
Preface

Contents:
0.1. Why we wrote this book
0.2. Establishing a research question
0.3. Why analyze language sounds?
0.4. An aside on letters versus sounds
0.5. Data analysis techniques and data sources
0.6. Summary sections to expect
0.7. Data analysis software
0.8. R code
0.9. Exercises
0.10. References

How to get the most out of
this book

0.1. Why we wrote this book
This textbook is a concise introduction to probability, statis-
tics, and exploratory data analysis. It is intended for use in a
one-quarter or one-semester course aimed at undergraduate
students who are majoring in the liberal arts. As an instructor
or a student, you may never have thought about the underly-
ing reasons for writing a textbook. You may possibly have
shared our cynical belief that many textbooks are overpriced
and revised far too often, with the only underlying purpose be-
ing for the publisher to derive a profit. This book is different.
It was not requested by a publisher, but rather sprang forth
from our experience in developing and teaching a course at
the Ohio State University called Analyzing the sounds of lan-
guages.

This course was designed with the goal of fostering numeric
reasoning skills by presenting data analysis techniques using
accessible real-world datasets to address research questions
that can be understood by anyone who commands a spoken
language. We designed this course because we think that it is
at least as necessary to be numerate as it is to be literate, but
many of the undergraduate students whom we have taught in
our collective five decades of teaching are not numerate. This
puts them at a disadvantage whenever they encounter
probability-based models or statistical results cited as evi-
dence for accepting some belief or taking some course of ac-
tion. They will need to evaluate such evidence in many of the
courses that they take in college, at the polls as they begin to
vote in local and national elections, on the job market as they

search for employment after graduating, and so on. Indeed,
we cannot think of an area of modern life in which a facility
with statistical reasoning is not important.

We think that this disadvantage is because in many public
schools in North America, numeracy is shortchanged rela-
tive to literacy. We have encountered the attitude that, be-
cause numeric reasoning is inherently difficult and because
some children do not have a natural talent for grasping mathe-
matical concepts, numeracy is expendable for those children
who struggle. We cannot agree with this attitude. That is, we
acknowledge that numeric reasoning skills can be difficult to
learn. Numbers and statistics are relatively recent inventions
of our species. But writing systems, too, were invented re-
cently enough that some children, perhaps as many as 17% of
children in the U.S., have a neural condition that makes it diffi-
cult to learn to read (Shaywitz, 1998). Yet no one would con-
clude from this fact that learning how to read and write is op-
tional. Numeracy, also, is too important to reserve for the tal-
ented few. Learning how to read patterns in numbers, and to
reason from those patterns, is too important to be optional for
young adults who are majoring in the arts or humanities. Stu-
dents in these liberal arts need numeric reasoning ability as
much as do students in the biological and physical sciences.
Resources are needed to make numeric reasoning skills attain-
able for everyone.

What makes numeric reasoning skills attainable? We follow
George Cobb (1991) in thinking that a key ingredient is “More
data, less lecturing.” We also agree with him in thinking that

ii

the quality of the datasets is critical. We ourselves have strug-
gled through textbooks or tutorials that introduce statistical
tools by applying them to timeworn data such as Frank Yates’s
(1935) plot yields for different combinations of oat seed strain
and nitrogen. Or worse, they (mis-)apply statistical tools to
made-up data, such as the number of pounds of cashews, bra-
zil nuts, almonds, and peanuts in a hypothetical batch of
mixed nuts, an example “from a popular introductory statis-
tics textbook” that Robert Hayden cites to illustrate the kinds
of errors in elementary statistics textbooks that “can go uncor-
rected for years” (Hayden, 2000, p. 2). Many students from
the arts and humanities find these examples irrelevant, if not
off-putting. We aim instead to use examples from a domain
that should be accessible to a general audience, by presenting
analyses of data about the sounds of languages. In section 0.3,
we expand on this aim and illustrate the familiarity of such
data with an example from one of our students in a general
course on language structure. 

0.2. Establishing a research question
In this book, we focus much more heavily on developing and
evaluating research questions and hypotheses than on the
mathematical operations underlying the data analysis tools
presented in each chapter. Our justification for this falls along
the same lines as our reason for using real and accessible data.
Numerical analysis of data is very much about context and in-
terpretation. It doesn’t matter if you can calculate an average
by hand if you do not know how to determine when it is appro-

priate to use an average to relate numbers to a specific ques-
tion. If you don’t understand where the numbers come from
or what they mean in a broader context, then how can you ana-
lyze them appropriately?

Therefore, the first priority in each chapter (after this preface)
is to familiarize you with the context for the research ques-
tion. The first section will introduce a linguistic problem and a
broad question or set of questions that help define the prob-
lem, such as (for Chapter 1) “How inconsistent is the English
writing system?”

We will then ask more specific questions that can help us an-
swer the larger question by using the techniques we will de-
velop in each chapter. Broad questions are difficult to answer
because they frequently have many components or are just too
large in scope to tackle on their own. The smaller, more spe-
cific questions will narrow down the broader question into
smaller, more quantifiable and testable chunks. The results
will provide evidence for an answer to the broader question,
but may not definitively “answer” it. For example, we may ask
about spelling patterns using the relationships between a few
letters and the sounds that they write in English words, and
from this, we may infer that similar patterns could apply
across the language. We can apply this inference to the
broader question, as you will see in the last sections of the
chapters.

Is is a fact about data analysis that no set of numbers or quan-
titative analyses can “answer” a question. Rather, these nu-
merical analyses can provide evidence that supports or chal-

iii

lenges a hypothesis. The hypothesis arises as a testable as-
sumption about your data, from a well-defined research ques-
tion. You cannot “prove” that the hypothesis is correct, but
you can collect evidence that either supports or contradicts
your hypothesis. Some evidence is more convincing, or more
directly addresses the research question and hypothesis. Gen-
erally speaking, the more times a hypothesis is upheld by the
evidence, the more likely that it is true. The hypotheses we pre-
sent in this book are created with the intent of using specific
numerical and analytical tools to provide the supporting evi-
dence, and will be presented along with the relevant tool. 

0.3. Why analyze language sounds?
A practical reason for using data about the sounds of lan-
guages is that we are linguists who specialize in studying
sounds and sound patterns. So when we began to design this
course, we had ready access to real datasets that we or our col-
leagues had gathered, in order to address questions about lan-
guage that we ourselves find interesting. A more compelling
reason for us to use these data is that we don’t think we’re
alone in finding the questions interesting. Everyone who has
English or some other spoken language as his or her native
language can find ways to relate to the data being presented.
Even before being introduced to linguistics, you may have
wondered about some of the questions we can ask about lan-
guage sounds.

For example, you may have wondered why some people have
nicknames, and how they got these nicknames. Some nick-

names, such as Doc or Red, are obvious references to events
or personal characteristics, but many nicknames are just varia-
tions on the sound pattern of a person’s given name or title, as
in the nicknames Sam, Jon, Cindy, and Bubba for people
called Samantha (or Samuel), Jonathan, Cynthia, and
Brother. One of our students, nicknamed Lalo, wondered
whether his less typical-sounding nickname might be related
to the more typical patterns that can result when other family
members adopt the pronunciations of siblings who are in the
early stages of language acquisition and aren’t yet able to pro-
nounce all of the sounds in the full name.

The student himself has the Spanish given
name Gerardo, pronounced hɛɾɑɾðo, and his
nickname came from his older sister, who was
only 2 when he was born and called him Lalo,
pronounced lɑlo. Something that Gerardo
noticed about his nickname is that the
consonant sounds in lɑlo are different from
any of the consonant sounds in hɛɾɑɾðo. The
changes seem a bit like the changes in the second consonant
sounds in Cynthia and Brother when they are shortened to
Cindy and Bubba. That is, the way that the two ɾ sounds in
hɛɾɑɾðo change to the l sounds in lɑlo seems a bit like the way
that the θ sound that is spelled with ‘th’ in Cynthia changes to
the “easier” d sound in Cindy and the way that the ð sound
(also spelled ‘th’) in Brother changes to the b sound in Bubba.
Gerardo wondered if there is any pattern in which sounds
change to other sounds when nicknames are made from full
names in this way. If so, does this pattern tell us something

iv

hɛɾɑɾðo

lɑlo

about what sounds are easier for young children to
pronounce?

In section 0.4, we will explain the symbols that we have used
to represent the pronunciations of Gerardo’s name and nick-
name and to describe the changes to the pronunciations of the
second consonants in making the nicknames for Cynthia and
Brother, but first let’s talk about an even more obvious change
that we can describe without any such technical tools.
Gerardo’s name is three syllables, but his family’s nickname
for him is only two syllables. Two-year olds don’t use very
many three-syllable words, so it might have been easier for his
sister to say his name by shortening it in this way. In the
following chapters, we will introduce ways to begin exploring
these questions quantitatively, using data from the real world.
The numbers that we will give you only make sense if you can
relate them to the question that you are trying to address. So
we will start each chapter first by developing a research ques-
tion. While the aim of this textbook is to give you resources to
help you get comfortable with numerical analyses and statisti-
cal reasoning skills, the numbers have to be about something
for the analyses to be meaningful, which is why we use lan-
guage data. 

0.4. An aside on letters versus sounds
Both in posing the broader question in each chapter, and in
narrowing it down into more tractable smaller questions, we
will try, as much as possible, to avoid using technical jargon
from linguistics. In some courses at some universities, this

textbook has been used in conjunction with Peter Ladefoged’s
book Vowels and Consonants, as part of a structured major in
linguistics. But we want this textbook to be generally accessi-
ble, so we will try to make the questions and datasets accessi-
ble without any previous specialist knowledge of linguistics as
a scientific discipline.

At the same time, there are a few things that are much easier
to talk about if you have access to some specialist tools. The
most important of these is the conventions for distinguishing
between letters and sounds. As you probably noticed in the
nickname examples in section 0.3, the pronounced form of a
word often is not the same as its spelled form. For example,
both Brother and Cynthia have a ‘th’ consonant in them,
which is pronounced as ð in Brother, and θ in Cynthia. In
fact, you may not have realized before that these are two differ-
ent consonant sounds because they are spelled the same. We
will will use different ways of writing to differentiate pro-
nounced forms from spelled forms, in order to be clear.

Specifically, we will adopt the following conventions from Pe-
ter Ladefoged’s book. We will write examples of spelled forms
of words in the Roman alphabet, setting them off from the sur-
rounding text by using italics, as in Gerardo, Samantha, and
Cindy. We will write letters for parts of spelled forms using or-
dinary type but enclosing them in single quotes, as in the let-
ters ‘r’, ‘d’, ‘a’, and ‘o’, in the name Gerardo, or the letter se-
quence ‘th’ that spells the third consonant in Cynthia. We will
write examples of spoken forms of words in the International
Phonetic Alphabet (IPA), setting them off by using boldface,

v

as in hɛɾɑɾðo for the spoken form of the name Gerardo,
sɪnθiə for the spoken form of Cynthia, and bəbə for the spo-
ken form of Bubba. We will also write individual vowel and
consonant sounds using boldface IPA, as in the vowel sounds
ɑ, and o, and the consonant sounds ɾ and ð in the spoken
form hɛɾɑɾðo for the written name Gerardo, or the θ sound
that the ‘th’ represents in Cynthia. (Sometimes, though, we
will have to substitute other symbols, when the IPA font is not
available in the plotting program that we are using to make
charts and graphs. In those cases, we will explain the symbols
that we are substituting for the IPA, as we do in the caption of
Figure 1.1 in Chapter 1.)

Please don’t feel bogged down by this way of distinguishing be-
tween letters and sounds. In some chapters, aspects of the re-
search question focus on the analysis of certain sounds. In
that case, we will tell you about these sounds in detail when
we introduce their IPA symbols. In many other chapters, we
will use the IPA to give examples that illustrate how words are
pronounced or what differences there can be in how words are
pronounced. When we give such examples, we will not intro-
duce every sound and IPA symbol in detail, but we will always
provide you with enough of the necessary information for you
to understand the example.

If you are interested in learning more about the individual
sounds that we write in IPA symbols, you can look up the sym-
bols in the figures and tables in this section of the preface. On
the next two pages, we give you the full set of symbols in the
consonant and vowel charts that are provided by the Interna-

tional Phonetic Association. These charts are in Figures 0.1
and 0.2. The shaded box below Figure 0.1 gives you a rough
idea of how to pronounce each of the consonant sounds. (In
later chapters, too, we’ll use such shaded boxes to set off other
tidbits about technical jargon or interesting tangential infor-
mation about the data sets and so on.)

Directly after each of the figures, tables indicate which sym-
bols and symbol sequences we will be using to represent all of
the consonant sounds (Tables 0.1) and all of the vowel sounds
(Table 0.2) in the dialects of American English that are rele-
vant in this book. For each symbol in these two tables, we also
provide one or more sample English words containing that
consonant sound or that vowel sound.

The information in the column and row headings of these two
figures provides a very bare-bones description, using technical
terms from the discipline of phonetics. The tables will be use-
ful for interpreting the descriptions if you are a native speaker
of American English. If you are not a native speaker, you may
need to consult with a friend who is a native speaker, to help
you interpret the sounds from the friend’s pronunciation of
the words in the tables. Alternatively, you can consult an intro-
ductory phonetics textbook, such as Peter Ladefoged’s Vowels
and Consonants. (Even if you are native speaker, if you are in-
terested in learning more about the IPA and the classificatory
features that organize the charts of consonants and of vowels,
you might want to read Vowels and Consonants. It is a con-
cise and well-written introduction to phonetics that has been
used even in high school classes.) Additionally (at the time of

vi

this writing), a website associated with his book provides click-
able recordings to illustrate each of the sounds in the IPA, lo-
cated at
http://www.phonetics.ucla.edu/course/chapter1/chapter1.ht
ml .

Reading the IPA consonant chart

You can figure out roughly how a consonant sound is
pronounced by the labels at the top and on the sides. The
place of articulation means what parts of the vocal tract are
involved in making the sound. In consonants, this means
where the articulators are closest together. So, a labio-dental
sound, such as f, is one that involves the lips (labial or labio-)
and teeth (dental) coming close together or touching. An
alveolar sound, such as t, is one where the tongue approaches
or touches the alveolar ridge (which is just behind the upper
teeth). The labels on the left refer to the manner of
articulation. A fricative, such as f, is produced with a close
constriction but not a complete one, so that the air passing
through makes a hissing or buzzing noise. A plosive (also
called a stop), such as t, is produced by stopping the air
entirely at the place of articulation. Many consonants in the
chart appear in pairs. In this case, the right member of the
pair is voiced, which means the vocal folds are vibrating
during the consonant sound, and the left member is voiceless,
which means that the vocal folds are not vibrating during the
consonant sound.

Table 0.1. American English consonants, illustrated where possible in
initial and final position.

p pea, ape t tea, ate ʧ chew, itch k key, ache

b bee, Abe d day, ad ʤ jaw, edge ɡ go, rug

m me, aim n no, on ŋ rung

f fee, off θ thigh, oath s sow, ace ʃ show, ash

v vow, eve ð the, seethe z zoo, ooze ʒ rouge
ɹ *row, oar j you w we
l low, awl

vii

Figure Preface.1 Consonants of the IPA

Click on upper left corner to enlarge. Tap outside image to
close, or hit escape.

http://www.phonetics.ucla.edu/course/chapter1/chapter1.html
http://www.phonetics.ucla.edu/course/chapter1/chapter1.html
http://www.phonetics.ucla.edu/course/chapter1/chapter1.html
http://www.phonetics.ucla.edu/course/chapter1/chapter1.html

*We’ve put the IPA symbol for the American English sound, ɹ,
here in the table, but in the text we often substitute the IPA
symbol r, which stands for a different sound. The IPA symbol
r represents an alveolar trill. This is a sound that is written
with the letter sequence ‘rr’ in Spanish words such as perro
(meaning ‘dog’). There are many English dialects (e.g., Irish
English, Indian English) that have an alveolar trill (i.e., r) as
the sound that is written with the letter ‘r’ in English words
such as row. Because the difference in pronunciation doesn’t

change the meaning of the word, we feel that the ease of read-
ing the more familiar form justifies this substitution.

Reading the IPA vowel chart
Vowels are pronounced with the least amount of constriction
of the vocal tract, which is one characteristic that sets them
apart from consonants. You can figure out roughly how a
vowel sound is pronounced by the labels at the top and on the
sides of the chart, which indicate how the tongue is positioned
and the corresponding shape of the mouth. The labels on the
left refer to the height of the tongue and thus the degree of clo-
sure of the mouth. A close vowel (also called a high vowel)
such as i, is produced with the tongue high in the mouth,
which draws the jaw more closed, which is why photographers
may tell you to say cheese, so you don’t have your mouth hang-
ing open in the photograph. Likewise, a doctor who wants to
examine your throat may instruct you to say ɑ so that your
mouth is maximally open and your tongue is low and not ob-
structing their view. Labels along the top refer to whether the
tongue is closer to the front of the mouth, as in i, or to the
back of the mouth, as in u.

Table 0.2. American English vowelsTable 0.2. American English vowelsTable 0.2. American English vowelsTable 0.2. American English vowels
i heed, beat, key diphthongsdiphthongs
ɪ hid, bit, kiss aɪ hide, bite, Kaiser
e hay, bait, case aʊ how, bout, cow
ɛ head, bet, Casey oɪ hoy, boy, coy
æ had, bat, Cass
ɚ heard, Bert, curse
ɔ haught, bought, cause
ɑ ha, bot, cost
ʌ Hud, butt, custard
o hoe, boat, coast

viii

 i
 ɪ

e

 ɛ

æ
ɑ

ʌ ɔ

o
ʊ

u

Figure Preface.2 IPA symbols for vowels.

1 of 12

0.5. Data analysis techniques and data sources
After introducing the research question, in the middle sec-
tions of each chapter, we will introduce some data analysis
techniques that we can use to address the research question
and to provide the evidence that will lead us to some kind of
answer to the question. We will be using real data collected
from experiments and corpora used by researchers in the rele-
vant sciences. We will give full references for the datasets that
we use in the body of the text and the exercises that follow.
This is a standard procedure that holds researchers
accountable for their measurements and analyses, so that
others can replicate an analysis presented in a study to ensure
its reliability. That is, it is critical to say exactly where the
numbers in a study came from to see if other studies using
numbers gathered in the same way can get the same results.
We also give a brief description of each dataset so that you can
decide for yourself if we are analyzing the data in a way that is
appropriate to the data and the questions we have about the
data — a concept which is known as validity. Getting critical
skills in evaluating the reliability and validity of a study is far
more important than remembering the technical details about
how to do a particular statistical test. This is why we will focus
so much on figuring out what kind of data we are looking at,
and on formulating and answering appropriate research ques-
tions.

At the same time that we introduce the data, we will introduce
various useful methods and tests for analyzing the data. Some
chapters will focus on numeric measurements used to de-

scribe the distribution of data, and some later chapters will fo-
cus on statistical tests that are commonly used to describe
how well the data fit some model or hypothesis. Not only do
we describe all of these methods, we will also apply each of
them in turn to some data set, to help us answer the research
questions posed in the beginning of that chapter.

We will also spend a fair amount of time in the first few chap-
ters discussing different ways of visualizing data. A good part
of numeracy is being able to display data in an honest and in-
telligent way. This means using the display method that is ap-
propriate for the data and research question at hand. It is im-
portant to understand how to design and describe the appro-
priate graphical representation for each type of data, because
pictures are often easier to grasp than words. It is also impor-
tant to be able to understand and critically analyze graphical
representations, because you will often see data and numeri-
cal evidence summarized in this way. Developing the skills to
be able to read a graph in an instruction manual or to identify
when a graph in a news article is misleading could even save
your life.

0.6. Summary sections to expect
Toward the end of each chapter, we will always have a section
called “Answering the research question.” In this section, we
will remind you of the research questions, sum up the evi-
dence we have uncovered using the data and data analysis
techniques introduced in the chapter, and then conclude with

ix

a summation of the answers we have inferred from our appli-
cation of data analysis techniques.

We also will give a summary of the key terms that were intro-
duced in the chapter to help you recall what you’ve learned. It
will be in a box set off from the rest of the text, as shown be-
low.

This iBook version also gives you the option of finding the glos-
sary term by clicking on the dark blue italicized word as
it appears for the first time in the text.

Summary of key terms

Numeracy: The fundamental understanding and ability to
conceptualize how numbers work, including relationships
between numbers, magnitude of numbers, and how opera-
tions can be applied to numbers. Also known as numeric lit-
eracy.
Numerate: Possessing numeric literacy, or “numeracy”.
That is, the ability to think about, conceptualize, and under-
stand reasoning, numbers, numeric systems, etc.
Reliability: Also known as replicability, that is, whether
performing the same experiment multiple times or perform-
ing the same analysis on multiple samples will yield the
same results. If your analysis is reliable, others should be
able to duplicate your results.
Validity: Your results are not valid unless you use the ap-
propriate analysis for the type of data you have and the
analysis answers the questions you have set out to research.

0.7. Data analysis software
Note that while we want you to develop facility in the methods
that we introduce, we don’t want you to get bogged down in
the calculations and technical details at the expense of a good
understanding that can be gained by practicing the skills. So
we will encourage you to learn to use data analysis and graph-
ics programs that can do the more tedious parts of the calcula-
tion of numbers and data plotting for you.

There are a variety of software options available for graphing,
statistics, and other forms of data analysis. In this book, we
have chosen to use the open source data analysis package
called R. R has many advantages over other programs that we
have used. It is available for free download, it can be used
with any of the three most widely used operating systems
(Windows, Mac, Linux), it is highly stable, and it is at least as
powerful as any of the expensive high-end commercial statisti-
cal packages that we used before R was developed. Unlike com-
mercial software, open source software like R is created and
updated by people who use it. New packages and updates to
the base program are created when the community of R users
wants them enough to make them, not when some company
wants to boost profits.

As with any new software package, or even a new calculator,
you will need to spend some time familiarizing yourself with
how it works. When we introduce a particular graphical tech-
nique or a statistical test in the middle sections of a chapter,
we often will show some relevant R code in a box called an “R
Note” like the box below.

x

R Note 0.1 – Doing arithmetic in R
The English word computer was first used to mean a per-
son who performs arithmetic and other mathematical com-
putations for a living. For example, the six women who set
up the original programs for the ENIAC machine in the
1950s were drafted from the many “computers” who had
been hired to work for the Manhattan Project. Today, of
course, computer instead means a machine that does arith-
metic and many other types of computation electronically.
Although we will be using R for much more complicated
calculations, it’s good to first learn how to use it for arith-
metic. You can perform addition, subtraction, multiplica-
tion, and so on just by typing the relevant formula. For ex-
ample, to subtract the number of letters in the spelled form
Cindy from the number of letters in Cynthia, you can type:
 7 - 5

This returns the following value:
 2

That is, if you type the formula in the R console window,
followed by a carriage return to execute the formula, the
result of performing that operation will appear as the next
line of text in the window. See the R code in section 0.9 for
examples of more elaborate formulas, as well as for infor-
mation about how to download R, and so on.

0.8. R code
After the summary sections at the end of each chapter, there
will be a section called “R code” to help you learn how to use
this program to do the types of data analysis covered in that
chapter. The course website,
http://kb.osu.edu/dspace/handle/1811/77848, includes all
the files that are associated with this textbook, and each file
will have a name that is associated with the relevant Chapter
number. For example, the first data file you will need is called
Ch00.Textfile1.txt. All of the “R code” sections
introduce and explain useful bits of R code, which will be
included in the associated files.

In each of the later chapters, the code that is introduced is
similar to the code that we used to make some of the tables
and figures in that chapter. The R code section in this preface
chapter is a bit different. It’s intended to be a more general
introduction and reference section. That is, we will first
explain what you need to do in order to download and install
R and to take best advantage of the R code sections. Then we
will give a quick overview of some of the R code data
structures and operators that you will be using in every
chapter.

Note that the textbook web page also has at least one R
script file for every chapter that gives the code in a format
that lets you open the file within R, to work through the code
interactively, as you read the R code section. A copy of this R
note is saved inside a script that is called Chapter00.R and
can be found in the list on the course website, at

xi

http://kb.osu.edu/dspace/handle/1811/77848
http://kb.osu.edu/dspace/handle/1811/77848

http://hdl.handle.net/1811/77848, or directly at
http://kb.osu.edu/dspace/bitstream/handle/1811/77848/Cha
pter00.R. Once you have opened the script from within R, you
can read each comment (a sequence of lines that is marked off
by “#” at the beginning) and then run the line(s) of code that
the comment describes. Note that while you can type the lines
directly into the console, it is easier (and less error-prone) to
open the script editing window, type the command there, and
then run the code directly from the script editing window. You
can run a section of code from the script editing window by
highlighting the command(s) you want to run, and then
typing (together) the <command>+<return> keys (on a Mac)
or the <ctrl>+<r> (on a PC running Windows). We
encourage you to download and install R and use these R code
sections of the textbook and the associated script files to teach
yourself how to use R. (We also encourage you to open a new
script file whenever you start working on a particular concept,
so that you can try out commands by writing them in the
script editing window and making notes for yourself in
comment lines about what a command was intended to do,
whether it worked or not, how you modified it to get it to work
if it didn’t do what you wanted it to do the first time, and so
on. That is, get in the habit of using R to help you keep track of
your developing understanding of the different types of data
and graphs and statistical techniques that you will be learning
about in this course.)

Part 1. Downloading and installing R

1) Get on the internet and point your browser to
http://cran.r-project.org/

2) Under the first heading, “Download and Install R”, click
on the appropriate platform for your system (i.e., Mac,
Windows, or Linux). You will be given the choice of
downloading from a list of mirror sites. The download
may be faster if you choose one that is near to you.

The rest of the steps are specific to the platform that you are
using.

For the Windows platform:

3) Choose the “base” installation. We do not need any of
the other packages for material covered in this book.

4) Click on Download R X.X.X for Windows, where X.X.X
stands for whatever happens to be the most recent ver-
sion (as of this writing 3.2.3 was the most recent ver-
sion).

5) Install by double clicking on the .exe file, and choosing a
directory to install R to. It is easiest if you install it di-
rectly to your C drive. Then, just follow the instructions
in the install wizard.

6) If you need more help, click on the link labeled ‘Installa-
tion and other instructions’ located on the same page as
the download.

Mac (OSX 10.5 and later)

xii

http://hdl.handle.net/1811/77848
http://hdl.handle.net/1811/77848
http://kb.osu.edu/dspace/bitstream/handle/1811/77848/Chapter00.R
http://kb.osu.edu/dspace/bitstream/handle/1811/77848/Chapter00.R
http://kb.osu.edu/dspace/bitstream/handle/1811/77848/Chapter00.R
http://kb.osu.edu/dspace/bitstream/handle/1811/77848/Chapter00.R
http://cran.r-project.org
http://cran.r-project.org

3) Click on the R-X.X.X.pkg (where X.X.X stands for the lat-
est version, which was 3.2.3 as of this writing)

4) Either save and install by double clicking on the zipped
package, or allow your archive utility or Stuffit to unzip
it as it downloads (that is, choose save or open). Follow
the instructions in the install wizard and make sure the
R program is saved under Applications.

Mac (earlier versions than 10.5)

3) Go to the following page to find a version that is compati-
ble with your legacy OS:

http://cran.r-project.org/bin/macosx/old/index-old.html

4) Click on the R-X.X.X.pkg suitable for your OS.

5) Either save and install by double clicking on the zipped
package, or allow your archive utility or Stuffit to unzip
it as it downloads (that is, choose save or open). Follow
the instructions in the install wizard and make sure the
R program is saved under Applications.

Linux

3) Click on the folder for the particular flavor of Linux
that you have installed and then follow the instruc-
tions there.

Welcome to the wonderful world of R!

Part 2. Data files and script files

One of the biggest advantages of using R is that it lets you
cleanly separate the act of recording the measurements and
other observations that constitute your data from the act of de-
veloping the formulas and numeric analyses that you will be
learning to apply to the data. That is, the R program is a pro-
gramming environment that lets you read in data from one
file (such as text file of words or numbers that you created by
copying them from a browser screen) and also to read in a dif-
ferent file of formulas and other code that you can apply to the
data.

We’ll call the first kind of file a data file and we’ll call the sec-
ond kind of file an R script. After you apply the analyses to

xiii

Movie Preface.1 Opening a new scripting window in R
external link: http://streaming.osu.edu/player/knowledgebank/?f=LING/ 
LING_kbdirect_2051_Ch00_Movie1_m4v.html

http://cran.r-project.org/bin/macosx/old/index-old.html
http://cran.r-project.org/bin/macosx/old/index-old.html

the data, you can save the results in a different data file, with-
out overriding the original data. You also can edit the script
file and save the edited version to a different file. This lets you
experiment easily with different ways of manipulating the
numbers that are your data without overwriting any of the
numbers or any of the code.

As we said above, we’ll be providing data files for many of the
research questions that we introduce in the later chapters and
we’ll be providing at least one R script for the R code section
of every chapter. We’ll also be providing a section of exercises
for each chapter, to help you practice the concepts that are in-
troduced in that chapter. We recommend that you practice
your understanding of the concepts by doing as many of the
exercises as you can. To take best advantage of R, we recom-
mend that you also work through the R code in the R script
for the chapter, line by line, to make sure that you understand
what the code is doing, and then practice your understanding
by using and adapting the R code in the exercises where it is
appropriate.

Part 3. Getting started

In the rest of this section, we will cover some R basics. The
code that we will introduce is saved inside an R script that you
can use interactively. All of the commands in parts 4-12 are in
a script called Chapter00.R. You can follow along more eas-
ily if you download that script now, and try opening it. Here’s
how.

When opening an R script, if you are running Windows or
Linux, you should first start the R program. Then from within
the R program, choose the File menu, then select “open
script” and browse to where you have saved the R script, for
example a copy of this R note is saved inside a script that is
called Chapter00.R and can be found in the list on the
course website, at http://hdl.handle.net/1811/77848 or indi-
vidually at http://kb.osu.edu/dspace/bitstream/handle/ 
1811/77848/Chapter00.R.

If you open the script by double-clicking on it on a PC, it will
open in a text editor (such as WordPad), so you will not be
able to use it directly as an R script.

On a Mac, you can open a script the same way from within R,
or you can double click directly on the script, and it should
open in R.

Once you have opened the script, you should have two win-
dows running R. The window that contains the text and code
from this section is called by the name of the R script. The
main window, where all of the output is listed, is called the R
console. The difference is that you can write and erase as
much as you want inside the script, and it doesn’t do anything
until you transfer a line of code to the console. Inside the con-
sole window, you cannot change a line of code once it is en-
tered; you instead have to re-enter the changed line of code.
To run any line of code, do any of the following:

1) Type the line directly into the R console window followed
by a carriage return.

xiv

http://hdl.handle.net/1811/77848
http://hdl.handle.net/1811/77848
http://kb.osu.edu/dspace/bitstream/handle/1811/77848/Chapter00.R
http://kb.osu.edu/dspace/bitstream/handle/1811/77848/Chapter00.R
http://kb.osu.edu/dspace/bitstream/handle/1811/77848/Chapter00.R
http://kb.osu.edu/dspace/bitstream/handle/1811/77848/Chapter00.R

2) Use the keyboard or mouse to copy the line (including the
carriage return at the end) from the script and paste it into
the R console window.

3) Highlight the part of the code you want to use from the
script by clicking and dragging your mouse over it. Then,
for a Mac, hold down the <command> key (the swirlygig but-
ton, formerly the apple button) on the left of the keyboard,
and then also hit <return> (as you are continuing to hold
the <command> key). If you use R on a PC running Win-
dows (or Linux), you will highlight the code and press
<ctrl> and the letter "r".

The last option is the fastest way of getting a line of code to
work because it transfers the code to the console and executes
the command all at once. Even if you are writing the com-
mands or functions yourself, you should write them in a script

window first and then execute them from the script. That way,
it is easier to go back and make changes to your code.

This is important because you will probably have to make
changes to your code fairly often at first, as you learn about
the different operators and functions that you will be using. It
is also important because one of the more effective ways to
learn about these operators and functions is to try out small
variations on a line of code and see what happens when you
change some part.

When you change the working directory, the path might be
something like the following (note that forward slashes are
used in the path name):
setwd("C:/My Documents/data_analysis")

If you are using a Mac, you can also go to Misc in the top
menu bar, and choose “Change Working Directory” and then

xv

Movie Preface.3 Opening a script, changing the working direc-
tory, and command versus comment lines
external link: http://streaming.osu.edu/player/knowledgebank/?f=LING/ 
LING_kbdirect_2051_Ch00_Movie3_m4v.html

Movie Preface.2 Setting the working directory, and troubleshoot-
ing common errors.
external link: http://streaming.osu.edu/player/knowledgebank/?f=LING/ 
LING_kbdirect_2051_Ch00_Movie2_m4v.html

browse until you find the directory where you want to be work-
ing. If you are working on a PC running Windows, this menu
choice will be under the File heading, rather than Misc.
Choose “Change dir...”, and then browse for the directory
you want.

R Note 0.2
At this point, you should have downloaded the R program
and opened both the console and the Chapter00.R script
that you downloaded from
http://kb.osu.edu/dspace/bitstream/handle/ 
1811/77848/Chapter00.R. We will list the same informa-
tion on the following pages as is contained in the R script,
but you should use the instructions in the script to be work-
ing through the R script line-by-line instead of reading it in
the book. The videos will give you an idea of the R experi-

0.8 R code

xvi

ibooks:///#chapterguid(26851A26-BBE0-4402-AFF0-0442FCB87F30)
ibooks:///#chapterguid(26851A26-BBE0-4402-AFF0-0442FCB87F30)

R code (parts 4-12) and ex-
ercises

Part 4. Set the working directory
Next, it is a good habit to always set the working directory to
where you have any data files located that you will be using.
For example, to execute the command to read in the data file
of names and nicknames that we will be working with in the
exercises, you should have downloaded the nicknames.txt file
to some directory such as the place where you are storing your
notes from class for this course. For example, if you were an
Ohio State University student and you were working in the
computer lab where we teach the course in Columbus, you
would download the file to the desktop. To set the working di-
rectory to the desktop then, you can use the command:

setwd("/Users/buckeye/Desktop")

Or if you are working at home, and your home computer is a
PC and you’re saving your notes in a directory called “data_an-
alysis” in the “My Documents” directory on your hard drive,

the path might be something like the following (note that for-
ward slashes are used in the path name):

setwd("C:/My Documents/data_analysis")

If you are using a Mac, you can also go to Misc in the top
menu bar, and choose “Change Working Directory” and
then browse until you find the directory where you want to be
working. The directory you want is the folder on your com-
puter that contains the data set that you want to work with. If
you are working on a PC running Windows, go to File in-
stead, choose “Change dir...”, and then browse for the di-
rectory you want.

Part 5. Command lines versus comment lines
In the R Note box above and in every R code section (includ-
ing this one), we will be distinguishing our descriptions of R
commands from the code proper by using different fonts. For
example, the following line is the R code for subtracting 2
from 7:

7 - 2

If you are using the script Chapter00parts3-5.R, you will
probably have noticed by now (but it doesn’t hurt to point out)
that strings of text preceded by the hash mark # are notes in-
side the R script. R ignores anything that is preceded by a
hash mark #, so that’s why we use these to “hide” notes in a

17

script. For example, the following is the same line of R code,
with a note about what it does.

7 – 2 # Subtracts 2 from 7

You can write additional notes for yourself inside the script
and save it to look over later. We encourage you to make notes
for yourself directly inside your scripts, so that you can remem-
ber what you learned about some code right in the file where
you wrote and ran the code.

Try it. Write a note to yourself in the R script file that you
have opened, starting the line with the "#" symbol, and then
on the next line write a line of code such as a subtraction prob-
lem. Then, highlight both lines together and run them. See
what happens on the R console. Then edit the first line to re-
move the "#" and highlight and run the lines again. Compare
what happens on the R console now with what you saw when
you ran the two lines before.

Part 6. Arithmetic operators
The easiest thing to do in R is basic arithmetic operations. Ba-
sic operator signs are as follows:

459 + 51 # Adds 51 to 459

459 – 51 # Subtracts 51 from 459

459 * 51 # Multiplies 459 by 51

459 / 51 # Divides 459 by 51

51 ^ 3 # Calculates 51 to the power of 3
-- i.e., the same as:

51 * 51 * 51

Remember, to solve each of these equations, you could 1) type
it into the console then hit return, 2) copy and paste it into the
console and press return, or 3) highlight the relevant portion
of the R script and press <command>+<return> (or
<ctrl>+<R> for a PC running Windows or Linux). Try execut-
ing the commands in each of the three ways. Note that you do
not want to write an equal sign after the equation because R
interprets “=” as an assignment operator, as described in part
8.

If it has been a while since you’ve done a lot of this kind of
arithmetic, it might be good to review some other basics, such
as the difference between the following two commands.

(459 + 51) / 3 # Adds 51 to 459 and then di-
vides the result by 3.

459 + (51 / 3) # Adds 459 to the result of
dividing 51 by 3.

Notice that when you run any of the commands above, the
next line in the R console window is the result of performing
the operation that you specified by the command. The sym-
bols “+” and “*” and so on are called operators, because
they are what cue the operation.

18

Part 7. Functions
Addition also can be performed using the R function sum(). A
function is a named command that can stand for any se-
quence of operations. That is, it is like a shortcut for more
complicated mathematical functions or processes including
operating the graphical device, that have been pre-
programmed into R. A function will be followed by parenthe-
ses where you will specify further bits of information that R
needs in order to perform the selected function. Each bit of in-
formation is an argument. If there are several arguments,
they are separated from each other by commas. For example,
the sum() function adds its arguments together, so the follow-
ing two commands return the same result:

459 + 51 + 327 # This adds together
459, 51, and 327.

sum(459, 51, 327) # This also adds to-
gether 459, 51, and 327.

Part 8. The R assignment operator
Another very important special symbol is “=”, the assignment
operator. You can also write the assignment operator as “<-”.
This operator tells R to assign the value to its right to the
thing on its left. In the simplest case, this is just like giving a
name to the value. So for example:

x1 = 459 + 51 # Adds 51 to 459 and assigns
the result the name “x1”.

x2 = sum(459, 51, 327) # Stores the sum of
these 3 numbers in “x2”.

x3 = 7 – 2 # Takes 2 from 7 and stores the
result in “x3”.

x4 = sum(7, -2) # Stores the sum of 7 and
-2 in “x4” (same as x3).

Once you have stored the result of an operation in this way,
you can retrieve the computed value just by typing the “name”
that you’ve given to the value. So, for example, if you type x1
or x2 or x3 or x4 in the R console window after running the
above four commands, the next line on the R console window
is the same value that you would have got by running the origi-
nal command again. This is especially convenient if you want
to store more complicated values, such as a vector of numbers
instead of a single number.

Part 9. The R vector function
First of all, a vector is a single row of items. In R, you can
specify that a set of values is a vector by typing them, sepa-
rated by commas, as arguments to the c() function, like this:

c(459, 51, 327)

19

The c() part of this command is a function that tells R to
“concatenate” the arguments, which means “to group these
items together in order,” which is a simple definition of a vec-
tor. Again, a function is like a shortcut for more complicated
mathematical functions or processes. The name of the func-
tion will be followed by parentheses where you will specify fur-
ther information that R needs in order to perform the selected
function. In this case, the () parentheses enclose the items
you want to be grouped together, and the items are separated
by commas, to show where one item ends and the next begins.
If you assign the vector a name, like this:

x5 = c(459, 51, 327)

you have a way of referring back to it, so that you don’t have to
keep typing the same numbers in over and over again. So, af-
ter you run the above command, the following two lines of
code return the same value.

sum(459, 51, 327)

sum(x5)

The length() function lets you count the number of items in
a vector. So the value that is returned by the following com-
mand is the number of items in the vector x5 that you created
earlier.

length(x5)

You can refer to a value at any position in a vector by follow-
ing the vector with the position number enclosed in square

brackets. So after you have defined x5 as above, the following
three commands all return the same result.

51  
Just type the number and R will echo it.

c(459, 51, 327)[2]  
Specify the second item in the vector.

x5[2]  
Specifies the second item in the vector
too.

The following three commands are also equivalent ways of
adding 459 and 51.

459 + 51

x5[1] + x5[2]

sum(x5[1], x5[2])

This equivalence may seem a bit boring and trivial now, but
wait until you see what this buys you when you’re dealing with
longer vectors or more complicated items.

Part 10. Numbers versus character strings
The values that we’ve been talking about so far have all been
numbers, such as 459 or the result of summing up the num-
bers 459, 51, and 327 that were assigned to the vector x5. But
R lets you also make observations about character strings,

20

such as the string of letters that constitute the spelled forms of
the names Cynthia and Elizabeth. You distinguish character
strings from number strings by enclosing them in quotation
marks, like this:

name1 = "Robert"

name2 = "Jonathan"

name3 = "Cynthia"

name4 = "Elizabeth"

These four lines of code assign the character strings "Rob-
ert", "Jonathan", "Cynthia", and "Elizabeth" to the vari-
ables name1, name2, name3, and name4. You can check to see
whether these are numbers or character strings using the
is.numeric() and is.character() functions, like this:

is.numeric("Robert")

is.character("Robert")

is.numeric(name1)

is.character(name1)

Compare the results of the above four commands to the re-
sults of running the following:

is.numeric(6)

is.character(6)

is.numeric("6")

is.character("6")

You can use the assignment operator and the vector function
with character strings, just as you can do with numbers. For
example, try executing the following two commands. Then
type the names of the variables (somenames and somenick-
names) all by themselves.

somenames = c("Robert", "Jonathan",  
 "Cynthia", "Elizabeth")

somenicknames = c("Rob", "Jon", "Cindy",  
 "Lisa")

The first of these two lines makes a vector of the character
strings that are the spelled forms of these four names and as-
signs it to the variable “somenames”. The second line does a
similar thing for the associated nicknames. If you have as-
signed each of the four names to variables, as shown above,
then the first line is equivalent to the following:

somenames = c(name1, name2, name3, name4)

Also, once you have defined these variables, you can tell R to
count the number of names or nicknames, like this:

length(somenames)

length(somenicknames)

21

You can also check to see if the vector contains numbers or
character strings, like this:

is.numeric(somenames)

is.character(somenames)

If you have x5 defined from Part 9, try applying these func-
tions to that vector of numbers, too.

Part 11. Counting the number of characters
You can use the nchar() function to count the number of
characters in a character string, like this:

nchar("Cynthia")

nchar("Cindy")

Of course, if you assigned the character string "Cynthia" to
the variable name3, the first of these lines is the same as:

nchar(name3)

Also, once you have defined the two vectors of names and nick-
names above, you can refer to the items by the their positions
in the list, so the following two commands will give you the
same result – specifically, the number of letters in the name
Cynthia.

nchar("Cynthia")

nchar(somenames[3])

You can confirm that the result of using the nchar() function
is a number by embedding it in the is.numeric() com-
mand, like this:

is.numeric(nchar("Cynthia"))

is.numeric(nchar("Cindy"))

Since the result of applying the nchar() function is a num-
ber, you can use it in arithmetic operations. So the following
three commands will all return the same result, too – specifi-
cally, the difference in number of letters between the name
Cynthia and the nickname Cindy:

7 - 5

nchar("Cynthia") - nchar("Cindy")

nchar(somenames[3]) – nchar(somenick  
 names[3])

The nchar() function can also take a vector of character
strings as its argument, in which case it returns a vector of
numbers. Try typing the following commands to see this.

nchar(somenames)

nchar(somenicknames)

22

You can also combine commands in more complicated ways.
For example, try typing the following command.

nchar(somenames) - nchar(somenicknames)

This should return a vector of four items, which are number
values for the difference in length for each of the four pairs of
full name and nickname.

Part 12. Data frames
Sometimes a dataset is a simple vector of values, like the vec-
tor somenames or the vector somenicknames here. Most of
the datasets that we will be using in this textbook, however,
are not so simple. Instead, they are two-dimensional combina-
tions of several different vectors, in which the items at the
same position in the different vectors are associated. For ex-

ample, the first nickname in somenicknames is associated
with the first name in somenames, and so on.

The data file Ch00.Textfile1.txt (found on the textbook
website, at http://hdl.handle.net/1811/77848, or individually
at http://kb.osu.edu/dspace/bitstream/handle/1811/77848/ 
Chapter00.Textfile1.txt) contains a larger number of such
pairs of nicknames and names, created from the table of
names and associated sets of nicknames that we found at
http://www.cc.kyoto-su.ac.jp/~trobb/nicklist.html. Each row
of the table in the file contains a given name (in the first col-
umn) and one of its associated nicknames (in the second col-
umn). The third column specifies whether the name is from
the list of “male” names (on the left at that URL) or from the
list of “female” names (on the right at that URL). There is
also a fourth column, specifying the number of syllables that
we judged the name to have, and a fifth column, specifying the
number of syllables that we judged the nickname to have.
That is, there are exactly five columns, each representing a vec-
tor. The first and second columns are the vectors of character
string values for the spelled forms of a full name and the asso-
ciated nickname. The third column is the vector specifying the
gender of the name-nickname pair. The fourth and fifth col-
umns are the two vectors of numbers specifying the syllable
counts for the spoken forms of the name and the associated
nickname.

In R, such a two dimensional combination is called a data-
frame. If you have set the working directory to the directory

23

Movie Preface.4
Using Part 12 of Chapter00.R to read in a data file file 
external link: http://streaming.osu.edu/player/knowledgebank/?f=LING/ 
LING_kbdirect_2051_Ch00_Movie4_m4v.html”

http://hdl.handle.net/1811/77848
http://hdl.handle.net/1811/77848
http://kb.osu.edu/dspace/bitstream/handle/1811/77848/Chapter00.Textfile1.txt
http://kb.osu.edu/dspace/bitstream/handle/1811/77848/Chapter00.Textfile1.txt
http://kb.osu.edu/dspace/bitstream/handle/1811/77848/Chapter00.Textfile1.txt
http://kb.osu.edu/dspace/bitstream/handle/1811/77848/Chapter00.Textfile1.txt
http://www.cc.kyoto-su.ac.jp/~trobb/nicklist.html
http://www.cc.kyoto-su.ac.jp/~trobb/nicklist.html

(i.e. the folder) where you stored the Ch00.Textfile1.txt
file, you can use the function read.delim() to read the data
into this kind of two-dimensional tabular information, like
this:

nicknames = read.delim("Ch00.Textfile.txt",  
 skip=13, as.is=TRUE)

This reads in the content of the file and assigns it to the vari-
able nicknames. The first argument is the name of the file
that you want to read in. Note that the file name is a character
string and needs to be enclosed in quotation marks. The sec-
ond argument (i.e., the part skip=13) tells R to skip the first
13 rows of the file. (These 13 rows are an extended comment
identifying what the file is.) The last argument (i.e., the part
as.is=TRUE) tells R to read in the data “as is” without con-
verting to a different format for vectors of character strings.
That is, here we want the first column to be a simple vector of
character strings and we also want this to be true for the sec-
ond column. (The default treatment is more appropriate for
vectors such as the “gender” vector, where each value is just
the name of one of two or a small handful of category types.
We will explain this in Chapter 1, where we will use a version
of the read.delim() function that doesn’t tell R to keep
things “as.is” as the data are read in.)

You can look at the content of the dataframe in various ways.
For example, the following command returns the first six rows
of the dataframe.

head(nicknames)

And the following command lets you open the dataframe in a
text editor, in a format that will be familiar if you’ve used pro-
grams such as Excel.

edit(nicknames)

Part 13. Retrieving values at specific positions
in a data frame
Finally, you can look at values at particular positions in the da-
taframe by specifying their row numbers or their column num-
bers or both. You specify these positions by enclosing the num-
bers in square brackets, just as you did for the positions in a
vector. But since a dataframe has two dimensions, now there
should be two reference numbers, separated by a comma, for
the row position and the column position. For example, the fol-
lowing command returns the value that is in the third row of
the dataframe under the second column (i.e., the third value
in the vector of nicknames that makes up the second column):

nicknames[3,2]

You can leave out the column number to return all of the val-
ues in a particular row. For example, the following command
returns the values from all five of the columns for the third
row of the dataframe:

nicknames[3,]

24

Since any row in the dataframe is a vector, with one value
from each of the columns of the dataframe, you can ask R to
tell you how many columns there are using the length()
function, like this:

length(nicknames[3,])

Similarly, you can leave out the row number to return all of
the values in a particular column. For example, the following
command returns all of the values from the second column
(the nicknames column) for all rows of the dataframe:

nicknames[,2]

Since this column is a vector, too, you can ask R to tell you the
total number of rows in the dataframe, like this:

length(nicknames[,2])

There is also a function that returns a vector with the number
of rows followed by the number of columns. That’s the dim()
function, which takes the name of the dataframe as its argu-
ment, like this:

dim(nicknames)

Also, now that you know how to return a row vector or a col-
umn vector, you can use the nchar() function to tell R to
count the number of letters in the spelled form of each of the
nicknames, like this:

nchar(nicknames[,2])

Try running that command, and then editing it to tell R to
count the number of letters in the spelled form of each of the
full names in the first column.

Once you’ve figured out how to do that, you can also then cal-
culate the difference in number of letters using the same com-
mand that you used for the shorter vectors that you created in
Part 10, like this:

nchar(nicknames[,2]) - nchar(nicknames[,1])

This gives you the difference in length for all 91 pairs of full
names and nicknames.

0.9. Exercises
Following the R code, we will present you with a variety of ex-
ercises to help reinforce the topics covered in the chapter. To
illustrate, here we give you three exercises that involve com-
paring the lengths of nicknames and their associated full
names.

1. Download the file Ch00.Textfile1.txt from the web
site for this course (or recreate the file using the informa-
tion at http://www.cc.kyoto-su.ac.jp/~trobb/nicklist.html).
Open R and set the working directory to where you put the
Ch00.Textfile.txt file. Use the R commands in Part 13
of section 0.8 (the R code section) to read in the file and as-

25

http://www.apple.com/
http://www.apple.com/

sign it to the variable nicknames, and then to assign
names to the columns.

Then use the nchar() function, as described in Part 11 of
Section 0.8, to make two vectors, one for the length of the
nickname in number of letters and one for the length of the
name in number of letters.

Use these two vectors of numbers to address the following
question: In this sample of nicknames and associated
names, how often is the spelled form of the nickname
shorter than the spelled form of the full name that it is
“short for”?

2. Now adapt the R code in Part 13 of Section 0.8 to make vec-
tors for the values in the last two columns of the data frame
and use these two vectors to address the following question:
In this sample of nicknames and associated names, how of-
ten does the spoken form of the nickname have fewer sylla-
bles than the spoken form of the full name that it is “short
for”?

3. Download the file Ch00.Textfile2.txt from the course
website, or directly at http://kb.osu.edu/dspace/ 
bitstream/handle/1811/77848/Ch00.Textfile2.txt. Or point
your browser to http://deron.meranda.us/data/ 
nicknames.txt and download that file, and rename it
Ch00.Textfile2.txt. Read the file into a variable called
x. You will need to specify a different number of rows to
skip, so the command is
x=read.delim("Ch00.Textfile2.txt",skip=12).

Then adapt the code that you used in exercise 1 to address
the same question for this sample.

0.10. References
The very last numbered section of each chapter will list the ref-
erences from each chapter and the sources for any data sets
used. For example, here are the references to publications
which we cited in this chapter.

George Cobb (1992). Teaching statistics: More data, less
lecturing. UME Trends, 3(4): 2–3.

Robert W. Hayden (2000). Advice to mathematics teach-
ers on evaluating introductory statistics textbooks.
In Thomas L. Moore, editor, Teaching statistics:
Resources for undergraduate instructors. Wash-
ington, DC: Mathematical Association of America.

Peter Ladefoged (2005). Vowels and Consonants: An in-
troduction to the sounds of languages. 2nd Edition.
Malden, MA: Blackwell Publishing.Sally A. Shay-
witz (1998). Dyslexia. The New England Journal
of Medicine, 338(5): 307-312.

F. Yates (1935). Complex experiments. Supplement to
the Journal of the Royal Statistical Society, 2:
181-247.

The Ch00.Textfile1.txt data file that you can read in to
do exercises 1 and 2 was created from the sample of names

26

http://kb.osu.edu/dspace/bitstream/handle/1811/77848/Ch00.Textfile2.txt
http://kb.osu.edu/dspace/bitstream/handle/1811/77848/Ch00.Textfile2.txt
http://kb.osu.edu/dspace/bitstream/handle/1811/77848/Ch00.Textfile2.txt
http://kb.osu.edu/dspace/bitstream/handle/1811/77848/Ch00.Textfile2.txt
http://deron.meranda.us/data/nicknames.txt
http://deron.meranda.us/data/nicknames.txt
http://deron.meranda.us/data/nicknames.txt
http://deron.meranda.us/data/nicknames.txt

and associated nicknames at the following URL, which we
accessed to make this file on September 29, 2011:

http://www.cc.kyoto-su.ac.jp/~trobb/nicklist.html

The Ch00.Textfile2.txt data file that you can use to do
exercise 3 is another, even longer list that you can download
from Deron Meranda’s “Deron’s Data Pages: Collections of
interesting data, facts, and wordlists” at the following URL,
which we accessed on October 9, 2011:

http://deron.meranda.us/data/nicknames.txt

The header section of this data file is a good model for how to
explain the data and cite your sources when you build “mash-
up” data sets of your own from other sources.

Peter Ladefoged's website to accompany Vowels and
Consonants is still being hosted at
http://www.phonetics.ucla.edu/course/chapter1/chapter1.ht
ml by the University of California at Los Angeles. If you
browse the table of contents, you can find many useful
interactive elements that can help you appreciate some of the
phonetic concepts.

27

http://www.cc.kyoto-su.ac.jp/~trobb/nicklist.html
http://www.cc.kyoto-su.ac.jp/~trobb/nicklist.html
http://deron.meranda.us/data/nicknames.txt
http://deron.meranda.us/data/nicknames.txt
http://www.phonetics.ucla.edu/course/chapter1/chapter1.html)
http://www.phonetics.ucla.edu/course/chapter1/chapter1.html)
http://www.phonetics.ucla.edu/course/chapter1/chapter1.html)
http://www.phonetics.ucla.edu/course/chapter1/chapter1.html)

