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Abstract 
We experimented with a novel deformable model that track the right ventricle’s (RV) wall 

motion through complete cardiac cycle by using a snake-like approach.  The model uses a 

complex Fourier shape descriptor parameterization for efficient calculation of forces that 

constrains contour deformation.  Even though the complexity exists in RV boundary shape, the 

model tracks the contour correctly and shows the robustness in weak contrast and noisy edge map.  

We also present a quantitative evaluation of delineation accuracy by comparing manual segmented 

contours and semi-automatically segmented contour, to check the reliability of our deformable 

model.  The extracted shapes shows that the error between two contours to be an average of two 

pixels from 256 pixels by 256 pixels of cardiac magnetic resonance images.  We used the 

spatio-temporal characterization of ventricular wall motion, obtained by our model, to help 

classifying the Intra-ventricular dyssynchrony (IVD) in the LV - i.e. asynchronous activation of 

LV wall - by adding RV information of ventricular movement to existing data.  The classifying 

method was to use a popular statistical pattern recognition method of the Principal Component 

Analysis and the Fisher’s Linear Discriminant Analysis.  From a database contains 33 patients, 

our classifier produced correct classification performance of 87.9 % with the RV data, which 

shows the promising improved IVD classification as contrast to current criteria for selecting 

therapy, which provided the correct classification of just 84.8 % on the same database with only 

the LV data.
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1. Introduction 
Despite continuing advances in medical imaging technologies, such as magnetic 

resonance imaging (MRI), much work remains in automated analysis of the resulting data to 

maximize these impacts on patient care.  In most diseases early detection as well as accurate 

classification helps reduce the risk and impact of the diseases.  One of the more promising 

medical technologies is cardiac magnetic resonance imaging (CMRI).   

CMRI provide comprehensive cardiovascular images of four-dimension (3D and time) 

without ionizing radiation and with high signal-to-noise ratio as compared to other cardiac 

diagnostic modalities  [1].  Multi-slice multi-phase (MSMP) short-axis scanning, or 

four-dimension short-axis cine MRI, enables a detailed study of cardiac anatomy and its function 

during both at rest and stress conditions  [1].  MSMP short-axis scanning routinely acquired data 

during clinical examinations comprising high-resolution throughout the cardiac cycle, on a 

number of parallel planes known as “slices,” through the human heart.  However, due to large 

amount of image data generated during scanning, typically 200 – 300 images, analysis of cardiac 

structure and function can become a strenuous task.  As a result, automatic segmentation methods 

have been investigated to reduce time.  Yet, the automatic segmentation method has many 

problems.  Such problems include the lack of standards, difficulty in defining segmentation, and 

the lack of standards in statistical analysis  [1].  Moreover, automated analysis of cardiovascular 

MRI remains challenging due to its natural variability of structure, turbulent blood flows, or the 

interference of other cardiac structures.  The presence of noise and other artifacts can also cause 

the image information to be incomplete, distorted, or unreliable.  For these reasons, automated 

data/image analysis has become a very challenging problem, and many researches have been 

investigating and researching new techniques.   
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The main goal of this project is described in two parts.  We first develop software to 

detect and track the cardiac wall motion of the right ventricle (RV) via a series of CMRI.  The 

software is developed by using the techniques of novel deformable model with complex Fourier 

shape descriptor, introduced by Paulo F. U. Gotardo  [1].  The manual segmentation program is 

also implemented and the results are compared in order to assure the accuracy of automated 

contour tracking.  Then we make use of the result of our deformable model to provide data that 

may help classifying the Intra-ventricular Dyssynchrony (IVD) in the left ventricle (LV).  IVD is 

one of symptoms that corresponds to the non-uniform activation of the ventricular walls. 

Dyssynchronous motion, simply the symptom, is mainly considered as asymmetric muscle 

hypertrophy, reduction in contractility, filling time, and ejection fraction  [1].  Improved 

characterization of the symptom will aid physicians in determining the method of treatment.  The 

treatment of the IVD, cardiac resynchronization therapy (CRT), has provided positive results in 

restoring ventricular function, and it can improve quality of life for some patients.  CRT 

re-coordinates the beating of the two ventricles by pacing multiple sites in the ventricles  [2].  

However, CRT is very difficult to apply due to difficulty in characterization of dyssynchrony; the 

main clinical issue concerning CRT is the placement of the leads and the appropriate number.  In 

this project, we formulated the detection of IVD using statistical pattern analysis  [1].  Our 

deformable model obtains the contour data over complete cardiac cycle.  Then, the results will be 

applied to the Principal Component Analysis (PCA) and the Fisher Linear Discriminant Analysis 

(LDA) to detect and characterize IVD.   

In the next sections, we first discuss prior works, which are the general deformable model 

idea, the Active contour model, and the Fourier shape descriptor in the deformable model (section 

2).  We then discuss important parameters used in our deformable model (section 3), followed by 
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our experimental results in extracting RV shapes and comparison between manual segmentation 

(section 4), and IVD detection (section 5).  Conclusion remark and future work is discussed in 

section 6.  

2. Related Work  
There are several researches that have been done prior to this project being initiated, and 

they are very helpful in understanding the current problem as well possible improvements.  In this 

section, the basic idea of the deformable model, the Active contour model, and the Fourier 

Descriptor will be further discussed.  

2.1 Deformable model 
Many automated analysis of CMRI have been investigated and developed  [1],  [3],  [4],  [5], 

 [6],  [7].  In computer vision and image analysis literature, applying high-level knowledge at some 

stage of the data analysis – for instance, integrating global shape characterization and local image 

evidence - has been investigated in order to reduce the complexity of problems.  These techniques 

are well known in computer vision literature as deformable models  [1].  The deformable model 

consists of variety of types, such as Active Shape Models (ASMs), Active Appearance Models 

(AAMs), and Active contour models (known as snake).  These models have provided promising 

results because they can capture high-level knowledge from manually generated results, provided 

by experts, and accommodate variation in a way that characterizes the class of the object of interest 

 [1].  However, in order to use these models, they require initial training data sets with manually 

generated results, which may be an even more strenuous task for the spatio-temporal model.  On 

the other hand, in medical image analysis, model-based approaches (i.e. top-down) faced the 

problems of natural structure or gold standard  [1].  For this reason, normal, healthy anatomical 

structure is required for inter-sample variations.  Furthermore, observer’s bias will be strongly 

reflected in the result that may introduce misleading information, which could mean the 
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consistency of the result will be weak. 

The fundamental idea of the deformable model techniques can be represented in a 

Bayesian formulation with the maximum a-posteriori (MAP) estimation or the maximum 

likelihood estimation (MLE).  For the case of 2D contour or shapes described by a parameter 

vector θ from an image I. From Bayes rule, 

 )|()(
)(

)|()()|( θθαθθθ IPP
IP
IPPIP ==  (1) 

where α = P(I)-1 is a normalizing constant that ensure ]1,0[)|( ∈IP θ .  The goal of the model is to 

find the contour that maximizes the posterior P(θ|I).  The MAP estimation is given by: 

)}|(ln)({lnmaxargˆ θθθ
θ

IPP +=  (2) 

where the first term, the parameter’s vector or priori distribution, represents expected shape, and 

the second term is image evidence of each possible contour instance.  Thus, by maximizing the 

sum of these two terms, one can represent maximizing the high-level domain information and 

low-level observation data, the goal of the deformable model.  However, there exists a trade off 

between how well extracted contour match with general expectations and how well does it agrees 

with the specific image data or instance being considered.   

2.2 Active Contour Model 
The deformable model presented in this project uses cardiac contour for tracking, most 

likely the ventricular wall, through a complete cardiac cycle.  The model follows snake-like 

approach but uses complex Fourier shape descriptors.  This approach makes use of not only edge 

detection but also the texture around the evolving contour to design image forces that guide 

contours toward desired structures in the image.  By integrating the texture information and edge 

information, the accuracy rate of the contour detection has been increased.  Manual segmentation 

is required for the initial image of the MRI sequence with only a few points depending on the 
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image (typically around 10-15 points), but no other training set is required.  This model was 

originally designed by Paulo F. U. Gotardo, and his model is designed for tracking the left ventricle 

(LV).  This deformable model requires less data samples than elliptical Fourier shape descriptor 

model, in addition to easier initial shape segmentation.   

In order to understand this model, we first consider the deformable model under the 

energy minimization framework.  The desired contour θ̂  is the minimum of the sum of three 

kinds of potential energies: external energy, internal energy, and image energy. 

)}()()({minargˆ θθθθ
θ

imageinternalexternal EEE ++=  (3) 

The internal and external energy, Einternal and Eexternal, acts as prior information (first term in 

Equation 2), and image energy, Eimage, acts as the data evidence (second term in Equation 2).  The 

models often consider these energies in corresponding forces, in which image force, Fimage, tends to 

deform the image while both external and internal force, Fexternal and Finternal, constrain its 

deformation.  These forces are found by the differentiation of energy, or the gradient of energy  [8].  

In order to minimize the energy, conjugate gradient decent is required to find the nearest minimum 

in an energy hypersurface as shown in Figure 1 [8], and the final state of snake θ̂  is achieved 

when the forces are in balance  [1]: 

0)ˆ()ˆ()ˆ( =++ θθθ imageexternalinternal FFF  (4) 
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Figure 1: Graphical view of an example of Energy Hypersurface (left) and Gradient Decent optimization 
(right) showing how model deform to desired position as shown in equation (4). 

2.3 Fourier shape descriptor 
Fourier shape descriptor is a technique of tracing the contour to a desired location with a 

small number of parameters.  The model is generated by many ellipses rotating in the same 

manner with different lengths.  Staib and Duncan have modeled the deformable model by using 

the parametric Fourier descriptor  [5]: 

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡ ∑
= )sin(

)cos(
)(
)(

10

0

kt
kt

dc
ba

c
a

ty
tx N

k kk

kk  (5) 

where the value of α0 and c0 are the coordinates of the contour’s centroid (DC component), and αk, 

bk, ck, and dk are the Fourier coefficients of the x(t) and y(t) with period of 2π, )2,0[ π∈t : 
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For each k in the summation above (5), the corresponding matrix defines a rotated ellipse with a 

starting point position (phase shift).  Thus, the contour described by these parameters, say θ = (a0, 
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c0, …, ak, bk, ck, dk,…), is represented as a combination of ellipses, with N corresponding to the 

number of ellipses used in the shapes.  Figure 2 shows how the shapes are defined by the number 

of ellipses. 

 
Figure 2: Elliptical Fourier shape descriptor example  [5] 

  

The number of the Fourier series coefficients, or ellipses, required is dependent on the 

complexity of the shape.  Many structures found in medial images are typically characterized by 

smooth contours, for which the number of required ellipses is usually small (e.g. from five to ten). 

Instead of the parametric Fourier coefficient, our model uses complex numbers to allow 

more efficient formulation of regularizing forces.  Image analysis is often simplified by looking at 

the invariant properties of shape and, typically, normalizing the shape representation variable, such 

as scale, rotation, and starting point, may be necessary.  In this case, complex Fourier descriptors 

provide simplified initialization.  The representation of complex Fourier descriptor is  

jkt
N

Nk
k eStyjtxts ∑

−=

=+= )()()(  (7) 

where each complex number ℜ∈+= kkkkk jS βαβα ,with, , is treated as a rotating phasor with 
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determine the direction of the rotation in a complex plane; positive frequency (k>0) rotates 

counterclockwise and negative frequency (k<0) rotates clockwise.  The frequency index k is the 

number of complete rotations, 360 degrees, performed by the corresponding phasor, and each pair 

of descriptor Sk and S-k describes and ellipse  [1].  Similarly to Staib and Duncan’s parametric 

Fourier shape descriptor, by replacing Sk of Equation (7) by real parameter αk and βk, it can be 

shown as: 
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this, in fact, can replace Staib and Duncan’s parameterization, from Equation (5), as: 
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For each hypothetical contour θ, Staib and Duncan considered a corresponding template 

image τθ as having ones along the contour and zeros elsewhere.  They then consider matching θ 

and τθ using Bayes rule with MAP estimation (Equation (2) and (3)), with conditional term, 

lnP(I|θ), which approximates, by a correlation between template image τθ and edge strength, the 

value of image Ie  [5].  This corresponds to integrating edge strength value along the contour.  By 

assuming a priori parameter θi as independently distributed Gaussian parameter, ( )2
,~ iii N σμθ , 

the estimated contour θ̂  is one maximizing the following equation  [1]: 
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The contour θ̂ is found from a user supplied initial contour by performing gradient accent 
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optimization, also known as steepest-ascent hill climbing  [1], which gradient vector )(•∇f from 

Equation (10) is given by: 
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The parameter of the right hand side of the equation above can be thought of as the following; the 

first vector is considered as an external force, and integrand’s partial derivatives are considered as 

an image force.  There also exist additional constraints imposed by the model which are 

considered as an internal force.  The parameter of this deformable model is further investigated in 

following section. 

3. Complex Fourier Descriptor snake modeling 
In the previous section, we discussed the integrating complex Fourier shape descriptor 

into the snake-like deformable model.  In this section, we will discuss further into this deformable 

model fitting process: image forces, external forces, and internal forces.    

3.1 Image Force 
Metaphorical image forces are a very important parameter, which are responsible for 

deforming the initial contour to the desired boundary location.  Typically, these 2D force vectors 

are defined by the edge information and texture information of the image.  In order to find this 

information, we must first compute the magnitude of image’s brightness gradient, II e ∇= , and 

then take x- and y-derivative of the contour from finite difference.  Also, there are no forces acting 

on the contour in the interior of homogeneous region, where Ie is negligible  [1].  As a result, 

precise initial contour close to the desired boundary is necessary. 

The edge information is very important to deforming the contours; however, it is very 

difficult to interpret and detect the correct edge.  If an edge map is initially available, it is possible 
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to assign force vectors to each pixel relative to the closest edge to create a slope inside of non-edge 

pixels  [1].  Then those forces with inverted signs move the contour towards the edge like gradient 

decent optimization of hypersurface explained in section 2.  The study suggests scaling the force 

vector to unit-length in order to avoid the large “jump” of the contour, which may lead the contour 

to deform to a different edge.  To identify the image forces acting on the contour, a number of 

equally spaced points ,1with]2,0[ Liti ≤≤∈ π  are sampled from the contour parameterization, 

with contour length L is computed as  [1]: 
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Then by recalling Equation (11), the resulting edge-based image forces acting on a contour with 

descriptor vector S are explained  [1]: 
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where Ix and Iy are the two components of the image force vector and gradient vector are expressed 

and each component is computed from Equation (8) as  [1]: 
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The above equation will determine the edge-based image force; however, since we want to 

perform tracking over the sequence of images, }20,,2,1{with …∈nI n  (CMRI generates 20 

images per slice), we can expect that the boundary shape and gray level pattern near the contour 
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shouldn’t change dramatically.  Thus, keeping the texture information around the contour helps 

the consistency of the image texture or vicinity of the contour  [1].  With this texture-based image 

forces, the model is able to deform with the weak edge information. 

 In order to obtain the vicinity information of the contour from the final shape 

obtained previously In-1, we sample W0 pixel values along the normal direction of the contour  [1]: 
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at a number of locations similar to contour sampling of Equation (12).  This texture-based force 

helps to determine the direction of the deformation by simply adding 
)(
)(

)(
i

i
i ts

ts
psign

⊥

⊥  to the 

edge-based image force  [1]: where pi is the position of the best match obtained from comparing the 

current image texture and previous image texture. 

These image forces ensure that the deformable model tracks the desired contours.  Thus, 

the initialization is important to receive high-level knowledge on not only texture, but also on the 

expected shape for subsequent images.    

3.2 External Force 
In many applications of the deformable model, the prior knowledge of the desired model 

should be integrated with the additional constraints on the contour’s deformation in order to 

achieve successful tracking.  For the case of non-rigid object tracking over a CMRI sequence, 

data evidence may be missing or corrupted by noises or other image artifacts.  However, as we 

mentioned in the previous section, the subsequent images in CMRI are so “similar” to the contour 

extracted from previous image In-1, 
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that it can be used to help deform the contour correctly.  By introducing the external forces, which 
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is the bias toward an expected shape by considering prior parameter distribution or strong image 

evidence, the deformable model can be able to reduce the number of false positives.  Similar to 

Staib and Duncan’s approach  [5], we assume the Fourier descriptor as independent Gaussian 

random variable with scale-normalized Fourier descriptors, 
1S

Sk , for prior distribution  [1]: 
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with user-defined variance, σ2.  By maximizing the log likelihood of the descriptors α(n) and β(n) 

from the given initial descriptor S(n-1), in other word find the maximum correlation  [1]:  
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Also, the External force is given by the gradient vector with each component expressed as  [1]: 
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where: 
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The strength of the external force can be controlled by changing the user-defined variance, σ2. 
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3.3 Internal Force 
Even though the Fourier series parameterization of the deformable model comprises 

smoothness constraints, the model can still generate sharp corners as well as contour crossing 

themselves.  This can be solved by introducing additional internal force which takes account of 

more constraints from the contour’s curvature derivative.  This, however, makes deformation or 

gradient ascent computation much more complex.  In order to resolve the problem, we define an 

additional internal (tension) force that does not involve a gradient ascent computation.  These 

forces are designed to be weaker than image forces, which ensure the contour will be allowed to 

deform under the influence of image forces.   

The function of this internal force is to minimize the contour’s length, which is 

analytically computed using approximation of the squared length L2 of the contour given in 

Equation (12).  Normalizing the contour is necessary to make the internal force to be independent 

of contour scale.  Thus, we consider the descriptor vector as 
1S

S  in computing L2.  Then, the 

internal force at a given point of the contour deformation process is given by: 
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Since the constant 8π2 is found in all terms, we can simply drop the value to make the resulting 

internal force to be relatively weaker than the image forces. 

3.4 Deformable model with complex Fourier Descriptor 
The input CMRI data for each patient corresponds to one slice of the MSMP data over a 

complete cardiac cycle.  The first image of this sequence of 20 images is assumed to be a fully 

expanded ventricle, or the end of diastole, which often clearly distinguishes the boundaries that 

allows us to easily obtain proper initialization.  As we discussed in the previous section, our 

deformable model requires the precise initialization to correctly tracking the contour.  This 

user-supplied contour is then used to initialize tracking in the subsequent images as follows: 

Given the CMRI data and the initial shape descriptor S with corresponding reference 

texture vector )( its⊥ , our objective is to maximize the contour’s likelihood function, denoted f(S), 

from Equations (2)-(4)  [1].  During the contour evaluation, the gradient of )(•f  corresponds to 

the deformable force acting on S, obtained from Equation (13), (21), (24): 

)()()()( SFSFSFSf imageexternalinternal ++=∇  (29) 

We iteratively update S as 

)(SfSS ∇+= γ  (30) 

until the magnitude of )(Sf∇  is negligible, or the balance of force is reached, with γ to be a small 

constant giving the size of each step in the direction of the gradient  [1].  The final shape S and the 

new set of reference texture are used to initialize the process of the next image. 

In our model, tracking is performed in two directions in the periodic time sequence.  The 

directions of the tracking are forward (consecutive image) and backward (previous image), and 
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each track can be considered as a complementary subsequence of the cardiac cycle.  The image 

indexes used in each subsequence are n=1, 2, …, 10, for forward direction and n = 20, 19, …, 6, for 

backward direction.   This complementary subsequence of the deformation seeks the best 

merging point ]10,6[∈n  by finding the minimum distance between the magnitudes of complex 

Fourier descriptors  [1].   In this way the model not only reduces propagation error, but also 

increases the use of the user-provided initialization (manual) data.  Since we define the initial 

image of the sequence at end of the diastole, the fully expanded ventricle, both directions of the 

track most likely see the contracting of the contour.   As a result, it minimizes the errors that may 

occur during expansion. 

4. Extraction and tracking of RV boundaries 
In this section, we first discuss our deformable model techniques and present the results 

when applied to extract and track the RV boundaries.  Then, we address the importance of manual 

segmentation followed by comparison of the data between our deformable model and manual 

segmentation.  This section illustrates the method of comparing the resulting contour with manual 

segmentation.  In order to determine the accuracy of the contour tracking, manual segmentation 

should be conducted by an imaging cardiologist.  Therefore, the manual delineations, used here, 

only serve to illustrate the evaluation process. 

4.1 Extraction and tracking of RV boundaries using deformable model 
The deformable model presented by Gotardo  [1], discussed in previous section, is 

specifically designed for tracking the LV contours.  The RV contours, however, has different 

shape and surrounding textures as compared to the LV.  As a result, there exists the difficulty in 

tracking of the RV contour accurately, by using the same model for tracking the LV.  However, it 

is found to be that an appropriate modification of the deformable model allows tracking of the RV 

contour accurately. 
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The problems of tracking the RV, using the existing model for the LV, is because 1) the RV 

has a more complex shape than the LV, 2) part of the ventricular wall is sometimes too thin to be 

recognized by the deformable model, 3) there exist several false edges that may confuse the model 

in attempting to detect the correct contour, 4) irregularity of motion may be found in RV, and 5) RV 

sometimes does not appear clearly in the CMRI.  Each problem has been carefully considered and 

modified appropriate parameters of the model with several experiments for each modification. 

We have found that the problem (1), the complexity in the RV shape, can be solved by 

increasing the number of the ellipses used, problem (2)-(4) can be solved by modifying the force 

components in Equation (29) by simply multiplying each component by some constants α.  The 

problem (5), on the other hand, is not a problem due to the deformable model.  Though, changing 

the contrast of the image may be helpful to see the boundary.  After several experiments, six 

ellipses, N=6 or thirteen Fourier coefficients, and about twelve to fifteen initialization points are 

found to be a reasonable number to shape the RV.  Also, following modification found to decrease 

the error of deforming contour incorrectly as well as obtain the accurate initial segmentation: 

• Reduced the tension force to comprise the irregular motion of the RV, or reducing the 
rigidity of the contour by multiplying αinternal. 

• Reduced the edge-based image force to decrease the dependency of the edge 
information, or increase the texture dependency of the model αedge. 

 
We have found αinternal to be 0.8 and αedge to be 0.6 give the reasonable tracking result, and Figure 

3 and Figure 4 shows the result of extracting and tracking the RV boundary for a normal and a 

dyssynchronous heart, respectively.  Also, overlay of shapes during systole and diastole are 

shown with the arrow indicating the direction of contraction or extraction.  
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Figure 3: Extracting and tracking of RV without Dyssynchrony (top), Overlay image during systole (left) 
during diastole (right) 
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Figure 4: Extracting and tracking of RV with Dyssynchrony (top), Overlay image during systole (left) 
during diastole (right) 
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4.2 Manual Segmentation and Comparison of Contours 
In order to insure that our deformable model be successful in tracking the desired contour, 

it is necessary to find the contour manually and compare the data obtained from manual 

segmentation and from our deformable model.  Manual segmentation can be done with the use of 

a software tool to help delineate the RV into all the images of the sequence and store the resulting 

vector.  Figure 5 shows the example of a visual comparison found in our deformable model from 

manually segmented contour. 
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Figure 5: Contour obtained from semi-automated segmentation (Blue dashed line) Manual Segmentation 
(Red solid line) 

One of the comparison methods is to find the spatial Euclidean distance between two 

contours.  In this method, the Fourier descriptor vector S will be converted to spatial points, x and 
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y using contour approximation described in Equation (8), and find the minimum distance from 

each point on the contours.  However, the points will not be generated evenly in space from 

S-matrix conversion, even though the points are generated evenly in time domain.  That is, the 

descriptor tends to generate more points at the high curvature region of the contour.  This problem 

can be solved by applying one of the two different methods described below: 

Method 1: 
• From Fourier parameter S, finely sample the contour in spatial domain by using 

Equation (8) 
• Apply memoryless scalar uniform quantization to the sampled contour 
• Interpolate the larger gap in the quantized points 
• Eliminate smaller gap in the quantized points 

Method 2: 
• Finely sample the contour in spatial domain similar to method 1 
• Round points to nearest pixel, and eliminate duplicates  
 

In method 1, memoryless scalar uniform quantization is considered as aligning the 

sampled contour onto fine grid space Qx,y and place points to nearest grid on the space, where x and 

y are called quantizer indices.  The gap between the points in the quantized space is considered as 

the vertical and horizontal separation of the grids.  The method 1 can be considered as applying 

method 2 with finer grid system. 

The difference in quantizer indices between consecutive points will be separated evenly, 

with average difference of 1.7 indices, by the interpolation and the elimination process.  These 

processes also reduced the number of points on a contour.  Difference in quantizer indices before 

and after the process is shown in Figure 6 and Figure 7 below. 
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Figure 6: Difference in quantizer indices before interpolation and elimination 

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5

3

points on the contour

# 
of

 in
de

ci
es

Difference in quantizer indecies

 

 
x component
y component

 
Figure 7: Difference in quantizer indices after interpolation and elimination 

Two methods have been simulated and compared for several image sequences.  As a 

result, method 1 gives better results without changing the contour information, as shown in Figure 

8.  Furthermore, by storing the quantizer indices, method 1 allows for faster calculation finding of 

Euclidian distance of the spatial data points.  For instance, close point(s) can be easily found 

without calculating the actual Euclidean distance by searching quantizer indices around the point.   



 - 23- 

54 56 58 60 62 64 66 68 70
30

35

40

45

50

55

x-direction of the image (pixel)

y-
di

re
ct

io
n 

of
 th

e 
im

ag
e 

(p
ix

el
)

Comparison of quantizing method

 

 
Smatrix to pts

Method 1
Method 2

 
Figure 8: Comparison of method of quantization 

Then, the Euclidean distance between two contours (error) will be calculated by finding 

the closest point pair from two contours.  The closest pair can be easily found by using the 

quantizer indices obtained by method 1.  Figure 9 shows the median, mean, and maximum error 

distance for each image in one of the sequences.  



 - 24- 

5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

image in the sequence

di
ffe

re
nc

e 
in

 p
ix

el
s

Error between Manually segmented Contour and Automatically Segmented Contour

 

 
max
average
median

 
Figure 9: Error between manually segmented contour and automatically segmented contour 

4.3 Experimental Result 
The database of two methods of segmentations of 30 studies is compared in our 

experiments.  The analysis of the results illustrates the accuracy of our deformable model, by 

finding and applying the elemental statistical analysis, which is to find either: 1) the minimum, 1st 

percentile, median, 3rd percentile, and maximum, or 2) mean, and standard deviation.  We employ 

both methods to see the error distributions of each image as shown in Figure 10.  
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Figure 10: Maximum Error distribution found by using (a) method 1 (b) method b, Mean Error 
distribution found by using (c) method 1 (d) method 2, Median Error distribution found by using (e) 
method 1 (f) method 2 

The graphs of error distribution, obtained by using method 1, show the mean, minimum, 

1st percentile, median, 3rd percentile, and the maximum error of the database.  The graphs of 

error distribution, obtained by using method 2, show the mean error and standard deviation of 
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error of the database.  It can be found that errors tend to increase as the image number merged to 

the middle of the sequence, as expected.  However, most of the errors between contours are 

confined within only 2 pixels, which are considerably small since the CMRI produces the image 

with dimension of 256 pixels by 256 pixels.  

5. Dyssynchrony Detection 
The detection of the IVD, in this project, was considered as statistical pattern recognition.  

We employed the techniques of statistical pattern recognition to detect the IVD as well as classify 

the RV for two classes, dyssynchronous or non-dyssynchronous.  We began by performing 

statistical analysis by learning a classifier for two classes of RV from a number of training samples, 

each one describing the contraction and expansion of the RV during the complete cardiac cycle for 

two classes.  The classifier is designed by using the Principal Component Analysis (PCA) and 

Fisher’s Linear Discriminant Analysis (LDA).  Furthermore, since the CMRI sequences in our 

database depict RV in varying scale, starting position, and rotation, the normalization of the 

descriptor must be taken into account in order to increase the correction rate of classification of the 

classifier.  In this section, we first discuss our classifier design including the normalization of 

Fourier descriptor, followed by the experimental result. 

5.1 Classifier Design  
The shape of RV is described by thirteen phasors, or six ellipses with a centroid, and for 

each sequence of CMRI, it provides 20 * 13 = 260 complex descriptors in spatio-temporal shape 

space.  To design a classifier from this high-level shape space, the statistical pattern recognition 

techniques are applied to seek the “important” information. Such information describes the best 

representation of the data or best discriminate between two different classes.  In order to make the 

information consistent in all sequences, normalization of Fourier descriptors is often performed in 

shape matching application to provide invariance of translation, scaling, rotation, and the 
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contour’s starting point  [1].  The pattern recognition techniques are then applied when the shape 

space is consistent in all sequences of the database.  This technique extracts the features from the 

shape space that determines low-dimensional feature space, which best represents the data or best 

discriminate between two different classes.  

In many case, the normalization process of the shape descriptor discards the centroid 

information.  However, we believe that translation of the centroid may contain useful information 

in determining the IVD.  Here, instead of discarding the centroid, we preserve the centroid 

information by subtracting the initial centroid displacement from all other centroids in the cycle.  

This preserves relative displacement of other shapes with respect to initial shape, which can be 

neglected at any time.  Also, to match a single shape, scale invariance is obtained by dividing the 

descriptors by the largest magnitude of the phasor: which, in our case, is the first positive 

component of the first shape 2
1

2
11 βα +=S , since we assumed that the initial image is at the end 

of diastole, fully expanded shape.   

The statistical pattern recognition system operates in two modes: training and testing.   

In testing mode, the classifier learns the features for different classes of extracted low-dimensional 

feature space that best represents the data or best discriminates between different classes.  Testing 

mode classifies the data by using the criterion acquired during training.  The statistic pattern 

recognition techniques we employ in our classifier are PCA and LDA.  PCA is a well-established 

technique for dimensional reduction that finds a compact representation for a data set by capturing 

the most representative feature subspace from the projection of the shape space without much loss 

of information  [1],  [6].  This is done by fitting the multidimensional Gaussian distribution, 

typically considered as hyperellipsoid, which the distribution is completely determined by the 

mean vectors of the sample and the sample covariance matrix.  The extracted features, also 
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known as the principal components, are determined by the eigenvalues of the covariance matrix, 

and are the vectors defining the larges axes of the hyperellipsoid.  The resulting projection matrix 

has a column vectors of the first few eigenvectors associated with the largest eigenvalues: 

 Α×= λshapefinalM  (31) 

where M is the projection matrix, or final shape matrix, λ is the eigenvectors of the principal 

component, and A is the mean-adjust data  [6].  The reduction of the shape space is done by the 

PCA.  However, PCA is an unsupervised technique that does not include the label information of 

the data  [10].  In order to employ the label information, in addition to reduction in dimension, a 

common approach is the LDA.  LDA is a technique that not only reduces the dimensionality of the 

space, but also maximizes the Euclidian distance between different classes while minimizing the 

distance within the same class  [1].  The LDA is considered to maximize the following objective:  

( )
MSM
MSMMJ

W
T

B
T

=  (32) 

where SB is called between-class scatter matrix and SW is called within-class scatter matrix with:  

( )( )∑ −−=
c

T
cccB xxNS μμ  (33) 

( )( )∑∑
∈

−−=
c ci

T
ciciW xxS μμ  (34) 

where x is the mean of the vector x and μc is the mean of the vector within the class, and C is the 

number of classes  [10]. The resulting projection matrix has its columns as leading eigenvectors of 

matrix BW SS 1−  with at most C-1 non-zero eigenvalues  [1].  

In order to find the best discriminates, components between classes from large vector 

space usually take a long time and are inefficient.  It is common to apply PCA before LDA to 

reduce the dimensionality of the vector space before discriminating the classes.  This method is 



 - 29- 

referred to as PCA+LDA, and is one we employ in our training classifier.  The testing is 

performed by fist projecting a normalized test sample onto the low-dimensional classification 

space obtained previously.  Then the label, in our case describing whether a patient is 

dyssynchrony or not, is assigned to the nearest class mean.   

5.2 Experimental result 
The database of 33 studies of MSMP short-axis CMRI is used in our experimental results, 

with 15 patients labeled as dyssynchronous.  However, the database only consist the label on IVD 

in the LV.  Thus, even though we have data on RV, we consider the detection of IVD in LV.   To 

ensure that development of the classifier that distinct two classes, which are the dyssynchronous 

and non-dyssynchronous LV, we employ both classes of hearts, and compare and determine the 

result.  In order to classify this database, we first define the RV contours for complete cardiac 

cycle from our deformable model.  Then we apply the classifier to the resulting contours.  

The current method of selecting patients for CRT is based on QRS duration on 

electrocardiography and LV ejection fraction.  The eligibility of the CRT using current 

determination method has an accuracy of 62.5 %  [1].  Also, correct classification rate of the 

database with only LV epicardial and endocardial database of the database is 84.8%.  In this 

project, due to small number of availability in the database, we used the leave-one-out cross 

validation method, in which we analyzed the 33 classification results from training in the classifier 

of 32 samples and tested the last sample that was left out.  From the database of 33 studies, we 

have obtained the detection rate of 87.9 % correct classification: this corresponding to 

misclassifying 4 out of 33 samples.  With a slight increase, which is 1 more correct classification 

out of 33 patients in database, in correct classification, it shows promising improvements in future 

work which explained in next section. 
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6. Concluding Remark 
We have presented an innovative method of finding and characterizing the ventricular 

wall motion from the routinely acquired MSMP CMRI sequences.  Our main contribution 

includes the development of the RV tracking deformation model with contour comparison method, 

and IVD detection from the spatio-temporal shape spaces of the RV.    

A semi-automatic deformation model was developed using the complex Fourier shape 

descriptor parameterization, and used to track RV wall motion over the complete cardiac cycle.  

The model requires user-supplied initialization on the desired RV boundary of just one image of 

the CMRI sequence.  The model was compared with the manual segmentation contour, and the 

results indicate that our model is robust to weak contrast, noisy edge map, and irregular motion.  

From the result, it is found to be that part of the right ventricle interferes with the epicardial 

boundary of the LV. Figure 3 and Figure 4 shows the non-dyssynchronous and dyssynchronous RV 

motion.  In dyssynchronous RV, dyssynchronous movement of epicardial boundary of the LV 

seems to be generating dyssynchronous movement in the RV.  Since it is much easier to initialize 

the LV boundary, future work will investigate the deformable model by using the open contour 

Fourier shape descriptor as shown in Figure 11. 
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Figure 11: Open Contour Fourier Shape Descriptor Example 

We also have developed the technique of detecting the IVD in the LV using RV contour 

information and only one slice of mid-ventricular CMRI sequence of any cardiac MR system with 

no additional acquisition techniques.  By adopting the statistical pattern recognition technique, 

we have designed the classifier for IVD detection from the shape descriptor extracted from our 

deformable model.  The results show that the detection of the IVD from shape descriptors 

extracted from our deformable model is much more accurate than current methods of detection 

from QRS duration and LV ejection fraction: 87.9 % as compared to 84.8 %, which increase a 

correct classification by 1 out of 33 patients in the database.  Further studies of characterization of 

IVD as well as improvements of the deformable model are currently being investigated.  These 

include performing segmentation of sets of slices from MSMP short-axis CMRI and long-axis 

CMRI with larger database.  Furthermore, since we have the contour database for the RV, the IVD 

in the RV as well as bi-ventricular activity (comparing both LV and RV motion) should be 

investigated.  Through these investigations, these structures may improve the characterization of 

IVD.  
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