## DNA Copy Number Variation in Autism

## A Senior Honors Thesis

Presented in Partial Fulfillment for the Requirement for graduation with research distinction in Biology in the undergraduate colleges of Biological Sciences at The Ohio State University

## By

Ashwin Adur<br>The Ohio State University June 2009

Project Advisor: Dr. Carlos Alvarez, Department of Pediatrics


#### Abstract

Autism is a childhood neurodevelopmental and psychiatric disorder that involves the impairment of social skills and communication. The genetics behind the inheritance and susceptibility of this disorder are not well known but have recently been studied. Lately, DNA Copy number variation (CNV) in autistic individuals has been a topic of high interest, and has been shown to have an association with this disorder. CNV generally refers to differences in the germ line DNA content between individuals. CNVs span from $1-\mathrm{kb}$ to multi-megabases, and represent a significant portion of genetic variation in normal humans. Significant work has been done in the field of Autism Spectrum Disorder (ASD) genetics to find CNVs implicated in the development of autism and the variation of phenotype. In order to identify new disease alterations, we are conducting CNV discovery studies on 10 autistic children and their families. We expect our findings will lead to a better understanding of pathophysiology and to new avenues of therapeutic treatment. We conducted CNV discovery in 10 autistic children using array Comparative Genome Hybridization (aCGH) on a tiling-resolution whole genome BAC microarray. This platform can detect $\mathrm{CNVs}>50-\mathrm{kb}$. From the high confidence CNV calls (based on standard deviation and signal-to-noise Ratios), we filtered out all variants that are found in $4 \%$ or more of normal individuals. We have identified over 100 high confidence candidate CNVs that have rarely or never been reported previously. In addition, we have begun to determine if any variants were created de novo in the affected child (i.e., were not inherited from parents). Some candidate de novo variants span many genes and could have functional effects. We


conclude that it is worth conducting more genome-wide CNV discovery in autism, and testing suggestive CNVs for association in large numbers of autism patients.

## Introduction

## Overview of Genomic Variation

Genomic structural variation is an all-encompassing term used to group genomic alterations involving segments of DNA that range in size from single nucleotide alterations to entire losses of chromosomes (Fig. 1). This variation may be based on orientation, position, or quantity of DNA segments. The more closely-related humans are, the more similar their genomes and their variations. However, it has been estimated that the genomes of non-related people differ at about 1 in every 1,200 to 1,500 DNA bases, (Eenennaam 2008) creating more than three million differences between these two individual genomes. This discrepancy is mainly due to smaller genetic variations known as single nucleotide polymorphisms or SNPs (Scherer et al. 2007).

The majority of genomic variations deal with relatively small alterations involving only a few bases. However, larger variations have been found in normal individuals that have no current disease implications. Many studies are analyzing larger numbers of normal individuals from different backgrounds to identify the variations between individual genomes that exist. However, due to the large numbers of possible genomic variations and the current platforms available to study variation, it remains a difficult, expensive, and time-consuming endeavor. Although it has been found that $99 \%$ of human DNA sequences are the same, the variation in the sequence can have a vital
role in human response to disease and to environmental factors as well as pharmaceutical therapies.


Figure 1 List of genetic variation found in humans. In a broad sense, structural variation has been used to refer to genomic segments both smaller and larger than the narrower operational definition, as illustrated by the large bracket. The focus of recent discoveries has been the subgroup in the midrange (indicated with strong highlighting), but the gradation of shading illustrates that the biological boundaries may really encompass some forms of variation previously recognized from either cytogenetic or molecular genetic approaches (Scherer et al. 2007).

Genomic variations can be found in all areas of the genome, including coding and non-coding gene regions. However, this variation is not distributed evenly throughout the genome. Various parts of the genome known as "hot spots" have a much higher chance of variability than others. Additionally, there are "stable" regions of the genome, which do not vary to a great extent between individuals and are said to be highly conserved throughout the species. Furthermore, the sizes of a structural variation have variable effects on the expression of genes. However, the effect is dependent on the
region in question. For example, an alteration in a very active and critical gene region which is necessary for life will have adverse effects despite size variability.

## Forms of Structural Variation

There are many specific forms of genomic variation that have been classified and are known to be involved in altering genetic expression. One form of genomic structural variation that makes up approximately $90 \%$ of all human genetic variability is called single nucleotide polymorphism (SNP) (Scherer et al. 2007). SNPs are sequence variations that occur when a single nucleotide in the genome sequence is altered. However, in order for such a change to be called a polymorphism it must be found in at least $1 \%$ of the population. Over the entire human population, SNPs occur every 100 to 300 bases along the 3-billion-base human genome (i.e., more than 2 million SNPs) (Thorisson et al. 2003). The majority of SNPs are presumed to have no effect on cell function and are typically the replacement of cytosine with thymine, found in two of every three SNPs. SNPs are thought to have originally come about by errors in DNA replication or repair that occurred once in human history and are now shared among individuals by descent (Hinds et al. 2006). In addition, some SNPs have been found to have biological effects or to be associated with disease or drug responses.

Another form of genomic variation which is slightly larger in size are variable number of tandem repeats (VNTRs). VNTRs are a repeated sequence of DNA that tend to occur in non-coding DNA. Examples of VNTRs are microsatellites and minisatellites. In some VNTRs, the repeated unit may occur in differing numbers from 10-100 times. The repeated sequence is often simple, consisting of two, three, or four nucleotides. Cytosine and Adenine nucleotide repeats are very frequent in humans and are present
every few thousand base pairs (Blouin et al. 1996). There are usually many alleles found in VNTR regions, and the original allele from a parent can often be identified using VNTRs as markers. Due to this trait of VNTRs, they can be used in a multitude of applications such as determining paternity, population genetic studies and recombination mapping (Dakin et al. 2004). VNTRs have an increased rate of mutation compared to other neutral regions of DNA and are most frequently explained by slippedstrand mispairing, which is the mispairing of the complementary bases during DNA replication on a single DNA strand. VNTRs are structural variations which are found in normal individuals but are also found in individuals with disease. For example, Huntington's disease can be seen to be associated with a trinucleotide VNTR of CAG which repeats over 28 times (MacDonald et al. 1993). Studying these variations may help find additional genetic implications to various disorders and diseases.

## DNA Copy Number Variation

Copy Number Variation (CNV) refers to larger genomic variation which represent a copy number change involving a DNA fragment that is $\sim 1$ kilobases (kb) or larger in germ line DNA(Redon et al. 2006). DNA copy number alterations have long been associated with specific chromosomal rearrangements and genomic disorders. The extent of this variation is still under investigation and it seems likely that in humans, CNVs account for a substantial amount of genetic variation. Approximately 4000 genetic loci are currently mapped on The Database of Genomic Variants (DVG) (http://projects.tcag.ca/variation) (Korbel et al. 2007). CNVs have been found to account for almost five times greater the variation than SNPs in the number of affected bases (de Smith et al. 2008). CNVs can occur in genic regions and can result in differential
levels of gene expression. Therefore, CNVs may account for a large proportion of normal phenotypic variation in the genome (Freeman et al. 2006). There are currently 800 CNVs which occur normally in humans (Korbel et al. 2007).

Until recently, the majority of structural variation was observed as segmental duplications or specific gene disorders (e.g., Lupski 1998; Ji et al. 2000; Inoue and Lupski 2002; Stankiewicz and Lupski 2002). In addition, they were thought to be primarily found in heterochromatin and repeat-rich areas which may not affect an individual's genetic expression. However, two landmark studies found that some large duplications may not be related to disease and are found in normal individuals (e.g., Barber et al. 1998; Engelen et al. 2000). Building on this work, Sebat et al. (2004) showed that there are extensive CNV present in healthy individuals (i.e., have no apparent disease association). However, the results were limited by the platforms and total number of subjects used. Following this study, another lab, Tuzun et al. (2005), found more than $80 \%$ of new CNVs were not identified previously. In addition, each CNV ranged from 8 kb to 40 kb which was a much higher resolution than previously identified CNVs. This study used a different platform that allowed for the greater resolution (Tuzun et al. 2005). A subsequent study by Sharp et al. (2005) targeted known duplicated regions of the human genome which may lead to rapid identification of CNVs. This study used different populations of individuals and identified 19 CNVs, of which only 39\% had been described previously. The authors concluded that CNVs shared among several populations meant that specific genomic differences either predated the dispersal of modern humans out of Africa or recurred independently in different populations (Sharp et al. 2005).

More recently, three CNV studies that specifically interrogated human genomes for non-disease variants were published concurrently (Conrad et al. 2006; Hinds et al. 2006; McCarroll et al. 2006). Two of these studies used SNP data generated from the International HapMap Project, which characterized human genetic variation in a cohort of 269 individuals from different populations. The HapMap Project provided a SNP genotype at $\sim 5$-kb resolution in each of these 269 samples studied for a total of 1.2 million SNPs (The International HapMap Consortium 2005). Due to the abundance and availability of SNP data across the human genome, it was thought that SNP data could be used to find underlying CNVs by using the results of SNP genotyping assays (The International HapMap Consortium 2005; Conrad et al. 2006; McCarroll et al. 2006). In the third study 215 potential deletion variants ranging from 70 bp to 10 kb were identified (Hinds et al. 2006). A subset of 100 PCR-confirmed deletions was further characterized, with 41 of the deletions found to be present among the 24 individuals with an allelic frequency of greater than $10 \%$ (Hinds et al. 2006).

Due to the platforms and various procedures used in the past, there are discrepancies among the CNV discovery studies. This is based primarily on each study having its own bias toward specific types and sizes of CNVs. Using various platforms provides differing abilities to detect CNVs depending on their size, sequence class, or location. The high density oligo array used by Hinds et al. (2006) helped to detect deletions in a wide variety of sizes. However, their analysis avoided repetitive regions (e.g., segmental duplications) that may be more likely to be associated with larger size CNVs (Freeman et al. 2006). The DGV (http://projects.tcag.ca/variation) had an average sized CNV of 118 kb ; however the median size was 18 kb . (Freeman et al. 2006). This
discrepancy, as stated before, is due to the studies done by Conrad et al. (2006) and Hinds et al. (2006). These inconsistencies accounted for mainly smaller CNVs; the majority being <10 kb (Korbel et al. 2007). Using BAC aCGH methods, the copy number variation could entirely encompass a smaller CNV, overlap a CNV, or be totally within a CNV that is actually larger than the BAC clone itself. Because of this ambiguity, the size of the entire BAC clone is used in lieu of the actual size of the CNV (Freeman et al. 2006). Since then, there have been a large number of studies which have looked for CNVs in normal individuals and individuals with various genetic diseases. This variation between normal humans and diseased patients give additional information which can lead to disease associations with various gene regions. The progression of discovery has moved toward a more comprehensive cataloging and characterization of CNVs; this will provide the basis for determining how genomic diversity impacts biological function, evolution, and common human diseases. (Freeman et al. 2006).

CNVs have been found often in regions of larger homologous repeats or segmental duplications (Fredman et al. 2004; Sharp et al. 2005; Tuzun et al. 2005). Approximately $5 \%$ of the human genome is composed of duplicated sequence (Sharp et al 2005). CNVs that are associated with segmental duplications may be susceptible to structural chromosomal rearrangements via non-allelic homologous recombination (NAHR) mechanisms (Lupski 1998). When segmental duplications are present on the same chromosome, they can facilitate changes in CNVs of the segmental duplicated regions along with intervening sequences (Inoue and Lupski 2002). NAHR can result in the formation of CNVs in normal individuals, in addition to large structural polymorphisms and chromosomal rearrangements (Lupski 1998; Ji et al. 2000;

Stankiewicz and Lupski 2002; Scherer et al. 2003; Eichler et al. 2004; Shaw and Lupski 2004; Lupski and Stankiewicz 2005). Approximately 50\% of reported variant sequences have been found to overlap segmental duplications (de Smith et al. 2008). Some CNVs are also found in regions of little segmental duplication. The majority of smaller known CNVs are thought to be driven by non-homology-driven mutational mechanisms (Freeman et al. 2006). Using DGV, new CNVs which are found in diseased patients can be analyzed to see if the CNVs found are indeed disease associated or are CNVs found in the normal population (Wong et al. 2006).

## Methods of CNV Discovery

The ability to detect genetic variation on a genome-wide scale is a relatively recent undertaking. CNVs were first observed by using microscopes; however the advances in genetics due to the human genome project led to the conception of CGH. Array CGH was initially used to identify segmental alterations in specific chromosomal regions associated with disease (Solinas-Toldo et al. 1997). The next generation of genomic microarrays examined a specific chromosome or chromosome arm. One of the first studies looked at a chromosome 20 array containing 22 cosmid, P1 phage artificial chromosome (PAC) and bacterial artificial chromosome (BAC) clones as interval markers covering chromosome 20 at 3 Mb resolutions (Pinkel et al. 1998). Although CGH studies using regional and chromosomal microarrays have yielded a great deal of information, these studies are naturally biased to specific areas of the genome or very large alterations (multi-Megabases) and require a prior knowledge of regions of interest. To overcome regional bias, genome-wide arrays were developed (Davies et al. 2005 array CGH).

The three main spotting elements used are complementary DNA (cDNA), oligonucleotides, and bacterial artificial chromosomes (Ylstra et al. 2006). In the past, laboratories had to manufacture their own microarrays which was a very complicated, time-consuming, and expensive process. However, recently these microarray slides have been commercially manufactured by various corporations, which make this form of DNA analysis much simpler and cost effective.

The use of cDNA as a spotting medium is not as prevalent due to a variety of disadvantages. One clear disadvantage is the low signal-to-noise ratio obtained from these spots. The variable signal intensities are also a major concern while using cDNA clones as targets for detecting copy-number alterations. In addition, in order to reliably detect single copy changes, a moving-average of clone intensities must be calculated, thereby reducing the resolving power of the arrays (Davies et al. 2005). Moreover, larger quantities (micrograms) of sample genomic DNA are required in order to generate a robust signal, thus limiting the utility of cDNA array CGH (Pollack et al. 1999).

More recently oligonucleotide aCGH platforms have become available. Oligo aCGH platforms generally were single-stranded 25 to 85 mer oligonucleotide elements on the array. An inherent problem of cross hybridization of oligonucleotide targets to multiple genomic loci is the need for complexity reduction of the sample genomic DNA (Davies et al. 2005). In order to increase signal to noise ratios, the whole-genome sampling assay (WGSA) was developed to greatly reduce the genomic complexity of the sample probes by about $98 \%$ to improve hybridization kinetics (Davies et al. 2005). Hybridization of complexity-reduced probes to SNP arrays is able to detect high-level
copy number changes; however, since the resolution of the method is dependent on the inconsistent SNP-density on the array, over a fifth of the chromosomes measured were inconsistent with the segmental genomic alterations detected by BAC-array CGH due to poor SNP representation (Bignell et al. 2004). In addition, the data generated by the SNP-arrays showed high variability, probably due to the requirement of PCR amplification of genomic sample DNA. This required the use of a moving average to detect copy-number changes, further lowering the effective resolution of the method (Bignell et al. 2004).

There are two main commercial oligo aCGH platforms available from NimbelGen, and Agilent. However currently there are higher resolution arrays being manufactured. The first commercial oligo aCGH platform is manufactured by Agilent Technologies. They created their arrays specifically for array CGH, and include oligonucleotides covering intergenic regions. At the time of the current study, the Agilent array platform used 244 k 60 mer oligonucleotides, (very recently the single slide probe density was increased to include 1M probes per array). The direct labeling protocol is similar to the one used for the cDNA arrays and requires $1 \mu \mathrm{~g}$ of input DNA, which hampers the use of small clinical samples (Barrett et al. 2004). To overcome this problem, an additional PCR amplification procedure was developed allowing as little as 10 ng of input DNA. Apart from the necessity to do amplifications of test and reference sample(s) in parallel, any PCR-based DNA amplification introduces some level of additional variation and adds to the overall cost of arrays (Barrett et al. 2004).

The second oligonucleotide platform is commercially offered by NimbleGen. They provide arrays containing 385 K and a new 2.1 M oligonucleotides which are photo-
lithograhically synthesized on the array. The array production is extremely flexible, such that each array produced can have a different set of oligonucleotides on it. The oligo aCGH oligonucleotides are designed to be isothermal and vary between 45 and 85 bp in length (Ylstra et al. 2006). For their labeling and hybridization procedures, NimbleGen adopted essentially the same direct labeling conditions as Agilent and the cDNA CGH platforms. Lucito et al. applied an alternative oligo aCGH array method. The method called ROMA (representational oligonucleotide micro array analysis) uses a $98 \%$ complexity reduction of test and reference DNA (Lucito et al. 2003). This is carried out by a digestion-amplification step, which allows starting with as little as 50 ng of input DNA. For reproducibility, this labeling and amplification procedure requires test and reference samples to be amplified in parallel. ROMA combined with the NimbleGen array provides a high-resolution alternative that allows low amounts of sample DNA input and has already proven its value in the field of human genetics (YIstra et al. 2006).

Different oligo arrays are combined with various labeling and hybridization techniques and all yield high-resolution copy number measurements. Yet, none of the current oligo aCGH platforms can make a definite call for loss or gain using a single oligonucleotide; but rather at least 3-5 adjacent oligonucleotides and preferably greater or equal to 10 are necessary for a reliable call. As seen in the literature, there is no "gold standard" that has been used to find structural variation. However, each lab uses each platform to subsequently provide the most relevant information for their particular study.

The most widely used aCGH arrays in the past have been based on bacterial artificial chromosomes or BACs. DNA yielded for BACs vary in length from 150 to 200 kb and are generally isolated from Escherichia coli. The DNA is then amplified by PCR
prior to spotting the arrays. This is done since high DNA concentration is mandatory for high quality results. BAC platforms can be outstandingly sensitive and, in the range of 50kb-150kb, precise (Ylstra et al. 2006). One can detect a single-copy gain or loss on a single arrayed BAC element. Although BAC arrays have relatively few printed elements on the arrays compared to oligo arrays, their spatial resolution is high. The higher signal compared to oligo arrays, allows for single copy transition boundaries (Ylstra et al. 2006). The use of BACs also confers high and consistent binding specificity (Pinkel et al. 1998; Hodgson et al. 2001), and thus more accurate copy number determination. The breakpoint resolution that can be obtained with BAC arrays, however, is finite because of their large size (Ylstra et al. 2006). Another variable in array CGH is the Cot1 DNA which is used in the procedure to block repetitive DNA sequences in the arrayed elements (Pinkel et al. 2005). Cot-1 DNA is placental DNA and yields variable DNA fragments of 50-300 bp in length. Batch to batch variation makes Cot-1 DNA a highly variable element in the array procedure. For oligo aCGH, Cot-1 DNA is not necessary, since the oligonucleotides are designed to be repeat-free.

In 2004 the Wan Lam laboratory (BCCRC, Vancouver; Ishkanian et al. 2004), published the first sub-megabase resolution tiling-set (SMRT) array that contiguously covered the human genome in a tiling path manner. By using overlapping clones, the resolution of the array was increased beyond the size of a single BAC clone and gains and losses of regions as small as 40-80 kb are detectable. A major advantage of using a tiling-path array is in identifying small (gene level) gains and losses. The probability of missing a small genetic alteration is inversely proportional to the genome coverage or representation of the detection strategy. The tiling path array offers a much greater
probability of detecting small-sized alterations (e.g. 40 kb ) than marker-based genomic arrays. The even distribution of markers throughout the genome, as opposed to having a large number of small loci clustered in selected regions, is a key consideration in improving the resolution of genomic scanning strategies. The first version of the (SMRT) tiling-path array was composed of 32,433 clones spotted in triplicate over two microarray slides (Ishkanian et al. 2004). In version 2 of the SMRT array the Lam lab has created the SMRT re-array (SMRTr). The SMRTr array contains a more selective set of clones representing 83\% of the original collection, eliminating unnecessary redundancy while maintaining tiling path coverage. As a result, the 27,000 clones are be spotted in duplicate, on a single slide, reducing the cost and time of analysis (Ylstra et al. 2006).

These various platforms have their own distinctive characteristics that can be an asset while discovering novel CNVs. When this study was initiated, the use of SMRT array with the use of BACs spotted in duplicate has the one of the best effective resolutions (comparable to the NimbleGen 385k and Agilent 244k arrays) while using a small amount of genomic DNA. Moreover, the SMRT array requires much less DNA, 400 ng compared to $1-2 \mu \mathrm{~g}$. Due to these facts we have chosen to use this platform in our study. The SMRT micro array used in our lab contains 26,363 clones spotted in duplicate with an effective resolution of 50kb. Although the BAC array used in our lab has a weaker breakpoint resolution, they have been able to call 10X more CNVs than on similar resolution oligo arrays. This is due to the fact that our array contains nonunique sequence allowing for a larger number of possible CNVs to be found. The slides were printed by the Wan Lam lab at BC Cancer Agency Research Centre in Vancouver,

Canada (http://arraycgh.ca/index.php). Our lab is a beta-site for the Wan Lam lab, by use of the platform, skills and competency to begin CNV discovery. In addition, the quality control and bioinformatics used in our lab was internalized with the help of the Wan Lam lab. In Table 1. we show Real Time PCR validation of CNV calls made in our lab. The CNVs called in our study are thus high confidence in part by calibration with the experimental and analytical methods developed and stringently validated by our collaborators (Ishkanian et al. 2005, Wong et al. 2006).

In order to validate the methodology of our platform, multiple controls were performed. As seen in (Fig. 2.), the visualization of trisomy 21 in individual 4 is quite compelling. Essentially all BACs are shifted to the right, confirming the one copy gain of chromosome 21 in this individual.

| $\begin{gathered} \text { CNV1 } \\ \text { Chr4 } \\ 133123563- \\ 133299949 \\ \text { (UCSC May } \\ 2004 \text { ) } \end{gathered}$ | Sample | 315 | 323 | 735 | 751 | 766 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | aCGH threshold score | -9.846 | -9.951 | -8.773 | -7.857 | -3.86 |
|  | relative change (qPCR v. <br> unaffected sibling (767)) | 0.6445 | 0.7935 | $\mathrm{n} / \mathrm{a}$ | $\mathrm{n} / \mathrm{a}$ | n/a |
|  | relative change (qPCR v. pooled males) | 0.6675 | 0.891 | 0.7935 | 0.8125 | 0.841 |
|  | Comments | Both references have same copy \#; all samples show copy number loss |  |  |  |  |
| $\begin{gathered} \text { CNV2 } \\ \text { Chr4 } \\ 8722950- \\ 8847678 \\ \text { (UCSC May } \\ 2004 \text { ) } \end{gathered}$ | S ample | 323 | 735 | 770 |  |  |
|  | aCGH threshold score | 6.149 | 7.437 | 2.735 |  |  |
|  | relative change (qPCR v. unaffected sibling (315)) | 1.2895 | 1.7015 | 1.1485 |  |  |
|  | relative change (qPCR v. pooled males) | 1.26 | 1.4475 | n/a |  |  |
|  | Comments | Both references have same copy \#; samples 323 \& 735 show copy numbergain |  |  |  |  |
| $\begin{gathered} \text { CNV3 } \\ \text { Chr17 } \\ 33369043- \\ 33427467 \\ \text { (UCSC May } \\ 2004 \text { ) } \end{gathered}$ | Sam ple | 315 | 323 |  |  |  |
|  | aCGH threshold score | 3.6244 | -4.054 |  |  |  |
|  | relative change (qPCR v. unaffected sibling (767)) | 0.8705 | 0.536 |  |  |  |
|  | relative change (qPCR v. pooled males) | 2.1435 | 1.0235 |  |  |  |
|  | Comments | References have different copy \#; 315 has more copies than 323 |  |  |  |  |

Table 1. CNV validation by Real Time PCR. The father in this family transmitted two diseases to children from two mothers. CNV discovery was done by aCGH using a reference of DNA pooled from multiple individuals. In this Real Time PCR study (delta-delta Ct method, Livak and Schmittgen 2001), CNVs are validated between affected and unaffected siblings and compared to a second pooled reference. aCGH
threshold score is copy number change (Ratio) / standard deviation autosomal (> +/- 2.85 are called significant gain/loss) (Chen et al. 2008).


Figure 2. This example illustrates the methodology of the SMRT BAC array platform. Starting from the left the green spots represent genes which correspond to genes on the chromosome, then the banding of the long arm of chromosome 21. Finally the four panels represent four distinct individuals. The midline represents a $1 / 1$ ratio of cye3 and cye5, and any deviation to the left or right suggests a loss or gain in copy number respectively. The first three panels show normal individuals who have almost no copy number alterations. However, the fourth panel clearly demonstrates a one copy gain of the entire chromosome and validates trisomy 21.

## Overview of Autism

Autism Spectrum Disorders (ASDs) are a group of childhood
neurodevelopmental and neuropsychiatric disorders characterized by impairments in social interaction, verbal communication, and restricted and repetitive patterns of interests and behaviors (Wang et al. 2009). Diagnostic tools based on phenotype for ASD have been standardized for reliable diagnoses. This was accomplished by the release of the Autism Diagnostic Interview-Revised (ADI-R), a parents' or caregivers' questionnaire, and the Autism Diagnostic Observation Schedule-Generic (ADOS-G), a direct testing tool of the patients' current behavioral pattern. In addition, the diagnostic
criteria of DSM-IV have all helped to standardize the diagnosis of ASDs in the world. ASDs include a range of clinically defined conditions including autism, Asperger syndrome, Rett syndrome (RTT), childhood disintegrative disorder (CDD), and pervasive developmental disorder not otherwise specified (PDD-NOS).

ASD symptoms are recognized typically within the first 3 years of age with a lifelong persistence. Current prevalence estimates in the United States are 0.1-0.2\% for autism and $0.6 \%$ for ASDs (Newschaffer et al. 2007). In addition, it has been found that ASDs are about four times more common in boys than girls, and at present around 1 in 150 children in the United States have a diagnosis of an ASD (Wang et al. 2009). It has also been estimated the ASDs collectively affect 60 in 10,000 individuals (Fombonne 2005).

In several studies it has been found that ASD susceptibility has a strong genetic component. For example there are much higher concordance rates of ASDs in monozygotic twins (92\%) than dizygotic twins (10\%) (Bailey et al. 1995). Autism has estimated heritability of greater than $90 \%$. In addition, familial clustering largely is explained by genetic factors. Moreover, observations about the patterns of inheritance among families, including studies of twins, first-degree relatives, and more distantly related individuals, all suggest that ASDs are not caused by the action of a single gene transmitted in a simple dominant, recessive, or X-linked fashion. Indeed, the number of contributing loci, or genetic regions, has been estimated to be in the neighborhood of 15 (Risch et al. 1999; Gupta et al. 2006). Several diagnosable medical conditions show symptomology of autism spectrum disorders as well (e.g. fragile $X$ syndrome, tuberous sclerosis complex, and neurofibromatosis). These cases account only for 10\% of
patients with an autistic phenotype, while the majority of idiopathic ASDs may be based on specific gene regions which may be suggestive of an ASD. (Klauck et al. 2006).

There are only a handful of loci which have been found to be present in a larger population of Autism patients. The more prevalent ones are $16 p 11.2$ which has only been found in $1 \%$ of cases (Weiss et al. 2008), maternal Duplication of $15 q 11$ (Depienne, et al. 2009), and more recently 5p14.1 (Wang et al. 2009). The majority of the genetic associations involved with autism are found to be de novo variants or random mutation which occurs in the germ line DNA. Rare de novo copy number variants have been implicated in $7 \%$ of families with ASDs, but only in $1 \%$ of control families (Sebat et al. 2007). Due to the prevalence of CNVs found in Autism it is our main goal to conduct whole-genome screens of autistic patients to define regions with acknowledged susceptibility genes for autism for further fine mapping by association studies and to verify de novo or inherited variants. As previously stated, CNVs are a prevalent structural variation which has been implicated in many disorders by various studies. Presently there has been a large volume of research dedicated to understanding the pathophysiology of autism and other neurological and psychiatric conditions. To supplement this data, we are conducting CNV discovery to find novel and de novo variations in autistic patients.

Due to the commonness of this disorder there are reasons to suspect that common variation will be found to play a large role in the etiology of ASDs. Within the normal human genome, most of the variation in a given population is accounted for by polymorphisms that are present in more than $1 \%$ of individuals. These, by definition, are considered common alleles. It would be logical then to hypothesize that a disease that
is common would reflect this overall architecture. This would hold true as long as natural selection against these alleles did not play a significant role (Gupta et al. 2006).

## Methods and Materials

## DNA samples

Reference and sample genomic DNA samples were gathered under human studies protocol IRB06-00414 (Carlos Alvarez, Nationwide Children's Hospital). The reference DNA was from a normal individual who has no known disease or genetic abnormality. The blood samples were collected from autistic children and their parents, and provided to us by the Central Ohio Registry for Autism (CORA, which has its own IRB protocol), which was created by and continues to be headed by Dr. Gail Herman (Nationwide Children's Hospital). Blood was processed into purified DNA, and live lymphocyte B cells from the latter were EBV-immortalized (Epstein - Barr virus) and multiple aliquots were frozen in $\mathrm{N}_{2}$ (iq). DNA was then extracted and purified from those cell lines to be used in our study.

The children involved in our study were clinically evaluated and diagnosed with autism (CORA). All these autistic children were negative for large genomic alterations using clinical cytogenetics (but had not been analyzed for submicroscopic alterations by aCGH (CORA)). All autistic children in this study are male, ranging from ages 4-18, and nine are of European ancestry and one individual is of African (Cameroon) ancestry.

DNA purity was determined by UV spectrophotometry (Nanodrop 1000). $260 / 280 n m$ Absorbance ratios $>1.8$, and $260 / 230 \mathrm{~nm}$ Absorbance ratios $>2.0$ were considered high quality. In addition DNA was analyzed by agarose gel electrophoresis to ensure that the DNA was of high molecular weight.

## DNA labeling and array hybridization

Once the quality control on the DNA was complete 400 ng of sample and reference DNA were labeled with Cyanine 3-dCTP and Cyanine 5-dCTP, respectively (Cy3/Cy5, Perkin Elmer Life Sciences). Klenow, enzyme, and a random octomer primer (Operon) were used in the random priming reaction. The enzyme reactions were incubated in the dark at $37^{\circ} \mathrm{C}$ for approximately 18 hours. DNA samples were purified from unincorporated label using spin columns (Microcon YM-30, Millipore). Purified samples were mixed with $100 \mu \mathrm{~L}$ of human Cot-1 DNA (purified highly repetitivesequence DNA (Invitrogen)), which was used to block repetitive sequence. DNA was resuspended in $45 \mu$ l of DIG Easy hybridization solution (Roche). Quality control of DNA labeling was conducted by measuring dye incorporations (Nanodrop 1000). A threshold of $8 \mathrm{pmol} / \mu \mathrm{L}$ was used to determine acceptable dye incorporations. The sample mixture was denatured at $85^{\circ} \mathrm{C}$ for 10 min ., and repetitive sequences were blocked by hybridization at $45^{\circ} \mathrm{C}$ for 1 hour. The mixture was applied onto SMRT BAC arrays containing 26,363 clones spotted in duplicate on single slides (manufactured in the lab of Dr. Wan Lam, BCCRC, Vancouver; Wong et al. 2006). [The clones were selected from the SMRT clone set, to optimize tiling coverage of the genome; the clone list is available at the SMRT Array Web site (Ishkanian et al. 2004).] A cover slip was added (Fisher Scientific), and the slide was placed in a hybridization chamber along with $15 \mu \mathrm{l}$ of water for approximately 36 hours. Cover slips were then removed and arrays were washed three times for 5 min each with agitation in $0.1 \%$ saline sodium citrate (SSC) and 0.1 X SDS at $45^{\circ} \mathrm{C}$. Arrays were rinsed three times for 5 min each in 0.1 X SSC at room temperature and were dried by being placed in 50mL (Falcon) tubes and
centrifuged at 700 g for 3 min . Once completely dry the arrays were scanned on a Genepix 4100 scanner which individually scans at Cy3 and Cy5 optimal wavelengths of 595 and 685, respectively.

Visual inspection of the scans were first used to detect major problems, such as printing errors due to manufacturing defects, and large regions of noise. The fluorescence intensities at 595 and 685 nm were used for the quality control, normalization, and processing of the data. The data was exported to an Excel file where the stringent criteria were applied for CNV discovery. Using the same BAC array platform, and the same criteria, Wong et al. (2006) experimentally determined the false positive detection rate to be $54.7 \%$. The main CNV calling criteria were the standard deviation (SD) and signal to noise ratios (SNR) of individual BACs, and the $\log _{2}$ spot ratio showing a difference between the DNA quantity in the subject and the reference. SeeGH-Norm software was used to individually normalize array-wide signal intensities. SeeGH software (Chi et al. 2004) was used to visualize all high confidence BACs on the human genome assembly (Mar. 2006 (hg18), a.k.a. NCBI Build 36.1). Once all CNVs were visualized, certain thresholds were used to focus our findings. High quality probe signals were determined using a (SNR) of 10 for our very high confidence calls denoted as Tier 1 CNVs and a lower stringency of an SNR ratio of 3 for a lower confidence denoted as Tier 2 CNVs. This filtered data was then exported again on to an Excel file where a standard deviation of the autosomal data was found for each CNV. Spots which had no duplicate were removed, and any BACs that had been found previously in $4 \%$ or more of normals by Wong et al. (2006) were removed from our data. That study examined 95 normal individuals and found a large number of CNVs that occur naturally
in the population. Notably, that study and ours were both biased for Western Europeans. Most importantly, the individuals from that study were used as our negative controls since that platform was identical to ours. The cut-off used by our lab to determine a called CNV was a standard deviation of -3.33 and 3.33. A loss would be called if the standard deviation of a BAC was -3.33 or less, and a gain would be called if the standard deviation of a BAC was 3.33 or more. The thresholds, quality control process, and the past expertise and guidance was provided by the Wan Lam lab (who created the platform and analysis tools).

## Results

Array CGH was used to conduct CNV discovery in germ line DNA from 10 children with autism, and presently, in the parents of one of the children. DNA copy number of each sample was quantified by comparative hybridization with a single normal reference DNA. The array platform used was the SMRT BAC array, which has tiling resolution representation of the human genome at 1.5 -fold coverage (Wan Lam, BCCRC, Vancouver). The false positive detection rate must be considered during CNV discovery. The CNVs found in the study are not only to be accurate if validation is confirmed. In addition, as reported in the Wong et al. paper, the false positive and negative detection rate were $54.7 \%$ and $45.3 \%$ respectively (Wong et al. 2006).

As a control population, we used SMRT BAC array data generated under the same conditions from 95 normal individuals (Wong et al. 2006). Both that study and ours were biased for Western European ancestry (and both also included individuals of African ancestry). Candidate CNVs were further analyzed by the use of the genome browser database at the University of California, Santa Cruz. The BAC-spanning
genomic coordinates of each called CNV region were entered into the browser and various supplementary data was accessed. In this way, we annotated the gene content of CNVs. We also used this database to determine whether previous studies had identified CNVs that coincided or overlapped with ours. Additionally, we determined whether CNV regions have segmental duplications (or low copy repeats) in the vicinity.

The data has been categorized to optimize the discovery of candidate autism associated CNVs. First CNVs were called based on the number of array elements altered, either being single or multiple BACs. In total, our study identified 805 high confidence single-BAC CNVs, and 390 lower confidence single BAC CNVs (Table 2.) Our study has an average of more than 80 CNVs per individual. A single-BAC CNV has only one array element which has been altered and therefore has a lower confidence than a multi-BAC CNV which has more than two altered BACs (Fig. 3). The total number of CNVs found in our study is lower than that of Wong et al. (2006), using the same platform. This is presumably due to aspects of DNA hybridization that could relate to DNA quality, (which affects probe labeling efficiency) or manual processing of array hybridizations. In addition, variability of lab conditions such as temperature, and levels of ozone (which degrade Cy5) may have also led to lower CNV calls. Due to the thresholds based on SD and SNR, we have kept similar standards as the Wong et al. paper and can therefore assume the same false-positive percentage.

Second, we identified the CNVs that were the most likely to be associated with disease: i.e., did not overlap regions of common CNV in normal individuals, affected genes previously implicated in autism, or were de novo mutations in a child (i.e., were not inherited from a parent) (Appendices, Table A1). We have called more than 20 high
confidence candidate autism CNVs per individual (Table 3). Of these CNVs 13 are tier 1
(SNR cutoff of 10 ; see above) multi-BAC, and 3 are tier 2 (SNR cutoff of 3 ) multi-BAC CNVs.

Total Number of CNVs

|  | \# of <br> Single <br> BACs | \# of <br> Multi- <br> BACs | average \# of <br> CNV per <br> individual | \# of gains per <br> individual | \# of losses <br> per <br> individual |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Tier 1 (SNR 10) | 805 | 37 | 81 | 47 | 33 |
| Tier 2 (SNR 3) | 390 | 9 | 39 | 22 | 17 |

Table 2. Total number of CNVs found in our study. Tier 1 are higher confidence CNVs which have a signal to noise ratio of 10 or greater. Tier 2 are lower confidence CNVs which have a signal to noise ratio of 3 or greater. The tier number determines a higher quality hybridization of slides.


Figure 3. Single-BAC candidate CNV called in our study. Sample 137 shows a single-BAC CNV spanning 110156709-110355803 on chromosome 9q31.3. The BAC shifted to the right as seen by red outline represents a gain.

The candidate CNVs were prioritized according to two criteria. First we identified the highest possible confidence CNVs. The highest confidence CNV calls are those that are spanned by multiple BACs because they are detected by multiple array elements instead of one. In addition, they span a larger region of the genome and are thus likely to include more genes. The more genes involved in a copy number alteration, the higher likelihood it will have a phenotypic effect. Included in these were 37 high confidence and 9 lower confidence multi-BAC CNVs (Table 2). All of our high confidence multi-BAC CNVs follow our optimal thresholds of SD, correlating to being called a gain or loss, and SNR, correlating to their placement in the tier system.

In order to find high interest candidate CNVs possibly associated with autism, we filtered out CNVs that were detected in $4 \%$ or more of 95 normal individuals by aCGH with the same BAC array platform we used (Wong et al. 2006). The biochemical/genetic pathways and biological significance of genes potentially affected by CNV were screened for relevance to autism and brain development (using PubMed to screen the database of biomedical literature, and the Google search engine to screen the entire internet for published information). All CNVs were annotated manually by use of the UCSC genomic browser database (http://genome.ucsc.edu/). An example of a multiBAC CNV has been visualized by SeeGH software, which allows us to compare the probes within and between individuals (Chi et al. 2004) (Fig. 4). The top 12 multi-BAC candidate autism CNVs are among the most promising in our study, for their CNV call confidence and for the large number of genes affected. (Appendices, Table A2).

Candidate Autism CNVs

|  | \# of <br> Single <br> BACs | \# of <br> Multi- <br> BACs | average \# <br> of CNV per <br> individual | \# of gains <br> per <br> individual | \# of losses <br> per <br> individual |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Tier 1 (SNR 10) | 231 | 13 | 23 | 18 | 5 |
| Tier 2 (SNR 3) | 149 | 3 | 15 | 11 | 4 |

Table 3. CNVs that are high confidence (based on standard deviation, signal to noise ratio) and high interest (not being present in more than 4\% of normal individuals which was found in another study of 95 normal individuals using the same platform (Wong et al. 2006)).


Figure 4. Multi BAC CNV found in our study. Sample A75 shows a multi-BAC CNV gain on chromosome 2p13.1 which is marked in red. Multi-BAC CNVs are particularly high confidence because they affect multiple probes and can be of higher clinical interest as they can affect more genes since they span a larger region of the genome.

We have separated our results into three forms: (1) rare or novel candidate CNVs that have not been found in previous studies, (2) CNVs that have been found in our study as well as larger studies also looking for CNV associations with autism, and (3) de novo or non- inherited CNVs.

Novel candidate autism CNVs have been found in our study. These CNVs are very interesting because they have rarely or never been seen in normals or other autistic children. The called CNV on chromosome 12 is a curious candidate CNV (Fig. 5). Sample A39 has a multi-BAC CNV gain in the $12 q 13$ region, with three overlapping BACs shifted to the right. The CNV is not found in any other children and has not been found in other studies. In addition, the high SNR make this CNV very compelling. Many such high interest candidate CNVs are in non polymorphic regions and are not found in less than $4 \%$ of normals. The majority of these multi-BAC CNVs are found in gene rich regions, suggesting they are likely to have phenotypic effects (which may be associated with autism).

More than $25 \%$ of the total CNVs that have been called in our study have been found in current Autism CNV literature as well as the Autism Chromosome Rearrangement Database (ACRD). ACRD is an online database that has compiled the majority of autism CNVs from published studies such as C. R. Marshall et al. 2008, L. Sebat et al.2007, and Christian et al. 2008. Specifically, 64/231 of tier 1 CNVs and 30/149 of tier 2 CNVs have been seen in other studies.

Due to the possibility that some CNVs may be common in normal individuals, but be present at higher rates (that are statistically significant) in autistic individuals, we also
created our own database of all CNVs previously implicated in published studies (studies were identified by PubMed searching, and the data was manually compiled and curated by myself and my advisor, Dr. Alvarez) (Appendices Table A3.)


Figure 5. Close up of chr12q aCGH analysis representing the 10 children who took part in this study. The middle panel, sample A39 has a large multi-BAC CNV that is seen by its deviation from the midline to the right. This shows a gain in copy number in this gene region. In addition one can see that all of the other children have no deviation at the same loci.

We initiated additional analysis to understand the heritability of these autism associated gene regions. Currently we have conducted one triad study to identify de novo variants in an autistic individual. The triad A39, A40, and A41 represent the child, father, and mother respectively. By conducting aCGH analysis on the parents, similarities and difference between the parents and the child can be observed. As seen in (Fig. 6), neither the father nor mother has a significant shift from the midline for any of the BACs that are affected in the child. However, the child has a compelling and interesting multi-BAC CNV (i.e., affects several genes) in the same region. Some genes
that are found in this region are MTIF, MTM, MTF, MT3, BBS2, NUP93, MTE, MT1X, and MT1E. Most of these genes begin with "MT"; they are known as metallothionein genes. They are a cluster of genes involved with protection against metal toxicity, based on experimental findings (Egli et al. 2006). Of the others, BBS2 could be suggestive of autism because of the associated with Bardet-Biedl syndrome which has clinical presentation of renal dystrophy, and mental retardation. Since neither parent appears to have this CNV, we consider this to be a likely de novo variant.


Figure 6. Possible de novo variant found in our study. From left to right, the first individual is the father, the second the mother, and the third the autistic child. The child has a multi-BAC CNV which is not found in either parent. This suggests this variant is a de novo mutation (i.e., not inherited from either parent).

## Conclusion and Discussion

Our aCGH analysis of 10 autistic children yielded interesting findings. Once validated in follow-up studies, these results are likely to add to the current knowledge
about autism genetics and pathophysiology. In addition to identifying novel or rare CNVs, we have also found alterations in regions previously implicated in autism, and have identified multiple candidate de novo CNVs. Analyzing the genetic and biochemical pathways of the genes located in the CNV regions will help us to understand their significance. Although these CNVs need to be confirmed by other methods, we have designed our study to only detect high confidence variants. Our experimental and data analysis methodologies were calibrated to that of the Wan Lam lab.

The aCGH platform we used here has BAC array elements that span 150-200kb. These can generally detect CNVs at least 50 kb in size, and can detect a subset of CNVs as small as 10kb (Kidd et al. 2006). We first focused on those high-confidence CNV calls which were spanned by multiple BACs. Not only were these calls detected by more than one array element, they were physically larger, and therefore more likely to be associated with disease. The more genes that are either duplicated or deleted, the higher the chance of phenotypic consequences (Table 4).

A large number of our candidate CNVs have also been found in other studies (see ACRD (http://projects.tcag.ca/autism/); (Appendix, Table A3)). One of these was identified by Glessner et al. (2009) in 33/2195 autistic patients, but only in 7/2519 normal healthy individuals (Fig. 7a). This CNV's association with autism was determined to have a $P$ value of $3.57 \times 10^{-6}$ and an odds ratio of 5.547 . These values show the statistical significance of this CNV. As seen in Fig. 7b, the Glessner CNV clearly overlaps a region we identified in our sample A26. Another interesting aspect of this

CNV is the fact that it is upstream of the AK123120 gene that is expressed in the brain and thus consistent with a possible role in autism.


Figure 7a. A CNV identified by Glessner et al. (2009). The blue lines at the top indicate the SNP and copy number probe coverage. The green bars represent the BACs which span the CNV region of interest. The average breakpoint of the BAC is 13100000-13190000. This overlaps very well with a candidate CNV found in our study. This is an example of a CNV which has been called in our study along with larger studies involved with CNV discovery (Glessner et al. 2009).


Figure 7b. The corresponding CNV to figure 7a. As one can see the blue line represents the CNV regions found in our study. The green line represents the CNV region found in the Glessner, Nature study. The close overlap shows a very compelling find. Since we have a CNV which corresponds to another published by another study examining over 1000 patients while our sample pool is only 10 , our findings are very current and relevant.

In our study we have identified variations affecting many interesting genes that may be associated with the phenotypic expression of autism. One such gene, present in
a high-confidence CNV region, is FOXP4. FOXP4 is a member of the forkhead box family of transcription factors which are involved with development of the brain and other organs. FOXP2, which is known to be co-expressed with FOXP4, has been implicated in the development of language skills, indicating this CNV has a possible role in the characteristic traits of autism (Katoh et al. 2004). Additional analysis is being done to find the genetic significance of the large number of other genes that have been found in CNV regions.

In our study we have found nearly 80 high-interest CNVs in 10 autistic children, and more than 20 high-confidence candidate autism CNVs have been called per individual. This number is much higher than the majority of published studies of autism CNV discovery. For example, the recent Glessner et al. (2009) article in Nature, found 15.5 CNV calls per individual. Our increased CNV call rate is due to the SMRT BAC array platform, which includes non-unique sequences -mainly those in regions of segmental duplications (or low copy repeats) -that have a 10 -fold elevated rate of CNV. On the other hand, such non-unique sequences are not covered by oligonucleotide platforms because they cannot be uniquely mapped. Although the false negative rate of the platform used in our study is quite high, we still have found a large number of highinterest CNVs which may have been missed in others, but only a portion of those may actually be associated with autism.

The next steps are to finish the triad analysis on families which have interesting candidate CNVs present in the child, and then validate the findings to ensure they are true calls and that their breakpoints are also accurate. The validation will be done by fluorescence in situ hybridization (FISH), southern blotting, and Real Time PCR, all of
which give vital information that will enhance the findings so further examination can be conducted.

The use of the SMRT array platform has greatly increased the quantity (due to its ability to find a larger number of CNVs) and quality (by providing higher-confidence calls) of CNVs discovered using aCGH techniques. This robust and versatile platform has clear advantages over techniques used in other recent studies, including higher signal-to-noise ratios and better standard deviations than other platforms, and it requires no sample amplification or the complexity reduction that is necessary for the SNP array approach to CNV discovery. This study has supplied extensive data that will continue to be analyzed, validated, and annotated for autism relevance. We recommend the continued study of genome-wide analysis of structural variations, especially CNVs, to examine their role in ASD susceptibility, expression, and inheritability. This information can lead to clinical diagnostic testing to verify the origins of the disorder, and to the development of various therapeutic techniques to improve the lives of autistic individuals.

## References

Bailey A, Le Couteur A, Gottesman I, Bolton P, Simonoff E, Yuzda E, Rutter M. Autism as a strongly genetic disorder: evidence from a British twin study. Psychol Med. 1995 Jan;25(1):63-77. PubMed PMID: 7792363.

Barber, J.C.K., Joyce, C.A., Collinson, M.N., Nicholson, J.C., Willatt, L.R., Dyson, H.M., Bateman, M.S., Green, A.J., Yates, J.R.W., and Dennis, N.R. 1998. Duplication of 8p23.1: A cytogenetic anomaly with no established clinical significance. J. Med. Genet. 35: 491-496.

Bignell GR, Huang J, Greshock J, Watt S, Butler A, West S, Grigorova M, Jones KW, Wei W, Stratton MR, Futreal PA, Weber B, Shapero MH, Wooster R. High-resolution analysis of DNA copy number using oligonucleotide microarrays. Genome Res. 2004 Feb;14(2):287-95. PubMed PMID: 14762065; PubMed Central PMCID: PMC327104.

Blouin MS, Parsons M, Lacaille V, Lotz S. Use of microsatellite loci to classify individuals by relatedness. Mol Ecol. 1996 Jun;5(3):393-401. PubMed PMID: 8688959.

Chen WK, Swartz JD, Rush LJ, Alvarez CE. Mapping DNA structural variation in dogs. Genome Res. 2009 Mar;19(3):500-9. Epub 2008 Nov 17. PubMed PMID: 19015322; PubMed Central PMCID: PMC2661804.

Chi B, DeLeeuw RJ, Coe BP, MacAulay C, Lam WL. SeeGH--a software tool for visualization of whole genome array comparative genomic hybridization data. BMC Bioinformatics. 2004 Feb 9;5:13. PubMed PMID: 15040819; PubMed Central PMCID:PMC373529.

Conrad, D.F., Andrews, T.D., Carter, N.P., Hurles, M.E., and Pritchard, J.K. 2006. A high-resolution survey of deletion polymorphism in the human genome. Nat. Genet. 38: 75-81

Dakin EE, Avise JC. Microsatellite null alleles in parentage analysis. Heredity. 2004 Nov;93(5):504-9. Review. PubMed PMID: 15292911.

Davies JJ, Wilson IM, Lam WL. Array CGH technologies and their applications to cancer genomes. Chromosome Res. 2005;13(3):237-48. Review. Erratum in: Chromosome Res. 2005;13(4):423. PubMed PMID: 15868418.

Depienne C, Moreno-De-Luca D, Heron D, Bouteiller D, Gennetier A, Delorme R, Chaste P, Siffroi JP, ChantotBastaraud S, Benyahia B, Trouillard O, Nygren G, Kopp S, Johansson M, Rastam M, Burglen L, Leguern E, Verloes A, Leboyer M, Brice A, Gillberg C, Betancur C. Screening for Genomic Rearrangements and Methylation Abnormalities of the 15q11-q13 Region in Autism Spectrum Disorders. Biol Psychiatry. 2009 Mar 17. [Epub ahead of print] PubMed PMID: 19278672.
de Smith AJ, Walters RG, Froguel P, Blakemore AI. Human genes involved in copy number variation: mechanisms of origin, functional effects and implications for disease. Cytogenet Genome Res. 2008;123(1-4):17-26. Epub 2009 Mar 11. PubMed PMID: 19287135.

Eenennaam AV. Genomics and Animal Agriculture. Animal and Biotechnology, UC Davis. 2008 Aug 20.
Egli D, Domènech J, Selvaraj A, Balamurugan K, Hua H, Capdevila M, Georgiev O, Schaffner W, Atrian S. The four members of the Drosophila metallothionein family exhibit distinct yet overlapping roles in heavy metal homeostasis and detoxification. Genes Cells. 2006 Jun;11(6):647-58. PubMed PMID: 16716195.

Eichler, E.E., Clark, R.A., and She, X. 2004. An assessment of the sequence gaps: Unfinished business in a finished human genome. Nat. Rev. Genet. 5: 345-354.

Engelen, J.J.M., Moog, U., Evers, J.L.H., Dassen, H., Albrechts, J.C.M., and Hamers, A.J.H. 2000. Duplication of chromosome region 8p23.1-p23.3: A benign variant? Am. J. Med. Genet. 91: 18-21.

Fombonne E. Epidemiology of autistic disorder and other pervasive developmental disorders. J Clin Psychiatry. 2005;66 Suppl 10:3-8. PubMed PMID: 16401144.

Freeman JL, Perry GH, Feuk L, Redon R, McCarroll SA, Altshuler DM, Aburatani H, Jones KW, Tyler-Smith C, Hurles ME, Carter NP, Scherer SW, Lee C. Copy number variation: new insights in genome diversity. Genome Res. 2006 Aug;16(8):949-61. Epub 2006 Jun 29. Review. PubMed PMID: 16809666.

Glessner JT, Wang K, Cai G, Korvatska O, Kim CE, Wood S, Zhang H, Estes A, Brune CW, Bradfield JP, Imielinski M, Frackelton EC, Reichert J, Crawford EL, Munson J, Sleiman PM, Chiavacci R, Annaiah K, Thomas K, Hou C, Glaberson W, Flory J, Otieno F, Garris M, Soorya L, Klei L, Piven J, Meyer KJ, Anagnostou E, Sakurai T, Game RM, Rudd DS, Zurawiecki D, McDougle CJ, Davis LK, Miller J, Posey DJ, Michaels S, Kolevzon A, Silverman JM, Bernier R, Levy SE, Schultz RT, Dawson G, Owley T, McMahon WM, Wassink TH, Sweeney JA, Nurnberger JI, Coon H, Sutcliffe JS, Minshew NJ, Grant SF, Bucan M, Cook EH, Buxbaum JD, Devlin B, Schellenberg GD, Hakonarson H. Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature. 2009 Apr 28. [Epub ahead of print] PubMed PMID: 19404257.

Gupta AR, State MW. Recent advances in the genetics of autism. Biol Psychiatry. 2007 Feb 15;61(4):429-37. Epub 2006 Sep 25. Review. PubMed PMID: 16996486.

Hinds DA, Kloek AP, Jen M, Chen X, Frazer KA. Common deletions and SNPs are in linkage disequilibrium in the human genome. Nat Genet. 2006 Jan;38(1):82-5. Epub 2005 Dec 4. PubMed PMID: 16327809.

Hodgson G, Hager JH, Volik S, Hariono S, Wernick M, Moore D, Nowak N, Albertson DG, Pinkel D, Collins C, Hanahan D, Gray JW. Genome scanning with array CGH delineates regional alterations in mouse islet carcinomas. Nat Genet. 2001 Dec;29(4):459-64. Erratum in: Nat Genet 2001 Dec;29(4):491. PubMed PMID: 11694878.

Inoue, K. and Lupski, J.R. 2002. Molecular mechanisms for genomic disorders. Annu. Rev. Genomics Hum. Genet. 3: 199-242.

Ishkanian AS, Malloff CA, Watson SK, DeLeeuw RJ, Chi B, Coe BP, Snijders A, Albertson DG, Pinkel D, Marra MA, Ling V, MacAulay C, Lam WL. A tiling resolution DNA microarray with complete coverage of the human genome. Nat Genet. 2004 Mar;36(3):299-303. Epub 2004 Feb 15. PubMed PMID: 14981516.

Ji, Y., Eichler, E.E., Schwartz, S., and Nicholls, R.D. 2000. Structure of chromosomal duplicons and their role in mediating human genomicdisorders. Genome Res. 10: 597-610.

Katoh M, Katoh M. Human FOX gene family (Review). Int J Oncol. 2004 Nov;25(5):1495-500. Review. PubMed PMID: 15492844.

Kidd JM, Cooper GM, Donahue WF, Hayden HS, Sampas N, Graves T, Hansen N, Teague B, Alkan C, Antonacci F, Haugen E, Zerr T, Yamada NA, Tsang P, Newman TL, Tüzün E, Cheng Z, Ebling HM, Tusneem N, David R, Gillett W, Phelps KA, Weaver M, Saranga D, Brand A, Tao W, Gustafson E, McKernan K, Chen L, Malig M, Smith JD, Korn JM, McCarroll SA, Altshuler DA, Peiffer DA, Dorschner M, Stamatoyannopoulos J, Schwartz D, Nickerson DA, Mullikin JC, Wilson RK, Bruhn L, Olson MV, Kaul R, Smith DR, Eichler EE. Mapping and sequencing of structural variation from eight human genomes. Nature. 2008 May 1;453(7191):56-64. PubMed PMID: 18451855; PubMed Central PMCID: PMC2424287.

Klauck SM. Genetics of autism spectrum disorder. Eur J Hum Genet. 2006 Jun;14(6):714-20. Review. PubMed PMID: 16721407.

Korbel JO, Urban AE, Affourtit JP, Godwin B, Grubert F, Simons JF, Kim PM, Palejev D, Carriero NJ, Du L, Taillon BE, Chen Z, Tanzer A, Saunders AC, Chi J, Yang F, Carter NP, Hurles ME, Weissman SM, Harkins TT, Gerstein MB, Egholm M, Snyder M. Paired-end mapping reveals extensive structural variation in the
human genome. Science. 2007 Oct 19;318(5849):420-6. Epub 2007 Sep 27. PubMed PMID: 17901297; PubMed Central PMCID: PMC2674581.

Lucito R, Healy J, Alexander J, Reiner A, Esposito D, Chi M, Rodgers L, Brady A, Sebat J, Troge J, West JA, Rostan S, Nguyen KC, Powers S, Ye KQ, Olshen A, Venkatraman E, Norton L, Wigler M. Representational oligonucleotide microarray analysis: a high-resolution method to detect genome copy number variation. Genome Res. 2003 Oct;13(10):2291-305. Epub 2003 Sep 15. PubMed PMID: 12975311; PubMed Central PMCID: PMC403708.

Lupski, J.R. 1998. Genomic disorders: Structural features of the genome can lead to DNA rearrangements and human disease traits. Trends Genet. 14: 417-422.
MacDonald ME, Barnes G, Srinidhi J, Duyao MP, Ambrose CM, Myers RH, Gray J, Conneally PM, Young A, Penney J, et al. Gametic but not somatic instability of CAG repeat length in Huntington's disease. J Med Genet. 1993 Dec;30(12):982-6. PubMed PMID: 8133508; PubMed Central PMCID: PMC1016628.

McCarroll, S.A., Hadnott, T.N., Perry, G.H., Sabeti, P., Zodi, M.C., Barrett, J., Dallaire, S., Gabriel, S.B., Lee, C., Daly, M.J., et al. 2006. Common deletion variants in the human genome. Nat. Genet. 38: 86-92.

Newschaffer CJ, Croen LA, Daniels J, Giarelli E, Grether JK, Levy SE, Mandell DS, Miller LA, Pinto-Martin J, Reaven J, Reynolds AM, Rice CE, Schendel D, Windham GC. The epidemiology of autism spectrum disorders. Annu Rev Public Health. 2007;28:235-58. Review. PubMed PMID: 17367287.

Pollack JR, Perou CM, Alizadeh AA, Eisen MB, Pergamenschikov A, Williams CF, Jeffrey SS, Botstein D, Brown PO. Genome-wide analysis of DNA copy-number changesusing cDNA microarrays. Nat Genet. 1999 Sep;23(1):41-6. PubMed PMID: 10471496.

Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, Fiegler H, Shapero MH, Carson AR, Chen W, Cho EK, Dallaire S, Freeman JL, González JR, Gratacòs M, Huang J, Kalaitzopoulos D, Komura D, MacDonald JR, Marshall CR, Mei R, Montgomery L, Nishimura K, Okamura K, Shen F, Somerville MJ, Tchinda J, Valsesia A, Woodwark C, Yang F, Zhang J, Zerjal T, Zhang J, Armengol L, Conrad DF, Estivill X, Tyler-Smith C, Carter NP, Aburatani H, Lee C, Jones KW, Scherer SW, Hurles ME. Global variation in copy number in the human genome. Nature. 2006 Nov 23;444(7118):444-54. PubMed PMID: 17122850; PubMed Central PMCID: PMC2669898.

Risch N, Spiker D, Lotspeich L, Nouri N, Hinds D, Hallmayer J, Kalaydjieva L, McCague P, Dimiceli S, Pitts T, Nguyen L, Yang J, Harper C, Thorpe D, Vermeer S, Young H, Hebert J, Lin A, Ferguson J, Chiotti C, WieseSlater S, Rogers T, Salmon B, Nicholas P, Petersen PB, Pingree C, McMahon W, Wong DL, Cavalli-Sforza LL, Kraemer HC, Myers RM. A genomic screen of autism: evidence for a multilocus etiology. Am J Hum Genet. 1999 Aug;65(2):493-507. PubMed PMID: 10417292; PubMed Central PMCID: PMC1377948.

Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T, Yamrom B, Yoon S, Krasnitz A, Kendall J, Leotta A, Pai D, Zhang R, Lee YH, Hicks J, Spence SJ, Lee AT, Puura K, Lehtimäki T, Ledbetter D, Gregersen PK, Bregman J, Sutcliffe JS, Jobanputra V, Chung W, Warburton D, King MC, Skuse D, Geschwind DH, Gilliam TC, Ye K, Wigler M. Strong association of de novo copy number mutations with autism. Science. 2007 Apr 20;316(5823):445-9. Epub 2007 Mar 15. PubMed PMID: 17363630.

Sebat, J., Lakshmi, B., Troge, J., Alexander, J., Young, J., Lundin, P., Maner, S., Massa, H., Walker, M., Chi, M., et al. 2004. Large-scale copy number polymorphism in the human genome. Science 305: 525-528.

Scherer SW, Cheung J, MacDonald JR, Osborne LR, Nakabayashi K, Herbrick JA, Carson AR, Parker-Katiraee L, Skaug J, Khaja R, Zhang J, Hudek AK, Li M, Haddad M, Duggan GE, Fernandez BA, Kanematsu E, Gentles S, Christopoulos CC, Choufani S, Kwasnicka D, Zheng XH, Lai Z, Nusskern D, Zhang Q, Gu Z, Lu F, Zeesman S, Nowaczyk MJ, Teshima I, Chitayat D, Shuman C, Weksberg R, Zackai EH, Grebe TA, Cox SR, Kirkpatrick SJ, Rahman N, Friedman JM, Heng HH, Pelicci PG, Lo-Coco F, Belloni E, Shaffer LG, Pober B, Morton CC, Gusella JF, Bruns GA, Korf BR, Quade BJ, Ligon AH, Ferguson H, Higgins AW, Leach NT, Herrick SR, Lemyre E, Farra CG, Kim HG, Summers AM, Gripp KW, Roberts W, Szatmari P, Winsor EJ,

Grzeschik KH, Teebi A, Minassian BA, Kere J, Armengol L, Pujana MA, Estivill X, Wilson MD, Koop BF, Tosi S, Moore GE, Boright AP, Zlotorynski E, Kerem B, Kroisel PM, Petek E, Oscier DG, Mould SJ, Döhner H, Döhner K, Rommens JM, Vincent JB, Venter JC, Li PW, Mural RJ, Adams MD, Tsui LC. Human chromosome 7: DNA sequence and biology. Science. 2003 May 2;300(5620):767-72. Epub 2003 Apr 10. PubMed PMID: 12690205.

Scherer SW, Lee C, Birney E, Altshuler DM, Eichler EE, Carter NP, Hurles ME, Feuk L. Challenges and standards in integrating surveys of structural variation. Nat Genet. 2007 Jul;39(7 Suppl):S7-15. Review. PubMed PMID: 17597783.

Sharp AJ, Locke DP, McGrath SD, Cheng Z, Bailey JA, Vallente RU, Pertz LM, Clark RA, Schwartz S, Segraves R, Oseroff VV, Albertson DG, Pinkel D, Eichler EE. Segmental duplications and copy-number variation in the human genome. Am J Hum Genet. 2005 Jul;77(1):78-88. Epub 2005 May 25. PubMed PMID: 15918152; PubMed Central PMCID: PMC1226196.

Shaw, C.J. and Lupski, J.R. 2004. Implications of human genome architecture for rearrangement-based disorders: The genomic basis of disease. Hum. Mol. Genet. 13: R57-R64.

Solinas-Toldo S, Lampel S, Stilgenbauer S, Nickolenko J, Benner A, Döhner H,Cremer T, Lichter P. Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances. Genes Chromosomes Cancer. 1997 Dec;20(4):399-407. PubMed PMID: 9408757.

Stankiewicz, P. and Lupski, J.R. 2002. Genome architecture, rearrangements and genomic disorders. Trends Genet. 18: 74-82.

The International HapMap Consortium. 2005. A haplotype map of the human genome. Nature 437: 1299-1320.
Thorisson GA, Stein LD. The SNP Consortium website: past, present and future. Nucleic Acids Res. 2003 Jan 1;31(1):124-7. PubMed PMID: 12519964; PubMed Central PMCID: PMC165499.

Tuzun, E., Sharp, A.J., Bailey, J.A., Kaul, R., Morrison, V.A., Pertz, L.M., Haugen, E., Hayden, H., Albertson, D., Pinkel, D., et al. 2005. Fine-scale structural variation of the human genome. Nat. Genet. 37: 727-732.

Wang K, Zhang H, Ma D, Bucan M, Glessner JT, Abrahams BS, Salyakina D, Imielinski M, Bradfield JP, Sleiman PM, Kim CE, Hou C, Frackelton E, Chiavacci R, Takahashi N, Sakurai T, Rappaport E, Lajonchere CM, Munson J, Estes A, Korvatska O, Piven J, Sonnenblick LI, Alvarez Retuerto AI, Herman EI, Dong H, Hutman T, Sigman M, Ozonoff S, Klin A, Owley T, Sweeney JA, Brune CW, Cantor RM, Bernier R, Gilbert JR, Cuccaro ML, McMahon WM, Miller J, State MW, Wassink TH, Coon H, Levy SE, Schultz RT, Nurnberger JI, Haines JL, Sutcliffe JS, Cook EH, Minshew NJ, Buxbaum JD, Dawson G, Grant SF, Geschwind DH, Pericak-Vance MA, Schellenberg GD, Hakonarson H. Common genetic variants on 5p14.1 associate with autism spectrum disorders. Nature. 2009 Apr 28. [Epub ahead of print] PubMed PMID: 19404256.

Weiss LA, Shen Y, Korn JM, Arking DE, Miller DT, Fossdal R, Saemundsen E, Stefansson H, Ferreira MA, Green T, Platt OS, Ruderfer DM, Walsh CA, Altshuler D,Chakravarti A, Tanzi RE, Stefansson K, Santangelo SL, Gusella JF, Sklar P, Wu BL,Daly MJ; Autism Consortium. Association between microdeletion and microduplication at 16p11.2 and autism. N Engl J Med. 2008 Feb 14;358(7):667-75.Epub 2008 Jan 9. PubMed PMID: 18184952.

Wong KK, deLeeuw RJ, Dosanjh NS, Kimm LR, Cheng Z, Horsman DE, MacAulay C, Ng RT, Brown CJ, Eichler EE, Lam WL. A comprehensive analysis of common copy-number variations in the human genome. Am J Hum Genet. 2007 Jan;80(1):91-104. Epub 2006 Dec 5. PubMed PMID: 17160897; PubMed Central PMCID: PMC1785303.

Ylstra B, van den Ijssel P, Carvalho B, Brakenhoff RH, Meijer GA. BAC to the future! or oligonucleotides: a perspective for micro array comparative genomic hybridization (array CGH). Nucleic Acids Res. 2006 Jan 26;34(2):445-50. Print 2006. Review. PubMed PMID: 16439806; PubMed Central PMCID: PMC1356528.

Zhao,X., Weir,B.A., LaFramboise,T., Lin,M., Beroukhim,R., Garraway,L., Beheshti,J., Lee,J.C., Naoki,K., Richards,W.G. et al. (2005) Homozygous deletions and chromosome amplifications in human lung carcinomas revealed by single nucleotide polymorphism array analysis. Cancer Res., 65, 5561-5570.

Appendix

Appendix 1: Table A1. All Tier 1 and Tier 2 Candidate Autism CNVs

| Unique ID | Clone_Name | $\begin{aligned} & \text { Chr } \\ & \text { No. } \end{aligned}$ | Banding | $\begin{array}{\|c\|} \hline \text { BP StartPos } \\ \text { (UCSC Mar } \\ \text { 2006) } \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline \text { BP EndPos } \\ \text { (UCSC Mar } \\ \text { 2006) } \\ \hline \end{array}$ | Ratio (Normalize d Cy3/Cy5 Log2 Ratio) | Standard Deviation | $\begin{gathered} \text { SNR } \\ \text { Ch1 } \\ \text { (595) } \\ \hline \end{gathered}$ | $\begin{gathered} \text { SNR } \\ \text { Ch2 } \\ (685) \\ \hline \end{gathered}$ | SDauto (standard diviation of the ratios of each probe from chr 1 22) |  | Sample (1 color / sample) | $\mathrm{g} / \mathrm{l}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tier 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| RO32D18 | RP11-465B22 | 1 | p36.33 | 918163 | 1046699 | 0.239257 | 0.0398179 | 22.04 | 23.88 | 0.066748 | 3.584482 | A26 | ain |
| R067D03 | RP13-586E24 | 1 | p36.32 | 2445100 | 2529860 | 0.269604 | 0.0375785 | 60.421 | 63.822 | 0.066748 | 4.039132 | A26 | gain |
| RO66F20 | RP11-777P8 | 1 | p36.13 | 16665329 | 16836250 | 0.3183 | 0.0291823 | 36.824 | 43.006 | 0.074813 | 4.254608 | A8 | gain |
| RO39F09 | RP11-59517 | 1 | p36.11 | 24652247 | 24859224 | 0.299005 | 0.0381159 | 43.927 | 13.077 | 0.07167 | 4.171969 | A75 | in |
| RO70009 | RP11-110H4 | 1 | p36.11 | 25942591 | 26096516 | 0.238638 | 0.0114926 | 85.662 | 74.498 | 0.066748 | 3.575208 | 26 | ain |
| RO1F09 | RP11-5J9 | 1 | p34.3 | 36957071 | 37139825 | -0.228811 | 0.0294411 | 59.623 | 42.789 | 0.066748 | -3.42798 | A26 | loss |
| RO1B07 | RP11-4M3 | 1 | p33 | 46796925 | 46970566 | 0.258205 | 0.0256199 | 19.803 | 18.91 | 0.073771 | 3.500088 | A137 | gain |
| RO3P15 | RP11-25A21 | 1 | p32.1, p31. | 60807944 | 60980338 | 0.366584 | 0.0346807 | 14.537 | 12.389 | 0.073771 | 4.969216 | 137 | gain |
| RO42G20 | RP11-627A12 | 1 | p22.3 | 87569368 | 87753216 | 0.308185 | 0.0672437 | 13.552 | 13.867 | 0.073771 | 4.17759 | A137 | gain |
| RO26124 | RP11-36116 | 1 | p21.1 | 106247329 | 106413175 | 0.299415 | 0.0282921 | 39.587 | 30.651 | 0.066748 | 4.485752 | A26 | gain |
| RO1B14 | RP11-7G12 | 1 | q24.1 | 164123488 | 164287973 | -0.237668 | 0.0029055 | 95.886 | 70.237 | 0.066748 | -3.56068 | A26 | loss |
| RO20017 | RP11-267L3 | 1 | q24.2 | 167222860 | 167381584 | 0.601437 | 0.0510008 | 15.779 | 21.489 | 0.073771 | 8.152757 | A137 | gain |
| RO27002 | RP11-380B22 | 1 | q25.3 | 179466161 | 179671444 | 0.260274 | 0.0398688 | 25.499 | 27.352 | 0.073771 | 3.528134 | A137 | gain |
| RO58H09 | CTD-2003B3 | 1 | q32.1 | 204676883 | 204837914 | 0.257326 | 0.0132901 | 84.669 | 88.308 | 0.066748 | 3.855187 | A26 | gain |
| RO41A14 | RP11-615M18 | 1 | q32.2 | 205195912 | 205363199 | 0.488515 | 0.053383 | 13.854 | 15.353 | 0.073771 | 6.622047 | 137 | gain |
| RO50C17 | RP11-718L9 | 1 | q32.2 | 206299430 | 206471975 | 0.264449 | 0.0026008 | 15.212 | 12.054 | 0.073771 | 3.584728 | A137 | gain |
| RO17C23 | RP11-196C8 | 2 | p24.3 | 13032063 | 13188099 | -0.238977 | 0.0139788 | 35.189 | 24.526 | 0.066748 | -3.58029 | A26 | loss |
| RO50K16 | RP11-723F23 | 2 | p24.3 | 14978618 | 15161195 | 0.549819 | 0.0610438 | 12.692 | 16.756 | 0.073771 | 7.453051 | 137 | gain |
| RO36A02 | RP11-526C24 | 2 | p24.2 | 17558392 | 17595292 | -0.257904 | 0.0307542 | 90.253 | 76.256 | 0.07167 | -3.59849 | A75 | loss |
| RO34C02 | RP11-482J4 | 2 | p13.3 | 70684434 | 70893187 | 0.250953 | 0.0482021 | 18.036 | 20.897 | 0.073771 | 3.401784 | A137 | gain |
| RO2J19 | RP11-15G4 | 2 | p13.1 | 74988527 | 75142707 | 0.247251 | 0.0305937 | 50.426 | 54.109 | 0.07167 | 3.449853 | A75 | gain |
| RO12017 | RP11-124P5 | 2 | p13.1 | 75115704 | 75274189 | 0.448689 | 0.0254438 | 22.177 | 19.261 | 0.07167 | 6.260486 | A75 | gain |
| RO50K22 | RP11-723H1 | 2 | p13.1 | 75226841 | 75425458 | 0.242051 | 0.0018498 | 38.945 | 46.245 | 0.07167 | 3.377299 | A75 | gain |
| RO6A04 | RP11-58E9 | 2 | p11.1 | 91654153 | 91685783 | 0.351565 | $5.23 \mathrm{E}-05$ | 24.3 | 23.879 | 0.066748 | 5.267049 | A26 | gain |
| RO17112 | RP11-203K11 | 2 | q11.1 | 95399978 | 95568811 | 0.464566 | 0.0002383 | 86.516 | 162.83 | 0.111086 | 4.182039 | A39 | gain |
| RO42015 | RP11-62503 | 2 | q11.2 | 95857272 | 96031199 | -0.341205 | 0.0293874 | 16.539 | 16.305 | 0.100303 | -3.40174 | A51 | loss |
| RO66P11 | RP11-76301 | 2 | q11.2 | 96212625 | 96383203 | 0.350505 | 0.0059807 | 20.845 | 36.255 | 0.100303 | 3.494462 | A51 | gain |
| RO21H08 | RP11-297B14 | 2 | q13 | 113143567 | 113352583 | 0.279864 | 0.0194546 | 65.921 | 56.978 | 0.07167 | 3.904897 | A75 | gain |
| RO8C07 | RP11-78E20 | 2 | q14.2 | 121240000 | 121441961 | -0.407064 | 0.0161383 | 64.844 | 99.175 | 0.111086 | -3.6644 | A39 | loss |
| RO49H24 | RP11-716M19 | 2 | q14.2 | 121375188 | 121577515 | 0.403387 | 0.0208024 | 12.494 | 19.77 | 0.100303 | 4.021684 | A51 | gain |
| RO40E07 | RP11-601F13 | 2 | q22.1 | 138230775 | 138373820 | -0.236377 | 0.0555022 | 14.119 | 12.67 | 0.06782 | -3.48536 | A118 | loss |
| RO25K12 | RP11-350N1 | 2 | q22.1 | 140265043 | 140466338 | 0.321984 | 0.0300033 | 10.648 | 13.873 | 0.06782 | 4.747626 | A118 | gain |
| RO17114 | RP11-203K19 | 2 | q31.1 | 176631931 | 176808639 | 0.298515 | 0.0255287 | 79.566 | 82.436 | 0.066748 | 4.472269 | A26 | gain |
| R070011 | RP11-111C16 | 2 | q31.1 | 177083977 | 177242722 | 0.292749 | 0.0007078 | 75.093 | 72.711 | 0.066748 | 4.385884 | A26 | gain |
| RO53G22 | RP11-75801 | 2 | q31.1 | 177427021 | 177609208 | 0.273342 | 0.0136663 | 10.393 | 12.304 | 0.073771 | 3.705277 | A137 | gain |
| RO51C09 | RP11-730M4 | 2 | q31.3 | 180961085 | 181117649 | 0.296393 | 0.01393 | 15.189 | 16.221 | 0.073771 | 4.017744 | A137 | gain |
| RO25J10 | RP11-355N23 | 2 | q33.3 | 206900670 | 206969163 | 0.294401 | 0.0017416 | 64.761 | 56.097 | 0.066748 | 4.410634 | A26 | in |
| RO40L08 | RP11-611123 | 2 | q33.3, q34 | 208953051 | 209141331 | 0.319108 | 0.0113696 | 74.004 | 62.374 | 0.07167 | 4.452463 | A75 | gain |
| RO9N22 | RP11-101G6 | 2 | q36.1 | 221890614 | 222065341 | -0.30663 | 0.0035702 | 18.414 | 12.658 | 0.066748 | -4.59385 | A26 | loss |
| RO21D08 | RP11-296C11 | 2 | q36.2 | 225777102 | 225943830 | 0.257383 | 0.0116644 | 37.426 | 40.444 | 0.07167 | 3.591224 | A75 | ain |
| RO14G12 | RP11-154A7 | 2 | q37.1 | 232092877 | 232245500 | 0.247784 | 0.0653572 | 19.718 | 12.273 | 0.07167 | 3.45729 | A75 | gain |
| RO35M15 | RP11-502F10 | 3 | p22.1 | 40168920 | 40336928 | 0.270671 | 0.0225228 | 11.526 | 11.995 | 0.073771 | 3.669071 | A137 | gain |
| RO51N14 | RP11-740P15 | 3 | q22.1 | 43042214 | 43198446 | 0.336884 | 0.0356339 | 19.905 | 26.035 | 0.06782 | 4.967325 | A118 | gain |
| RO36D08 | RP11-542F6 | 3 | q25.1 | 134415378 | 134606591 | 0.318403 | 0.0585909 | 62.978 | 54.105 | 0.07167 | 4.442626 | A75 | gain |
| RO62P23 | RP11-117K20 | 3 | q26.31 | 159315572 | 159494764 | 0.27218 | 0.0254855 | 85.082 | 62.139 | 0.07167 | 3.797684 | A75 | gain |
| RO33001 | RP11-468N7 | 3 | q27.1 | 173085106 | 173277471 | 0.299726 | 0.0652653 | 10.254 | 10.187 | 0.073771 | 4.062924 | A137 | gain |
| RO42J08 | RP11-631P4 | 3 | q29 | 185337137 | 185502784 | 0.24442 | 0.0008252 | 39.746 | 43.632 | 0.07167 | 3.410353 | A75 | gain |
| RO47L16 | RP11-694E12 | 3 | q29 | 193655933 | 193832580 | -0.454193 | 0.0028617 | 109.59 | 82.12 | 0.07167 | -6.33728 | A75 | loss |
| RO60N17 | CTD-223501 | 3 | q29 | 195414663 | 195511908 | 0.291416 | 0.042198 | 10.555 | 11.129 | 0.06782 | 4.296904 | A118 | gain |
| RO70008 | RP11-141L5 | 4 | p16.3 | 819328 | 983918 | 0.32789 | 0.0011929 | 20.856 | 21.556 | 0.066748 | 4.912357 | A26 | gain |
| RO37F18 | RP11-565M6 | 4 | p16.3 | 1530742 | 1691087 | 0.222639 | 0.0349339 | 26.53 | 22.752 | 0.066748 | 3.335516 | A26 | gain |


| RO31014 | RP11-448F22 | 4 | p16.3 | 2384072 | 2472983 | 0.332472 | 0.006866 | 23.859 | 26.812 | 0.073771 | 4.506812 | A137 | gain |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RO31013 | RP11-444J4 | 4 | p16.3 | 2475663 | 2659104 | 0.337627 | 0.0021786 | 19.321 | 25.107 | 0.073771 | 4.57669 | 37 | in |
| RO30K14 | RP11-431116 | 4 | p15.31 | 21912514 | 22118512 | 0.382154 | 0.042181 | 10.916 | 13.891 | 0.073771 | 5.180274 | A137 | in |
| R031P08 | RP11-453M22 | 4 | p14 | 37206944 | 37369549 | 0.283444 | 0.0598149 | 60.75 | 65.942 | 0.07167 | 3.954849 | A75 | in |
| RO41N01 | RP11-620D19 | 4 | p11 | 48760365 | 48941412 | -0.2838 | 0.0269542 | 127.71 | 87.773 | 0.066748 | -4.25181 | A26 | oss |
| RO23K06 | RP11-322A9 | 4 | p11 | 48855123 | 48941378 | -0.23954 | 0.0124458 | 102.81 | 77.167 | 0.066748 | -3.58872 | A26 | loss |
| RO17B09 | RP11-205G17 | 4 | p11 | 49184918 | 49238843 | -0.434054 | 0.0352295 | 38.012 | 11.879 | 0.112428 | -3.86073 | 1 | oss |
| R051E09 | RP11-730P6 | 4 | p11 | 49281935 | 49326349 | -0.226318 | 0.0030547 | 128.64 | 87.012 | 0.066748 | -3.39063 | A26 | loss |
| RO70L16 | RP11-186C5 | 4 | q13.3 | 75475766 | 75637578 | -0.239452 | 0.0108392 | 45.775 | 43.097 | 0.07167 | -3.34104 | A75 | loss |
| R068K09 | RP11-18022 | 4 | q26 | 117414505 | 117570802 | 0.240949 | 0.0089449 | 70.636 | 68.062 | 0.066748 | 3.609831 | A26 | in |
| RO27A12 | RP11-375P10 | 4 | q31.1 | 139960018 | 140140654 | 0.263714 | 0.0176508 | 56.051 | 59.119 | 0.066748 | 3.95089 | A26 | in |
| RO4L03 | RP11-37E18 | 4 | q32.1 | 157999304 | 158162935 | 0.405522 | 0.0132561 | 13.9 | 13.703 | 0.073771 | 5.497038 | A137 | gain |
| RO45F04 | RP11-663K16 | 4 | q32.3 | 168924247 | 169095790 | -0.333067 | 0.0223474 | 24.956 | 26.757 | 0.06782 | -4.91104 | A118 | ss |
| RO45A04 | RP11-656C20 | 5 | p15.33 | 350722 | 447421 | 0.251496 | 0.0173114 | 64.233 | 58.454 | 0.066748 | 3.767843 | A26 | in |
| RO14N24 | RP11-161F13 | 5 | p15.33 | 1562894 | 1724268 | -0.255112 | 0.0135842 | 18.612 | 14.805 | 0.06782 | -3.7616 | A118 | loss |
| RO55C23 | RP11-778E14 | 5 | p15.33 | 2592645 | 2774473 | 0.289887 | 0.0625217 | 21.958 | 25.165 | 0.073771 | 3.929552 | A137 | in |
| RO70L14 | RP11-186B21 | 5 | q13.2 | 69527543 | 69653811 | -0.30141 | 0.0005827 | 117.98 | 93.54 | 0.07167 | -4.20553 | A75 | oss |
| RO58016 | CTD-2001M9 | 5 | q13.2 | 70661551 | 70764108 | -0.331258 | 0.0281294 | 57.908 | 43.987 | 0.07167 | -4.62199 | A75 | oss |
| RO70G21 | RP11-96H22 | 5 | q13.3 | 74959279 | 75127937 | 0.262196 | 0.0008365 | 47.373 | 39.849 | 0.066748 | 3.928148 | A26 | in |
| RO65J17 | RP11-594A24 | 5 | q13.3 | 75109899 | 75295154 | 0.414459 | 0.0038848 | 12.21 | 13.135 | 0.073771 | 5.618183 | A137 | in |
| R069C14 | RP11-20M13 | 5 | q14.3 | 82908893 | 83054341 | 0.32423 | 0.0950719 | 10.952 | 10.522 | 0.06782 | 4.780743 | A118 | in |
| RO40018 | RP11-606H14 | 5 | q33.2 | 153245135 | 153421108 | 0.343733 | 0.0157204 | 21.997 | 29.774 | 0.073771 | 4.65946 | A137 | gain |
| RO58G19 | RP11-812K10 | 6 | p25.3 | 71610 | 284699 | 0.26557 | 0.0093798 | 58.101 | 55.975 | 0.066748 | 3.978696 | 26 | in |
| RO66101 | RP11-664H18 | 6 | p25.1 | 5710060 | 5886212 | -0.246554 | 0.091728 | 129.51 | 87.015 | 0.066748 | -3.6938 | A26 | oss |
| R070021 | RP11-113F21 | 6 | p22.1 | 29148090 | 29304253 | 0.286076 | 0.0039669 | 21.004 | 19.488 | 0.066748 | 4.285911 | A26 | gain |
| RO58D24 | CTD-2007P10 | 6 | p21.33 | 30972604 | 31085380 | 0.423626 | 0.0591509 | 53.84 | 95.403 | 0.111086 | 3.813496 | A39 | n |
| RO12D20 | RP11-135J9 | 6 | p21.33 | 31440461 | 31606959 | 0.258084 | 0.0278176 | 29.574 | 34.486 | 0.073771 | 3.498448 | A137 | in |
| RO10D07 | RP11-107C8 | 6 | p21.31 | 4540001 | 34703255 | 0.249976 | 0.0578555 | 19.305 | 12.838 | 0.073771 | 3.38854 | A137 | in |
| RO43I01 | RP11-634F13 | 6 | 1.1 | 41456894 | 41671891 | 0.532961 | 0.091675 | 58.274 | 133.7 | 0.111086 | 4.797733 | A39 | - |
| RO42C17 | RP11-624F22 | 6 | p21.1 | 41510587 | 41701770 | 0.431051 | 0.0025908 | 54.377 | 81.485 | 0.111086 | 3.880336 | A39 | in |
| RO70124 | RP11-130K11 | 6 | q14.3 | 86034664 | 86138958 | -0.285843 | 0.0246773 | 13.995 | 11.292 | 0.06782 | -4.21473 | A118 | loss |
| RO42020 | RP11-628G14 | 6 | q15 | 87679748 | 87841029 | 0.399379 | 0.047176 | 27.246 | 34.081 | 0.073771 | 5.413767 | A137 | in |
| R050010 | RP11-723N6 | 6 | q15 | 88886560 | 89038114 | 0.356687 | 0.0051315 | 13.218 | 19.318 | 0.073771 | 4.835057 | A137 | n |
| RO40D08 | RP11-610E23 | 6 | q16.3 | 101611771 | 101775605 | 0.250149 | 0.0170286 | 67.66 | 52.704 | 0.07167 | 3.490289 | A75 | ain |
| R064G13 | RP11-346C16 | 6 | q21 | 110941778 | 11113082 | 0.28682 | 0.0018873 | 11.036 | 13.805 | 0.073771 | 3.887978 | A137 | gain |
| RO61G21 | CTD-2310D7 | 6 | q22.1 | 113915311 | 11405244 | -0.350276 | 0.0871679 | 14.866 | 11.191 | 0.06782 | -5.16479 | A118 | loss |
| RO28L07 | RP11-403C11 | 6 | q22.1 | 114313227 | 114352792 | -0.257576 | 0.0301249 | 83.226 | 69.687 | 0.066748 | -3.85893 | A26 | os |
| RO32K13 | RP11-455L8 | 6 | q23.2 | 131432645 | 131623624 | 0.358431 | 0.0160195 | 12.156 | 14.356 | 0.073771 | 4.858698 | A137 | in |
| RO32K01 | RP11-455114 | 6 | q25.2 | 155418033 | 155593336 | 0.262583 | 0.0910598 | 13.557 | 16.742 | 0.073771 | 3.559434 | A137 | gain |
| RO50J04 | RP11-728F5 | 6 | q27 | 170345513 | 17046912 | 0.262764 | 0.0238634 | 61.703 | 55.16 | 0.066748 | 3.936657 | A26 | n |
| RO60F04 | CTD-2260L17 | 7 | p22.3 | 797562 | 898228 | 0.226066 | 0.0228289 | 42.207 | 43.148 | 0.066748 | 3.386858 | A26 | in |
| RO31K13 | RP11-442P13 | 7 | p22.1 | 5007384 | 5179039 | 0.329093 | 0.0304544 | 23.405 | 28.441 | 0.073771 | 4.461008 | A137 | gain |
| R061G10 | CTD-2380A4 | 7 | p21.2 | 15155609 | 15320915 | 0.242054 | 0.0106752 | 10.604 | 10.458 | 0.066748 | 3.626386 | A26 | gain |
| RO32K03 | RP11-455J15 | 7 | p21.1 | 16700151 | 16863920 | 0.318534 | 0.0127032 | 15.958 | 16.922 | 0.073771 | 4.317876 | A137 | gain |
| RO40E05 | RP11-601F7 | 7 | p15.3 | 24617413 | 24785003 | 0.271527 | 0.0003769 | 14.893 | 11.649 | 0.073771 | 3.680674 | A137 | gain |
| R061020 | CTD-2010E11 | 7 | 4.1 | 40782944 | 40818119 | 0.242927 | 0.0239009 | 39.819 | 40.455 | 0.066748 | 3.639465 | A26 | gain |
| RO36D20 | RP11-54211 | 7 | p11.2 | 56616401 | 56796200 | 0.365986 | 0.0423444 | 95.806 | 72.534 | 0.07167 | 5.106544 | A75 | gain |
| RO63N18 | RP11-325K1 | 7 | q11.21 | 6036595 | 66209226 | 0.522774 | 0.0812204 | 12.339 | 14.063 | 0.073771 | 7.086443 | A137 | gain |
| RO35L04 | RP11-51915 | 7 | q11.22 | 71722139 | 71877344 | -0.2311 | 0.0976005 | 15.116 | 14.405 | 0.06782 | -3.40755 | A118 | os |
| RO68N06 | RP11-818112 | 7 | q31.33 | 124755570 | 124943364 | 0.28215 | 0.0416231 | 17.913 | 17.156 | 0.066748 | 4.227093 | A26 | gain |
| RO22J13 | RP11-313020 | 7 | q34 | 140553376 | 140720323 | 0.255915 | 0.0944334 | 14.379 | 18.6 | 0.073771 | 3.469046 | A137 | gain |
| RO13F09 | RP11-143G2 | 7 | q34 | 141730127 | 141884603 | 0.265932 | 0.0333132 | 29.643 | 34.038 | 0.074813 | 3.554623 | A8 | gain |
| RO52H15 | RP11-749022 | 7 | q36.1 | 148697310 | 148888695 | 0.306651 | 0.0160294 | 52.567 | 50.532 | 0.066748 | 4.59416 | A26 | gain |
| RO30005 | RP11-428M3 | 7 | q36.1 | 150572713 | 150800286 | 0.228269 | 0.0197092 | 45.52 | 44.686 | 0.066748 | 3.419863 | A26 | gain |
| RO3L16 | RP11-26I6 | 7 | q36.2 | 152632106 | 152791685 | 0.281292 | 0.0641551 | 12.535 | 16.133 | 0.073771 | 3.813043 | A137 | gain |
| R059B10 | CTD-2041120 | 7 | q36.3 | 157396437 | 157519058 | 0.26356 | 0.0291922 | 17.256 | 19.154 | 0.074813 | 3.522917 | A8 | gain |
| RO52G07 | RP11-744K13 | 7 | q36.3 | 157760321 | 157945126 | 0.49325 | 0.0090227 | 29.363 | 62.037 | 0.111086 | 4.440253 | A39 | gain |
| RO44L08 | RP11-652N4 | 8 | p23.2 | 4901876 | 5127620 | 0.240296 | 0.0615756 | 74.877 | 55.144 | 0.07167 | 3.352811 | A75 | gain |
| RO42A02 | RP11-625P23 | 8 | q12.1 | 58003559 | 58174053 | 0.249751 | 0.0119968 | 14.929 | 13.913 | 0.073771 | 3.38549 | A137 | gain |
| RO6J22 | RP11-65D13 | 8 | q21.11 | 77643686 | 77816008 | 0.269201 | 0.0592499 | 12.038 | 10.021 | 0.07167 | 3.756118 | A75 | gain |
| RO59H22 | CTD-2085I3 | 8 | q22.1 | 94655709 | 94761228 | 0.224219 | 0.0118865 | 96.433 | 104.99 | 0.066748 | 3.359187 | A26 | gain |

Page | 42

| RO50K04 | RP11-723E18 | 8 | q24.13 | 126155750 | 126356347 | 0.561082 | 0.0029083 | 13.207 | 17.029 | 0.073771 | 7.605726 | A137 | ain |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RO35J04 | RP11-518L1 | 8 | q24.3 | 144584483 | 144718307 | 0.245826 | 0.0073539 | 15.161 | 16 | 0.066748 | 3.682897 | A26 | in |
| RO57J07 | RP11-806N14 | 9 | p22.2 | 18221982 | 18449492 | 0.272444 | 0.0374392 | 25.771 | 25.428 | 0.07167 | 3.801367 | A75 | gain |
| RO41D22 | RP11-621D23 | 9 | p13.3 | 35715248 | 35951025 | 0.44273 | 0.0636283 | 87.364 | 194.47 | 0.111086 | 3.985471 | A39 | gain |
| RO22M24 | RP11-312A20 | 9 | p13.3 | 35825343 | 36043213 | 0.232816 | 0.0090786 | 53.073 | 54.533 | 0.066748 | 3.487985 | A26 | in |
| RO26P18 | RP11-370J5 | 9 | p13.1 | 39073855 | 39224644 | -0.244675 | 0.0318827 | 59.581 | 51.682 | 0.07167 | -3.41391 | A75 | loss |
| RO17M12 | RP11-20412 | 9 | p11.2 | 43583843 | 43746434 | -0.255637 | 0.0269047 | 17.831 | 14.053 | 0.07167 | -3.56686 | A75 | loss |
| RO8H01 | RP11-88D3 | 9 | q12 | 66405147 | 66476865 | 0.251042 | 0.0954679 | 35.263 | 40.091 | 0.073771 | 3.40299 | A137 | in |
| RO23I05 | RP11-318L1 | 9 | q | 68164115 | 68282615 | -0.387626 | 0.0059263 | 16.026 | 14.248 | 0.112428 | -3.44777 | A1 | loss |
| RO8D23 | RP11-87H9 | 9 | q12 | 68221319 | 68447264 | -0.376495 | 0.0375693 | 32.902 | 37.234 | 0.112428 | -3.34877 | A1 | loss |
| RO59G20 | CTD-2019015 | 9 | q21.32 | 84869245 | 85007158 | 0.363446 | 0.0463226 | 16.402 | 19.346 | 0.06782 | 5.35898 | A118 | in |
| RO32C03 | RP11-454G15 | 9 | q31.3 | 110156709 | 110355803 | 0.678205 | 0.0187376 | 11.699 | 15.267 | 0.073771 | 9.193382 | 137 | in |
| RO18E03 | RP11-220D10 | 9 | q31.3 | 110395342 | 110547877 | 0.350597 | 0.0375134 | 24.441 | 32.858 | 0.100303 | 3.495379 | 51 | in |
| RO50K10 | RP11-723F2 | 9 | q31.3 | 111163247 | 111380118 | 0.310704 | 0.0454656 | 23.687 | 28.806 | 0.073771 | 4.211736 | A137 | gain |
| RO48C19 | RP11-695L17 | 9 | q34.3 | 138380703 | 138494631 | 0.222865 | 0.0281676 | 26.798 | 27.225 | 0.066748 | 3.338902 | 26 | in |
| RO62H21 | RP11-102124 | 10 | p13 | 13089369 | 13228260 | 0.251713 | 0.0154517 | 91.261 | 94.577 | 0.066748 | 3.771094 | 26 | gain |
| RO67J07 | RP13-617N7 | 10 | q11.1 | 42020851 | 42040383 | 0.223057 | 0.0110125 | 97.237 | 106.62 | 0.066748 | 3.341778 | A26 | gain |
| RO61K11 | CTD-2318O3 | 10 | q11.1 | 42020851 | 42040383 | 0.42606 | 0.0017692 | 127.98 | 314.81 | 0.111086 | 3.835407 | A39 | in |
| R058F11 | RP11-818P1 | 10 | q11.21 | 42987824 | 43202215 | 0.281415 | 0.0025307 | 10.327 | 11.606 | 0.074813 | 3.761579 | A8 | n |
| RO4M13 | RP11-30N1 | 10 | q11.23 | 51121592 | 51195063 | -0.289387 | 0.005939 | 17.055 | 13.701 | 0.06782 | -4.26699 | A118 | loss |
| RO50C08 | RP11-722F10 | 10 | q23.1 | 84452403 | 84618004 | 0.251853 | 0.0120866 | 18.7 | 18.324 | 0.073771 | 3.413984 | A137 | in |
| RO64F18 | RP11-44817 | 10 | q26.3 | 134955684 | 135066765 | 0.247872 | 0.0041274 | 35.496 | 35.033 | 0.066748 | 3.713549 | 26 | gain |
| RO62A23 | RP11-23J21 | 11 | p15.4 | 3349519 | 3535987 | -0.258074 | 0.0404571 | 59.242 | 41.311 | 0.07167 | -3.60087 | A75 | loss |
| RO66P09 | RP11-763N14 | 11 | p15.1 | 16437283 | 16630905 | 0.261995 | 0.0106759 | 124.09 | 121.67 | 0.066748 | 3.925136 | A26 | in |
| RO66P21 | RP11-766K9 | 11 | p14.3 | 23361050 | 23525759 | 0.262915 | 0.0372596 | 102.82 | 109.38 | 0.066748 | 3.93892 | A26 | ain |
| RO16P20 | RP11-195123 | 11 | p11.2 | 44985558 | 45145067 | 0.298712 | 0.0206256 | 60.993 | 66.465 | 0.07167 | 4.167881 | A75 | ain |
| RO35H03 | RP11-51103 | 11 | q12.2 | 59935908 | 59963112 | -0.346224 | 0.0060762 | 122.3 | 96.389 | 0.066748 | -5.18703 | A26 | loss |
| RO44E17 | RP11-642F7 | 11 | q13.1 | 65023037 | 65185629 | 0.270586 | 0.0029536 | 39.971 | 45.262 | 0.07167 | 3.775443 | A75 | ain |
| RO56C23 | RP11-791I20 | 11 | q13.4 | 74652389 | 74835071 | 0.263234 | 0.0774126 | 19.616 | 19.974 | 0.073771 | 3.568259 | A137 | gain |
| RO17P04 | RP11-217K21 | 11 | q13.5 | 76392326 | 76536143 | 0.247836 | 0.0317434 | 46.635 | 15.624 | 0.066748 | 3.71301 | A26 | gain |
| RO18B14 | RP11-239K22 | 11 | q21 | 95994439 | 96152262 | 0.290185 | 0.0924047 | 16.715 | 26.075 | 0.06782 | 4.278753 | A118 | gain |
| RO14C05 | RP11-150H9 | 11 | q23.3 | 118603789 | 118758082 | 0.230834 | 0.0169338 | 44.992 | 41.54 | 0.066748 | 3.458291 | 26 | gain |
| RO21F12 | RP11-296M15 | 11 | q25 | 133545363 | 133721889 | 0.271078 | 0.0195374 | 71.407 | 71.264 | 0.066748 | 4.061215 | A26 | gain |
| RO50N14 | RP11-729M2 | 12 | p13.33 | 2098197 | 2246866 | 0.307968 | 0.0250917 | 21.003 | 26.011 | 0.06782 | 4.540961 | A118 | in |
| RO31K14 | RP11-447J10 | 12 | p13.31 | 5573581 | 5743850 | 0.312687 | 0.0919338 | 11.957 | 22.74 | 0.073771 | 4.238617 | 137 | gain |
| RO31C13 | RP11-440N2 | 12 | q12 | 36720939 | 36889175 | 0.405225 | 0.0549528 | 16.721 | 21.189 | 0.073771 | 5.493012 | A137 | gain |
| RO14P21 | RP11-15812 | 12 | q13.13 | 52541438 | 52732799 | 0.458524 | 0.009104 | 79.974 | 128.2 | 0.111086 | 4.127649 | A39 | gain |
| RO32J03 | RP11-462E2 | 12 | q13.13 | 52695946 | 52866729 | 0.609011 | 0.0088091 | 114.9 | 273.57 | 0.111086 | 5.482338 | A39 | gain |
| RO27L23 | RP11-383J7 | 12 | q13.2 | 53041821 | 53231620 | 0.389835 | 0.0262153 | 79.703 | 103.39 | 0.111086 | 3.509308 | A39 | gain |
| RO3L04 | RP11-26G8 | 12 | q14.1 | 57636373 | 57812533 | 0.362373 | 0.0441885 | 18.937 | 20.302 | 0.073771 | 4.912133 | A137 | gain |
| RO4C09 | RP11-27M6 | 12 | q23.3 | 106831834 | 106997898 | -0.32588 | 0.0318997 | 37.869 | 31.34 | 0.07167 | -4.54695 | A75 | loss |
| RO1A21 | RP11-1C11 | 12 | q23.3 | 106899825 | 107062279 | -0.332661 | 0.0360865 | 49.144 | 20.44 | 0.07167 | -4.64157 | A75 | loss |
| RO60N16 | CTD-2280A16 | 12 | q24.13 | 112581835 | 112696534 | 0.316783 | 0.0179711 | 11.197 | 13.785 | 0.06782 | 4.670938 | 118 | in |
| RO40L15 | RP11-608N12 | 13 | q12.13 | 25309664 | 25502697 | 0.404711 | 0.0517673 | 15.196 | 20.754 | 0.06782 | 5.967428 | A118 | gain |
| RO1B03 | RP11-4K24 | 13 | q14.11 | 41655648 | 41810459 | 0.308232 | 0.0097277 | 10.817 | 12.028 | 0.073771 | 4.17822 | A137 | gain |
| RO32C14 | RP11-457M18 | 13 | q14.11 | 42325670 | 42471777 | 0.316926 | 0.0148054 | 13.269 | 15.378 | 0.073771 | 4.296078 | A137 | gain |
| RO32K02 | RP11-459A1 | 13 | q22.2 | 74479268 | 74687974 | 0.357404 | 0.0224436 | 12.736 | 14.695 | 0.073771 | 4.844776 | A137 | gain |
| RO1I13 | RP11-1M7 | 13 | q22.2 | 75198429 | 75381103 | 0.535017 | 0.0674467 | 11.431 | 14.913 | 0.073771 | 7.252403 | A137 | gain |
| RO68D22 | RP11-480F17 | 13 | q22.3 | 76260854 | 76446840 | 0.312069 | 0.0027563 | 17.022 | 16.79 | 0.07167 | 4.354249 | A75 | gain |
| RO9P19 | RP11-99111 | 13 | q34 | 112550821 | 112746773 | 0.284104 | 0.0371097 | 21.032 | 23.396 | 0.073771 | 3.851161 | A137 | gain |
| RO35N22 | RP11-520H13 | 14 | q23.3 | 64706822 | 64880159 | 0.264777 | 0.0223679 | 18.641 | 17.335 | 0.07167 | 3.694391 | A75 | gain |
| R061E15 | CTD-2305J20 | 14 | q32.33 | 104788384 | 104893766 | 0.256025 | 0.0170491 | 33.843 | 38.265 | 0.07167 | 3.572276 | A75 | gain |
| RO67D17 | RP13-594H12 | 14 | q32.33 | 104822654 | 104944254 | 0.290204 | 0.0104206 | 46.644 | 49.238 | 0.066748 | 4.347756 | A26 | gain |
| RO40H07 | RP11-607H20 | 15 | q11.1 | 18273500 | 18473311 | -0.251218 | 0.0055642 | 14.473 | 10.047 | 0.074813 | -3.35795 | A8 | loss |
| RO44A01 | RP11-641K15 | 15 | q11.2 | 18781625 | 18946020 | -0.248226 | 0.0027648 | 24.739 | 23.85 | 0.06782 | -3.66007 | A118 | loss |
| RO28L19 | RP11-403L7 | 15 | q11.2 | 18898414 | 19048601 | -0.385608 | 0.0093409 | 255.27 | 386.61 | 0.111086 | -3.47126 | A39 | loss |
| RO37J13 | RP11-561P13 | 15 | q13.1 | 26135317 | 26310601 | -0.245656 | 0.0483739 | 18.284 | 15.656 | 0.06782 | -3.62218 | A118 | loss |
| R061F22 | RP11-6L23 | 15 | q24.1 | 71985268 | 72141641 | 0.445803 | 0.0017855 | 27.509 | 52.143 | 0.111086 | 4.013134 | A39 | gain |
| RO54P21 | RP11-775D1 | 15 | q24.1 | 72244696 | 72412336 | -0.379857 | 0.0284384 | 121.92 | 179.79 | 0.111086 | -3.41949 | A39 | loss |
| RO34D17 | RP11-486P18 | 16 | p12.3 | 20442292 | 20598180 | 0.254507 | 0.0022627 | 26.95 | 31.016 | 0.06782 | 3.752684 | A118 | gain |
| RO42E14 | RP11-626K17 | 16 | p11.2 | 32287041 | 32440412 | 0.259538 | 0.0068257 | 115.8 | 119.75 | 0.066748 | 3.888326 | A26 | gain |
| RO1C23 | RP11-1F10 | 16 | q12.1 | 47811144 | 48013771 | -0.233299 | 0.0091252 | 56.105 | 22.273 | 0.066748 | -3.49522 | A26 | loss |

Page | 43

| RO40K14 | RP11-605N4 | 16 | q13 | 55095980 | 55251063 | 0.388252 | 0.0066532 | 68.105 | 163.08 | 0.111086 | 3.495058 | A39 | n |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RO24J03 | RP11-343H19 | 16 | q13 | 55211316 | 55369561 | 0.584413 | 0.0157119 | 44.675 | 141.42 | 0.111086 | 5.260906 | A39 | in |
| RO57F06 | RP11-809H20 | 17 | p11.2 | 17534762 | 17706303 | 0.313564 | 0.0009701 | 34.221 | 36.099 | 0.066748 | 4.697729 | A26 | in |
| RO13D12 | RP11-146G23 | 17 | q11.2 | 28624283 | 28648111 | -0.259572 | 0.0029571 | 96.169 | 66.917 | 0.066748 | -3.88884 | A26 | oss |
| RO29J09 | RP11-420B16 | 17 | q21.32 | 43866044 | 44065387 | 0.24495 | 0.0301362 | 49.254 | 43.499 | 0.066748 | 3.669773 | A26 | n |
| RO40C11 | RP11-60007 | 17 | q21.32 | 44003179 | 44186865 | 0.452488 | 0.0085277 | 58.569 | 140.63 | 0.111086 | 4.073313 | A39 | in |
| RO31G13 | RP11-44107 | 17 | q23.3 | 58730625 | 58892053 | 0.306991 | 0.0270136 | 15.733 | 20.688 | 0.073771 | 4.161405 | A137 | n |
| RO67A21 | RP11-802F16 | 17 | q25.3 | 73485102 | 73659590 | -0.261082 | 0.0710048 | 23.332 | 14.339 | 0.074813 | -3.48979 | A8 |  |
| RO56D22 | RP11-798C7 | 17 | q25.3 | 76834696 | 77076142 | 0.248783 | 0.0440796 | 13.981 | 22.257 | 0.07167 | 3.471229 | A75 | in |
| R067110 | RP13-538H2 | 18 | q11.2 | 19017248 | 19059585 | 0.239763 | 0.0025887 | 42.967 | 48.331 | 0.07167 | 3.345375 | A75 | n |
| RO45A21 | RP11-654B8 | 18 | q21.1 | 42715677 | 42800239 | 0.50121 | 0.0158717 | 83.348 | 90.309 | 0.066748 | 7.508989 | A26 | n |
| RO31P20 | RP11-453P5 | 18 | q21.32 | 56301614 | 56482301 | 0.244348 | 0.0560184 | 50.517 | 55.016 | 0.07167 | 3.409348 | A75 | gain |
| RO49C12 | RP11-711F2 | 18 | q23 | 71337342 | 71520536 | 0.238207 | 0.0453517 | 10.429 | 11.517 | 0.06782 | 3.512341 | A118 | in |
| RO69E17 | RP11-7H17 | 18 | q23 | 75216360 | 75402240 | 0.256705 | 0.0354918 | 54.956 | 54.595 | 0.066748 | 3.845883 | 26 | - |
| RO60F06 | CTD-2260M22 | 19 | p13.3 | 1377765 | 1490288 | 0.242766 | 0.0050084 | 26.584 | 32.1 | 0.07167 | 3.387275 | A75 | gain |
| RO67F13 | RP13-600E22 | 19 | p13.3 | 3408988 | 3533861 | 0.24949 | 0.0098373 | 66.675 | 79.588 | 0.07167 | 3.481094 | A75 | in |
| RO5G04 | RP11-46L10 | 19 | p13.12 | 14015002 | 14153121 | 0.25763 | 0.0176784 | 42.295 | 45.186 | 0.07167 | 3.59467 | 75 | ain |
| RO44J16 | RP11-652K21 | 19 | p13.12 | 14069923 | 14245943 | 0.253994 | 0.0347055 | 49.545 | 44.306 | 0.07167 | 3.543937 | A75 | ain |
| RO36H08 | RP11-543F7 | 19 | q12 | 33742778 | 33936080 | 0.331168 | 0.0272844 | 81.343 | 58.754 | 0.07167 | 4.620734 | A75 | gain |
| RO10E12 | RP11-104J24 | 19 | q12 | 34942164 | 35091892 | 0.223538 | 0.0275906 | 32.664 | 11.699 | 0.066748 | 3.348984 | A26 | ain |
| RO44H08 | RP11-652C23 | 19 | q12 | 35155612 | 35336561 | 0.261465 | 0.0206779 | 74.085 | 58.742 | 0.07167 | 3.648179 | A75 | in |
| RO61E06 | CTD-2344L3 | 19 | q13.32 | 50576103 | 50664187 | 0.225805 | 0.0038332 | 50.43 | 46.282 | 0.066748 | 3.382948 | A26 | in |
| RO48B12 | RP11-705C4 | 19 | q13.42 | 60715146 | 60850444 | 0.241451 | 0.0253611 | 26.324 | 26.441 | 0.07167 | 3.368927 | A75 | ain |
| R057M10 | RP11-804M21 | 20 | p13 | 1895714 | 2066809 | -0.225321 | 0.0721362 | 83.454 | 56.92 | 0.066748 | -3.3757 | 26 | s |
| RO50D09 | RP11-724J12 | 20 | q11.21 | 30432283 | 30631518 | 0.230552 | 0.0162274 | 50.36 | 58.786 | 0.066748 | 3.454066 | 26 | an |
| RO46G09 | RP11-667G22 | 20 | q11.22 | 31699917 | 31807042 | 0.234802 | 0.0086402 | 56.248 | 52.975 | 0.066748 | 3.517738 | A26 | in |
| RO27A22 | RP11-376B8 | 20 | q11.22 | 33077333 | 33284163 | -0.240186 | 0.0118327 | 17.418 | 13.416 | 0.06782 | -3.54152 | A118 | loss |
| RO40L24 | RP11-612A10 | 20 | q11.22 | 33095140 | 33146318 | 0.266599 | 0.0203116 | 11.195 | 13.373 | 0.073771 | 3.613873 | A137 | in |
| RO31015 | RP11-444K9 | 20 | q13.13 | 47777796 | 47958064 | 0.448028 | 0.0844809 | 17.262 | 20.943 | 0.073771 | 6.073227 | A137 | n |
| RO19D14 | RP11-262B23 | 20 | q13.2 | 53643329 | 53684580 | 0.239257 | 0.0042936 | 32.376 | 39.968 | 0.07167 | 3.338314 | A75 | ain |
| RO50C09 | RP11-718114 | 20 | q13.33 | 60103776 | 60288903 | 0.224404 | 0.0118186 | 53.935 | 52.522 | 0.066748 | 3.361958 | 26 | ain |
| RO33J16 | RP11-476115 | 20 | q13.33 | 62263781 | 62434320 | 0.26224 | 0.0019177 | 34.083 | 32.494 | 0.066748 | 3.928807 | A26 | gain |
| RO19F11 | RP11-259G22 | 21 | p11.1 | 10032184 | 10197104 | -0.25157 | 0.0171311 | 96.007 | 72.421 | 0.07167 | -3.51012 | A75 | loss |
| R070F14 | RP11-175M15 | 21 | p11.1 | 10037729 | 10092616 | 0.246981 | 0.0129584 | 12.552 | 12.84 | 0.073771 | 3.347942 | A137 | ain |
| RO19P08 | RP11-264C24 | 21 | q21.1 | 17391475 | 17557175 | 0.250601 | 0.0384228 | 16.228 | 12.131 | 0.073771 | 3.397012 | A137 | gain |
| RO45B24 | RP11-663E24 | 21 | q21.3 | 28721529 | 28897123 | -0.297887 | 0.0177427 | 22.795 | 19.221 | 0.06782 | -4.39232 | A118 | ss |
| RO23D14 | RP11-327M4 | 21 | q22.3 | 44413607 | 44443805 | 0.261532 | 0.0176996 | 19.003 | 21.164 | 0.07167 | 3.649114 | A75 | gain |
| RO28K16 | RP11-397E9 | 21 | q22.3 | 44699015 | 44846952 | 0.447093 | 0.0508791 | 56.579 | 144.49 | 0.111086 | 4.024747 | A39 | in |
| RO63G13 | RP11-161A23 | 21 | q22.3 | 45025735 | 45208462 | 0.237371 | 0.0313729 | 91.117 | 96.215 | 0.066748 | 3.556226 | A26 | n |
| RO44H20 | RP11-652F11 | 22 | q21.1 | 18002150 | 18171498 | 0.291579 | 0.0207932 | 72.264 | 53.665 | 0.07167 | 4.068355 | A75 | gain |
| RO19B20 | RP11-261010 | 22 | q21.2 | 24039097 | 24206958 | 0.260817 | 0.0099759 | 20.481 | 22.21 | 0.074813 | 3.486252 | A8 | ain |
| RO62B05 | RP11-86H17 | 22 | q21.3 | 28894288 | 29037473 | 0.259636 | 0.0290522 | 13.641 | 13.372 | 0.073771 | 3.519486 | A137 | gain |
| RO48P01 | RP11-704C5 | 22 | q22.13 | 37362475 | 37572224 | 0.262249 | 0.0248796 | 59.37 | 67.354 | 0.066748 | 3.928942 | A26 | gain |
| RO29J12 | RP11-423E19 | 22 | q22.3 | 49413876 | 49518700 | 0.241691 | 0.0292466 | 56.172 | 33.546 | 0.066748 | 3.620947 | A26 | gain |
| RO21H20 | RP11-297F13 | X | p11.23 | 48575765 | 48734088 | 0.349604 | 0.0088735 | 52.794 | 65.633 | 0.07167 | 4.877968 | A75 | gain |
| RO17B08 | RP11-211H10 | X | p11.23 | 49201123 | 49376616 | -0.228992 | 0.0939533 | 17.517 | 14.119 | 0.06782 | -3.37647 | A118 | loss |
| RO32D20 | RP11-465B24 | X | p11.21 | 56465528 | 56632629 | 0.259046 | 0.0620309 | 74.634 | 88.328 | 0.07167 | 3.614427 | A75 | gain |
| RO58D07 | RP11-818117 | X | p11.1 | 56752841 | 56935688 | -0.446649 | 0.0071086 | 30.331 | 19.819 | 0.06782 | -6.5858 | A118 | loss |
| R018M04 | RP11-231122 | X | q22.3 | 105097484 | 105276081 | -0.247856 | 0.0071793 | 32.716 | 25.318 | 0.07167 | -3.45829 | A75 | loss |
| RO4A15 | RP11-27E21 | Y | p11.2 | 6053399 | 6213222 | 0.586923 | 0.084705 | 91.583 | 220.15 | 0.111086 | 5.283501 | A39 | gain |
| RO53L12 | RP11-764M21 | Y | p11.2 | 6507372 | 6664486 | 0.321714 | 0.0264861 | 62.714 | 66.877 | 0.066748 | 4.81983 | A26 | gain |
| RO65F22 | RP11-622D24 | Y | p11.2 | 6516741 | 6719180 | 0.234058 | 0.0366642 | 36.348 | 29.581 | 0.066748 | 3.506592 | A26 | gain |
| RO19M18 | RP11-258E22 | $Y$ | p11.2 | 6540216 | 6691826 | 0.246632 | 0.0108286 | 70.828 | 69.215 | 0.066748 | 3.694972 | A26 | gain |
| R010J07 | RP11-108F14 | Y | p11.2 | 7755631 | 7921510 | -0.250488 | 0.0038544 | 40.62 | 30.877 | 0.07167 | -3.49502 | A75 | loss |
| RO27A16 | RP11-375P13 | Y | p11.2 | 8465905 | 8635791 | -0.287174 | 0.0194659 | 128.31 | 92.872 | 0.066748 | -4.30236 | A26 | loss |
| RO31G02 | RP11-446M21 | Y | q11.221 | 15089236 | 15303617 | 0.285442 | 0.0438328 | 10.655 | 11.804 | 0.073771 | 3.869298 | A137 | gain |
| RO1B21 | RP11-5C5 | Y | q11.223 | 23920245 | 24077176 | -0.292971 | 0.0138734 | 77.592 | 31.379 | 0.066748 | -4.38921 | A26 | loss |
| Tier 2 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| RO34A05 | RP11-478122 | 1 | p36.23 | 7959002 | 8148278 | 0.282164 | 0.0671978 | 8.309 | 8.653 | 0.076899 | 3.66928 | A137 | gain |
| RO68A24 | RP11-84P16 | 1 | p36.11 | 27205702 | 27404075 | 0.299351 | 0.0198414 | 7.62 | 5.099 | 0.076899 | 3.892781 | A137 | gain |
| R068M09 | RP11-561A23 | 1 | p33 | 47992238 | 48169933 | 0.298906 | 0.0707262 | 9.241 | 9.201 | 0.071866 | 4.159213 | A118 | gain |
| RO9023 | RP11-94018 | 1 | p33 | 49280862 | 49433096 | 0.247428 | 0.0945091 | 3.008 | 3.503 | 0.071866 | 3.442908 | A118 | gain |


| RO2M22 | RP11-13M4 | 1 | p31.3 | 63033731 | 63227884 | -0.246048 | 0.0387297 | 4.549 | 3.099 | 0.071851 | -3.42442 | A75 | loss |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RO38H12 | RP11-585M16 | 1 | p31.1 | 74734998 | 74917065 | 0.504963 | 0.0274138 | 5.538 | 8.822 | 0.071866 | 7.026452 | A118 | in |
| RO22N12 | RP11-317F9 | 1 | q23.1 | 156709465 | 156863209 | 0.274621 | 0.0775682 | 6.877 | 4.443 | 0.076899 | 3.571191 | A137 | in |
| RO68M21 | RP11-719L1 | 1 | q31.3 | 193537539 | 193704669 | 0.430891 | 0.0171587 | 5.064 | 5.885 | 0.071866 | 5.995756 | A118 | in |
| RO29B15 | RP11-419B18 | 1 | q31.3 | 195446765 | 195615132 | 0.269704 | 0.0397316 | 5.837 | 7.013 | 0.076899 | 3.50725 | 37 | gain |
| RO13G21 | RP11-138M22 | 1 | q42.13 | 228338069 | 228505163 | 0.52173 | 0.0348915 | 49.808 | 58.39 | 0.066893 | 7.799471 | A26 | in |
| RO20J04 | RP11-278012 | 1 | q42.3 | 232875925 | 233058172 | 0.259071 | 0.015055 | 5.784 | 4.822 | 0.076849 | 3.371169 | A8 | in |
| RO68L18 | RP11-488L18 | 1 | q4 | 245339707 | 245542773 | -0.267396 | 0.0339793 | 3.592 | 4.095 | 0.071866 | -3.72076 | 8 | loss |
| R061B09 | CTD-2014D7 | 2 | p16.1 | 57197583 | 57336716 | 0.370165 | 0.0298074 | 5.55 | 6.853 | 0.071866 | 5.150767 | A118 | in |
| RO65N17 | RP11-602P8 | 2 | p12 | 75843805 | 76014895 | 0.390207 | 0.0110931 | 7.573 | 8.107 | 0.076899 | 5.074279 | 137 | in |
| RO22D07 | RP11-313B1 | 2 | q21.1 | 130401477 | 130570107 | 0.539988 | 0.0963221 | 5.352 | 5.731 | 0.111152 | 4.858104 | 39 | in |
| RO54G16 | RP11-769N11 | 2 | q21.1 | 130801038 | 130941683 | 0.379786 | 0.0721277 | 110.16 | 291.78 | 0.111152 | 3.416817 | 39 | in |
| RO2J05 | RP11-15D9 | 2 | q22.1 | 139452943 | 139619513 | -0.293557 | 0.0115449 | 6.298 | 4.227 | 0.076849 | -3.81992 | A8 | s |
| RO43C13 | RP11-633H24 | 2 | q24.1 | 154895951 | 155104 | 0.252524 | 0.0343442 | 4.399 | 6.016 | 0.071866 | 3.513817 | A118 | in |
| RO50103 | RP11-71901 | 2 | q24.3 | 165653881 | 165842181 | 0.27515 | 0.0594719 | 9.813 | 10.675 | 0.076899 | 3.57807 | 37 | n |
| RO32K05 | RP11-455J20 | 2 | q32.2 | 190268101 | 190449901 | 0.315058 | 0.0092207 | 5.281 | 5.871 | 0.076899 | 4.097036 | A137 | n |
| RO5E07 | RP11-44A23 | 2 | q34 | 212401435 | 21256860 | -0.274036 | 0.0718385 | 11.777 | 6.499 | 0.076849 | -3.5659 | A8 | ss |
| RO57F17 | RP11-806C2 | 3 | p26.3 | 1841954 | 2043596 | 0.240232 | 0.0079839 | 8.316 | 12.329 | 0.071866 | 3.342777 | A118 | n |
| RO44C07 | RP11-642A2 | 3 | p24.3 | 21962388 | 22134044 | 0.422388 | 0.0169458 | 8.143 | 8.936 | 0.076899 | 5.492763 | A137 | n |
| RO60118 | CTD-2185K4 | 3 | p11.1 | 90525740 | 90584932 | -0.24723 | 0.0648275 | 6.083 | 5.258 | 0.071866 | -3.44015 | A118 | ss |
| RO43N10 | RP11-641F4 | 3 | q11.2 | 99591113 | 99756754 | 0.302473 | 0.0800014 | 6.077 | 5.741 | 0.071851 | 4.209726 | A75 | in |
| RO3E02 | RP11-20N7 | 3 | q13.11 | 107633524 | 107818033 | 0.269103 | 0.0236845 | 8.401 | 8.459 | 0.076899 | 3.499434 | A137 | in |
| RO65N05 | RP11-599H1 | 3 | q13.12 | 109384850 | 109586860 | 0.450016 | 0.0970822 | 8.18 | 8.958 | 0.076899 | 5.85204 | A137 | n |
| RO68E12 | RP11-539H11 | 3 | q13.12 | 109435013 | 109636045 | 0.287275 | 0.0051343 | 6.524 | 4.181 | 0.076899 | 3.7357 | 137 | n |
| RO50J03 | RP11-725119 | 3 | q2 | 148478234 | 148 | 0.32309 | 0.0748734 | 6.35 | 8.755 | 0.071866 | 4.495728 | A118 | n |
| RO27E10 | RP11-378E6 | 3 | q24 | 149152070 | 149322873 | -0.260601 | 0.0161051 | 5.636 | 4.4 | 0.076849 | -3.39108 | A8 | s |
| RO66M20 | RP11-718K10 | 3 | q25.2 | 154255436 | 15441248 | 0.260832 | 0.0192821 | 6.535 | 7.868 | 0.076899 | 3.3918 | 137 | in |
| RO45K17 | RP11-655G22 | 3 | q28 | 193133121 | 19330575 | 0.264123 | 0.0447648 | 16.052 | 8.214 | 0.076899 | 3.434674 | 137 | in |
| RO59J10 | CTD-2090B4 | 3 | q29 | 194228217 | 194348803 | 0.906815 | 0.0213221 | 4.026 | 6.548 | 0.076899 | 11.79229 | 137 | n |
| RO68A21 | RP11-72114 | 4 | p16.3 | 2716373 | 2926405 | 0.412427 | 0.095636 | 3.812 | 3.715 | 0.076899 | 5.36323 | 137 | n |
| R010B01 | RP11-106H18 | 4 | q13.3 | 72039825 | 72197229 | -0.276666 | 0.0546742 | 5.111 | 5.205 | 0.071866 | -3.84975 | A118 | oss |
| RO63N22 | RP11-326022 | 4 | q13.3 | 72541949 | 72732136 | 0.393061 | 0.0421344 | 5.277 | 5.845 | 0.076899 | 5.111393 | 137 | n |
| RO2B03 | RP11-14A23 | 4 | q21.23 | 86301196 | 86469048 | 0.355453 | 0.0407534 | 8.115 | 8.915 | 0.076899 | 4.622336 | A137 | n |
| RO61H24 | RP11-9H11 | 4 | q26 | 115629364 | 11580977 | 0.364207 | 0.0365235 | 4.498 | 5.521 | 0.071866 | 5.067862 | A118 | ain |
| RO4I01 | RP11-29M9 | 4 | q28.3 | 134450123 | 134636219 | -0.257497 | 0.0380494 | 8.058 | 6.269 | 0.076899 | -3.34851 | A137 | oss |
| RO2D21 | RP11-14K14 | 4 | q35.2 | 190673393 | 19081164 | 0.398252 | 0.0870498 | 113.57 | 202.53 | 0.111152 | 3.582949 | A39 | n |
| RO59C05 | CTD-2011021 | 4 | q35.2 | 191039899 | 191138136 | -0.371553 | 0.0119558 | 50.382 | 28.003 | 0.111027 | -3.34651 | A1 | s |
| RO9L14 | RP11-101B14 | 5 | q11.2 | 56361220 | 56544061 | 0.260312 | 0.0144271 | 9.004 | 12.895 | 0.076899 | 3.385116 | 137 | in |
| RO2B04 | RP11-15024 | 5 | q11.2 | 58487753 | 58646102 | 0.26282 | 0.0058421 | 5.667 | 5.776 | 0.076899 | 3.41773 | 137 | in |
| RO66F05 | RP11-734L8 | 5 | q21.1 | 99194930 | 99380487 | 0.284348 | 0.0069671 | 8.292 | 8.876 | 0.076899 | 3.697681 | A137 | n |
| RO59H12 | CTD-2075G19 | 5 | q21.2 | 103890873 | 104011391 | 0.319472 | 0.0169826 | 6.677 | 7.662 | 0.071866 | 4.445384 | 118 | in |
| RO62P24 | RP11-144H10 | 5 | q23.1 | 120001738 | 12017975 | 0.405011 | 0.0413233 | 6.166 | 6.076 | 0.071866 | 5.635641 | A118 | gain |
| RO56F03 | RP11-795P7 | 5 | q23.2 | 123122540 | 123337265 | 0.434802 | 0.0284611 | 8.257 | 12.073 | 0.071866 | 6.050177 | A118 | n |
| RO71D12 | RP11-281H9 | 5 | q23.3 | 128933631 | 12909116 | 0.443518 | 0.0229032 | 6.557 | 3.874 | 0.071866 | 6.171458 | A118 | gain |
| RO17P21 | RP11-211F5 | 5 | q33.1 | 149230059 | 149401295 | 0.230369 | 0.0210011 | 6.96 | 8.655 | 0.066893 | 3.443843 | A26 | gain |
| RO50J13 | RP11-725K6 | 5 | q33.2 | 152452352 | 152621841 | 0.336881 | 0.0315645 | 4.329 | 9.449 | 0.071866 | 4.687627 | A118 | in |
| RO66P24 | RP11-798A10 | 5 | q35.2 | 175185697 | 17535168 | 0.485902 | 0.0227787 | 11.089 | 5.603 | 0.071866 | 6.761222 | A118 | gain |
| RO35G22 | RP11-506L4 | 5 | q35.3 | 179650299 | 17983121 | 0.287939 | 0.0414556 | 10.536 | 9.282 | 0.071851 | 4.007446 | A75 | gain |
| RO42K13 | RP11-625D22 | 6 | p23 | 14164567 | 14370368 | 0.313224 | 0.0407591 | 8.809 | 11.924 | 0.071866 | 4.358445 | A118 | gain |
| RO66C01 | RP11-650L9 | 6 | p11.1 | 58483534 | 58667977 | 0.31482 | 0.0857721 | 5.217 | 8.314 | 0.076899 | 4.093941 | A137 | gain |
| R09A13 | RP11-92112 | 6 | q16.3 | 103442960 | 103604028 | -0.242568 | 0.0182229 | 4.97 | 4.239 | 0.071866 | -3.37528 | 118 | loss |
| RO20F08 | RP11-278D12 | 6 | q22.1 | 113973438 | 114122489 | -0.453926 | 0.0664879 | 12.549 | 8.891 | 0.071866 | -6.31628 | A118 | loss |
| R063N10 | RP11-324H19 | 6 | q22.31 | 125778192 | 125951756 | 0.36266 | 0.0680322 | 4.833 | 4.766 | 0.076899 | 4.716056 | A137 | gain |
| RO42F09 | RP11-629G5 | 7 | p21.1 | 18699485 | 18843722 | 0.272669 | 0.0120229 | 8.796 | 11.119 | 0.071866 | 3.794131 | A118 | ain |
| RO66F15 | RP11-737K4 | 7 | p14.1 | 38317139 | 38487572 | 0.270778 | 0.0836083 | 5.876 | 7.195 | 0.071866 | 3.767818 | A118 | gain |
| RO59D24 | CTD-2057A11 | 7 | p14.1 | 39094056 | 39250068 | 0.343873 | 0.0083736 | 7.782 | 9.9 | 0.071866 | 4.784919 | A118 | gain |
| RO63D12 | RP11-29909 | 7 | q21.11 | 84194243 | 84365508 | 0.261287 | 0.0786911 | 5.634 | 4.704 | 0.071866 | 3.635753 | A118 | gain |
| RO67121 | RP11-1279M16 | 7 | q21.13 | 88320492 | 88498710 | 0.46968 | 0.0461967 | 4.25 | 4.237 | 0.076899 | 6.107752 | A137 | gain |
| RO8D11 | RP11-86H8 | 7 | q31.1 | 110936386 | 111097114 | -0.47501 | 0.0092985 | 16.874 | 9.816 | 0.071866 | -6.60966 | A118 | oss |
| RO21114 | RP11-288L5 | 7 | q32.3 | 130338884 | 130529807 | -0.267959 | 0.0036932 | 9.555 | 5.364 | 0.076849 | -3.48682 | A8 | oss |


| RO32M12 | RP11-459H7 | 7 | q36.3 | 155707994 | 155932827 | 0.353235 | 0.0052071 | 22.606 | 7.246 | 0.076899 | 4.593493 | A137 | gain |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R067L21 | RP13-631H19 | 8 | p12 | 37399409 | 37535863 | 0.239449 | 0.0686205 | 16.19 | 9.359 | 0.071866 | 3.331882 | A118 | gain |
| RO64N10 | RP11-465K16 | 8 | p11.21 | 40778858 | 40972561 | 0.273926 | 0.0186655 | 8.474 | 5.456 | 0.071851 | 3.812417 | 75 | ain |
| RO44F10 | RP11-651022 | 8 | p11.21 | 43028640 | 43224677 | 0.359587 | 0.0478506 | 4.669 | 3.746 | 0.071851 | 5.004621 | 75 | in |
| RO40B22 | RP11-610C11 | 8 | q13.1 | 67209150 | 67436697 | 0.313038 | 0.0193316 | 5.438 | 3.974 | 0.071851 | 4.356766 | A75 | n |
| RO58L24 | CTD-2010C15 | 8 | q21.11 | 77209526 | 77359732 | 0.444097 | 0.0590123 | 10.213 | 7.881 | 0.100216 | 4.431398 | A51 |  |
| RO58N16 | CTD-2010G21 | 8 | q23.1 | 107583259 | 107713603 | 0.390155 | 0.009087 | 6.122 | 7.438 | 0.076899 | 5.073603 | A137 | - |
| RO1A15 | RP11-1A23 | 8 | q24.13 | 124780127 | 124954329 | -0.268898 | 0.0656775 | 8.283 | 6.38 | 0.076899 | -3.49677 | 37 | loss |
| RO18P15 | RP11-23802 | 8 | q24.22 | 132286383 | 132447254 | 0.29836 | 0.0102269 | 3.467 | 3.717 | 0.076899 | 3.879894 | 37 | gain |
| RO70B03 | RP11-144K8 | 8 | q24.3 | 142872355 | 143036068 | 0.501523 | 0.0945861 | 7.75 | 10.518 | 0.076899 | 6.52184 | A137 | n |
| RO52N16 | RP11-754E16 | 8 | q24.3 | 143213865 | 143301529 | 0.41669 | 0.0497216 | 4.364 | 5.156 | 0.100216 | 4.157919 | 51 | in |
| RO33G13 | RP11-467K20 | 9 | p21.3 | 21965732 | 22150198 | 0.444524 | 0.0467249 | 7.135 | 9.093 | 0.076899 | 5.780621 | A137 |  |
| R068F06 | RP11-603E21 | 9 | p21.1 | 29426014 | 29599173 | 0.331981 | 0.0067543 | 5.38 | 4.587 | 0.076899 | 4.317104 | A137 | n |
| RO7F14 | RP11-76C9 | 9 | p21.1 | 31283693 | 31430872 | -0.244388 | 0.0733835 | 5.46 | 4.681 | 0.071866 | -3.40061 | A118 | loss |
| RO16D22 | RP11-192112 | 9 | p13.3 | 35317928 | 35497319 | 0.666228 | 0.0970702 | 4.261 | 6.645 | 0.111152 | 5.993846 | A39 | in |
| RO8N11 | RP11-8913 | 9 | p12 | 40664093 | 40859472 | -0.277965 | 0.0075816 | 16.648 | 8.281 | 0.076849 | -3.61703 | 8 | oss |
| RO5I19 | RP11-44K23 | 9 | p11.2 | 43454734 | 43631985 | -0.39866 | 0.0153272 | 8.137 | 5.699 | 0.076849 | -5.18767 | A8 | s |
| RO24P08 | RP11-346L5 | 9 | q12 | 68280728 | 68468579 | -0.440136 | 0.0335968 | 5.995 | 10.256 | 0.131551 | -3.34574 | A14 | S |
| R070F06 | RP11-175G16 | 9 | q22.1 | 89988405 | 90172770 | 0.24585 | 0.0199616 | 3.71 | 4.867 | 0.071866 | 3.42095 | A118 | n |
| RO33C01 | RP11-467B11 | 9 | q31.1 | 101917303 | 102098845 | 0.28466 | 0.0549768 | 7.779 | 10.707 | 0.076899 | 3.701739 | A137 | n |
| RO68A12 | RP11-44G6 | 9 | q31.2 | 107666667 | 107813656 | 0.303278 | 0.0027068 | 7.452 | 4.063 | 0.076899 | 3.9438 | 137 | ain |
| RO66D15 | RP11-730A19 | 10 | p13 | 13062307 | 13253628 | -0.305214 | 0.007694 | 6.934 | 8.734 | 0.071866 | -4.24699 | A118 | oss |
| RO60F20 | CTD-2265D13 | 10 | p11.22 | 31619726 | 31669689 | -0.47732 | 0.0131501 | 6.411 | 8.046 | 0.131551 | -3.6284 | A14 | loss |
| RO4I02 | RP11-33116 | 10 | p11.22 | 31711322 | 31868133 | -0.27203 | 0.0293789 | 14.3 | 7.336 | 0.076849 | -3.5398 | A8 | s |
| RO66H23 | RP11-745A18 | 10 | q11.23 | 53025431 | 53219133 | 0.247577 | 0.0688736 | 7.317 | 6.843 | 0.071866 | 3.444981 | A118 | n |
| RO1102 | RP11-3D5 | 10 | q21.1 | 7052410 | 7216834 | -0.258206 | 0.0313411 | 5.922 | 3.949 | 0.076899 | -3.35773 | 137 | s |
| RO63J22 | RP11-318J23 | 10 | q21.3 | 65711959 | 65891133 | 0.583614 | 0.0814764 | 4.356 | 5.302 | 0.076899 | 7.589357 | 137 | n |
| RO49F21 | RP11-714J11 | 10 | q23.33 | 95288778 | 95447597 | 0.24062 | 0.0474172 | 9.407 | 10.491 | 0.071866 | 3.348176 | A118 | n |
| RO44G21 | RP11-642K1 | 10 | q26.13 | 125774542 | 125856402 | 0.313314 | 0.0276415 | 8.847 | 9.466 | 0.076899 | 4.074357 | A137 |  |
| RO65D12 | RP11-614E16 | 11 | p14.1 | 27482159 | 27659272 | 0.325842 | 0.0414669 | 3.046 | 3.03 | 0.071866 | 4.534022 | A118 | in |
| RO36C21 | RP11-522B1 | 11 | q13.4 | 74035539 | 74186161 | 0.266201 | 0.0328281 | 7.116 | 17.275 | 0.076899 | 3.461697 | 137 | n |
| RO10B19 | RP11-106P8 | 11 | q14.1 | 79463518 | 79616021 | -0.253873 | 0.0677924 | 6.739 | 6.443 | 0.071851 | -3.53333 | A75 | oss |
| RO50J14 | RP11-728G23 | 11 | q14.1 | 84557237 | 84734682 | 0.337978 | 0.0340642 | 7.285 | 9.13 | 0.071866 | 4.702891 | A118 | ain |
| RO4E19 | RP11-29E15 | 11 | q14.1 | 84858148 | 85007763 | -0.258203 | 0.0171912 | 11.884 | 6.614 | 0.076849 | -3.35987 | 8 | loss |
| RO4A06 | RP11-31E14 | 11 | q22.3 | 106116314 | 106270764 | -0.261308 | 0.05727 | 6.467 | 4.033 | 0.076849 | -3.40028 | A | Oss |
| RO10P15 | RP11-109E10 | 11 | q24.1 | 122629237 | 122798552 | 0.332965 | 0.0714934 | 4.373 | 3.928 | 0.076849 | 4.332717 | A8 | in |
| RO50N15 | RP11-726G1 | 12 | p13.31 | 9478300 | 9654291 | 0.422425 | 0.0787759 | 8.693 | 12.036 | 0.071866 | 5.877953 | A118 | n |
| RO6A15 | RP11-55E6 | 12 | p12.3 | 17693010 | 17816827 | -0.292601 | 0.0250252 | 3.969 | 3.054 | 0.076899 | -3.805 | A137 | oss |
| RO59N10 | CTD-2103G15 | 12 | q13.13 | 48916511 | 49097669 | 0.349693 | 0.0791161 | 7.767 | 8.691 | 0.076899 | 4.547432 | A137 | n |
| RO18G23 | RP11-222A15 | 12 | q13.2 | 54118477 | 54287319 | 0.398468 | 0.0811836 | 5.489 | 4.834 | 0.071866 | 5.544597 | A118 |  |
| RO69L10 | RP11-78L11 | 12 | q14.2 | 61570376 | 61745520 | 0.2413 | 0.0481929 | 20.234 | 5.343 | 0.071851 | 3.358339 | A75 |  |
| RO9116 | RP11-96C17 | 12 | q21.1 | 72035686 | 72183994 | -0.312471 | 0.0349198 | 10.521 | 5.898 | 0.076849 | -4.06604 | A8 |  |
| RO68121 | CTD-2259B14 | 12 | q21.1 | 72078504 | 72180449 | 0.302768 | 0.0510871 | 5.711 | 5.457 | 0.076899 | 3.937216 | A137 | n |
| RO50L19 | RP11-726C4 | 12 | q21.32 | 85201787 | 85406009 | 0.312927 | 0.04517 | 5.227 | 6.116 | 0.076849 | 4.07197 | A8 |  |
| RO13E22 | RP11-140J20 | 12 | q23.1 | 6283836 | 96447914 | 0.299916 | 0.0904121 | 4.876 | 4.411 | 0.076899 | 3.900129 | A137 | in |
| RO69B04 | RP11-63B18 | 12 | q23.1 | 96437047 | 96592806 | 0.471741 | 0.0005402 | 40.47 | 72.191 | 0.111152 | 4.244107 | A39 | gain |
| RO50115 | RP11-719P9 | 12 | q23.1 | 99888331 | 100086721 | 0.392805 | 0.0268227 | 8.689 | 11.255 | 0.076899 | 5.108064 | A137 | gain |
| RO7M07 | RP11-6811 | 13 | q13.2 | 34485139 | 34666538 | -0.29899 | 0.0186556 | 7.648 | 4.721 | 0.076849 | -3.89062 | A8 | loss |
| R013E01 | RP11-138D23 | 13 | q21.32 | 66378445 | 66542967 | -0.299936 | 0.0473627 | 4.869 | 3.511 | 0.076899 | -3.90039 | A137 | loss |
| RO13N12 | RP11-148011 | 13 | q21.32 | 67175227 | 67343618 | 0.303854 | 0.0822882 | 5.954 | 3.438 | 0.076899 | 3.951339 | A137 | in |
| RO65L17 | RP11-597C19 | 13 | q21.33 | 67840459 | 68017187 | -0.263205 | 0.0086522 | 7.072 | 4.626 | 0.076849 | -3.42496 | A8 | loss |
| RO64B06 | RP11-440M10 | 13 | q31.1 | 82700870 | 82860135 | 0.688722 | 0.0846591 | 4.812 | 6.025 | 0.076899 | 8.956189 | A137 | gain |
| RO67G17 | RP11-811113 | 13 | q32.1 | 96593476 | 96807474 | -0.425103 | 0.0511132 | 7.924 | 6.5 | 0.071866 | -5.91522 | 118 | oss |
| R057F05 | RP11-805P2 | 14 | q12 | 26206655 | 26423170 | 0.252798 | 0.0313015 | 5.888 | 8.876 | 0.071866 | 3.51763 | A118 | gain |
| RO42G08 | RP11-626P14 | 14 | q12 | 26268979 | 26451739 | 0.497712 | 0.0497846 | 4.253 | 3.937 | 0.076899 | 6.472282 | A137 | in |
| RO20005 | RP11-267E16 | 14 | q13.1 | 33137499 | 33295974 | 0.850474 | 0.0564773 | 8.45 | 16.106 | 0.076899 | 11.05962 | 4137 | gain |
| R053F05 | RP11-761B1 | 14 | q21.1 | 39255957 | 39395014 | 0.246268 | 0.0361119 | 7.179 | 8.673 | 0.071866 | 3.426766 | 118 | in |
| RO6D18 | RP11-64F23 | 14 | q21.2 | 41577260 | 41758651 | 0.240207 | 0.0055642 | 4.731 | 5.796 | 0.071866 | 3.342429 | A118 | gain |
| R01A11 | RP11-1A16 | 14 | q21.3 | 45849446 | 46005115 | -0.26412 | 0.0560403 | 11.353 | 9.676 | 0.076899 | -3.43464 | A137 | oss |
| RO42001 | RP11-625K13 | 14 | q23.1 | 58416882 | 58604908 | 0.269958 | 0.0615515 | 6.349 | 7.971 | 0.071866 | 3.756408 | A118 | gain |
| RO4A02 | RP11-31E3 | 14 | q24.3 | 73034707 | 73200904 | -0.269286 | 0.0745114 | 8.889 | 6.07 | 0.076899 | -3.50181 | A137 | loss |
| RO22010 | RP11-312F4 | 15 | q21.3 | 54444378 | 54598110 | 0.658435 | 0.0623159 | 5.97 | 9.103 | 0.071866 | 9.161982 | A118 | ain |

Page | 46

| RO5O21 | RP11-45J10 | 15 | q22.31 | 61579923 | 61736764 | 0.310979 | 0.0158349 | 12.833 | 8.957 | 0.066893 | 4.648902 | A26 | in |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RO29M16 | RP11-418F16 | 15 | q25.3 | 83235499 | 83414337 | 0.266466 | 0.0275984 | 15.926 | 7.079 | 0.076899 | 3.465143 | A137 | ain |
| RO1A24 | RP11-2M20 | 16 | p12.3 | 17074705 | 17250823 | -0.267167 | 0.0743339 | 14.906 | 3.56 | 0.076899 | -3.47426 | A137 | oss |
| RO32001 | RP11-456C20 | 17 | q22 | 50530395 | 50751652 | 0.257666 | 0.0690553 | 9.363 | 11.737 | 0.076899 | 3.350707 | A137 | gain |
| R069017 | RP11-17H21 | 17 | q23.3 | 59684680 | 59845552 | 0.274758 | 0.0071057 | 10.52 | 9.025 | 0.076849 | 3.575297 | A8 | gain |
| R070109 | RP11-98G11 | 17 | q25.3 | 75393657 | 75565478 | 0.258249 | 0.030605 | 7.365 | 7.729 | 0.076899 | 3.358288 | A137 | ain |
| RO69N15 | RP11-59111 | 18 | p11.32 | 37518 | 178873 | 0.906524 | 0.0297812 | 6.392 | 11.332 | 0.076899 | 11.7885 | 137 | in |
| RO68A08 | RP11-20115 | 19 | q13.33 | 57123599 | 57310836 | 0.27021 | 0.0255294 | 8.219 | 7.879 | 0.076899 | 3.51383 | A137 | in |
| RO54P16 | RP11-777H15 | 20 | q11.21 | 30235601 | 30446679 | 0.476557 | 0.0044265 | 3.586 | 4.502 | 0.111027 | 4.292262 | A1 | gain |
| RO1J08 | RP11-8J1 | 20 | q13.13 | 48087051 | 48213089 | -0.48188 | 0.0700382 | 14.208 | 13.568 | 0.131551 | -3.66307 | A14 | s |
| RO22F12 | RP11-316F6 | 21 | q21.2 | 25340087 | 25515908 | 0.288355 | 0.0839074 | 8.124 | 7.539 | 0.076899 | 3.749789 | A137 | ain |
| R061108 | CTD-2385G3 | 21 | q22.3 | 44518520 | 44620833 | 0.418591 | 0.0408149 | 3.547 | 3.976 | 0.076899 | 5.443387 | A137 | gain |
| RO68002 | RP13-513N1 | X | p21.3 | 27774072 | 27944947 | 0.276639 | 0.0693283 | 5.563 | 5.874 | 0.076849 | 3.599774 | A8 | gain |
| RO68B18 | RP11-183D14 | X | p21.3 | 28368505 | 28540790 | 0.427304 | 0.0317378 | 7.309 | 6.696 | 0.076899 | 5.556691 | A137 | ain |
| R061J17 | CTD-2183E12 | X | p11.4 | 42299586 | 42425357 | 0.381155 | 0.0093833 | 8.247 | 8.666 | 0.076899 | 4.956566 | A137 | gain |
| R067L07 | RP13-626116 | X | p11.21 | 56286352 | 56436154 | -0.27009 | 0.0026177 | 4.906 | 3.875 | 0.071866 | -3.75824 | A118 | loss |
| RO58H12 | CTD-2008K20 | X | q21.32 | 92605050 | 92702456 | 0.327184 | 0.0500391 | 5.759 | 6.821 | 0.071866 | 4.552695 | A118 | ain |
| RO61P12 | RP11-19M10 | X | q27.3 | 145275725 | 145451069 | 0.268799 | 0.0327518 | 4.392 | 4.661 | 0.071866 | 3.740281 | A118 | gain |
| RO15B01 | RP11-166018 | Y | q11.221 | 17496617 | 17617587 | -0.262797 | 0.0397974 | 6.544 | 5.919 | 0.071866 | -3.65676 | A118 | loss |
| R01F03 | RP11-517 | Y | q11.222 | 20889976 | 21063742 | -0.313962 | 0.0168836 | 7 | 6.363 | 0.071866 | -4.36871 | A118 | loss |
| RO58C02 | RP11-814F19 | $Y$ | q11.223 | 25156032 | 25333309 | 0.53047 | 0.0022069 | 6.159 | 14.612 | 0.131551 | 4.032428 | A14 | gain |
| RO29122 | RP11-418A1 | $Y$ | q11.23 | 25546517 | 25733298 | 0.466481 | 0.0321437 | 3.275 | 4.214 | 0.131551 | 3.546009 | A14 | gain |
| RO50D01 | RP11-724G24 | Y | q11.23 | 25678272 | 25845689 | -0.37497 | 0.0400576 | 9.152 | 8.175 | 0.100216 | -3.74162 | A51 | loss |


| Legend |  |
| :--- | :--- |
| Sample |  |
| ID |  |
| A1 |  |
| A8 |  |
| A14 |  |
| A26 |  |
| A39 |  |
| A51 |  |
| A75 |  |
| A118 |  |
| A137 |  |

Tier 1
Thresh score (SD/SNR) <-3.33 or >3.33
SNR of BAC $\geq 10$
Filtered out all CNVs present in >1 individual in 95 normals (same platform; Wan Lam)

Tier 2
Thresh score <-3.33 or >3.33
SNR of BAC $\geq 3$
Filtered out all CNVs present in >1 individual in 95 normals (same platform; Wan Lam)

Appendix 2: Table A2. High Confidence Autism Associated Multi-BAC CNVs

| $\begin{array}{\|l} \hline \text { Chr } \\ \text { No. } \\ \hline \end{array}$ | Banding | BP StartPos <br> (UCSC Mar 2006) | BP EndPos <br> (UCSC Mar 2006) | Ratio (Normal ized Cy3/Cy5 Log2 Ratio) | Standard <br> Deviation | $\begin{array}{r} \text { SNR } \\ \text { Ch1 } \\ (595) \\ \hline \end{array}$ | SNR <br> Ch2 (685) | SDauto <br> (standard diviation of the ratios of each probe from chr 1 22) | Thresh <br> Score <br> (Ratio/S <br> Dauto) | Sample <br> (1 color <br> / <br> sample) | $\mathrm{g} / \mathrm{l}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | p13.1 | 74988527 | 75142707 | 0.2473 | 0.030594 | 50.426 | 54.109 | 0.07167 | 3.4499 | A75 | gain |
| 2 | p13.1 | 75115704 | 75274189 | 0.4487 | 0.025444 | 22.177 | 19.261 | 0.07167 | 6.2605 | A75 | gain |
| 2 | p13.1 | 75226841 | 75425458 | 0.2421 | 0.00185 | 38.945 | 46.245 | 0.07167 | 3.3773 | A75 | gain |


| 2 | q 11.1 | 95399978 | 95568811 | 0.4646 | 0.000238 | 86.516 | 162.83 | 0.111086 | 4.182 | A39 | gain |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | q 11.2 | 95857272 | 96031199 | -0.3412 | 0.029387 | 16.539 | 16.305 | 0.100303 | -3.402 | A51 | loss |
| 2 | q 11.2 | 96212625 | 96383203 | 0.3505 | 0.005981 | 20.845 | 36.255 | 0.100303 | 3.4945 | A51 | gain |


| 2 | q 31.1 | 176631931 | 176808639 | 0.2985 | 0.025529 | 79.566 | 82.436 | 0.066748 | 4.4723 | A26 | gain |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | q 31.1 | 177083977 | 177242722 | 0.2927 | 0.000708 | 75.093 | 72.711 | 0.066748 | 4.3859 | A26 | gain |
| 2 | q 31.1 | 177427021 | 177609208 | 0.2733 | 0.013666 | 10.393 | 12.304 | 0.073771 | 3.7053 | A137 | gain |


| 4 | p 16.3 | 2384072 | 2472983 | 0.3325 | 0.006866 | 23.859 | 26.812 | 0.073771 | 4.5068 | A137 | gain |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 4 | p 16.3 | 2475663 | 2659104 | 0.3376 | 0.002179 | 19.321 | 25.107 | 0.073771 | 4.5767 | A137 | gain |


| 4 | p 11 | 48760365 | 48941412 | -0.2838 | 0.026954 | 127.71 | 87.773 | 0.066748 | -4.252 | A26 | loss |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | p 11 | 48855123 | 48941378 | -0.2395 | 0.012446 | 102.81 | 77.167 | 0.066748 | -3.589 | A26 | loss |
| 4 | p 11 | 49184918 | 49238843 | -0.4341 | 0.03523 | 38.012 | 11.879 | 0.112428 | -3.861 | A1 | loss |
| 4 | p 11 | 49281935 | 49326349 | -0.2263 | 0.003055 | 128.64 | 87.012 | 0.066748 | -3.391 | A26 | loss |


| 6 | p 21.1 | 41456894 | 41671891 | 0.533 | 0.091675 | 58.274 | 133.7 | 0.111086 | 4.7977 | A39 | gain |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | p 21.1 | 41510587 | 41701770 | 0.4311 | 0.002591 | 54.377 | 81.485 | 0.111086 | 3.8803 | A39 | gain |


| 9 | q 12 | 68164115 | 68282615 | -0.3876 | 0.005926 | 16.026 | 14.248 | 0.112428 | -3.448 | A 1 | loss |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 9 | q 12 | 68221319 | 68447264 | -0.3765 | 0.037569 | 32.902 | 37.234 | 0.112428 | -3.349 | A 1 | loss |


| 12 | q 13.13 | 52541438 | 52732799 | 0.4585 | 0.009104 | 79.974 | 128.2 | 0.111086 | 4.1276 | A39 | gain |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 12 | q 13.13 | 52695946 | 52866729 | 0.609 | 0.008809 | 114.9 | 273.57 | 0.111086 | 5.4823 | A39 | gain |
|  |  |  |  |  |  |  |  |  |  |  |  |
| 12 | q 13.2 | 53041821 | 53231620 | 0.3898 | 0.026215 | 79.703 | 103.39 | 0.111086 | 3.5093 | A39 | gain |


| 12 | q 23.3 | 106831834 | 106997898 | -0.3259 | 0.0319 | 37.869 | 31.34 | 0.07167 | -4.547 | A75 | loss |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 12 | q 23.3 | 106899825 | 107062279 | -0.3327 | 0.036087 | 49.144 | 20.44 | 0.07167 | -4.642 | A75 | loss |


| 15 | q 24.1 | 71985268 | 72141641 | 0.4458 | 0.001785 | 27.509 | 52.143 | 0.111086 | 4.0131 | A39 | gain |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 15 | q 24.1 | 72244696 | 72412336 | -0.3799 | 0.028438 | 121.92 | 179.79 | 0.111086 | -3.419 | A39 | loss |


| 16 | q 13 | 55095980 | 55251063 | 0.3883 | 0.006653 | 68.105 | 163.08 | 0.111086 | 3.4951 | A39 | gain |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |
| 16 | q 13 | 55211316 | 55369561 | 0.5844 | 0.015712 | 44.675 | 141.42 | 0.111086 | 5.2609 | A39 | gain |


|  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 19 | p 13.12 | 14015002 | 14153121 | 0.2576 | 0.017678 | 42.295 | 45.186 | 0.07167 | 3.5947 | A75 | gain |
| 19 | p 13.12 | 14069923 | 14245943 | 0.254 | 0.034706 | 49.545 | 44.306 | 0.07167 | 3.5439 | A75 | gain |

Appendix 3: Table A3. CNVs Found in ACRD and Our Study

| Clone Name | $\left\|\begin{array}{c} \mathrm{Chr} \\ \mathrm{No} . \end{array}\right\|$ | $\begin{gathered} \text { BP Start } \\ \text { (UCSC Mar } \\ 2006) \\ \hline \end{gathered}$ | $\begin{gathered} \text { BP End } \\ \text { (UCSC Mar } \\ 2006) \\ \hline \end{gathered}$ | Ratio (Normalized Cy3/Cy5 Log2 Ratio) | Standard <br> Deviation | $\begin{array}{r} \text { SNR } \\ \text { Ch1 } \\ \text { (595) } \end{array}$ | $\begin{array}{\|c} \text { SNR } \\ \text { Ch2 } \\ (685) \\ \hline \end{array}$ | SDauto (standard diviation of the ratios of each probe from chr 1 22) | Thresh Score (Ratio/SD auto) | Sample <br> (1 color / |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Tier 1

| RP11-465B22 | 1 | 918163 | 1046699 | 0.239257 | 0.039818 | 22.04 | 23.88 | 0.066748 | 3.584482 | A26 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RP11-25A21 | 1 | 60807944 | 60980338 | 0.366584 | 0.034681 | 14.54 | 12.39 | 0.073771 | 4.969216 | A137 |
| RP11-212D5 | 1 | 150227817 | 150404751 | 0.373318 | 0.06219 | 61.24 | 134 | 0.111086 | 3.360622 | A39 |
| CTD-2003B3 | 1 | 204676883 | 204837914 | 0.257326 | 0.01329 | 84.67 | 88.31 | 0.066748 | 3.855187 | 26 |
| RP11-196C8 | 2 | 13032063 | 13188099 | -0.238977 | 0.013979 | 35.19 | 24.53 | 0.066748 | -3.58029 | A26 |
| RP11-723F23 | 2 | 14978618 | 15161195 | 0.549819 | 0.061044 | 12.69 | 16.76 | 0.073771 | 7.453051 | 137 |
| RP11-526C24 | 2 | 17558392 | 17595292 | -0.257904 | 0.030754 | 90.25 | 76.26 | 0.07167 | -3.59849 | A75 |
| RP11-117K20 | 3 | 159315572 | 159494764 | 0.27218 | 0.025486 | 85.08 | 62.14 | 0.07167 | 3.797684 | A75 |
| RP11-694E12 | 3 | 193655933 | 193832580 | -0.454193 | 0.002862 | 109.6 | 82.12 | 0.07167 | -6.33728 | A75 |
| RP11-141L5 | 4 | 819328 | 983918 | 0.32789 | 0.001193 | 20.86 | 21.56 | 0.066748 | 4.912357 | A26 |
| RP11-565M6 | 4 | 1530742 | 1691087 | 0.222639 | 0.034934 | 26.53 | 22.75 | 0.066748 | 3.335516 | A26 |
| RP11-448F22 | 4 | 2384072 | 2472983 | 0.332472 | 0.006866 | 23.86 | 26.81 | 0.073771 | 4.506812 | A137 |
| RP11-444J4 | 4 | 2475663 | 2659104 | 0.337627 | 0.002179 | 19.32 | 25.11 | 0.073771 | 4.57669 | 137 |
| RP11-431J16 | 4 | 21912514 | 22118512 | 0.382154 | 0.042181 | 10.92 | 13.89 | 0.073771 | 5.180274 | A137 |
| RP11-134M4 | 4 | 90847963 | 91018998 | -0.550377 | 0.009356 | 44.23 | 51.05 | 0.111086 | -4.95451 | A39 |
| RP11-659P17 | 4 | 97390836 | 97583629 | 0.484092 | 0.020737 | 97.36 | 195.2 | 0.111086 | 4.357813 | A39 |
| RP11-637124 | 4 | 164173596 | 164206678 | 0.44381 | 0.038487 | 34.38 | 83.38 | 0.111086 | 3.995193 | A39 |
| RP11-14K14 | 4 | 190673393 | 19081164 | 0.398252 | 0.08705 | 113.6 | 202.5 | 0.111086 | 3.585078 | A39 |
| RP11-656C20 | 5 | 350722 | 447421 | 0.251496 | 0.017311 | 64.23 | 58.45 | 0.066748 | 3.767843 | A26 |
| RP11-161F13 | 5 | 1562894 | 1724268 | -0.255112 | 0.013584 | 18.61 | 14.81 | 0.06782 | -3.7616 | A118 |
| RP11-778E14 | 5 | 2592645 | 2774473 | 0.289887 | 0.062522 | 21.96 | 25.17 | 0.073771 | 3.929552 | A137 |
| RP11-99E23 | 5 | 174208465 | 174386441 | -0.428273 | 0.083377 | 44.96 | 38.91 | 0.111086 | -3.85533 | A39 |
| RP11-26H18 | 6 | 7545199 | 7735839 | 0.353082 | 0.023407 | 28.15 | 29.93 | 0.100303 | 3.520154 | A51 |
| RP11-346C16 | 6 | 110941778 | 111130824 | 0.28682 | 0.001887 | 11.04 | 13.81 | 0.073771 | 3.887978 | A137 |
| CTD-2310D7 | 6 | 113915311 | 114052447 | -0.350276 | 0.087168 | 14.87 | 11.19 | 0.06782 | -5.16479 | A118 |
| RP11-403C11 | 6 | 114313227 | 114352792 | -0.257576 | 0.030125 | 83.23 | 69.69 | 0.066748 | -3.85893 | A26 |
| CTD-2260L17 | 7 | 797562 | 898228 | 0.226066 | 0.022829 | 42.21 | 43.15 | 0.066748 | 3.386858 | A26 |
| CTD-2380A4 | 7 | 15155609 | 15320915 | 0.242054 | 0.010675 | 10.6 | 10.46 | 0.066748 | 3.626386 | A26 |
| RP11-455J15 | 7 | 16700151 | 16863920 | 0.318534 | 0.012703 | 15.96 | 16.92 | 0.073771 | 4.317876 | A137 |
| RP11-818112 | 7 | 124755570 | 124943364 | 0.28215 | 0.041623 | 17.91 | 17.16 | 0.066748 | 4.227093 | A26 |
| RP11-674O21 | 8 | 3049068 | 3251231 | 0.429 | 0.015461 | 48.48 | 116.5 | 0.111086 | 3.861873 | A39 |
| RP11-652N4 | 8 | 4901876 | 5127620 | 0.240296 | 0.061576 | 74.88 | 55.14 | 0.07167 | 3.352811 | A75 |
| RP11-102I24 | 10 | 13089369 | 13228260 | 0.251713 | 0.015452 | 91.26 | 94.58 | 0.066748 | 3.771094 | A26 |
| RP11-818P1 | 10 | 42987824 | 43202215 | 0.281415 | 0.002531 | 10.33 | 11.61 | 0.074813 | 3.761579 | A8 |
| RP11-30N1 | 10 | 51121592 | 51195063 | -0.289387 | 0.005939 | 17.06 | 13.7 | 0.06782 | -4.26699 | A118 |

Page | 50

| RP11-296M15 | 11 | 133545363 | 133721889 | 0.271078 | 0.019537 | 71.41 | 71.26 | 0.066748 | 4.061215 | A26 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RP11-440N2 | 12 | 36720939 | 36889175 | 0.405225 | 0.054953 | 16.72 | 21.19 | 0.073771 | 5.493012 | 137 |
| RP11-26G8 | 12 | 57636373 | 57812533 | 0.362373 | 0.044189 | 18.94 | 20.3 | 0.073771 | 4.912133 | A137 |
| RP13-552N19 | 12 | 130837437 | 130869768 | 0.403183 | 0.086379 | 10.94 | 28.74 | 0.111086 | 3.629467 | A39 |
| RP11-563G5 | 13 | 18014607 | 18190654 | 0.49662 | 0.020139 | 111.7 | 110 | 0.111086 | 4.47059 | 39 |
| RP11-51H10 | 13 | 113492713 | 113658045 | 0.489403 | 0.042209 | 42.72 | 92.72 | 0.111086 | 4.405623 | A39 |
| RP11-520H13 | 14 | 64706822 | 64880159 | 0.264777 | 0.022368 | 18.64 | 17.34 | 0.07167 | 3.694391 | A75 |
| RP11-218L8 | 14 | 86490679 | 86613015 | -0.387777 | 0.024405 | 26.08 | 29.42 | 0.112428 | -3.44911 | A1 |
| RP11-607H20 | 15 | 18273500 | 18473311 | -0.251218 | 0.005564 | 14.47 | 10.05 | 0.074813 | -3.35795 | A8 |
| RP11-641K15 | 15 | 18781625 | 18946020 | -0.248226 | 0.002765 | 24.74 | 23.85 | 0.06782 | -3.66007 | A118 |
| RP11-403L7 | 15 | 18898414 | 19048601 | -0.385608 | 0.009341 | 255.3 | 386.6 | 0.111086 | -3.47126 | A39 |
| RP11-768D20 | 15 | 21886511 | 22055073 | -0.38372 | 0.022012 | 18.81 | 20.56 | 0.112428 | -3.41303 | A1 |
| CTD-2315M12 | 15 | 24567294 | 24683390 | 0.434072 | 0.004535 | 37.98 | 33.56 | 0.111086 | 3.907531 | A39 |
| RP11-561P13 | 15 | 26135317 | 26310601 | -0.245656 | 0.048374 | 18.28 | 15.66 | 0.06782 | -3.62218 | A118 |
| RP11-6L23 | 15 | 71985268 | 72141641 | 0.445803 | 0.001785 | 27.51 | 52.14 | 0.111086 | 4.013134 | 39 |
| RP11-775D1 | 15 | 72244696 | 72412336 | -0.379857 | 0.028438 | 121.9 | 179.8 | 0.111086 | -3.41949 | A39 |
| RP11-605N4 | 16 | 55095980 | 55251063 | 0.388252 | 0.006653 | 68.11 | 163.1 | 0.111086 | 3.495058 | 39 |
| RP11-343H19 | 16 | 55211316 | 55369561 | 0.584413 | 0.015712 | 44.68 | 141.4 | 0.111086 | 5.260906 | A39 |
| RP11-798C7 | 17 | 76834696 | 77076142 | 0.248783 | 0.04408 | 13.98 | 22.26 | 0.07167 | 3.471229 | 5 |
| RP11-453P5 | 18 | 56301614 | 56482301 | 0.244348 | 0.056018 | 50.52 | 55.02 | 0.07167 | 3.409348 | A75 |
| RP11-711F2 | 18 | 71337342 | 71520536 | 0.238207 | 0.045352 | 10.43 | 11.52 | 0.06782 | 3.512341 | A118 |
| RP11-703H17 | 18 | 74556232 | 74771957 | 0.383839 | 0.051755 | 34.16 | 81.72 | 0.111086 | 3.455332 | A39 |
| RP11-7H17 | 18 | 75216360 | 75402240 | 0.256705 | 0.035492 | 54.96 | 54.6 | 0.066748 | 3.845883 | A26 |
| RP11-543F7 | 19 | 33742778 | 33936080 | 0.331168 | 0.027284 | 81.34 | 58.75 | 0.07167 | 4.620734 | 75 |
| RP11-705C4 | 19 | 60715146 | 60850444 | 0.241451 | 0.025361 | 26.32 | 26.44 | 0.07167 | 3.368927 | A75 |
| RP11-476I15 | 20 | 62263781 | 62434320 | 0.26224 | 0.001918 | 34.08 | 32.49 | 0.066748 | 3.928807 | A26 |
| RP11-652F11 | 22 | 18002150 | 18171498 | 0.291579 | 0.020793 | 72.26 | 53.67 | 0.07167 | 4.068355 | A75 |
| RP11-799D2 | 22 | 46893547 | 47064651 | 0.33546 | 0.000556 | 29.09 | 31.35 | 0.100303 | 3.344466 | A51 |
| RP11-423E19 | 22 | 49413876 | 49518700 | 0.241691 | 0.029247 | 56.17 | 33.55 | 0.066748 | 3.620947 | A26 |
| RP11-297F13 | X | 48575765 | 48734088 | 0.349604 | 0.008873 | 52.79 | 65.63 | 0.07167 | 4.877968 | A75 |
| RP11-211H10 | X | 49201123 | 49376616 | -0.228992 | 0.093953 | 17.52 | 14.12 | 0.06782 | -3.37647 | A118 |
| Tier 2 |  |  |  |  |  |  |  |  |  |  |
| RP11-201016 | 1 | 241113402 | 241143060 | -0.377712 | 0.003692 | 29.14 | 13.37 | 0.111027 | -3.40198 | A1 |
| RP11-633H24 | 2 | 154895951 | 155104293 | 0.252524 | 0.034344 | 4.399 | 6.016 | 0.071866 | 3.513817 | A118 |
| RP11-71901 | 2 | 165653881 | 165842181 | 0.27515 | 0.059472 | 9.813 | 10.68 | 0.076899 | 3.57807 | A137 |
| RP11-806C2 | 3 | 1841954 | 2043596 | 0.240232 | 0.007984 | 8.316 | 12.33 | 0.071866 | 3.342777 | A118 |
| RP11-655G22 | 3 | 193133121 | 193305756 | 0.264123 | 0.044765 | 16.05 | 8.214 | 0.076899 | 3.434674 | A137 |
| RP11-72114 | 4 | 2716373 | 2926405 | 0.412427 | 0.095637 | 3.812 | 3.715 | 0.076899 | 5.36323 | A137 |
| RP11-18022 | 4 | 117414505 | 117570802 | 0.240949 | 0.008945 | 70.64 | 68.06 | 0.066893 | 3.602006 | A26 |
| CTD-2011021 | 4 | 191039899 | 191138136 | -0.371553 | 0.011956 | 50.38 | 28 | 0.111027 | -3.34651 | A1 |
| RP11-263G17 | 5 | 39200686 | 39246329 | -0.40495 | 0.026786 | 3.098 | 3.662 | 0.111027 | -3.64731 | A1 |
| CTD-2075G19 | 5 | 103890873 | 104011391 | 0.319472 | 0.016983 | 6.677 | 7.662 | 0.071866 | 4.445384 | A118 |
| RP11-144H10 | 5 | 120001738 | 120179752 | 0.405011 | 0.041323 | 6.166 | 6.076 | 0.071866 | 5.635641 | A118 |
| RP11-281H9 | 5 | 128933631 | 129091165 | 0.443518 | 0.022903 | 6.557 | 3.874 | 0.071866 | 6.171458 | A118 |
| RP11-625D22 | 6 | 14164567 | 14370368 | 0.313224 | 0.040759 | 8.809 | 11.92 | 0.071866 | 4.358445 | A118 |
| RP11-278D12 | 6 | 113973438 | 114122489 | -0.453926 | 0.066488 | 12.55 | 8.891 | 0.071866 | -6.31628 | A118 |

Page | 51

| RP11-324H19 | 6 | 125778192 | 125951756 | 0.36266 | 0.068032 | 4.833 | 4.766 | 0.076899 | 4.716056 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RP11-29909 | 7 | 84194243 | 84365508 | 0.261287 | 0.078691 | 5.634 | 4.704 | 0.071866 | 3.635753 | A137 |
| RP11-1279M1 6 | 7 | 88320492 | 88498710 | 0.46968 | 0.046197 | 4.25 | 4.237 | 0.076899 | 6.107752 | A137 |
| RP11-86H8 | 7 | 110936386 | 111097114 | -0.47501 | 0.009298 | 16.87 | 9.816 | 0.071866 | -6.60966 | A118 |
| RP11-651O22 | 8 | 43028640 | 43224677 | 0.359587 | 0.047851 | 4.669 | 3.746 | 0.071851 | 5.004621 | A75 |
| RP11-467K20 | 9 | 21965732 | 22150198 | 0.444524 | 0.046725 | 7.135 | 9.093 | 0.076899 | 5.780621 | A137 |
| RP11-730N17 | 9 | 23690948 | 23798886 | -0.452101 | 0.026159 | 6.635 | 5.62 | 0.131551 | -3.4367 | A14 |
| RP11-603E21 | 9 | 29426014 | 29599173 | 0.331981 | 0.006754 | 5.38 | 4.587 | 0.076899 | 4.317104 | A137 |
| RP11-76C9 | 9 | 31283693 | 31430872 | -0.244388 | 0.073384 | 5.46 | 4.681 | 0.071866 | -3.40061 |  |
| RP11-730A19 | 10 | 13062307 | 13253628 | -0.305214 | 0.007694 | 6.934 | 8.734 | 0.071866 | -4.24699 |  |
| RP11-745A18 | 10 | 53025431 | 53219133 | 0.247577 | 0.068874 | 7.317 | 6.843 | 0.071866 | 3.444981 | A118 |
| RP11-3D5 | 10 | 57052410 | 57216834 | -0.258206 | 0.031341 | 5.922 | 3.949 | 0.076899 | -3.35773 | A137 |
| RP11-318J23 | 10 | 65711959 | 65891133 | 0.583614 | 0.081476 | 4.356 | 5.302 | 0.076899 | 7.589357 | A137 |
| RP11-138D23 | 13 | 66378445 | 66542967 | -0.299936 | 0.047363 | 4.869 | 3.511 | 0.076899 | -3.90039 | A137 |
| RP11-745K2 | 14 | 75867497 | 76087405 | 0.435484 | 0.014216 | 8.298 | 14.74 | 0.100216 | 4.345454 | A51 |
| RP11-418F16 | 15 | 83235499 | 83414337 | 0.266466 | 0.027598 | 15.93 | 7.079 | 0.076899 | 3.465143 | A137 |

