
	

	

Using	Refined	Least	Square	Image	Matching	to	Improve	3D	Reconstruction	under	

Gaussian	Blur	and	Motion	Blur	images	

	

Research	Thesis		

Presented	in	Partial	Fulfillment	of	the	Requirements	for	

	Graduation	with	Honor	Distinction	

	

By		

Xuyang	Han		

	

Undergraduate	program	in	Environmental	Engineering	

	

The	Ohio	State	University		

2017	

	

	

Research	Examination	Committee:		

Dr.	Rongjun	Qin,	Advisor	

Dr.	Alper	Yilmaz	

	

 2

	

	

	

	

	

	

	

	

	

Copyright	by		

Xuyang	Han		

2017	

	

	

	

	

	

	

	

	

	

	

 3

Abstract		

	

Image	matching,	defined	as	 the	process	of	 finding	corresponding	points	across	multiple	

images,	 is	 a	 critical	 step	 for	 accurate	measurement	 of	 3D	 objects.	 Least	 Square	 Image	

Matching	(LSM),	as	a	classic	point	matching	method,	is	known	for	its	high	accuracy	over	

the	competing	approaches	(up	to	1/10th	of	pixel-size).	However,	the	major	drawback	of	

Least	 Square	 Image	Matching	 is	 its	 high	 requirement	 on	 algorithm	 convergence,	which	

demands	 good	 image	 texture	 and	 initial	 solution.	 In	 addition,	 it	 deals	 with	 reasonable	

image	distortions,	while	being	limited	by	occluded	area	where	part	of	the	area	around	the	

points	 is	not	visible	 in	all	 images	and	high	computational	resources.	For	this	reason,	the	

state-of-the-art	procedure	tends	to	use	rather	less	accurate,	but	faster	and	more	robust	

point	matching	approaches.	But	these	approaches,	which	currently	are	widely	used	in	the	

3D	 reconstruction	 software,	 has	 not	 been	 examined	 carefully	 on	 their	 reliability	 and	

accuracy	 for	 images	 taken	 under	 various	 suboptimal	 acquisition	 conditions	 (e.g.	 image	

motion	blur).	Such	data,	if	being	the	only	source	and	impossible	for	recollection,	such	as	

those	from	emergent	disasters	or	historical	sources,	demand	for	much	more	reliable	and	

accurate	methods	for	reconstructing	3D	information.	

	

In	 this	 research,	 the	 classical	 LSM	matching	 approach	 has	 been	 revisited	 and	 the	 LSM	

robustness	has	been	 improved	by	modification	applying	bound	constraints	optimization	

and	good	window	size	selection.	Bound	constraints	are	set	based	on	the	previous	study.	

The	 bound	 in	 each	 iteration	 procedure	 can	 constrain	 the	 search	 for	 a	 solution	 to	 a	

 4

reasonable	 region	 and	 prevent	 the	 parameters	 for	 affine	 deformations	 and	 the	

illuminations	from	straying	from	the	correct	values.	The	window	size	will	be	adjusted	to	

be	 large	 enough	 to	 include	 strong	 features	 which	 has	 enough	 intensity	 variation	 for	

reliable	matching,	 but	 small	 enough	 to	 avoid	 severe	 occlusion	 problems.	 The	modified	

LSM	algorithm	has	been	 implemented	on	disparity	map,	and	the	convergence	has	been	

verified.	

	

Furthermore,	 how	photogrammetric	 3D	 reconstruction	 performs	using	 imageries	 under	

suboptimal	scenario	has	been	evaluated.	3D	reconstruction	using	various	blurred	images	

with	 different	 extent	 of	 blurriness	 is	 experimented	 using	 Apero	 photogrammetry	

software.	Such	blurriness	includes	Gaussian	blur	(often	resulting	from	camera	defocusing)	

and	directional	 and	unidirectional	motion	blur	 (often	 resulting	 from	unmatched	 shuttle	

speed	 to	 motion	 speed	 or	 platform	 oscillation	 (windy	 conditions)).	 3D	 reconstruction	

based	on	these	blurry	images	which	are	frequently	observed	in	small	UAVs	surveying	will	

degrade	the	quality	and	accuracy	of	3D	modeling.	To	carry	out	a	controlled	analysis,	the	

blurred	 images	used	 for	experiment	are	 synthetically	generated	using	different	blurring	

functions.	 The	 accuracy	 of	 the	 bundle	 adjustment	 and	 3D	 dense	 reconstruction	 using	

corresponding	 points	 from	 state-of-art	 point	 detectors	 (e.g.	 SIFT)	 and	 corresponding	

points	refined	by	LSM	is	compared.	The	robustness	of	the	state-of-the-art	point	detectors	

and	the	refinement	capability	of	LSM	under	different	blurriness	conditions	is	concluded.		

	

	

 5

Acknowledgements	

	

My	deepest	gratitude	to	my	advisor,	Dr.	Rongjun	Qin,	who	has	consistently	and	diligently	

supported	me	to	be	a	better	student	and	researcher.	Without	his	guidance,	 it	would	be	

impossible	to	learn	so	many	things	in	Photogrammetry	and	Computer	Vision	field.	I	would	

like	to	express	my	gratitude	for	providing	me	the	incredibly	valuable	opportunity	to	learn	

computer	engineering	for	future	research.	But	more	than	his	guidance	in	my	work,	I	want	

to	thank	him	for	his	ability	to	constantly	push	me	out	of	my	comfort	zone	and	continue	

the	 never-ending	 process	 of	 learning.	 Gratitude	 to	 my	 committee	 member,	 Dr.	 Alper	

Yilmaz	for	being	such	a	great	teacher.	I	would	like	to	thank	Singapore-ETH	Center,	Future	

Cities	Lab	to	provide	the	NUS	dataset	for	this	research.	 I	also	appreciate	my	family	who	

supported	 my	 education	 abroad	 in	 the	 U.S.	 Finally,	 gratitude	 to	 all	 my	 friends	 who	

provided	their	supports	and	feedbacks.		

	

	

	

	

	

	

	

	

	

 6

Table	of	Contents	

	

ABSTRACT...	3	

ACKNOWLEDGMENTS	...	5	

TABLE	OF	CONTENTS	...	6	

LIST	OF	FIGURES	..	8	

LIST	OF	TABLES..9	

Chapter	1	–	Introduction...10	

1.1	Background..10	

1.2	Research	Significance	...12	

1.3	Research	Objective	...13	

Chapter	2	–	Methodology	..14	

2.1	Cross	Correlation	(CC)...14	

2.2	Least	Square	Matching	Fundamentals..18	

2.3	Template	Window	Size	Selection..22	

2.4	Bound	Constraints	Optimization	..24	

2.5	Three-Dimension	Reconstruction	Evaluation	Using	Blurred	Images................27	

Chapter	3	–	Results...32	

3.1	Template	Size	selection…………………..……………32	

3.2	Bound	Optimization..39	

3.3	3D	Reconstruction	Improvement	Using	Refined	LSM45	

Chapter	4	–	The	Conclusion..49	

 7

4.1	Summary	..49	

4.2Future	Work...51	

REFERENCES..53	

APPENDIX..55	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

 8

List	of	Figures	

Figure	1:	Example	of	Area-based	Point	Matching	using	Cross	Correlation.........................15	

Figure	2:	Similarity	Distribution	among	All	pixels..16	

Figure	3: CC template matching using Repeating	patterns...17	

Figure	4:	Example	of	wrong	template	size	for	area-based	matching..................................23	

Figure	5:	Example	of	Affine	transformation	with	corresponding	skewness.......................24	

Figure	6:	Example	of	different	Degrees’	Gaussian	blur	images...28	

Figure	7:	Example	of	different	Degrees’	motion	blur	images...29	

Figure	8:	Example	of	Cloud	Points	generated	by	Apero	and	MSP.......................................30	

Figure	9:	Example	of	Point	Matching	using	31*31	pixels’	template...................................33	

Figure	10:	Parameter	Adjustment	Values	Using	31*31	Pixels’	Template…………………………34	

Figure	11:	Example	of	Point	Matching	using	131*131	pixels’	template.............................35	

Figure	12:	Parameter	Adjustment	Values	Using	31*31	Pixels’	Template	………………..………36	

Figure	13:	Example	of	Point	Matching	without	bound	optimization..................................39	

Figure	14	Parameter	Adjustment	Values	without	using	bound	optimization.....................40	

Figure	15:	Example	of	Point	Matching	with	bound	optimization..41	

Figure	16:	Parameter	Adjustment	Values	using	bound	optimization.................................42	

Figure	17:	Average	error	of	DSM	of	different	degrees	of	Gaussian	blur.............................46	

Figure	18:	Average	error	of	DSM	of	different	degrees	of	motion	blur................................47	

	

	

	

 9

List	of	Tables	

	

Table	1:	Matching	Cases	with	5	Different	Template	Sizes..37	

Table	2:	Matching	with	and	without	Using	Bound	Constrain	Optimization........................43	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

 10

Chapter	1:	Introduction		

	

1.1 Background:		

	

Photogrammetry	 is	 the	 science	 of	making	measurements	 from	 photographs,	 especially	

for	recovering	the	exact	positions	of	surface	points.	Three-dimensional	reconstruction,	as	

the	 core	 of	 the	 photogrammetry	 technology,	 is	 a	 process	 to	 convert	 multiple	 two-

dimensional	 stereo	 images	of	an	object	back	 to	a	 three-dimensional	model.	Finding	 the	

corresponding	 pixel	 on	 two	 images	 of	 the	 same	 physical	 region,	 defined	 as	 image	

matching,	 is	 a	 crucial	 step	 in	 3D	 reconstruction.	 The	 accuracy	 of	 image	 matching	 will	

directly	 influence	 the	 accuracy	 of	 3D	 reconstruction,	 thus	 affecting	 the	 measurement	

accuracy	and	further	analysis.		

	

Least	Square	image	matching	is	a	very	classic	image	matching	method,	known	for	the	high	

accuracy,	 which	 can	 be	 up	 to	 1/10th	 pixel.	 The	 concept	 of	 Least	 Square	 is	 to	 find	 an	

approximate	regression	solution	of	overdetermined	systems	ensuring	the	overall	solution	

minimizes	the	sum	of	squares	of	the	residuals	in	the	results	of	every	single	equation.	After	

LSM	 concept	 was	 created	 and	 developed,	 it	 was	 firstly	 applied	 in	 Photogrammetry	

measurement	by	Förstner	(1982).	Least	Square	concept	in	image	matching	is	to	minimize	

the	gray	level	differences	between	the	template	and	the	matching	windows	whereby	the	

position	 and	 the	 shape	 of	 the	 matching	 window	 are	 parameters	 to	 be	 determined	 in	

adjustment	 process.	 Since	 the	 noises	 are	 non-known	 for	 all	 pixels,	 the	 system	 is	 non-

 11

linear	 and	 needs	 to	 be	 solved	 by	 iterative	 refinement.	 In	 each	 iteration,	 the	 system	 is	

approximated	by	Taylor	linearization,	and	optimized	to	a	new	solution	until	convergence.		

	

Even	 the	 LSM	 has	 high	 accuracy,	 instability	 is	 its	 major	 drawback.	 LSM	 requires	 good	

image	 texture	 and	 initial	 solution	 for	 algorithm	 convergence.	 In	 addition,	 unreasonable	

image	distortions	and	occlusion	problems	may	lead	to	diverged	iterations	if	the	extent	is	

too	high.	Even	though	some	refinement	approach	such	as	Adaptive	Window	adjustment	

(Kanade,	Okutomi,	1991)	and	bound	constrained	optimization	(Hu,	2016)	was	researched,	

today’s	 3D	 reconstruction	 software	 do	 not	 use	 highly	 accurate	 Least	 Squares	Matching	

approach	but	use	less	accurate	but	more	robust	matching	method.		

	

Unmanned	 aerial	 systems	 (UAS)	 and	 unmanned	 aerial	 vehicles	 (UAV)	 are	 playing	

increasingly	important	roles	in	this	century	due	to	its	versatile	functionalities	of	surveying.	

Researchers	 are	 very	 interested	 in	 these	 flexible	 and	 low-cost	 plat-form	which	 reduces	

data	 acquisition	 time	 and	 accessible	 to	 dangerous	 environment	 monitoring	 scenes.	

However,	 motion	 blur	 images	 data	 frequently	 occurs	 in	 small	 UAVs	 surveying	 and	 the	

quality	 and	accuracy	of	 3D	modeling	 can	be	degraded.	 In	 addition,	 the	 state	of	 the	 art	

method,	which	are	widely	used	nowadays	may	not	exam	the	accuracy	for	these	 images	

taken	under	various	suboptimal	acquisition	conditions.		

	

	

	

 12

1.2 Research	Significance	

	

Through	this	research,	the	improved	accuracy	in	image	matching,	which	is	a	crucial	issue,	

can	 make	 progress	 and	 enable	 better	 performance	 in	 a	 broad	 range	 of	 applications:	

digital	 infrastructure/heritage	 recording,	 precise	 engineering	 measurement,	

Computational	 Fluid	 Dynamics	 (CFD)	 Simulation,	 land	 boundary	 mapping	 and	 terrain	

topography.	 Furthermore,	 academic	 achievements	 from	 this	 research	 can	 provide	

references	for	research	communities.	Since	LSM	is	a	conventional	and	widely	researched	

approach	 for	 image	matching,	 a	 good	 result	 overcoming	 the	 common	 drawbacks	 may	

contribute	important	knowledge	to	the	research	field.	

	

	

	

	

	

	

	

	

	

	

	

	

 13

1.3 Research	Objective	

	

In	performing	this	research	project,	three	goals	have	been	pursued.	Firstly,	revisiting	the	

classic	 LSM	 matching	 approach	 and	 improving	 the	 LSM	 robustness	 by	 modification	

applying	bound	constraints	optimization	and	using	good	window	size.	Secondly,	evaluate	

the	 sift	 point	 accuracy	 using	 Gaussian	 blur	 and	motion	 blur	 images	 data	 based	 on	 3D	

reconstruction	 result	 based	 on	 corresponding	 points	 generated	 by	 Apero	

photogrammetry	software.	Thirdly,	using	refined	LSM	to	optimize	the	3D	reconstruction	

accuracy	under	these	blur	images,	and	comparing	the	accuracy	of	the	bundle	adjustment	

and	3D	dense	reconstruction	using	corresponding	points	from	state-of-art	point	detectors	

(e.g.	 SIFT)	 and	 corresponding	 points	 refined	 by	 LSM,	 then	 evaluate	 if	 the	 accuracy	 is	

increased.		

	

	

	

	

	

	

	

	

	

	

 14

Chapter	2:	Methodology	

	

2.1	Cross	Correlation	(CC)	

	 	

Cross	correlation	 is	an	area-based	matching	process	 to	 look	 for	a	best	match	of	certain	

template	 within	 a	 larger	 size	 image	 background.	 It	 exhaustively	 searches	 every	 single	

position	within	the	background	(M	pixels	in	total)	and	find	the	position	where	it	has	the	

maximum	 similarity.	 Cross	 correlation	 only	 consider	 the	 plain	 translation.	 Other	

parameters	such	as	affine	transformation,	brightness	and	contrast	are	ignored	by	far.	The	

similarity,	ρ,	at	the	certain	position,	(u,v),	is	calculated	by	the	following	Equation	[1]:	

	

ρ"#"$ u, v =)*#*$ +,,
-.# +,, ∗-.$

																									[1]	

where:		

1. 𝜎1$represent	standard	deviation	of	intensity	values	of	template	g2:	

𝜎1$
2 = 3

453
∗ [𝑔22 𝑖9, 𝑗9;

9<3 − 3
;
∗ 𝑔2 𝑖9, 𝑗9;

9<3
2]																																				[2]	

2. 𝜎1# 𝑢, 𝑣 		represent	the	standard	deviation	of	 intensity	values	of	query	 image	g1	

in	the	area	of	template	g2	at	current	offset	[u,	v]:	

𝜎1#
2 (u, v) = 3

453
∗ [𝑔32 𝑖9 − 𝑢, 𝑗9 − 𝑣;

9<3 − 3
;
∗ 𝑔3 𝑖9 − 𝑢, 𝑗9 − 𝑣;

9<3
2]											[3]	

3. σ"#"$ 𝑢, 𝑣 	represent	the	covariance	between	intensity	of	g1	and	g2	in	the	area	of	

template	g2	at	current	offset	[u,	v]:	

 15

𝜎1#1$(u, v) =
3

453
∗ [𝑔3 𝑖9 − 𝑢, 𝑗9 − 𝑣 𝑔2 𝑖9, 𝑗9;

9<3 − 3
;
∗ 𝑔3 𝑖9 −;

9<3

𝑢, 𝑗9 − 𝑣 ∗ 𝑔2 𝑖9, 𝑗9;
9<3]																								[4]	

	

Figure	1.	Example	of	Area-based	Point	Matching	using	Cross	Correlation	

Figure	1	shows	an	example	of	Area-based	Point	Matching	using	Cross	Correlation.	After	

searching	 line	 by	 line	 for	 every	 single	 position	within	 the	 background,	 the	 similarity	 of	

intensities	 in	each	pixel	 is	calculated	using	Equation	 [1].	3D	surface	of	 the	similarities	 is	

represented	in	the	following	Figure	2.	The	peak	in	the	surface	indicates	the	position	with	

the	maximum	similarity	position	and	the	coordinates	of	the	position	will	be	used	as	initial	

solution	for	further	LSM	matching.		

	

	

 16

Figure	2.	Similarity	Distribution	among	All	pixels	

	

The	major	 drawback	 of	 Cross	 Correlation	 process	 is	 that	 the	 algorithm	will	 not	 return	

valid	matching	 in	 repetitive	 pattern	 texture	 area.	 Since	more	 than	 one	 feature	 is	 very	

similar	to	the	template,	it	will	be	difficult	to	distinguish	it	as	the	right	match.	Figure	3	is	a	

case	 in	 point.	 Furthermore,	 since	 the	 affine	 transformation	 is	 not	 considered	 in	 cross	

correlation,	 higher	 than	 20	 degrees’	 rotation	 will	 dramatically	 decrease	 the	 similarity,	

thus	no	valid	matching	will	be	obtained.	

 17

	

Figure	3.	Repeating	patterns	such	as	on	a	brick	wall	can	provide	incredible	difficulties	

when	trying	to	match	the	template	in	the	background	

	

In	this	research,	Cross	Correlation	was	used	as	the	first	step	of	LSM	to	determine	a	good	

initial	 solution.	 Repetitive	 features	 and	 high	 rotation	 transformation	 has	 been	 avoided	

particularly.	 Using	 the	 result	 from	 the	 cross	 correlation,	 further	 iterations	will	 consider	

more	 factors	 such	 as	 brightness,	 contrast	 and	 affine	 transformation,	 and	 the	 more	

accurate	position	will	be	obtained	based	on	the	result	of	LSM.		

	

	

	

	

	

	

	

 18

2.2	Least	Squares	Matching	(LSM)	Fundamentals	

	

Least	Square	Matching	is	a	generalization	of	Cross	Correlation	but	consider	more	factors	

supporting	arbitrary	geometric	and	radiometric	transformations.	 Instead	of	exhaustively	

search	 every	 possibility,	 an	 initial	 guess	 is	 used	 to	 go	 through	 iterations.	 A	 good	 initial	

solution	is	required	for	LSM	and	a	simple	way	to	find	one	is	the	Cross	Correlation.		

	

For	 the	 image	pixels	g1(x,	y)	and	g2(x’,	y’)	of	 two	 images	 in	a	square	window	(normally	

31*31	 as	 used),	 the	 fundamental	 idea	 of	 LSM	 is	 to	 determine	 a	 set	 of	 parameters	 to	

satisfy	the	following	observation	condition:	

𝑥F = 𝑎3 ∗ 𝑥 + 𝑎2 ∗ 𝑦 + 𝑎J																			[5]	

𝑦F = 𝑏3 ∗ 𝑥 + 𝑏2 ∗ 𝑦 + 𝑏J																				[6]	

𝑔2 𝑥, 𝑦 = 𝑘3𝑔3 𝑥F, 𝑦F + 𝑘2														[7]	

Where:	

1. a1	through	b3	are	used	to	describe	the	affine	deformations	using	6	unknown	

parameters	shown	in	Equation	[5]	&	[6]	

2. k1	and	k2	control	the	contrast	and	brightness	differences	respectively,	shown	

in	Equation	[7]	

3. the	 random	 noise,	 which	 is	 assumed	 to	 be	 zero	 when	 perfectly	 matched,	

shown	in	Equation	[7]	

4. There	are	a	total	of	8	unknown	parameters	in	LSM	in	Eq.	[5],	[6]	and	[7]	as		

𝑥	 = 	 𝑎3, 𝑎2, 𝑎J, 𝑏3, 𝑏2, 𝑏J, 𝑘3, 𝑘2 M 																	[8]	

 19

The	initial	solution	is	set	by	default.	a1,	b2	and	k1	are	set	as	one.	a2,	b1	and	k2	are	set	as	

zero.	a3	and	b3	are	determined	by	CC	 in	 the	previous	step.	Those	default	values	 in	 the	

initial	solution	showing	no	rotation	and	radiometric	transformations:	

𝑥N 	= 	 [1, 0, 𝑎J, 0, 1, 𝑏J, 1, 0]																																	[9]	

	

After	 considering	 those	 factors,	 the	 values	 of	 eight	 parameters	will	 be	 updated	 to	 the	

optimal	solution.	However,	the	solution	cannot	be	acquired	directly	since	it	is	a	nonlinear	

function.	 Therefore,	 using	 Taylor	 linearization,	 it	 is	 transformed	 to	 a	 linear	 one	 as	

illustrated	in	Equation	[11]:	

𝐹 𝑥, 𝑦 = 𝑔2 𝑥, 𝑦 − 𝑘3𝑔3 𝑥F, 𝑦F − 𝑘2																[10]	

	

𝐹 = 𝐹N +
𝜕𝐹
𝜕𝑎3

∗ ∆𝑎3 +
𝜕𝐹
𝜕𝑎2

∗ ∆𝑎2 +
𝜕𝐹
𝜕𝑎J

∗ ∆𝑎J +
𝜕𝐹
𝜕𝑏3

∗ ∆𝑏3 +
𝜕𝐹
𝜕𝑏2

∗ ∆𝑏2 +	

	

TU
TVW

∗ (∆𝑏J) +
TU
TX#

∗ (∆𝑘3) +
TU
TX$

∗ (∆𝑘2)																						[11]	

where:	

TU
TY#

= −𝑘3 ∗
T1#
TY#

= −𝑘3 ∗
T1#
TZ[

∗ TZ[

TY#
= −𝑘3 ∗ 𝑔3Z ∗ 𝑥															[12]	

TU
TY$

= −𝑘3 ∗
T1#
TY$

= −𝑘3 ∗
T1#
TZ[

∗ TZ[

TY$
= −𝑘3 ∗ 𝑔3Z ∗ 𝑦													[13]	

TU
TYW

= −𝑘3 ∗
T1#
TYW

= −𝑘3 ∗
T1#
TZ[

∗ TZ[

TY#
= −𝑘3 ∗ 𝑔3Z																				[14]	

TU
TV#

= −𝑘3 ∗
T1#
TV#

= −𝑘3 ∗
T1#
T\[

∗ T\
[

TV#
= −𝑘3 ∗ 𝑔3\ ∗ 𝑥													[15]	

TU
TV$

= −𝑘3 ∗
T1#
TV$

= −𝑘3 ∗
T1#
T\[

∗ T\
[

TV$
= −𝑘3 ∗ 𝑔3\ ∗ 𝑦													[16]	

 20

TU
TVW

= −𝑘3 ∗
T1#
TVW

= −𝑘3 ∗
T1#
T\[

∗ T\
[

TVW
= −𝑘3 ∗ 𝑔3\													[17]	

TU
TX#

= −𝑔3(𝑥F, 𝑦F)																																																																				[18]	

TU
TX$

= −1																																																																																			[19]	

	

In	 practice,	𝑔3Z 	and	𝑔3\ can	 be	 computed	 as	 follows	 using	 gray	 values	 from	 the	

background	image:		

𝑔3Z = [𝑔3 𝑥F + 1, 𝑦F − 𝑔3 𝑥F − 1, 𝑦F]/2																																						[20]	

𝑔3\ = [𝑔3 𝑥F, 𝑦F + 1 − 𝑔3 𝑥F, 𝑦F − 1]/2																																						[21]	

	

As	normal,	31*31	size	template	is	used.	Then	961	linearization	equations	like	Eq.	[11]	can	

be	rearranged	to	the	following	form:	

𝐽 ∗ ∆x = ∆O																								[22]	

where:	

1. 𝐽	is	 Jacobian	 matrix	 that	 records	 the	 partial	 derivatives	 with	 respect	 to	 each	

unknown	parameter.	

2. ∆𝑥	is	the	incremental	vector.		

3. ∆𝑂	is	 the	 residual	 vector	 showing	 the	 signed	 difference	 in	 that	 pixel,	 which	 is	

𝑔2 𝑥, 𝑦 − 𝑘3𝑔3 𝑥F, 𝑦F − 𝑘2 N		

	

After	 expanding	 the	 nonlinear	 form	 with	 a	 first	 order	 Taylor	 series	 and	 assigning	

appropriate	initial	values	for	the	parameter	𝑥N,	the	increment	vector	can	be	solved:		

 21

∆𝑥 = 𝐽M ∗ 𝐽 53 ∗ (𝐽M ∗ ∆𝑂)																							[23]	

	

The	 procedure	 will	 iterate	 until	 it	 reaches	 a	 certain	 termination	 criterion,	 such	 as	 all	

elements	 in	∆𝑥	vector	 converge	 to	 zero.	 In	 that	 case,	𝑥	vector	 will	 converge	 to	 the	

optimum	solution.		

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

 22

2.3	Template	Window	Size	Selection	

	

A	key	problem	in	area-based	matching	by	computing	least	sum	of	squared	differences	lies	

in	selecting	an	appropriate	window	size,	especially	when	dealing	with	plain	texture.	The	

window	 size	 must	 be	 large	 enough	 to	 include	 enough	 strong	 intensity	 variation	 for	

reliable	matching.	However,	the	template	size	must	be	small	enough	to	avoid	the	effects	

of	projective	distortion	such	as	occlusion.	If	the	window	is	too	small	and	does	not	cover	

enough	 strong	 features,	 it	 gives	 a	 poor	 matching	 solution,	 because	 the	 parameters	

convergence	 is	 bad.	 But,	 on	 the	other	 hand,	 if	 the	window	 is	 too	 large	 and	 covers	 too	

much	 strong	 features	which	 are	 not	 just	 affine	 transformation	 across	 each	 images,	 the	

convergence	solution	will	not	represent	correct	matching.	Because	larger	template	which	

contains	more	and	stronger	features,	will	match	them	as	a	whole.	Without	assigning	any	

weight	to	different	pixels,	the	center	of	the	template	is	just	one	plain	pixel	comparing	to	

other	strong	features,	thus	the	accuracy	will	not	be	guaranteed	using	larger	template	size.		

 23

Figure	4.	Example	of	wrong	template	size	which	contains	not	enough	strong	feature	for	

area-based	matching	
	

For	 this	 reason,	 a	window	size	must	be	 selected	wisely	depending	on	 characteristics	of	

different	 data	 sets	 such	 as	 local	 variations	 of	 intensity	 and	 disparity.	 In	 this	 research,	

different	template	sizes	have	been	tried	to	determine	the	best	fit	for	the	data	sets	used	

for	evaluation.	As	a	result,	choosing	the	correct	template	window	size	is	the	foundation	of	

a	good	matching.	

	

	

	

	

	

	

 24

2.4	Bound	Constraint		

	

As	discussed	above,	every	iteration	a	new	parameter	vector	will	be	updated	and	be	used	

for	the	initial	solution	for	the	next	iteration	until	convergence.	However,	in	the	iteration	

procedure,	the	parameters	for	affine	deformations	and	the	illuminations	may	stray	from	

the	 correct	 values	 or	 even	 exceed	 the	 areas	 of	 the	 whole	 background.	 These	

phenomenon	 occurs	 in	 point	 matching	 with	 bad	 initial	 guess,	 plain	 texture,	 occlusion	

problems,	and	other	unreasonable	distortion	of	the	images.		

	

In	 the	 standard	 photogrammetry	 surveying,	 even	 in	 extreme	 conditions,	 variations	 of	

more	than	15	degrees’	rotation	are	very	rare	in	experience.	 In	order	to	give	an	intuitive	

understanding	 of	 the	 extents	 of	 the	 affine	 transformation,	 the	 transformation	 with	

corresponding	skewness	is	illustrated	in	the	following	Figure	5:	

	

Figure	5.	Example	of	Affine	transformation	with	corresponding	skewness	

Figure	5	Illustrates	two	different	affine	transformations.	The	left	one	is	the	original	image.	

The	four	parameters	controlling	affine	transformation	in	the	middle	image	is:	

 25

	𝐴 =
𝑎3 𝑎2
𝑏3 𝑏2 = [0.8 0.2

0.2 0.8]		

	

The	four	parameters	controlling	affine	transformation	in	the	right	image	is:	

𝐴 =
𝑎3 𝑎2
𝑏3 𝑏2 = [1.2 −0.2

−0.2 1.2]		

		

The	skewness	 is	approximately	15	degrees	 for	both	cases.	 In	addition,	 for	 the	unknown	

parameters	 a3	 and	 b3,	 which	 account	 for	 translations	 in	 x	 and	 y	 directions,	 the	

boundaries	can	also	be	gauged	before	optimization	based	on	the	accuracy	of	initial	guess.	

No	matter	the	 initial	solution	 is	gained	from	Cross	Correlation	discussed	above,	or	 from	

initial	disparity	map	and	sift	corresponding	points	that	will	be	discussed	below,	more	than	

5-pixel	 distance	 away	 from	 the	 ground	 truth	 is	 very	 rare	 as	 well.	 Furthermore,	 the	

contrast	and	brightness	should	be	also	within	a	reasonable	range.	It	can	be	noted	that	a	

contrast	value	that	varies	in	the	region	from	0.5	to	2	and	a	brightness	value	in	the	range	

from	-50	to	50	will	be	sufficient	to	address	the	illumination	differences.	

	

Consequently,	 all	 eight	 unknown	 parameters	 have	 powerful	 physical	 significances	 and	

thus	should	be	constrained	to	reasonable	regions.	Therefore,	lower	and	upper	boundaries	

to	the	unknown	parameters	are	proposed	in	the	following	Equation	as	the	follows:	

1 − 𝛿3 < 𝑎3 < 1 + 𝛿3, 1 − 𝛿3 < 𝑏2 < 1 + 𝛿3	

−𝛿2 < 𝑎2 < 𝛿2, −𝛿2 < 𝑏3 < 𝛿2	

−𝛿J < 𝑎J < 𝛿J, −𝛿J < 𝑏J < 𝛿J	

𝛿h < 𝑘3 < 1/𝛿h, −𝛿i < 𝑘2 < 𝛿i	

 26

where:		

1. 𝛿3	and	𝛿2	control	 the	 degree	 of	 the	 affine	 transformation,	 and	 0.2	 will	 provide	

ample	space	for	potential	deformation	in	real	data	sets	application.	

2. 𝛿J	controls	the	translation	from	the	initial	corresponding	position,	and	5	pixels	will	

be	large	enough	considering	the	accuracy	of	the	initial	solution.	

3. 𝛿h	and	𝛿i	control	the	illumination	difference,	and	values	of	values	of	𝛿h = 0.5	and	

𝛿i = 50		are	used.		

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

 27

2.5	Three-Dimension	Reconstruction	Evaluation	using	Blur	Images	

	

3D	reconstruction	using	blur	images	are	very	common	in	practical.	Gaussian	blur	images,	

defined	as	images	with	Gaussian	distributed	noises,	often	result	from	camera	defocusing	

unintentionally	on	an	unrelated	object	 from	the	surveying	 interest	 subject.	Motion	blur	

images	often	result	from	the	camera	moving	while	the	shutter	is	open.	Those	blur	images	

are	commonly	generated	using	small	unmanned	aerial	vehicles	(UAV)	surveying	especially	

when	researchers	are	 increasingly	 interested	 in	 these	 flexible	and	 low-cost	plat-form	to	

reduce	data	acquisition	time	and	increase	the	accessibility.	Furthermore,	sometimes	the	

data	sets	cannot	be	re-obtained	and	the	blur	image	data	are	the	only	data	to	analyze	such	

as	when	dealing	with	historical	data	sets	or	disaster	data	sets.	Therefore,	finding	a	way	to	

overcome	 the	 degradation	 of	 3D	modeling	 reconstruction	 quality	 based	 on	 these	 blur	

images	 is	 crucial	 especially	when	 today’s	widely	 used	 state	 of	 the	 art	method	may	not	

exam	 the	 accuracy	 for	 these	 images	 taken	 under	 various	 suboptimal	 acquisition	

conditions.		

	

In	this	research,	3D	reconstructions	using	nine	data	sets	has	been	evaluated.	The	original	

clear	 images	 data	 set	 is	 25	 images	 taken	 by	 small	 UAVs	 covering	 the	main	 campus	 of	

National	 University	 of	 Singapore.	 Four	 Gaussian	 blur	 images	 data	 sets	 with	 different	

standard	deviation	of	4,	5,	7	and	8	are	artificially	generated	using	the	original	clear	image	

data	 sets.	 Examples	 are	 as	 shown	 in	Figure	 6.	 Four	motion	blur	 images	data	 sets	using	

 28

different	 kernel	 size	 of	 15*15,	 31*31,	 37*37	 and	 41*41	 are	 synthetically	 generated.	

Examples	are	as	shown	in	Figure	7.		

	

Figure	6.	Example	of	different	degrees	Gaussian	blur	images	

	

	

 29

	

Figure	7.	Example	of	different	degrees	motion	blur	images	

	

3D	 reconstructions	 are	 experimented	 using	 Apero	 photogrammetry	 software	 and	MSP	

software	based	on	all	 those	nine	 images	data	sets.	Aerpo	 is	an	orientation	computation	

software	using	a	set	of	images.	Firstly,	SIFT	tie	points	across	all	images	will	be	extracted	in	

the	first	step.	Then,	after	running	the	free-network	triangulation,	5	ground	control	points	

(GCPs)	 are	 marked	 in	 every	 images.	 Those	 five	 GCPs	 information	 stays	 the	 same	 for	

different	 data	 sets.	 The	 ground	 control	 points	 and	 their	 coordinates	 are	 used	 to	 geo-

referencing	to	calibrate	the	map.	Then	GCP	based	optimization	is	run	and	the	orientation	

information	 will	 be	 obtained.	 MSP	 is	 an	 operational-ready	 multi-stereo	 dense	 image	

matching	software	that	Dr.Qin	has	developed	for	DSM	generation	and	true	ortho-photo	

generation	from	frame	camera	images	(e.g.	UAV,	aerial	and	oblique	images).	Running	the	

file	 generated	 by	 Apero	 through	 MSP,	 the	 generated	 cloud	 points	 and	 digital	 surface	

 30

model	 will	 be	 used	 for	 further	 analysis.	 An	 example	 is	 shown	 in	 Figure	 8.	 Different	

elevations	 are	 represented	 in	 different	 colors.	 Darker	 bluish	 color	 represents	 lower	

elevation	while	lighter	reddish	color	represents	higher	elevation.			

	

Figure	8.	Example	of	Cloud	Points	generated	by	Apero	and	MSP	

	

After	 eight	 digital	 surface	 models	 are	 generated	 based	 on	 blur	 images,	 the	 3D	

reconstruction	 accuracies	 are	 evaluated	 by	 comparing	 to	 the	 DSM	 generated	 from	

original	clear	images.	By	comparing	the	depth	accuracy	of	every	single	pixel	to	the	ground	

truth,	 which	 is	 assumed	 to	 be	 the	 DSM	 from	 clear	 images,	 and	 calculate	 the	 sum	 of	

absolute	value	of	the	difference	between	generated	DMS	and	ground	truth,	the	trend	of	

 31

3D	 reconstruction	 accuracy	 will	 be	 observed	 and	 that	 will	 be	 used	 as	 the	 criteria	 for	

examining	the	influence	of	Gaussian	and	motion	blur	on	3D	reconstruction	accuracy.		

		

As	mentioned	above,	SIFT	tie	points	generation	is	the	first	step	in	Apero	photogrammetry	

software.	The	accuracy	of	 these	 corresponding	points	across	all	 images	 is	 crucial	 for	all	

other	 steps	 in	 DSM	 generation.	 Refined	 Least	 Squares	 Image	 Matching,	 using	 bound	

constrain	 optimization	 and	 optimum	 template	 size,	 will	 be	 used	 to	 updating	 all	

corresponding	points	gained	by	sift	on	blur	 images.	Then	using	 the	same	procedures	 to	

generate	new	digital	surface	models	and	compare	those	models	with	the	previous	results.	

Whether	 the	 3D	 reconstruction	 accuracy	 can	 be	 enhanced	 using	 LSM	 optimized	

corresponding	points	will	be	determined.		

	

	

	

	

	

	

	

	

	

	

	

 32

Chapter	3:	Result	

	

3.1 Template	Size	Selection	

	

As	discussed	 through	 the	whole	 thesis,	 template	 size	 selection	 is	 the	 foundation	 to	get	

accurate	 area-based	 point	matching.	 The	 template	 cannot	 be	 too	 small	 not	 to	 contain	

enough	 high	 variance	 features	 to	 get	 convergence	 matching	 result.	 However,	 larger	

template	size	will	always	get	better	matching	result	is	a	misunderstanding	as	well.	When	

the	 template	 is	 too	 large	 to	 contain	 way	 too	 much	 strong	 features,	 those	 features	

matching	 will	 reduce	 the	 weight	 of	 the	 pixel	 in	 the	 center	 of	 the	 template,	 thus	 the	

accuracy	will	 not	 be	 guaranteed.	 Furthermore,	 occlusion	problems	will	 be	more	 severe	

when	the	template	size	is	enlarged.	In	real	images	data	sets,	occlusion	problems	are	very	

difficult	 to	 be	 avoided.	 When	 taking	 photo	 of	 an	 object	 in	 two	 different	 angles,	 the	

displacement	of	 the	background	behind	 the	object	 is	 impossible	 to	 fix.	 So	 in	 that	 case,	

when	matching	an	object	using	template	matching	and	including	the	edge	of	the	object,	

the	displaced	backgrounds	are	 included	 in	 the	 template	as	well.	 Since	different	 texture	

will	never	be	matched	well,	larger	template	size	will	not	be	always	return	better	matching.	

An	 example	 of	 the	 point	 matching	 of	 data	 sets	 covering	 main	 campus	 of	 National	

University	of	Singapore	using	different	template	size	is	shown	below.		

	

 33

	

Figure	9.	Example	of	Point	Matching	using	31*31	pixels’	template,	where	red	point	is	the	

matched	point	and	blue	point	is	the	ground	truth	

	

As	shown	in	Figure	9,	the	red	point	in	the	template	(left	image)	is	matched	with	the	red	

point	 in	 the	 background	 (right	 image)	 by	 LSM	 in	 Gaussian	 blur	 images	 with	 standard	

deviation	of	8	using	31*31	pixels’	template.	The	blue	point	in	the	background	(right	image)	

is	the	ground	truth,	which	is	gained	by	SIFT	using	clear	images.		

 34

	

Figure	10.	Parameter	Adjustment	Values	of	the	Point	Matching	Example	Using	31*31	

Pixels’	Template	

	

As	shown	in	Figure	10,	almost	all	parameters	converge	to	zero	except	a3	and	b3,	which	

control	translation	in	X	and	Y	directions.	These	two	parameters	keep	pivoting	around	the	

ground	 truth	but	will	 never	 converge	because	 the	 template	 size	 is	 too	 small	 to	 contain	

enough	distinctive	 features.	 Even	 though	no	 fully	 convergence	 is	 observed	 in	 this	 case,	

the	distance	from	the	matched	point	to	the	ground	truth	is	just	1.68	pixels.		

	

 35

The	following	example	shows	how	the	matching	result	is	changed	when	using	larger	

template	size	of	131*131	pixels’	template.		

	

	

Figure	11.	Example	of	Point	Matching	using	131*131	pixels’	template,	where	red	point	is	

the	matched	point	and	blue	point	is	the	ground	truth	

	

As	shown	in	Figure	11,	the	red	point	in	the	template	(left	image)	is	matched	with	the	red	

point	 in	 the	 background	 (right	 image)	 by	 LSM	 in	 Gaussian	 blur	 images	 with	 standard	

deviation	 of	 8	 using	 131*131	 pixels’	 template.	 The	 blue	 point	 in	 the	 background	 (right	

image)	is	the	ground	truth,	which	is	gained	by	SIFT	using	clear	images.		

	

	

 36

	

Figure	12.	Parameters	Adjustment	Values	of	the	Point	Matching	Example	Using	31*31	

Pixels’	Template	

	

As	shown	in	Figure	12,	all	parameters	converge	to	zero	because	the	template	size	is	large	

enough	to	contain	more	strong	features.	However,	good	convergence	will	not	guarantee	

accuracy.		The	distance	from	the	matched	point	to	the	ground	truth	is	5.78	pixels	in	this	

case,	which	is	larger	than	using	smaller	template	size.		

	

 37

		

In	order	to	find	the	optimum	template	size	for	the	Singapore	data	set	and	to	reduce	bias	

from	any	 single	 case,	 10	points	 in	 the	 image	data	 sets	 are	 randomly	 selected	 for	 point	

matching	using	5	different	template	sizes.	The	distances	of	the	matched	from	the	ground	

truth	of	all	the	cases	are	shown	in	the	below	Table	1:		

	

Table	1.	distance	from	ground	truth	of	10	random	point	matching	cases	with	5	different	

template	sizes	

					Template	size	

	

Point	number	

21*21	 31*31	 71*71	 91*91	 131*131	

1	 2.19	 1.68	 1.09	 4.59	 5.77	

2	 2.41	 1.48	 1.26	 0.95	 2.17	

3	 1.74	 2.25	 2.43	 2.47	 5.36	

4	 2.67	 2.86	 2.29	 7.64	 7.32	

5	 3.21	 2.22	 2.65	 0.96	 3.83	

6	 1.86	 1.46	 3.24	 3.11	 2.39	

7	 2.39	 2.19	 3.05	 2.33	 1.8	

8	 2.62	 2.43	 0.99	 1.46	 3.6	

9	 1.16	 1.81	 0.9	 1.99	 0.43	

10	 2.32	 1.58	 1.65	 2	 2.54	

average	 2.257	 1.996	 1.955	 2.75	 3.521	

standard	deviation	 0.5374392989	 0.4413887176	 0.8390262213	 1.921728389	 1.9888914	

 38

	

	

As	recorded	in	Table	1,	the	average	of	the	errors	and	the	standard	deviation	of	the	errors	

have	been	calculated.	The	average	error	gets	smaller	when	increasing	the	template	size	at	

the	 beginning,	 then	 gets	 larger	 when	 keep	 enlarging	 the	 template	 size.	 Average	 error	

using	 31*31	 pixels’	 template	 and	 71*71	 pixels’	 template	 are	 the	 smallest,	 then	 the	

standard	 deviation	 is	 compared	 within	 these	 two	 cases.	 Since	 using	 71*71	 pixels’	

template	will	return	some	unreasonable	matching	result,	which	are	marked	in	red	color	in	

the	table,	the	standard	deviation	is	larger.	Besides	this	reason,	larger	template	will	reduce	

the	 algorithm	 speed	 dramatically.	 Overall,	 31*31	 pixels’	 template	 is	 selected	 for	 the	

images	data	sets	covering	the	main	campus	of	National	University	of	Singapore.		

	

	

	

	

	

	

	

	

	

	

	

 39

3.2 Bound	Optimization	

	

As	 discussed	 above,	 Least	 Square	 algorithm	 updates	 8	 parameters	 until	 converging	 to	

optimal	solution	through	iterations.	Each	iteration,	a	new	solution	will	be	updated	based	

on	the	 initial	solution.	However,	divergence	problems	occur	when	doing	point	matching	

in	plain	texture	areas.	The	parameters	for	affine	deformations	and	the	illuminations	may	

stray	 from	 the	 correct	 values	 or	 even	 exceed	 the	 areas	 of	 the	whole	 background.	 The	

bound	introduced	will	be	constrain	the	parameters	within	reasonable	range.	Based	on	the	

discussion	in	methodology,	values	for	bound	have	been	set	properly	and	ample	space	for	

the	deformation	has	been	ensured.	An	example	of	bound	functionality	has	been	shown	in	

the	following	figures.	

	

	

Figure	13.	Example	of	Point	Matching	without	bound	optimization,	where	green	point	is	

the	ground	truth	and	red	point	is	the	matched	point	

	

 40

As	shown	in	Figure	13,	the	green	point	in	the	template	(left	 image)	is	matched	with	the	

red	point	in	the	background	(right	image)	by	LSM	without	bound	optimization.	The	green	

point	 in	 the	 background	 (right	 image)	 is	 the	 ground	 truth,	which	 is	 gained	 by	 disparity	

map	provided	by	Stereo	-	Middlebury	Computer	Vision	open	sources.		

	

	

Figure	14.	Parameters	Adjustment	Values	of	the	Point	Matching	Example	without	using	

bound	optimization	

	

As	shown	 in	Figure	14,	a	 typical	divergence	occurs	 in	this	matching.	After	unreasonable	

parameters	which	are	controlling	translation	are	returned	in	two	iterations,	the	algorithm	

stops	 to	 be	 functional	 anymore.	 After	 those	 two	 peak	 values	 are	 returned,	 the	

 41

parameters	will	never	converge	to	zero	anymore.	The	distance	from	the	matched	point	to	

the	ground	truth	is	5.76	pixels	in	this	case.		

	

The	 following	 example	 shows	 how	 the	 matching	 result	 is	 refined	 when	 using	 bound	

constrain	optimization	method.		

	

	

Figure	15.	Example	of	Point	Matching	with	bound	optimization,	where	matched	point	is	

overlapped	with	the	ground	truth	

	

As	shown	in	Figure	15,	the	green	point	in	the	template	(left	 image)	is	matched	with	the	

red	point	in	the	background	(right	image)	by	LSM	without	bound	optimization.	The	green	

point	 in	 the	 background	 (right	 image)	 is	 the	 ground	 truth,	which	 is	 gained	 by	 disparity	

map	provided	by	Stereo	-	Middlebury	Computer	Vision	open	sources.	The	green	point	is	

unseen	in	the	background	because	the	ground	truth	point	is	totally	overlapped	with	the	

matched	point.		

 42

	

	

	

Figure	16.	Parameters	Adjustment	Values	of	the	Point	Matching	Example	using	bound	

optimization	

	

As	 shown	 in	 Figure	 16,	 no	 convergence	 can	 be	 observed	 in	 this	 matching	 neither.	

However,	 in	 practice	 this	 is	 true	 when	 dealing	 with	 plain	 texture	 area-based	 point	

matching.	In	addition,	from	the	figure,	it	can	be	noticed	that	the	k1	parameter	controlling	

illumination	 stays	 away	 from	 the	 correct	 value	 for	 every	 iteration.	 This	 phenomenon	

shows	the	bounds	are	working	to	prevent	the	parameters	go	out	of	reasonable	regions.	

Even	every	iteration,	an	unreasonable	solution	is	returned,	it	has	been	ignored	and	that’s	

 43

the	reason	why	the	red	curve	is	not	converging	to	zero.	a3	and	b3	are	pivoting	back	and	

forth	around	the	ground	truth.	The	distance	from	the	matched	point	to	the	ground	truth	

is	0.22	pixels	in	this	case,	which	is	much	smaller	than	without	using	the	bound.		

	

In	 order	 to	 determine	 whether	 using	 bound	 is	 helpful	 on	 increasing	 point	 matching	

accuracy	for	the	Singapore	data	set	and	to	reduce	bias	from	any	single	case,	10	points	in	

the	 image	 data	 sets	 are	 randomly	 selected	 for	 point	matching	with	 and	without	 using	

bound	constrain	optimization.	The	distances	of	the	matched	from	the	ground	truth	of	all	

the	cases	are	shown	in	the	below	Table	2:		

	

Table	2.	comparison	of	distances	from	ground	truth	of	10	random	point	matching	cases	

with	and	without	using	bound	constrain	optimization	

points	 with	bound	 without	bound	

1	 1.31	 1.68	

2	 1.48	 1.48	

3	 2.24	 2.25	

4	 2.24	 2.87	

5	 2.52	 2.23	

6	 1.46	 1.46	

7	 2.34	 2.19	

8	 2.43	 2.43	

9	 1.71	 1.81	

 44

10	 1.58	 1.58	

average	 1.931	 1.998	

standard	deviation	 0.4639312689	 0.4678746271	

	

As	recorded	in	Table	2,	the	average	of	the	errors	and	the	standard	deviation	of	the	errors	

have	been	calculated.	Both	 the	average	error	and	 standard	deviation	are	 smaller	when	

using	 the	bound	by	 comparison.	Overall,	 bound	optimization	 is	 selected	 for	 the	 images	

data	sets	covering	the	main	campus	of	National	University	of	Singapore.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

 45

3.3	Three-dimensional	Reconstruction	Improvement	Using	Refined	LSM	

	

As	discussed	through	the	whole	thesis,	the	main	objective	is	to	used	refined	Least	Squares	

Image	 Matching	 method	 to	 improve	 3D	 reconstruction	 using	 blur	 images.	 In	 order	 to	

achieve	 the	 purpose,	 two	 evaluations	 have	 been	 done:	 evaluating	 the	 influence	 of	

different	degrees	of	Gaussian	and	motion	blur	images	on	3D	reconstruction	accuracy	and	

whether	 refined	 LSM	 will	 decrease	 the	 error	 when	 replacing	 all	 corresponding	 points	

from	the	sift.		

	

After	 running	 four	Gaussian	blur	 images	data	 sets	with	different	 standard	deviations	 in	

Apero	 photogrammetry	 software	 and	MSP	 software,	 four	 digital	 surface	models	 (DSM)	

are	generated.	Every	single	pixel	in	these	four	DSMs	are	compared	with	the	ground	truth,	

which	is	the	DSM	generated	from	the	clear	images.	After	align	different	DSM	models	into	

the	same	position,	the	averages	of	the	absolute	difference	of	all	pixels	are	calculated	for	

four	data	sets.	The	result	is	plotted	in	the	following	Figure	17.		

	

 46

	

Figure	17.	Average	error	per	pixel	in	DSM	of	different	degrees	of	Gaussian	blur	

	

As	 shown	 in	 Figure	 17,	 the	 blue	 curve	 represents	 the	 accuracy	 of	 DSM	 using	

corresponding	points	 from	SIFT.	 It	can	be	observed	that	 the	average	error	 increases	 (or	

the	accuracy	decreases)	when	the	blurriness	is	increased.		

	

Then	 refined	 LSM	 method	 has	 been	 introduced	 with	 bound	 and	 right	 template	 size	

selection.	Just	after	the	first	step	running	the	Apero	photogrammetry	software,	which	is	

generating	SIFT	tie	points	across	all	 images,	refined	LSM	has	been	applied	to	replace	all	

these	 corresponding	 points.	 Then	 the	 updated	 corresponding	 points	 are	 used	 for	 later	

steps	 to	generate	new	digital	 surface	models.	Following	the	same	procedures,	 the	DSM	

are	compared	to	the	ground	truth.	The	new	average	errors	are	represented	as	red	curve	

 47

shown	 in	 Figure	 17.	 However,	 for	 every	 single	 data	 sets,	 the	 accuracy	 of	 DSM	 using	

refined	LSM	is	decreased	(or	average	error	 is	 larger).	This	can	conclude	that	accuracy	of	

3D	 reconstruction	 using	 Gaussian	 blur	 images	 cannot	 be	 optimized	 by	 least	 squares	

images	matching	method.		

	

Using	 the	 same	 procedures,	 four	 digital	 surface	models	 using	motion	 blur	 images	with	

different	kernel	 sizes	are	generated.	Those	DSM	are	compared	to	 the	ground	truth	and	

the	average	errors	have	been	calculated.	The	result	is	plotted	in	the	following	Figure	18.		

	

	

Figure	18.	Average	error	per	pixel	in	DSM	of	different	degrees	of	Motion	blur	

	

 48

As	 shown	 in	 Figure	 18,	 the	 blue	 curve	 represents	 the	 accuracy	 of	 DSM	 using	

corresponding	points	 from	SIFT.	 It	can	be	observed	that	 the	average	error	 increases	 (or	

the	accuracy	decreases)	when	the	motion	blurriness	is	increased,	which	is	the	same	to	the	

Gaussian	blur	images	trend.			

	

Then	 following	 the	 same	 procedures	 of	 Gaussian	 blur	 image	 analysis,	 refined	 LSM	 has	

been	applied	 to	 replace	all	 corresponding	points	generated	 from	SIFT.	Then	new	digital	

surface	models	are	generated	 to	compare	 to	 the	ground	truth.	The	new	average	errors	

are	represented	as	red	curve	shown	in	Figure	18.	It	can	be	observed	that,	for	every	single	

data	sets,	the	accuracy	of	DSM	using	refined	LSM	is	increased	(or	average	error	is	smaller),	

even	 though	 it	 is	 slightly.	 This	 can	 conclude	 that	 accuracy	 of	 3D	 reconstruction	 using	

motion	blur	images	can	be	optimized	by	least	squares	images	matching	method.		

	

	

	

	

	

	

	

	

	

	

 49

Chapter	4:	Conclusion	

	

4.1 Summary	

	

In	 conclusion,	 the	 classical	 LSM	 matching	 approach	 has	 been	 revisited	 and	 the	 LSM	

robustness	has	been	 improved	by	modification	applying	bound	constraints	optimization	

and	good	window	size	selection.	Parameter	bounds,	constraining	the	search	for	a	solution	

to	 a	 reasonable	 region	 and	preventing	 the	parameters	 for	 affine	deformations	 and	 the	

illuminations	 from	 straying	 from	 the	 correct	 values,	 will	 increase	 the	 accuracy	 of	 LSM	

matching,	even	though	convergence	will	not	be	ensured.	A	good	window	size	selection	is	

crucial	for	good	point	matching.	Too	small	and	too	large	templates	are	both	not	optimum	

for	matching	accuracy.	31*31	pixels’	template	 is	recommended	as	typical	template	size.	

Even	 though	 better	 convergence	 can	 be	 achieve	 using	 larger	 template	 size,	 when	

considering	accuracy	and	calculation	speed,	smaller	template	size	is	more	effective.		

	

Furthermore,	 how	photogrammetric	 3D	 reconstruction	 performs	using	 imageries	 under	

suboptimal	 scenario	 has	 been	evaluated.	 3D	 reconstruction	using	Gaussian	 and	motion	

blurred	 images	 with	 different	 degrees	 of	 blurriness	 is	 experimented	 using	 Apero	

photogrammetry	 software.	 The	 accuracy	 of	 the	 bundle	 adjustment	 and	 3D	 dense	

reconstruction	 using	 corresponding	 points	 from	 state-of-art	 point	 detectors	 (e.g.	 SIFT)	

and	corresponding	points	 refined	by	 LSM	 is	 compared.	Based	on	 the	 result	obtained	 in	

the	 research,	 SIFT	 still	 has	high	accuracy	when	used	on	Gaussian	blur	 images,	 and	LSM	

 50

modification	 is	 not	 able	 to	 enhance	 the	 3D	 reconstruction	 accuracy.	 SIFT	 has	 relatively	

lower	accuracy	when	used	on	motion	blur	images,	and	the	matching	can	be	optimized	by	

refined	LSM.		

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

 51

4.2 Future	work	

	

In	 this	 research,	 classic	 least	 square	 image	matching	 has	 been	 refined	 to	 increase	 the	

robustness	using	bound	 constrain	optimization	and	 correct	 template	 size	 selection.	But	

there	 are	 still	 spaces	 for	 the	 refined	 LSM	 to	 be	more	 accurate.	 In	 this	 research,	 fixed	

bound	 and	 fixed	 template	 size	 is	 utilized	 for	 every	 single	 point	 in	 all	 data	 sets.	 Even	

though	before	LSM	matching,	bias	has	been	reduced	by	randomly	selecting	ten	points	for	

determining	 the	 template	 size	 and	 whether	 bound	 optimization	 would	 be	 effective	 in	

improving	accuracy,	bias	still	exists	because	different	pixels	have	different	local	variations	

of	 intensity	and	disparity.	 In	the	future	research,	adaptive	method	can	be	introduced	to	

template	size	and	bound	setting.	The	criteria	for	adjusting	the	values	is	the	core	of	future	

research.	As	discussed	in	this	thesis,	convergence	will	not	always	provide	good	matching	

result.	So	the	criteria	to	change	the	size	of	template	and	bound	limitation	should	be	other	

than	 convergence.	 If	 adaptive	 method	 can	 be	 introduced	 to	 every	 pixel,	 the	 bias	 of	

evaluation	will	be	dramatically	reduced	and	the	matching	accuracy	will	be	enhanced.		

	

In	addition,	the	blur	images	data	sets	used	for	3D	reconstruction	evaluation	are	artificially	

generated.	Gaussian	blur	images	data	sets	are	generated	by	using	Gaussian	filter.	But	in	

the	 real	 life,	 the	 noises	 of	 Gaussian	 blur	 images	 do	 not	 perfectly	 follow	 Gaussian	

distribution.	Motion	blur	 images	data	sets	are	generated	by	using	motion	kernel.	But	 in	

real	 life,	 the	 motion	 blur	 is	 not	 perfectly	 linear	 to	 a	 single	 direction.	 So	 in	 the	 future	

 52

research,	more	complex	Gaussian	blur	and	motion	blur	 images	data	sets	can	be	utilized	

for	the	evaluation	on	refined	LSM.		

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

 53

References	

	[1]	Boykov	et	al.,	Fast	Approximate	Energy	Minimization	via	Graph	Cuts,	International	

Conference	on	Computer	Vision,	September	1999.	

[2]	D.	Scharstein	and	R.	Szeliski.	Stereo	matching	with	nonlinear	diffusion.	International	

Journal	of	Computer	Vision,	28(2):155-174,	July	1998	

[3]	Gruen,	A.,	&	Akca,	D.	(January	01,	2005).	Least	squares	3D	surface	and	curve	matching.	

Isprs	Journal	of	Photogrammetry	and	Remote	Sensing,	59,	3,	151-174.	

[4]	Hassaballah,	M.,	Abdelmgeid,	A.	A.,	&	Alshazly,	H.	A.	(January	01,	2016).	Image	

Features	Detection,	Description	and	Matching.	

[5]	Hu,	H.,	Ding,	Y.,	Zhu,	Q.,	Wu,	B.,	Xie,	L.,	&	Chen,	M.	(August	01,	2016).	Stable	least	

squares	matching	for	oblique	images	using	bound	constrained	optimization	and	a	

robust	 loss	 function.	 Isprs	 Journal	of	Photogrammetry	and	Remote	Sensing,	118,	

53-67.	

[6]	ICIAR	(Conference),	Campilho,	A.,	&	Kamel,	M.	(2012).	Image	analysis	and	recognition:	

9th	International	Conference,	ICIAR	2012,	Aveiro,	Portugal,	June	25-27,	2012.	

Proceedings.	Berlin:	Springer.	

[7]	Rongjun	Qin	PhD,	“Multi-View	Stereo	Dense	Matching	–	A	Software	Package	for	Dense	

Point	Cloud	and	DSM	Generation	from	Multi-View	Stereo	Images.”	

u.osu.edu/qin.324/msp/.	

[8]	T.	Kanade	and	M.	Okutomi,	A	Stereo	Matching	Algorithm	with	an	Adaptive	Window:	

Theory	and	Experiment,,	Proc.	International	Conference	on	Robotics	and	

Automation,	1991.	

 54

[9]	Wang,	M.,	Zhang,	B.,	&	Ning,	X.	(January	01,	2005).	Automatic	change	detection	based	

on	least	square	image	matching	[6045-111].	Proceedings-	Spie	the	International	

Society	for	Optical	Engineering,	6045,	604534.		

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

 55

Appendix	

Matlab	Source	Codes	

CrossCorrelation.m	

CrossCorrelation.m	is	the	function	to	find	the	corresponding	position	of	certain	template	

within	 the	 background.	 The	 user	 is	 responsible	 for	 entering	 the	 template	 and	 the	

background,	 and	 the	 translation	 in	 X	 and	 Y	 direction	 and	 the	 matched	 image	 will	 be	

returned.			

	

function	[YTranslation,XTranslation,CoeffMap,ImageCCMathed]	=	
CrossCorrelation(RawTemplate,RawBackground)	
		
%	transform	color	image	to	gray	image	
%	do	not	need	it	if	using	gray	image	
GrayTemplate	=	rgb2gray(RawTemplate);	
%	to	avoid	255	saturation	
Template	=	im2double(GrayTemplate);	
		
%	do	the	same	opration	to	the	background	
GrayBackground	=	rgb2gray(RawBackground);		
Background	=	im2double(GrayBackground);	
		
%	get	size	of	template	and	background	
%	Cross	Correlation	Function	works	only	at	Background	larger	than	Template	
[TemplateY,TemplateX]	=	size(Template);	
[BackgroundY,BackgroundX]	=	size(Background);	
		
%	Calculate	the	standard	deviation	of	template	
TemplatePixelNum	=	TemplateY	*	TemplateX;	
TemplateSumOfSqr	=	sum(sum(Template.^2));	
TemplateSum	=	sum(sum(Template));	
TemplateStdDeviation	=	sqrt(TemplateSumOfSqr	-	TemplateSum^2/TemplatePixelNum)	/	
(TemplatePixelNum	-	1);	
		
		
		
for	i	=	1	:	BackgroundY	-	TemplateY	

 56

				for	j	=	1	:	BackgroundX	-	TemplateX	
								%	Calculate	standard	deviation	of	background	in	the	area	of	template	at	current	
offset	
								BackgroundSumOfSqr	=	sum(sum(Background(i	:	i+TemplateY-1	,	j	:	j+TemplateX-
1)	.^2));		
								BackgroundSum	=	sum(sum(Background(i	:	i+TemplateY-1	,	j	:	j+TemplateX-1)));		
								BackgroundStdDeviation	=	sqrt((BackgroundSumOfSqr	-	
BackgroundSum^2/TemplatePixelNum)	/	(TemplatePixelNum	-	1));	
									
								%	Calculate	covariance	between	template	and	background	in	the	area	of	template	at	
current	position	
								SumOfMultiply	=	sum(sum(Background(i	:	i+TemplateY-1	,	j	:	j+TemplateX-1)	.*	
Template));	
								Covariance	=	(SumOfMultiply	-	BackgroundSum	*	TemplateSum/TemplatePixelNum)	
/	(TemplatePixelNum	-	1);	
									
								%	calculate	cross	correlation	coefficient	over	all	possible	locations	
								CoeffMap(i,j)	=	Covariance	/	(BackgroundStdDeviation	*	TemplateStdDeviation);	
				end	
end	
%find	the	max	value	
[MaxCoeff,MaxCoeffIndx]	=	max(CoeffMap(:));	
[YTranslation,XTranslation]	=	ind2sub(size(CoeffMap),MaxCoeffIndx);	
		
XList	=	[1:TemplateX];	
XIndexList	=	repmat(XList,TemplateY,1);%	x	coordinates	
XOldIndex	=	XIndexList(:);%	x	coordinates	in	index	
Xnew	=	XOldIndex	+	XTranslation;%	get	new	x	coordinate	
		
YList	=	[1:TemplateY]';	
YIndexList	=	repmat(YList,1,TemplateX);%	y	coordinates	
YOldIndex	=	YIndexList(:);%	y	coordinates	in	index	form	
Ynew	=	YOldIndex	+	YTranslation;%	get	new	y	coordinate	
		
		
%	convert	row	and	column	subscripts	to	index	
IndxNew	=	Ynew	+	(Xnew-1)	*	BackgroundY;	
		
%	get	new	intensity	values		
IndxNew2	=	reshape(IndxNew,size(Template));	
ImageCCMathed	=	Background(IndxNew2);%	convert	index	to	subscripts		
end	
	

 57

LSMMatching.m	

LSMMatching.m	 the	 function	 to	 find	 the	corresponding	point	of	 center	of	 the	 template	

within	 the	 background.	 The	 user	 is	 responsible	 for	 entering	 the	 template	 and	 the	

background,	 and	 initial	 coordinate	 solution	 in	 the	background.	 The	new	position	of	 the	

corresponding	 point	 in	 the	 background	 will	 be	 returned.	 The	 delta	 values	 used	 for	

ensuring	convergence	will	be	returned	as	well.	Bound	optimization	algorithm	is	included.	

	

function	[xNew,	yNew,		delta,	ImageLSMMatched,	Template,	a1,a2,a3,b1,b2,b3,k1,k2]	=	
LSMMatching(xCor,	yCor,	xInitialGuess,	yInitialGuess,	RawTemplate,	RawBackground)	
					
%	transform	color	image	to	gray	image	
%	do	not	need	it	if	using	gray	image	
GrayTemplate	=	rgb2gray(RawTemplate);	
%	to	avoid	255	saturation	
Template	=	im2double(GrayTemplate);	
windowSize	=	31;	
w	=	(windowSize	+	1)/2;	
rect=[xCor-w	yCor-w	windowSize-1	windowSize-1];	
template=imcrop(Template,rect);	
		
%	do	the	same	opration	to	the	background	
GrayBackground	=	rgb2gray(RawBackground);		
Background	=	im2double(GrayBackground);	
		
		
%	get	size	of	template	and	background	
%	Cross	Correlation	Function	works	only	at	Background	larger	than	Template	
[TemplateY,TemplateX]	=	size(template);	
[BackgroundY,BackgroundX]	=	size(Background);	
		
a1	=	1;	
a2	=	0;	
a3	=	xInitialGuess	-	w;	
v	=	a3;	
b1	=	0;	
b2	=	1;	
b3	=	yInitialGuess	-	w;	

 58

u	=	b3;	
k1	=	1;	
k2	=	0;%initial	guess		
		
XList	=	1:TemplateX;	
XIndexList	=	repmat(XList,TemplateY,1);%	x	coordinates	
XOldIndex	=	XIndexList(:);%	x	coordinates	in	index	
		
YList	=	[1:TemplateY]';	
YIndexList	=	repmat(YList,1,TemplateX);%	y	coordinates	
YOldIndex	=	YIndexList(:);%	y	coordinates	in	index	form	
		
k=1;%	num	of	iteration	
while	k<50	
				%	new	x	and	y	coordinates	
				Xnew	=	round(a1*XOldIndex	+	a2*YOldIndex	+	a3);	
				Ynew	=	round(b1*XOldIndex	+	b2*YOldIndex	+	b3);	
		
					
				%	convert	row	and	column	subscripts	to	index	
				Indnew	=	Ynew	+	(Xnew-1)	*	BackgroundY;	
					
					
		
				Inew2	=	k1	*	Background(Indnew)	+	k2;%	get	new	intensity	values		
		
				%	convert	index	to	subscripts		
				ImageLSMMatched	=	reshape(Inew2,size(template));	
				xGradient	=	gradient(ImageLSMMatched);	
				xGradientIndx	=	xGradient(:);%	x	gradient		
					
				yGradient	=	gradient(ImageLSMMatched')';	
				yGradientIndx	=	yGradient(:);%	y	gradient		
					
				%	partial	derivative	of	eight	parameters	
				J1	=	-	k1	*	xGradientIndx	.*	XOldIndex;%	dF/da1	
				J2	=	-	k1	*	xGradientIndx	.*	YOldIndex;%	dF/da2	
				J3	=	-	k1	*	xGradientIndx;%	dF/da3	
				J4	=	-	k1	*	yGradientIndx	.*	XOldIndex;%	dF/db1	
				J5	=	-	k1	*	yGradientIndx	.*	YOldIndex;%	dF/db2	
				J6	=	-	k1	*	yGradientIndx;%	dF/db3	
				J7	=	-	ImageLSMMatched(:);%	dF/dk1	
				J8	=	-	ones(1,TemplateX	*	TemplateY)';%	dF/dk2	
					

 59

			
					
					
				J	=	[J1,J2,J3,J4,J5,J6,J7,J8];%	Jacobian	Matrix	
				N	=	J'*J;%	Normal	Matrix	
				b	=	template	-	ImageLSMMatched;	
				O	=	-b(:);	
					
				B	=	J'*O;%	B	matrix	
					
				delta(:,k)=N\B;	%delta	values	on	parameters	
		
%	bound	restriction	optimizationdelta=N\B;	
				aa	=	a1	+	delta(1,k);	
				if	aa	>	0.5	&&	aa	<	1.5	
								a1	=	aa;	
				end	
			
				ab	=	a2	+	delta(2,k);	
				if	ab	>	-0.5	&&	ab	<	0.5	
								a2	=	ab;	
				end	
					
				ac	=	a3	+	delta(3,k);	
				if	ac	>	v-40	&&	ac	<	v+40	
								a3	=	ac;	
				end	
					
				ba	=	b1	+	delta(4,k);	
				if	ba	>	-0.5	&&	ba	<	0.5	
								b1	=	ba;	
				end	
					
				bb	=	b2	+	delta(5,k);	
				if	bb	>	0.5	&&	bb	<	1.5	
								b2	=	bb;	
				end	
					
				bc	=	b3	+	delta(6,k);	
				if	bc	>	u-40	&&	bc	<	u+40	
								b3	=	bc;	
				end	
					
				ka	=	k1	+	delta(7,k);	

 60

				if	ka	>	0.5	&&	ka	<	1/0.5	
								k1	=	ka;	
				end	
					
				kb	=	k2	+	delta(8,k);	
				if	kb	>	-10	&&	kb	<	10	
								k2	=	kb;	
				end	
						
k	=	k	+	1;%	count	the	iteration	number	
end	
		
Xnew	=	round(a1*XOldIndex	+	a2*YOldIndex	+	a3);	
Ynew	=	round(b1*XOldIndex	+	b2*YOldIndex	+	b3);	
%	new	x	and	y	coordinates	
		
		
%	convert	row	and	column	subscripts	to	index	
Indnew	=	Ynew	+	(Xnew-1)	*	BackgroundY;	
		
		
Inew2	=	k1	*	Background(Indnew)	+	k2;%	get	new	intensity	values		
		
ImageLSMMathed	=	reshape(Inew2,size(template));	
		
					
xNew	=	a1*w	+	a2*w	+	a3;	
yNew	=	b1*w	+	b2*w	+	b3;	
		
end	
	

	

	

	

	

	

	

	

	

 61

GaussianBlur.m	

GaussianBlur.m	is	the	function	to	artificially	generate	Gaussian	blur	images	with	a	typical	

standard	deviation	set	by	the	developer.		

	
%	blue	the	image		
		
for	j	=	0:24	
				%	read	the	old	images	
				if	j	<=	7	
				imgNameTemplate	=	
sprintf('/Users/hxy/Downloads/imgs/8%d_swimming_pool_S_DSC0010%d.jpg',j+10,j+2);	
				RawTemplate	=	imread(imgNameTemplate);	
				%	set	the	degree	of	the	blur	
				blurImage	=	imgaussfilt(RawTemplate,6);	
				%	generate	the	new	blur	images	
				NewimgName	=	
sprintf('/Users/hxy/Downloads/imgs/Gaussian6_8%d_swimming_pool_S_DSC0010%d.tif',
j+10,j+2);	
				imwrite(blurImage,	NewimgName);	
				else	
								imgNameTemplate	=	
sprintf('/Users/hxy/Downloads/imgs/8%d_swimming_pool_S_DSC001%d.jpg',j+10,j+2);	
				RawTemplate	=	imread(imgNameTemplate);	
				%	set	the	degree	of	the	blur	
				blurImage	=	imgaussfilt(RawTemplate,6);	
				%	generate	the	new	blur	images	
				NewimgName	=	
sprintf('/Users/hxy/Downloads/imgs/Gaussian6_8%d_swimming_pool_S_DSC001%d.tif',j
+10,j+2);	
				imwrite(blurImage,	NewimgName);	
									
				end	
end	
	
	
	
	
	
	

 62

MotionBlur.m	

MotionBlur.m	 is	 the	 function	 to	 artificially	 generate	motion	 blur	 images	 with	 a	 typical	

sized	kernel	set	by	the	developer.		

motionmask	=	[1	0	0	0	0	
														0	1	0	0	0		
														0	0	1	0	0			
														0	0	0	1	0	
														0	0	0	0	1	
]/5;	
%	Motion	blur	the	image		
		
for	j	=	0:24	
				%	read	the	old	images	
				if	j	<=	7	
				imgNameTemplate	=	sprintf('8%d_swimming_pool_S_DSC0010%d.jpg',j+10,j+2);	
					
				RawTemplate	=	imread(imgNameTemplate);	
				%	set	the	degree	of	the	blur	
				ImotionBlur	=	imfilter(RawTemplate,motionmask);	
				%	generate	the	new	blur	images	
				NewimgName	=	
sprintf('MotionBlurDia5_8%d_swimming_pool_S_DSC0010%d.jpg',j+10,j+2);	
				imwrite(ImotionBlur,	NewimgName);	
				else	
					
				imgNameTemplate	=	sprintf('8%d_swimming_pool_S_DSC001%d.jpg',j+10,j+2);	
					
				RawTemplate	=	imread(imgNameTemplate);	
				%	set	the	degree	of	the	blur	
				ImotionBlur	=	imfilter(RawTemplate,motionmask);	
				%	generate	the	new	blur	images	
				NewimgName	=	
sprintf('MotionBlurDia5_8%d_swimming_pool_S_DSC001%d.jpg',j+10,j+2);	
				imwrite(ImotionBlur,	NewimgName);	
				end	
					
end	
	

 63

textRead.m	

textRead.m	is	the	function	to	read	all	pairs	of	corresponding	points	and	call	the	function	

of	 least	square	matching	to	replace	all	 those	points.	These	original	points	are	the	 initial	

guess	for	the	LSMMatching.m.		

	
clc	
clear	
%	to	read	a	text	file		
for	j	=	0:24	%	j	represent	the	folder	name	number	
				if	j	<=	7	
								imgNameTemplate	=	
sprintf('/Users/hxy/Downloads/imgs/Gaussian6_8%d_swimming_pool_S_DSC0010%d.tif',
j+10,j+2);	
				elseif	j	<=	99	
								imgNameTemplate	=	
sprintf('/Users/hxy/Downloads/imgs/Gaussian6_8%d_swimming_pool_S_DSC001%d.tif',j
+10,j+2);	
				end	
				j	
				for	i	=	0:24	
								i	
								%	write	the	text	file	name	containing	pts	info	
								%	write	the	image	name	
								%	write	the	new	file	name	after	LSM	optimization	
								if	i	<=	7	
												imgNameBackground	=	
sprintf('/Users/hxy/Downloads/imgs/Gaussian6_8%d_swimming_pool_S_DSC0010%d.tif',
i+10,i+2);	
								elseif	i	<=	99	
												imgNameBackground	=	
sprintf('/Users/hxy/Downloads/imgs/Gaussian6_8%d_swimming_pool_S_DSC001%d.tif',i
+10,i+2);					
								end	
									
								if	i	<=	9	&&	j	<=	9	
												ptsFileName	=	
sprintf('/Users/hxy/Downloads/g6/Before_LSM/Homol/PastisIMG_0%d.tif/IMG_0%d.tif.t
xt',j,i);	
												newPtsFileName	=	

 64

sprintf('/Users/hxy/Downloads/g6/After_LSM/Homol/PastisIMG_0%d.tif/IMG_0%d.tif.txt
',j,i);	
								elseif	i	<=	9	&&	j	>	9	
												ptsFileName	=	
sprintf('/Users/hxy/Downloads/g6/Before_LSM/Homol/PastisIMG_%d.tif/IMG_0%d.tif.txt
',j,i);	
												newPtsFileName	=	
sprintf('/Users/hxy/Downloads/g6/After_LSM/Homol/PastisIMG_%d.tif/IMG_0%d.tif.txt',j
,i);	
								elseif	i	>	9	&&	j	<=	9	
												ptsFileName	=	
sprintf('/Users/hxy/Downloads/g6/Before_LSM/Homol/PastisIMG_0%d.tif/IMG_%d.tif.txt
',j,i);	
												newPtsFileName	=	
sprintf('/Users/hxy/Downloads/g6/After_LSM/Homol/PastisIMG_0%d.tif/IMG_%d.tif.txt',j
,i);	
								elseif	i	>	9	&&	j	>	9	
												ptsFileName	=	
sprintf('/Users/hxy/Downloads/g6/Before_LSM/Homol/PastisIMG_%d.tif/IMG_%d.tif.txt',
j,i);	
												newPtsFileName	=	
sprintf('/Users/hxy/Downloads/g6/After_LSM/Homol/PastisIMG_%d.tif/IMG_%d.tif.txt',j,i
);	
								end	
									
									
								%check	if	file	exists	
								if	exist(ptsFileName,	'file')	==	2	
												ptsMatrix	=	textread(ptsFileName);	
									
								%	check	how	many	lines	should	the	algorithm	read	
								[numOfPts,b]=	size(ptsMatrix);	
		
								%	read	the	template	image	and	background	image	
								template	=	imread(imgNameTemplate);	
								background	=	imread(imgNameBackground);	
								%	read	everyline	of	pts	
								count	=	1;	
								while	count	<=	numOfPts	
												xCor	=	ptsMatrix(count,1);	
												yCor	=	ptsMatrix(count,2);	
		
												xInitialGuess	=	ptsMatrix(count,3);	
												yInitialGuess	=	ptsMatrix(count,4);	

 65

												%	generate	the	new	coordinate	
												%	call	the	function	
											if	xCor	>	200	&&	yCor	>	200	&&	xInitialGuess	>	200	&&	yInitialGuess	>	200	&&	xCor	
<	4400	&&	xInitialGuess	<	4400	&&	yCor	<	2850	&&	yInitialGuess	<	2850	
																	
																[xNew,	yNew]	=	LSMMatching(xCor,	yCor,	xInitialGuess,	yInitialGuess,	template,	
background);	
												%	write	the	new	coordinate	into	new	matrix	
																if	abs(xNew	-	xInitialGuess)	<	3	&&	abs(yNew	-	yInitialGuess)	<	3	
																				NewptsMatrix(count,1)	=	xCor;	
																				NewptsMatrix(count,2)	=	yCor;	
																				NewptsMatrix(count,3)	=	xNew;	
																				NewptsMatrix(count,4)	=	yNew;	
																	
																else	
																				NewptsMatrix(count,1)	=	xCor;	
																				NewptsMatrix(count,2)	=	yCor;	
																				NewptsMatrix(count,3)	=	xInitialGuess;	
																				NewptsMatrix(count,4)	=	yInitialGuess;	
																end	
												else					
																NewptsMatrix(count,1)	=	xCor;	
																				NewptsMatrix(count,2)	=	yCor;	
																				NewptsMatrix(count,3)	=	xInitialGuess;	
																				NewptsMatrix(count,4)	=	yInitialGuess;	
												end	
												count	=	count	+	1;	
								end	
									
								fileID	=	fopen(newPtsFileName,	'wt+');	
								count	=	1;	
								while	count	<=	numOfPts	
													fprintf(fileID,'%f	%f	%f	%f\n',NewptsMatrix(count,:));	
												count	=	count	+	1;	
								end	
		
								fclose(fileID);	
									
								end	
				end	
					
		
		
end	

