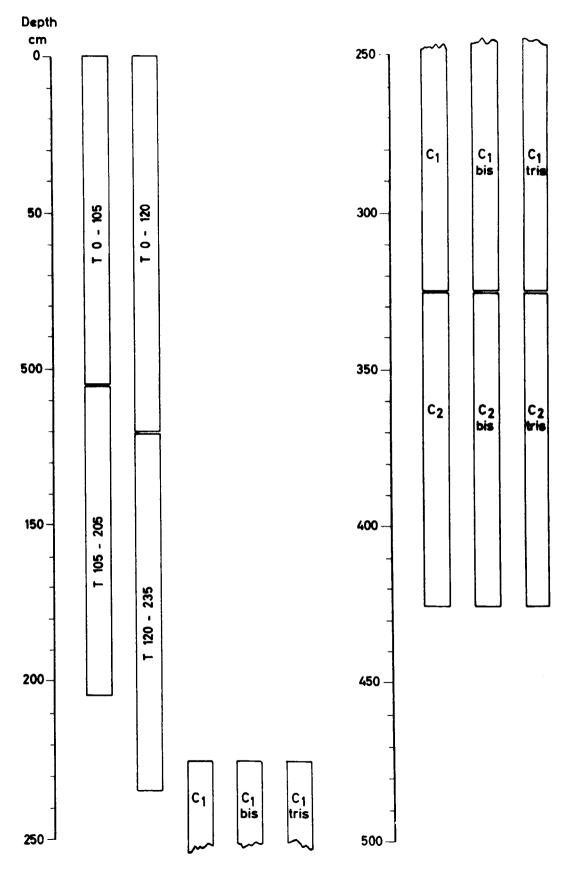


128

St. 27 _ Mi. 740



St. 28 _ Mi. 770



130

St. 29 _ Mi. 797

St. 29 _ Mi. 797

APPENDIX VI - LOG OF THE QUEEN MAUD LAND TRAVERSE, 1964-1965 (Distances are in nautical miles)

- 4 December 1964 Left South Pole Station Traveled 8 miles to Station 0 (Mile 8)
- 5 December Traveled 16 miles to Station 1 (Mile 24)
- 6 December Station 1 Traveled 6 miles to Mile 30
- 7 December Traveled 18 miles to Station 2 (Mile 48)
- 8 December Traveled 24 miles to Station 3 (Mile 72)
- 9 December Station 3
- 10 December Traveled 24 miles to Station 4 (Mile 96)
- 11 December Station 4
- 12 December Traveled 14 miles to Station 4a (Mile 110) Station 4a -Hand auger stuck and lost at 9 m
- 13 December Traveled about 13 miles
- 14 December Traveled about 2 miles to Station 5 (Mile 125) Traveled 15 miles to Station 5a (Mile 140)
- 15 December Traveled 15 miles to Station 6 (Mile 155)
- 16 December Traveled 50 miles to Station 7 (Mile 185)
- 17 December Station 7
- 18 December Station 7

19 December Traveled west 15 miles from Station 7 (first turning point) to Mile 200 - Breakdown (oil leak from engine)

- 20 December Completed repair Traveled 15 miles to Station 8 (Mile 215)
- 21 December Station 8 Traveled 20 miles to Mile 220 Breakdown (oil leak) - Oil cooling system repaired
- 22 December Traveled 15 miles to Mile 235
- 23 December C 130 plane dropped fuel Traveled about 9 miles

APPENDIX VI - continued

- 24 December Traveled about 1 mile to Station 9 (Mile 245) -Station 9 - Traveled about 10 miles
- 25 December Traveled about 5 miles to Mile 260 Traveled 15 miles to Station 10 (Mile 275)
- 26 December Station 10
- 27 December Traveled 50 miles to Station 11 (Mile 305)
- 28 December Station 11
- 29 December Traveled 33 miles to Station 12 (Mile 338) Station 12
- 30 December Traveled 32 miles to Station 13 (Mile 370)
- 31 December Station 13
- 1 January 1965 Traveled 25 miles to Station 14 (Mile 395) -Station 14
- 2 January Station 14 Traveled 20 miles to Station 15 (Mile 415) -Breakdown (front differential broken)
- 3 January Station 15
- 4 January Station 15
- 5 January Station 15
- 6 January Traveled 5 miles back to find a suitable landing site -C 130 plane landed
- 7 January Traveled east from Mile 420 (second turning point) 25 miles to Station 16 (Mile 445)
- 8 January Traveled 25 miles to Station 17 (Mile 470) Mile 460: sighted 2 skuas - Station 17
- 9 January Station 17 Traveled about 25 miles
- 10 January Traveled about 1 mile to Station 18 (Mile 4%) -Station 18 - Breakdown (gear-box broken) - unable to repair
- 11 January Station 18
- 12 January C 130 plane dropped spare parts

APPENDIX VI - continued

- 13 January Completed repair Traveled 23 miles to Station 19 (Mile 519) - Breakdown (front differential broken)
- 14 January Station 19 Traveled about 2 miles
- 15 January Traveled about 15 miles to Station 19a (Mile 536) -Breakdown (Steering gear broken) - Completed repair -Traveled 9 miles to Station 20 (Mile 545) Station 20
- 16 January Station 20 Traveled to Mile 550 Breakdown (back tie-rod broken) Repaired Traveled about 16 miles
- 17 January Traveled about 4 miles to Station 21 (Mile 570) -Station 21 - Traveled about 1 mile
- 18 January Traveled about 15 miles to Station 22 (Mile 595) -Station 22
- 19 January Traveled 25 miles to Station 23 (Mile 620) Station 23
- 20 January Station 23
- 21 January Station 23
- 22 January Traveled 30 miles to Station 24 (Mile 650) Station 24
- 23 January Traveled 30 miles to Station 25 (Mile 680) Station 25
- 24 January Station 25 Traveled 30 miles to Station 26 (Mile 710) Station 26
- 25 January Station 26 Traveled 30 miles to Station 27 (Mile 740) Station 27
- 26 January Traveled 30 miles to Station 28 (Mile 770) Station 28
- 27 January Station 28 Traveled 15 miles to Mile 785 Breakdown (differential broken) - First Sno-Cat traveled 12 miles to Station 29 (Mile 797) - Pole of Relative Inaccessibility - arrived at 2130 GMT
- 28 January Station 29 Second Sno-Cat arrived at 0120 GMT Third Sno-Cat stopped for breakdown (tracks broken) at 500 m from the Station
- 29 January Station 29 Scientific work, repairs and runway for landing prepared

APPENDIX VI - continued

- 30 January Station 29 Scientific work, repairs and runway for landing prepared
- 31 January Station 20 Scientific work, repairs and runway for landing prepared
 - 1 February C 130 plane landed at 1940 GMT C 130 plane took off with party at 2030 GMT - Front ski damaged in takeoff
 - 2 February Landing at McMurdo Station at 0300 GMT