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For first order metal-insulator transitions we show that, together with the dc conductance zero, there is a
second critical point where the dielectric constant becomes zero and further turns negative. At this point
the metallic reflectivity sharply increases. The two points can be separated by a phase separation state in a

3D disordered system but may tend to merge in 2D. For illustration we evaluate the dielectric function in a

simple effective medium approximation and show that at the second point it turns negative. We reproduce
the experimental data on a typical Mott insulator such as MnO, demonstrating the presence of the two
points clearly. We discuss other experiments for studies of the phase separation state and a similar phase
separation in superconductors with insulating inclusions.
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The charge transport and metal-insulator transitions
(MITs) in disordered systems have been discussed in
many papers [1-3], reviews [4,5], and books [6-9]. The
initial discussion resulted in agreement that at 7 = 0 the
transition is completely described by the dc conduction as a
function of the Fermi level at 7 = 0. This is true for second
order MITs, where simultaneously with the vanishing of
the conductance the real part of the dielectric function also
vanishes. It is negative in the metallic state and positive in
the dielectric one, and there is no phase separation in this
case. Here we show that in a first order MIT in composites
the dc conduction is not enough and the dc dielectric
constant has to be considered in order to make the descrip-
tion complete. We will show that in a first order MIT in the
composites, in disordered thermodynamically metastable
3D systems, there can be an intermediate two phase region
separating the metallic state from the dielectric one, both at
T = 0 and at finite temperatures. We will consider such a
metal-dielectric composite with a metallic volume fraction
f, but our results are relevant for other first order MITs in
homogeneous systems, due to the nucleation of metallic
inclusions in the dielectric matrix under pressure, for ex-
ample. In a composite, grains of both components are
always present for any metallic volume fraction f # 0
and f # 1, and the resistance drop occurs at a volume
fraction f,. different from the dielectric function sign
change f, and in different samples made with different
metallic volume fractions. Under pressure due to different
compressibility, a composite irreversibly can undergo both
transitions. To illustrate this, we show a noncomposite
example of the phase separation in the Mott insulator
MnO [10-12]. It demonstrates both the resistance drop
near 90 GPa and the subsequent reflectance sharp increase,
which becomes pressure-independent at 127 GPa [13]. The
data from Ref. [12] are given in Fig. 1, and a detailed
discussion of MITs in MnO is given in [14].

Specific phase separation state.—A metallic 3D sample
is screening any static electric fields as well as the electron-
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electron interaction. Let f. be the metallic volume fraction
threshold for the first nonzero conductance to appear. From
the percolation theory is known that often the values of f,
for 3D systems are smaller than 0.5 and are different for
various models [8]. We will prove now for 3D composites
that in a first order MIT in the range of values f > f. the
sample can be conducting but not screening the external
static electric fields. Just above f.. the sample is in a larger
part made of dielectric grains, which form an infinite
cluster of a larger volume than the volume of the metallic
infinite cluster, provided that f. << 0.5. The two coexisting

22 T T T T T T T G T
-
24F 1

|
|
H 3 dB1 + B8
20 ! 23 FBT] !
%l - : J|

Volume (A%MnO)

4] 40 80 120 160
Pressure (GPa)

FIG. 1 (color online). From Ref. [12]. The specific volume and
the c¢/a ratio (inset) of MnO phases (B1, rocksalt; dB1, a
rhombohedral distortion of B1; and B8 for NiAs) as a function
of pressure. Note the discontinuous changes of the specific
volume and the c¢/a ratio at 110 GPa, indicating that MnO
undergoes an isostructural phase transition with 6.6% volume
collapse. This transition coincides within experimental uncer-
tainties with the moment loss and the insulator-metal transition
in [11].
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clusters represent a specific type of phase separation state.
Because of the topological structure of the infinite clusters
in a disordered system, such phase separation is clearly
different from a layered one, for example. When placed in
the external static electric field of a capacitor, such a
sample, being in a large part dielectric, becomes polarized
with nonzero volume polarization. This volume polariza-
tion requires energy for creating the positive energy den-
sity in the polarized infinite dielectric cluster, which is
equal to sg—f: where € is the real part of the static (zero
frequency) dielectric constant of the sample. The real part
of ¢ is certainly positive due to the work done for polariz-
ing the sample and not negative as it is in a metal. Thus, we
have demonstrated that the phase with both conductance
and volume polarization is not a metal nor a dielectric and
represents a specific phase separation state. The data pre-
sented in Fig. 1 show a separation state as a result of a first
order MIT in a different system—MnO, which is not a
composite and the metallic phase appears gradually due to
nucleation. The resistance drop is near 94 GPa (phases
dB1 + B8 in Fig. 1, B1 for rocksalt, dB1 for a rhombohe-
dral distortion of B1, and B8 for NiAs). The further in-
crease of the metallic volume fraction f breaks the last
links between the large dielectric clusters, and all dielectric
inclusions become eventually disconnected near 127 GPa.
Near this point the sample becomes a metallic bulk with
isolated dielectric inclusions. The bulk metal has a nega-
tive dielectric constant, and at this point (the disappearance
of the infinite dielectric cluster) the static dielectric con-
stant turns from positive to negative. The reflectance is
pressure-independent above 127 GPa in the bulk metal
region. Because of the tunneling of the electrons (holes)
and the hybridization of the wave functions of the large
dielectric clusters, the real critical point is at values differ-
ent from the geometric dielectric percolation threshold. To
illustrate this second critical point, we applied here a
simple version of the effective medium approximation
(EMA) to evaluate the dielectric function. Let us mention
that the EMA is limited in precision and is one among
many similar ones differing in the details [9,15].
Experimental characterization.—Experimentally, one
can expect in a first order MIT the metallic reflectance to
decrease sharply below this second critical point f,, which
is different from the sharp resistance drop point f .. This is
the case with the observed metallic luster in the successive
measurements of the same material MnO [10-12].
Therefore, below the critical point f,; the reflectivity de-
creases sharply due to the transmission of the infinite
dielectric cluster and specific plasmons passing through
the connected system of tunnels in the metal. The dc
polarization P should appear below the point f,; in a static
electric field in a capacitor, and experiments on its critical
behavior are of considerable interest, as are experiments on
the behavior of the ac current dissipation in the region,
where infinite clusters emerge or disappear. The small

dielectric inclusions in the metal will reduce eddy current
dissipation at small frequencies, like in an external time-
dependent magnetic field. When the metal concentration
decreases and becomes f = f,, this eddy current dissipa-
tion would have a feature due to the change in the topology
of the dielectric inclusions and the appearance of the
infinite dielectric cluster, which also marks the bulk me-
tallic volume reduction. Thus the eddy current signal of a
coil will show a variation near the second critical point.
Another experiment can be carried out in the phase sepa-
ration state, where one may encounter different sound
velocities related to the two infinite clusters with a different
type of bonding [16]. In general, we have shown that the
dielectric function has a second critical point at f,;, where
the real part of the static € becomes negative entering the
metallic state region. When this critical point does not
coincide with the vanishing dc conduction, there will be
an intermediate two phase region. In a quasi-2D system
made out of parallel infinite metallic cylinders, such phase
separation does not exist at all. In a first order MIT, the
phase separation region was observed in various Mott
insulators like in the MnO room temperature MIT transi-
tion shown here. The experimental data of reference [12]
reproduced in Fig. 1 present a volume range in the
pressure-volume diagram separating the metallic and the
insulating phases of MnO and showing 6.6% volume dif-
ference. It corresponds to the difference in the metallic
volume fraction between the two critical points mentioned
above for the case of the composites.

Two types of extended states.—What describes the phase
separation state in the range of concentrations f, = f =
fa4? The metallic phase is well defined in the metallic side
fa = f =1, and the insulating phase is as well defined
(see below) in the small metallic fraction region 0 = f =
f¢. In the intermediate range f. = f = f,, one has coex-
istence of the two phases in the form of two infinite
clusters. Remarkably, in this region there is also coexis-
tence of two different types of extended states—metallic
ones threading the infinite metallic cluster and dielectric
ones based on the infinite dielectric cluster. In the dielectric
type of extended states between the top and bottom mo-
bility edges, an electron (hole), when injected in the di-
electric cluster, can cross the sample as well as it can in the
metallic one. For f = f,; in the metallic phase, only the
metallic type of extended states exists, and the sample
conductivity is metallic. For f = f,. in the dielectric phase,
only the dielectric type of extended states is present, and,
due to the gap, the sample is an insulator at 7 = 0. In the
vicinity of f,. at T = 0, metallic component states go from
localized to delocalized following scaling laws as de-
scribed by the localization theory [1,2,5]. In Table I, the
static order parameter values are displayed for all states.
The symbol P is the isotropic dc polarization value.

The second critical point.—In this section we show how
the second critical point appears. The two infinite clusters
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TABLE I. The order parameters of metal, insulator, and phase

separation states.

Insulator Phase separation state Metal

a'dc=0 O'dcsko Udc¢0
P#0 P+#0 rP=0

and the electronic states based on metallic or dielectric
grains and clusters of grains are determined quantum me-
chanically and not just geometrically. The description also
involves the polarization properties of both the metal and
the insulator —I1(w, f). Eventually, the exact form of the
metal fraction f dependence of the conductance and the
dielectric function and the values of the critical points can
vary depending on the models for the calculation. We will
use the Drude-type form of I1(w, f), which is appropriate
for illustration purposes. The EMA describes both critical
points for the conductance and for the dielectric function,
and this is enough to demonstrate how the two critical
points appear. A simple version of the EMA (e.g., not
accounting for various shapes or coatings of the grains)
for the conductivity o of the composite has the form [9]

xf

i Oeff — 0 -0 (1
20 eff + o i

When the first component i = 1 is a metal and the second
component is an insulator, this equation gives us the first
critical point f, = 1/3, which is usually assumed to be the
point where the metal-insulator transition happens. Next
we find for the same system the static dielectric constant
using the same equation as above [9], but with & instead
of o and €, for the metal, the dielectric being marked
i = 2. We neglect here all spectral behavior of the dielec-
tric (and the metal) by assuming a constant &g4;,. For an
ideal metal the static dielectric constant is infinite and
negative. The above equation gives us &, of an ideal metal
in a dielectric in the form

€die
Eeff = 7 _d;f- (2)

Thus, the ideal metal in a composite with any insulator has
a static dielectric constant, which has a pole at the first
critical point f. = 1/3. For a real metal in a composite
with a dielectric, the pole is shifted up in the complex
frequency plane, turns into a maximum, and eventually
becomes negative. We take the real metal dielectric func-
tion €,, in the Drude form:

wit(l + iwT)

en(w, f) =1-f-

io(l + w272’

3)

Here the plasma frequency w, is defined by the electronic
concentration of the metal, which is proportional to the
metal content f. The relaxation rate 7! is typically 1 order
of magnitude less than the plasma frequency. It may de-
pend, however, strongly on the temperature or the pressure.

Using the EMA equation above for the effective dielectric
function of the composite, we find

cen(@, f) = Ha = yJa? + 8ege(, )l @)
Here the function « has the form
a=2-3f)e;+ Bf — Dey(o, f). )

This formula is illustrated in Fig. 2, which shows the real
part of the dielectric function and the critical line where it
becomes negative is clearly visible. The maximum in the
region around f :% clearly is related to the pole [see
Eq. (2)] in the static effective dielectric constant of a
composite made out of an ideal metal and a dielectric.
For a real metal it turns into a finite maximum as expected.

The superconductor dielectric composites.—The treat-
ment we applied for the intermediate state region is not
limited to the metal-insulator composites and MITs. It is
easily seen that the nonmagnetic dielectric and supercon-
ductor composites show similar behavior. Starting with a
small volume fraction of the superconductor f, we see that
the first superconductive paths appear at the concentration
f.. The magnetic susceptibility will sense the presence of
the superconductor component, but the complete screening
of the external magnetic field will occur only at f = f,,
when there is no longer an infinite dielectric cluster
present. In the intermediate range of concentrations, the
obtained phase is a superconductor and at the same time

The Critical Line at fd=2/3

realepsilon

FIG. 2 (color online). The real part of the dielectric function as
a function of the metal volume fraction f and the dimensionless
frequency x = wr. The critical line at f; = % is the cross section
of the blue plane defined as Ree = 0. The dimensionless plasma
frequency here is w,7 = 13.7. The metallic phase is in the
region where the real part of the static dielectric function
becomes negative—below the horizontal dark plane.
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TABLE II. The dielectric superconductor composites.
Dielectric Phase separation state Superconductor
Udczo Ogc = ®© Oge = @

P#0 P#0 P=0
x=0 x=0 4y +1=0

has a nonzero static polarization as a dielectric in the range
of temperatures 0 = 7 = T,. This picture is summarized
in Table II, where we assume a diamagnetic dielectric. The
interphase energy at the two critical points is due to the
expulsion of the electric field penetrating the dielectric, but
in addition to it now there is present the magnetic field
energy density due to the magnetic field screening, which
may be partial near f,. and complete at f;. The penetration
depth A~2 is proportional to the superfluid density n,, and
when it is zero the depth is infinite. At low levels of doping
the insulating phase of the cuprates plays the role of the
dielectric component. At 7= 0 K in the still supercon-
ductive samples, the magnetic field penetration depth in-
creases infinitely in the region of small doping
concentrations p less than p = 0.1, the critical concentra-
tion p.. being close to it. Eventually, the samples are super-
conductive with a low magnetic field penetration depth
equal to infinity. This absence of complete screening of
the magnetic field is marked in Table II as negative sus-
ceptibility but not vanishing u = 1 + 47 y.

In conclusion, we have shown that in the first order MITs
there can be a second critical point, where e, = 0.
Between the two critical points there is a phase separation
state, where two types of extended states are present. In the
same way in the superconductor dielectric composites, the
dielectric phase and the superconductive one can be also
separated by an intermediate phase. The second critical
point where the infinite dielectric cluster appears in the
metallic phase is observable by means of static polarization
studies, by magnetic susceptibility, and by eddy current
loss experiments, not to mention different sound velocities
and the features in the reflection and/or transmission of
electromagnetic waves.

We thank Dr. A. McMahan and the authors of Ref. [12]
for kindly giving us permission to reproduce their results in
Fig. 1.
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