Properties of size selected sodium doped solvent clusters

Ingo Dauster

Institute of Physical Chemistry, University Göttingen Tammannstr. 6, 37077 Göttingen, Germany

61st Ohio State University International Symposium on Molecular Spectroscopy June 19–23, 2006

RF13 - Radicals and Ions

(日) (四) (로) (로) (로) (로)

E.

Size dependent ionization potential (IP) of sodium doped solvent clusters:

Systems that have already been measured:

• sodium doped ammonia cluster^{a,b}

 $Na(NH_3)_n$

(日)

- \hookrightarrow show a strong size dependence of the IP
- sodium doped water cluster^b $Na(H_2O)_n$
- → only show a size dependent decrease for clusters up to n=4, for larger clusters the IP is constant

^a C. Steinbach and U. Buck J. Chem. Phys. 122, 2005, 134301.

Size dependent ionization potential (IP) of sodium doped solvent clusters:

Systems that have already been measured:

• sodium doped ammonia cluster^{a,b}

 $Na(NH_3)_n$

(日)

- \hookrightarrow show a strong size dependence of the IP
- sodium doped water cluster^b $Na(H_2O)_n$
- → only show a size dependent decrease for clusters up to n=4, for larger clusters the IP is constant

^a C. Steinbach and U. Buck J. Chem. Phys. **122**, 2005, 134301.

Size dependent ionization potential (IP) of sodium doped solvent clusters:

Systems that have already been measured:

• sodium doped ammonia cluster^{a,b}

 $Na(NH_3)_n$

(日)

- \hookrightarrow show a strong size dependence of the IP
- sodium doped water cluster^b $Na(H_2O)_n$
- → only show a size dependent decrease for clusters up to n=4, for larger clusters the IP is constant

^a C. Steinbach and U. Buck J. Chem. Phys. 122, 2005, 134301.

Size dependent ionization potential (IP) of sodium doped solvent clusters:

Systems that have already been measured:

• sodium doped ammonia cluster^{a,b}

 $Na(NH_3)_n$

(日)

- \hookrightarrow show a strong size dependence of the IP
- sodium doped water cluster^b $Na(H_2O)_n$
- → only show a size dependent decrease for clusters up to n=4, for larger clusters the IP is constant

^a C. Steinbach and U. Buck J. Chem. Phys. 122, 2005, 134301.

Motivation

Size dependent ionization potential (IP) of sodium doped solvent clusters:

Systems that have already been measured:

- sodium doped ammonia cluster^{a,b} Na(NH₃)_n
- Show a strong size dependence of the IP
- sodium doped water cluster^b
 Na(H₂O)_n

What is with other systems?

- methylated water \Rightarrow methanol
- learn more about the properties and the structures of these clusters
- learn more about solvation of electrons

^a C. Steinbach and U. Buck J. Chem. Phys. 122, 2005, 134301.

Motivation

Size dependent ionization potential (IP) of sodium doped solvent clusters:

Systems that have already been measured:

- sodium doped ammonia cluster^{a,b} Na(NH₃)_n
- Show a strong size dependence of the IP
- sodium doped water cluster^b Na(H₂O)_n

What is with other systems?

- methylated water \Rightarrow methanol
- learn more about the properties and the structures of these clusters
- learn more about solvation of electrons

^a C. Steinbach and U. Buck J. Chem. Phys. 122, 2005, 134301.

^b I.V. Hertel, C. Huglin, C. Nitsch and C. P. Schulz Phys. Rev. Lett. 67, 1991, 1767-1770.

н

 CH_3

Motivation

Size dependent ionization potential (IP) of sodium doped solvent clusters:

Systems that have already been measured:

- sodium doped ammonia cluster^{a,b} Na(NH₃)_n
- Show a strong size dependence of the IP
- sodium doped water cluster^b
 Na(H₂O)_n

What is with other systems?

- methylated water \Rightarrow methanol
- learn more about the properties and the structures of these clusters
- learn more about solvation of electrons

^a C. Steinbach and U. Buck J. Chem. Phys. 122, 2005, 134301.

Motivation

Size dependent ionization potential (IP) of sodium doped solvent clusters:

Systems that have already been measured:

- sodium doped ammonia cluster^{a,b} Na(NH₃)_n
- Show a strong size dependence of the IP
- sodium doped water cluster^b Na(H₂O)_n

What is with other systems?

- methylated water \Rightarrow methanol
- learn more about the properties and the structures of these clusters
- learn more about solvation of electrons

^a C. Steinbach and U. Buck J. Chem. Phys. 122, 2005, 134301.

Mass spectrum of $Na(MeOH)_n$

 $\lambda_{ion} = 370 \text{ nm}$

Ingo Dauster Properties of size selected sodium doped solvent clusters

(日)

Mass spectrum of $Na(MeOH)_n$

 $\lambda_{ion} = 370 \text{ nm}$

• □ > •

1

DFT calculations

Na(MeOH)1

UB3LYP / 6-31+G(d,p)

 \Rightarrow no fragmentation

(Bing Gao and Zhi-feng Liu, Chinese University of Hong Kong)

Ingo Dauster Properties of size selected sodium doped solvent clusters

(日)

DFT calculations

Na(MeOH)2

UB3LYP / 6-31+G(d,p)

\Rightarrow no fragmentation

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

æ

DFT calculations

Na(MeOH)₃

• determination of the size selective IP of $Na(MeOH)_n$ is running

- more DFT calculations of bigger clusters
- size selectiv IR action spectroscopy of Na(MeOH)_n clusters^a

- determination of the size selective IP of Na(MeOH)_n is running
- more DFT calculations of bigger clusters
- size selectiv IR action spectroscopy of Na(MeOH)_n clusters^a

Outlook

- determination of the size selective IP of Na(MeOH)_n is running
- more DFT calculations of bigger clusters
- size selectiv IR action spectroscopy of Na(MeOH)_n clusters^a

^a C. Steinbach and U. Buck J. Phys. Chem. 110, 2006, 3128-3131.

(日)

Acknowledgements

Ingo Dauster

Properties of size selected sodium doped solvent clusters

Thank you

for your

attention!

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで