
1

Poverty Management App and Hospital Text Platform

Undergraduate Honor Research Distinction Thesis

Presented in Partial Fulfillment of the Requirement for the

Degree of Bachelor of Science with Honor Research

Distinction at The Ohio State University

By

Shuai Wang

Department of Electrical and Computer Engineering

The Ohio State University

2015

Advisor: Prof. Kevin Passino

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KnowledgeBank at OSU

https://core.ac.uk/display/159575381?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Copyright by

Shuai Wang

2015

3

Abstract

There are two parts of this honors research: designing an Android App for managing daily

finances to avoid poverty, and a text platform for patients who have left a hospital after being

admitted for a suicide attempt.

The Android App is designed especially for poor people to help them manage daily income and

living expenses. This app will contain a cover page, information input page, income and

suggested spending plots, a suggestion page, as well as a user manual. Users have to input daily

income, and desired wealth and daily expenses, then they will be given a suggestion page that

contains the suggested living expenses which is calculated by a proportional-integral-derivative

controller (PID controller). Furthermore, all information will be stored and the user can choose to

plot these data for analysis. The integral and derivative parts of the PID controller will be treated

as discrete functions and specified by previous inputs of the user. This app will be implemented

by Phonegap, which is a mobile development framework, using web application technologies

like HTML, CSS, JavaScript as well as Jquery. The data will be stored using LocalStorage,

which is given by the PhoneGap API. The PID controller is implemented by JavaScript with

local stored data and plot functions executed by jqPlot. The text platform for hospitals is

designed for reminding patients about their appointments as well as psychological suggestions

for patients to help prevent suicide. This platform will contain a log in system, which provides

limited access to protect the security of the patients' information. The user (health care

professional) can input specific messages and choose the patient to send the information to. This

platform is a web application and implemented by HTML, CSS, JavaScript and Ruby on Rails.

The function of sending SMS to cell phones is implemented by Rails mailer.

4

Acknowledgement

I would like to thank Prof. Passino for his patience and help in guiding me in a good direction

and teaching me the knowledge that I am unfamiliar with. It is Prof. Passino who gave me the

opportunity to join his research and some advice for career development. At first, he introduced a

general idea of the research and specifies the details later when I got the knowledge, which did

make me feel comfortable to start. He treated me as his graduate students and gave me enough

space to finish the research based on my pace. The most meaningful things that I learned from

the research are not only the ability for implementing mobile and web applications but also the

idea that engineers should create technologies to help people.

In addition, I want to thank Chuning Luo and Mary Scherer for their useful and valuable

suggestions and help when I got stuck especially in the process of building web applications.

Sometimes it was just one piece of their suggestions that really counts. We set up meetings when

I finished part of the project and they helped me test and came up with ideas to optimize my

work. It was Chuning who found out the potential crash of the database of the Text Platform web

application.

5

Vita

EDUCATION

The Ohio State University, Columbus Ohio August 2012-May 2015

B.S. Electrical and Computer Engineering (Honor Program)

B.S. Applied Mathematics (Physics Track)

Jiangsu University of Science and Technology, China September 2010-July 2012

Major: Electrical Engineering (Undergraduate Study)

Field of Study: Computer Engineering

6

Contents

Abstract ...3

Acknowledgement ..4

Vita ..5

Chapter 1: Introduction to Poverty Management App ...7

1.1 Introduction ..7

1.2 Introduction to Design Process ..8

Chapter 2: Poverty Management Model and App ..9

2.1 PID Controller and Poverty Management Model...9

2.2 Simulation of Poverty Management Model in MATLAB ...10

2.3 PhoneGap and Mobile Application Technologies ...13

2.4 Poverty Management App Prototype ...16

Chapter 3: Summary ..19

3.1 Conclusion of PID Controller Model and App ..19

3.2 Future Work of the Project ...19

Chapter 4: Introduction to Hospital Text Platform ...21

4.1 Introduction to Text Platform ...21

4.2 Introduction to Rails ...21

Chapter 5: Web Application Implementation ...22

5.1 Introduction to Text Platform ...22

5.2 Model: User & Patients ...23

5.3 User Interface ...25

5.4 Controller: Users, Patients, Static Pages & Sessions ...31

 5.5 Text Message ...34

Chapter 6: Conclusion ..37

6.1 Overall Conclusion ..37

6.2 Future Work and Application of the Project ..37

Appendix I: Project Schedule ...38

Reference Page ...39

7

Chapter 1: Introduction to Poverty Management App

1.1 Introduction

The PID control scheme is named after its three correcting terms, whose sum constitutes the

manipulated variable. The proportional, integral, and derivative terms are summed to calculate

the output of the PID controller. This feedback control theory can be used to build a financial

management model then implemented by mobile application. With the development of mobile

applications, the cell phone is more powerful and useful. Nowadays, there are various kinds of

financial and money management Apps, for example Mint and Spendee. However, most of them

provide a service like a personal accountant with beautiful user interface and charts. A more

intelligent App which can have a scientific suggestion for daily expenses based on the user's own

situation is necessary. Based on the PID controller, the Poverty Management App provides

professional advice as well as plot functions, which complements the current shortcomings of

current financial mobile applications. The mobile app provides functionality and personal

evaluation as well as some popular microfinance institutions (e.g., Grameen Bank and SKS

Microfinance) with more convenient services. According to the World Development Report

2015 by the World Bank, people make decisions based on three principles: thinking

automatically, thinking socially, and thinking with mental models. Most people cannot create

new models or methods to improve their lives but directly use mental models from their societies

like social media and applications. This poverty mobile app provides people a complete model

that users can fully rely on and this algorithm is compatible with any other electronic devices like

laptops and portable to web applications as well. Moreover, this model can also be implemented

on any type of cell phones, which enlarges the availability to more than 6 billion people.

8

1.2 Introduction to Design Process and IEEE Code of Ethics

Figure 1.2a: Design Process Diagram

The development of the application follows a specific design process. Firstly, identify the need

and problem. Then finish the background research to test the current solutions for the problem.

Before implementing the technical part, specifying the requirements of the application is

necessary. After the exploration of possible solutions, determine which solution best meets the

original requirements. The next huge step is building a prototype and model the selected

solutions. Given a prototype, a comprehensive test should be done and the last step is the

optimization of current design and searching the future directions.

This application is built to help people manage their wealth, avoid poverty, and take

responsibilities to the welfare of public. It provides a completely free service and well designed

for charitable organizations and humanitarian engineering. It basically follows the IEEE code of

ethics that "To accept responsibility in making decisions consistent with the safety, health, and

welfare of the public, and to disclose promptly factors that might endanger the public or the

environment" [7].

9

Chapter 2: Poverty Management Model

In this chapter, PID controller theory and web application technologies that were used to build

the Android mobile application will be introduced. In addition, the result of simulation of PID

controller model and the algorithm will be explained as well.

2.1 PID Controller and Poverty Management Model

The PID control scheme contains three terms, proportional, integral and derivative which are

summed to calculate the output signal y(t) by some manipulations. The result of these three terms

are called manipulated variables and the final form of the PID algorithm is:

y(t) = Kp*e(t) + Ki* e()d
t

0
 +Kd*

ⅆ

d(t)
e(t)

where u(t) is the input function and e(t) is the error, which is the subtraction of u(t) and y(t).Kp is

proportional gain, Ki is integral gain and Kd is the derivative gain. All three gains are just

constants; however, each of them controls different parts and collaborate with each other to make

the error signal smaller and smaller. The proportional gain leads to a change of output based on

the error signal. A too high proportional gain will make the system unstable; on the contrary, too

low proportional gain will lead to insufficient response to the system disturbances. Therefore, in

order to solve the problem, steady state error, which is made by proportional term, the integral

term is used to take previous error into consideration. So the change of output will trend to more

stable. However, since the integral term responds to the previous accumulated error, it may

overshoot the setpoint value. Therefore, we need the derivative term to predict the system

behavior and improve the stability of the system.

10

Figure 2.1a: PID Controller Scheme [16]

Based on the scheme explained above, a poverty management model is made. In this model, the

input signal is desired wealth and the output signal is current savings. Error is the subtraction of

desired wealth and current wealth, which will go into PID controller section and output a daily

spending advice. After the consideration of daily income and daily spending, which is the

suggested value made by PID controller; we can get a new current wealth.

Figure 2.1: Poverty Management Scheme [13]

Theoretically, the signal in PID controller is continuous; however, in daily life we can only

collect daily figures, which are discrete. Therefore, in order to implement the algorithm in the

poverty management model, the proportional term is just the subtraction of desired wealth and

current wealth. The integral term is the summation of all previous errors and the derivative term

is the changing error divided by changing time, which is usually one day.

2.2 Simulation of Poverty Management Model in MATLAB

In order to check whether the model can help users accumulate money and speed up the process

of achieving the desired wealth, some simulations are made in MATLAB. The first simulation is

11

the current wealth, which uses the PID spending strategy. A random daily income vector with

value between 10 to 20 dollars was used to represent the daily income and the three gains of PID

controller were chosen as P=-0.316, I=-0.007, D=-0.547 after manual adjustments. An important

assumption is made that users will strictly follow the suggestion of poverty management model.

Figure 2.2a: Current Wealth vs Desired Wealth Graph

In the beginning 1000 days, the desired wealth is preset to grow lineally because people's desired

wealth increases as their current wealth and they do not satisfy their current situation. After 1000

days, we set desired wealth to be stable, which is used to test whether the model can maintain the

money in a high level. The result is obvious that current wealth always goes with desired wealth

and people can achieve their goals finally. After 1000 days, the current wealth will oscillate

around 300 dollars and keep stable. In addition, the speed of achieving desired wealth is not

only affected by PID controller but some other parameters like minimum daily spending.

The minimum daily spending suggestion in this case is preset to be 10 dollars, which is used to

simulate the minimum value that users have to spend every day. The PID controller just wants to

speed up the process to achieve the desired wealth as fast as possible; therefore, chances are that

its output is a negative value, which should be replaced by 10 dollars. In the daily spending

advice histogram, most values are concentrated around 15 dollars, which is stable and reasonable.

12

Although the input is a random value between 10 to 20 dollars, the daily spending can be or even

exceed 20 dollars sometimes to keep the current wealth going with the desired one. On the other

hand, the change of minimum daily spending can significantly change the whole process. In

reality, this value may be different everyday based on user’s own situation.

Figure 2.2b: Daily Spending Advice

To make the contrast, another simulation is made for random daily spending which means there

is no such management model and users can spend as much as they want. Similarly, a random

daily expenses vector with value between 10 to 20 dollars is used to represent the random daily

spending. The daily income is the same with previous simulation. The result is quite random that

it can accumulate some wealth to 100 or even 300 dollars, while it can also lead to big loss or

negative wealth, which people should definitely avoid in reality.

Figure 2.2c: Current Wealth without Advices

13

2.3 PhoneGap and Mobile Application Technologies

There are several ways, programming languages, and frameworks to develop a mobile

application. Usually, mobile apps are developed by native tools for example like Java and

Objective-C because these programming languages offers more flexible implementation and

better performance, however, these approaches are much more expensive and can only been used

in a single specific platform. Changing platform leads to a complete rewrite of the whole project.

Therefore, in order to implement the poverty management model into an Android mobile

application, we use a mobile development framework called PhoneGap, which can build apps by

open web standards to cut down on development time by using web development skills. In

addition, due to its cross-platform feature, the mobile application can be installed into almost all

platforms like IOS, Android, and Windows Phone.

Figure 2.3a: Current Wealth without Advices

Almost all current mobile platforms support web applications, which can be implemented by

HTML, CSS and JavaScript. Although these client-side scripts have limited access to the

capabilities of the browser, PhoneGap will provide a native shell that solves this problem and

make the mobile app have the access to deep level of the native devices like the physical file

system by various application programming interfaces (API). The native shell provided by

PhoneGap is actually different for each platform, while its core device functionality is consistent,

which makes cross-platform development accessible.

14

Hypertext Markup Language (HTML) is a markup language for describing web documents and

pages. HTML documents are described by tags, which are enclosed by angle brackets and it

separates “content” (information of the page) from “presentation” which is described by

JavaScript and CSS. HTML builds the skeleton of pages like the page title, header, footer and the

information in body.

Figure 2.3b: Sample HTML Skeleton [6]

Cascading Style Sheets (CSS) is a style sheet language used for describing the look and

formatting of a document written in a markup language. It handles the presentation of the mobile

app pages like the font of words, the color of the background and the theme of whole pages.

Most commonly, CSS is combined with the markup languages HTML and JavaScript build a

web application.

Figure 2.3c: Elements Described by CSS [14]

15

JavaScript is a dynamic programming language that is used in web and mobile application. The

client-side script made by JavaScript can interact with the user, alter the information that needs

to be displayed and communicate with server-side database asynchronously. JavaScript describes

the function of the pages, for instance, grabbing the content that the user inputs and

implementing the calculation inside of the PID controller.

Figure 2.3d: Sample JavaScript Skeleton [3]

Another language that is used in the app is jQuery, which is a cross-platform JavaScript library.

In addition, there is a plotting and charting plugin of the jQuery JavaScript framework called

jqPlot, which can produce line, bar, and pie charts with many features. The graph of daily

income, current wealth, and suggested daily spending can be plot by jqPlot.

Figure 2.3e: Sample jqPlot Interface [10]

16

2.4 Poverty Management App Prototype

In order to help more people to manage their wealth using the PID controller model, a poverty

management app prototype has been made with the basic functions like a personal accountant.

Different from the most common financial management mobile applications, this app will put

more emphasis on the implementation of PID controller and give daily spending advice to users

rather than beautiful user interface. When users start the app, there will be a cover page, which

contains a logo and two buttons. The first one is the user’s manual that basically introduces the

whole app and some instructions, and the second choice is starting managing the money. Both of

them will link to a specific page, which is implemented by HTML link tag.

Figure 2.a: Cover page

The main page of this app will be the information input page that contains a form for user’s daily

information. The daily income, daily minimum spending and date will be stored in the

corresponding vectors in background database used in PID controller. The daily expense is not

used in PID controller, but it is necessary for the system to detect whether users follow the

suggestion and update their current wealth. After users click the submit button, a suggestion page

17

will pop out and give the daily spending advice to user and users can also check their advice in

the suggestion page. The footer of this page contains several links to the information pages of

previous income, wealth and suggested daily spending. The information that users input will be

grabbed after the click of the submit button by JavaScript. In the background system, all

information will be stored by local (session) storage which is much simpler than SQL Lite

database and usually used to keep small amounts of data between application launches.

JavaScript will follow and implement the algorithm discussed in Chapter 2.1 then show the

suggested daily spending to users. In addition, since the values of the three gains of PID

controller are small, a fast JavaScript library for arbitrary-precision decimal arithmetic is used to

compute the result of PID controller.

Figure 2.4b: Information input page Figure 2.c: Daily Spending Advice

18

In order to keep track of the user’s spending behavior; their daily income, wealth and previous

daily spending advice are all stored in background database and can be plotted by jqPlot. In each

section, after the click of “Start Plot” button, a line chart will show up.

Figure 2.4d: Plot of Current Wealth

19

Chapter 3: Summary

3.1 Conclusion of PID Controller Model and App

Based on the input of the amount of daily income, daily expenses, desired wealth and minimum

acceptable daily spending, the PID controller can give user an appropriate way to spend. The

PID controller model can redistribute the wealth over time; it intelligently moves incomes from

good to bad days in order to meet the user’s desired wealth. It can predict by its derivative part

when the user needs to save in times of a consistent deficit and when to spend in order to satisfy

basic living requirements. Based on this model, an Android mobile app has been made, which

can calculate the daily spending value automatically.

3.2 Future Work of the Project

There are several parts in the poverty management model that need to be optimized. The first one

is the maximum daily spending for the result of the PID controller. As mentioned above, in the

simulation part we directly use 10 dollars for minimum daily spending but there is no restriction

to the maximum daily spending. For example, there are some times the controller will give a

large daily spending much more than daily income, which contradicts with the principle that we

want a stable process.

Figure 3.2a: Optimization of PID Controller Model

20

Then, the second part that needs to be optimized is the daily income and spending pattern. In the

simulation part, we use a random vector with value 10 to 20 dollars to represent the daily income,

however, usually people have relative stable income instead of a random one. Furthermore, we

should consider more income patterns like financial investments besides the salary. On the other

hand, we cannot assume the user can strictly follow the daily spending advice. In reality, they

may have to pay bills at the same day every month or donate money to the church, which may

significantly increase the spending value for a specific day.

What's more, the mobile app system needs to estimate user’s spending or income if necessary.

Chances are that users will not input their income or spending every day, which is required in the

PID controller part. The system should estimate somehow based on users' previous information.

21

Chapter 4: Introduction to Hospital Text Platform

4.1 Introduction to Text Platform

Nowadays, most patients make appointments with doctors by phone or email. Chances are that

they may forget about their appointments, which will not only waste their own time in

rescheduling but also decrease the efficiency of hospitals. Furthermore, for some patients with

mental illnesses, daily communication is essential; however, talking with a doctor every day is

not always possible. The SMS platform can remind patients of their own appointments as well as

make some necessary psychological (e.g., to seek out appropriate family support) by sending

them text messages. The text platform also contains a user login system for doctors to manage

their patients and a search system to find the specific patient.

4.2 Introduction to Rails

The text platform is not only implemented by client-side technologies like HTML and CSS but

also the server-side language, Ruby on Rails. Therefore, more complicated functions can be used

like user login system, user management system as well as the message schedule system. Rails is

a web application development framework that is written in Ruby language and used to make the

development of web application to be much easier and convenient. It contains two major guiding

principles: Don’t Repeat Yourself (DRY) and Convention Over Configuration. DRY claims that

the application should re-use as much code as possible rather than writing similar codes in the

application. DRY is aimed at reducing the repetition of the information and making the whole

application more clean and extensible. Then convention over configuration is a software design

paradigm that allows the most decisions made by Rails rather than the developers to gain

simplicity.

22

Chapter 5: Web Application Implementation

In this chapter, a MVC framework will be introduced at first. Then the whole web application

will be explained in the respect of model, view and controller. Lastly, the text message and

schedule function will also be discussed.

5.1 MVC Framework

The Model View Controller (MVC) design pattern divides the implementation of web

application into three parts that cooperate closely. Rails provides three different libraries to

implement the function of these three parts.

The Model part contains the data of application, which can be related with MySQL database and

handles validation and transactions. A library in Rails called ActiveRecord can provide an

interface and binding between the scheme in MySQL database and programming languages to

manage the database records. The model can only communicate with Controller part, which

means it has no knowledge about the user interface. Therefore, it can be reused several times,

which follows the Don’t Repeat Yourself (DRY) principles. The View part will take

responsibility for creating user interface and presenting the information grabbed from Controller

part to users. Usually they are made by HTML and described by CSS to provide a specific

format and style of the web pages. In Rails, a library called ActionView will define the templates

of data presentation; however, it is passive and cannot do any processing. The Controller part is

basically a central process unit that receives events from users through the View part,

communicates with Model parts and transfers the new information to View after some process.

In the Controller part, programmers can implement large quantities of functions to satisfy the

requirement of the web application like searching, sorting or sending and scheduling messages.

23

In Rails, there is a library called ActionController, which is a data broker among Model, View

and Browser. When the Browser makes a request, the Web Server will receive it and use Routes

to find out a specific Controller to serve it. The Dispatcher will pass the parameter and any other

information to controller as well.

Figure 5.1a: Diagram of MVC

5.2 Model: User & Patients

There are two models in this Text Platform web application, user and patients. User model is

used to represent the doctors and it has several entries like email, password_digest, name, phone,

password and password_confirmation. Most entries have their own restrictions based on their

format and length; furthermore, some entries have more requirements. Email and name cannot be

null, which means users have to input this information, otherwise, they cannot register

successfully. There is a special entry called password_digest, which is used to store the hashed

password. When users input the passwords, the background system will keep the passwords in an

24

encrypted vault by converting the plain code into hashed password. Therefore, even if the web

system has been hacked, this confidential information will not be released.

Model Name Column Type Option Description

User

email String presence,

length{<=50},

format,

uniqueness

Use as login name

password_digest String Hashed password

name String presence,

length{<=50}

Name of the doctor

phone String format

password String length{>=6} Not record in database for

safety

password_confirmation String Not record in database for

safety

Table 5.2a: Table of User Model

In the patients model, there are many more entries than user model and most of them are named

straight forwardly. Similarly, there is a special entry called user_id, which is not the information

input by users. Instead, it is automatically generated by the system when one patient model has

been created and used to uniquely represent every single patient. Another two entries without the

requirement of presence, note and img_url, are used to store some special notes made by doctors

and the uniform resource locator (URL) of patient’s photo. The birthday entry is also restricted

25

by the format requirement, which is described by regular expression. In other words, only inputs

that follow the specific format will be accepted.

Model Name Column Type Option Description

Patients

user_id integer Use as login name

name String Presence

length{<=30}

Patient Name

address_line1 String presence,

length{<=50}

Current Address, First Line

address_line2 String length{<=50} Current Address, Second

Line

gender String Presence

length{<=6}

Patient Gender

age integer length{<=3} Patient Age

birthday String Presence,

format

Patient Birthday

note string length{<=50} Note for Patient

img_url string length{<=50} Patient Photo URL

Table 5.2b: Table of Patients Model

5.3 User Interface

User interface is the interaction between users and the web system, which is also the only visible

part to users in a web application. By clicking buttons, selecting menu or inputting messages,

users can generate several events, which can be grabbed by controller and then get an expected

26

response. User interface is one of the most important partsbecause it determines how easy and

efficient the application can work as planned.In this text platform application, the user interface

contains static pages and dynamic pages. Static pagesare delivered to user exactly as they stored,

which means it cannot react or change based on the requests made by users. The skeleton of

static page, for instance the homepage, is made by static HTML. The header is also called

navigation bar that include several links to other pages for instance the login page and register

page. The body part is a welcome page and a search box used to search patients by names.

Figure 5.3a: Screenshot of Homepage

Rails provides a search function that can be defined in the controller of the patient’s model. The

name that user input will be grabbed and compared with the patients’ names in the database and

patients’ information will be displayed to users if there is something matched. Similarly, since

the user does not login, the navigation bar of this page is same with homepages and follows the

guiding principle, reducing code repetition as much as possible. However, different from the

homepage, the search result page is a dynamic page that can display different information based

27

on different requests. The number of matched patients in title will correspond with the result

from database. In other words, it will not show any information if the patient’s name is unfound.

Figure 5.3b: Screenshot of Search Result

One of the most important functions in this web application is the login system, which can detect

the status of users then display the corresponding pages. In order to have more access to posting

patients or even scheduling messages for them, users have to register a personal account.

Figure 5.3c: Screenshot of Register Page

28

In the register page, users have to input some information such as their names, emails and so on.

All these information will be grabbed and stored in the user model as explained above; therefore,

they must satisfy the restrictions of the model. For instance, there is a uniqueness requirement

about the email address so that a duplicate email will not be accepted and a warning page will

pop out. In the SQL database, a model can be visualized as a relational table. Each row

represents a certain user and each column has a column header that gives an indication of the

meaning of the data in that column. After a new registration, a new row will be added into this

table to represent a new user. As discussed in Chapter 5.2, the password will be stored as hashed

characters instead of plain code. In order to uniquely identify every user, email entry is used as

primary key that is also the default username. When a user try to log in, Rails will automatically

grabs the input email and password then search the table for the matched email address and

hashed password.

Name Email Password_digest phone

Benjamin Bayer Ben.1@osu.edu !$#var 61437316416

Chung-Cha Kim Kim.1@gmail.com $@%#$t 6143754409

Dick Davidson Davidson.1@yahoo.com $_$\$,$:$%[$?]”, 6143769854

Shuai shuai@txt.att.net LT? UP-N?& 6145958462

Table 5.3a: Relational Table of User Model

After login, users will be distributed a personal account where they can manage their patients and

schedule messages for them. In addition, the navigation bar after login is quite different from

previous pages, because there are some functions not available for guests. In the user account

page, users can choose to update their own profile, which is basically the same page with register.

However, after registration, users can never change their names and emails for the purpose of

safety. Furthermore, there is also a list of patients added by current doctor as well as the options

29

to edit or delete the patients. Similarly, same with the search result page, this is also a dynamic

page with the number of patients changeable.

Figure 5.3d: Screenshot of User Account

Figure 5.3e: Screenshot of Patient Info

30

To add a new patient, the doctor can click the “post patient” button any time after login. Add

patient page is similar with the user registration page except for more information needed to be

input. In the patient model, the special entry, user_id, which is automatically generated by

system, is the primary key of the relation table. Therefore, there is no problem when patients

have the same name by chance. Like the user model, patient model will store this information

into a relational table as well.

Figure 5.3f: Screenshot of Add Patient Page

For user interface, the HTML will only build the skeleton and in order to make a precise and

clean presentation, a framework called Bootstrap is used to create a nice design for this web

application. Bootstrap contains several predefined CSS classes to create common components

such as the typography, form, button, navigation bar and more.

31

5.4 Controller: Users, Patients, Static Pages & Sessions

Controller is the process unit and the only part that can communicate with Model and View.

When routes choose which controller should be called, the corresponding controller would

produce an appropriate output based on the request of users. In the Text Message Platform

Application, there are four controllers in total to manage and implement the requests from users.

Mostly, the controller will take actions after the communication with database, there are four

common actions for interacting with database: create, read, update and destroy (CRUD) and all

of them are predefined in Rails. Besides CRUD, another four actions are used in user controller

as well. Action new will wake up when users want to register a new account, it will route to the

registration page as expected. Similarly, edit and index also take responsibilities for routing

pages. While, action show has more missions that it will not only route to the user profile page

but also check the patient database and count the number of patients who are added by the

current doctor.

Controller Name Action View Description

User

index index User List

new new User Register Page

show show User Profile Page

edit edit Edit User Profile Page

create CRUD for User Mode

update CRUD for User Mode

delete CRUD for User Mode

Table 5.4a: Controller of User

32

The create action can create new records in the database, which is triggered when a new user has

registered. Similarly, the update and delete functions are used to edit or destroy the current

records. However, in order to keep the safety, the update action has no access to the user’s email

and name.

The controller for patients is similar with users for most actions, while it still has a different

actions, search. Action search will implement the search function with the input patient’s name

and route to the result page. Then the action new will route the current page to add patient page

and wait for the submit button. In the patient model, a method of searching the database and

returning an exact match of query is created and this searching function can be triggered in

patient controller. Lastly, the Controller will pass the result to View part then display to users.

Table5.4b: Controller of Patients

Controller Name Action View Description

Patients

new new Post Patient Page

show show Patient Profile Page

edit edit Edit Patient Information

search Search the patients and return the

results.

Create CRUD for Patient Mode

update CRUD for Patient Mode

 delete CRUD for Patient Mode

33

Static pages controller is simple and straight forward that it just routes current page to the

homepage. The last necessary controller is sessions, which takes responsibility to detect the

status of current users and routes to corresponding pages. Sessions are the idea that user’s status

need to be reserved across pages, which means the application must have the knowledge about

whether the user has already logged in or not. However, the Hypertext Transfer Protocol (HTTP)

is stateless, so a session controller is essential. In order to identify the user’s status, Rails will

store a secure and temporary cookie that contains the session hash information. When users

make any requests, the session cookies will be included, which make it possible to track user’s

logged-in status. The create action would be triggered when a user has successfully logged in so

that it can create a new session to remember the user’s logged–in status. Furthermore, it will also

choose a different navigation bar containing “post patients” to be displayed. Similarly, the action

destroy can destroy the current session if the user has logged out or he closes the browser.

Table5.4c: Controller of Static Pages and Sessions

Controller Name Action View Description

Static Pages home home Return to the homepage

Sessions

new new Login Pages

create Create Session for user login

destroy Destroy sessions for user logout

34

5.5 Text Message

The core function of this web application is sending messages online, which could be an

appointment reminder or psychological suggestions. However, instead of directly sending text

messages to patients, it is easier to use a SMS gateway service to send messages by sending

emails. Almost all telecommunication companies in the US including AT&T, Verizon and T-

Mobile provide the Email-to-text Message service, which means users can send text messages by

sending email to a specific SMS gateway address. For instance, the default email address for

AT&T Company is the 10-digit wireless number followed by “@txt.att.net”. Since the patient

model has already stored the phone number of every single patient, it is easy to send them email

by concatenating their phone numbers and the suffix. In Rails, there is an action called Mailer

that can send email from the web application by Mailer classes, functions and views. Similar

with the controller, Mailer can be defined by the email sever host name, port number, username

and the password. In other words, Mailer can get the access of an email server like a remote

control program.

Figure 5.5a: Screenshot of Message Schedule Page

35

In this web application, there is a public email address of Gmail that is used to send emails for

every user in order to keep the consistency of the message format. Its username, password, host

name and port number have been preset in Mailer functions. In the Message Schedule Page,

users can choose a given template or add more detail manually, which will be the content sent to

patients by text messages. In addition, there is a calendar on the left side of the page, which

contains the history of messages sent to patients. To implement the scheduler function, an

daemon is used called Cron, which can run separately with the web application and execute the

preset file periodically. Cron has the access to any specified file in the current system and can

call the exactable files. A Cron-file has five fields for specifying the time followed by the

command to be run at that interval.

Figure 5.5b: Cron Command Structure [2]

In our case, Cron is used to run the mailer function every single minute and the command should

be the absolute address of Mailer functions. However, every email has scheduled delivery time

stored in the database so that although the Mailer function has been called every minute, the

function will not be implemented until the scheduled time. Therefore, a user can schedule several

messages at a time, which are all stored and displayed in the left side calendar. Then as long as

the message has not been sent, users still have chances to edit or delete the information by

clicking the messages in the calendar.

36

The view of messages is designed with two versions, HTML and text format, to guarantee that

all kinds of cell phones can receive the messages without any troubles. In addition, the doctor’s

name and subject of the messages will also be included like an email.

Figure 5.5c: Screenshot of Text Message

37

Chapter 6: Conclusion

6.1 Overall Conclusion

By Ruby on Rails, HTML and CSS, the text message platform application is built to manage

patients in a more efficient and convenient way. Furthermore, doctors can schedule messages

and send some information to patients. This web application can remind patients their

appointments and provide psychological suggestions, follow-up surveys and so on.

6.2 Future Work and Application of the Project

Almost all basic functions for a text messages platform have been implemented in this

application, however, an administrative system is still needed to manage the users account and

patients information. As discussed in Chapter 5, in order to keep the safety of the system, normal

users cannot change their name and email address. There should be an administrator, who has the

access to all users’ information including editing or deleting their profiles. In addition, the

administrator should also be able to check all patients’ information but cannot edit them, because

only the specific doctor can manage his own patient. Another work needed in future is the

receiving function that allows patients to reply the text messages so that doctors can get the

response in time.

Obviously, this text platform application can be used in several areas such as the hospital and

school. Due to the free SMS gateway service, this application can send out messages as many as

possible without any charges. It is also well designed for charitable organizations and

humanitarian engineering.

38

Appendix I: Project Schedule

May/2014-Aug/2014 Learn the basic idea of PID controller and learn

the technologies of mobile application

framework, PhoneGap.

Aug/2014- Nov/2014 Complete the first part of the research, Poverty

Management App. Evaluate the performance

and optimize its database and user experience.

Nov/2014-Jan/2015 Start the second part of the research, Text

Message Platform. Build the basic web

application, login and management system.

Jan/2015-Mar/2015 Complete the web application including the

function of sending messages and scheduling

messages.

Mar/2015-Apr/2015 Finished my undergraduate honor research

distinction thesis and oral defense

39

Reference Page:

 [1] Chapman, R. Digital Control of Dynamic Systems. Belmont, CA: Thomson Learning, 2006.

Print.

[2] Cron_Syntax. Digital image.WebEnabled.N.p., 27 Jan. 2009. Web. 14 Apr. 2015.

https://www.webenabled.com/setting-and-configuring-cron-jobs.

[3] Extension .js. Digital image.Wikipedia.N.p., 9 Apr. 2015. Web.13 Apr.

2015.http://en.wikipedia.org/wiki/HTML.

[4] Hartl, Michael. Ruby on Rails Tutorial: Learn Web Development with Rails.N.p.: Addison-

Wesley Professional, 2012. Print.

[5] Harwani, B. M.PhoneGap Build: Developing Cross Platform Mobile Applications in the

Cloud. N.p.: Auerbach Publications, 2013. Print.

[6] HyperText Markup Language. Digital image.Wikipedia.N.p., 6 Apr. 2015. Web. 13 Apr.

2015. http://bg.wikipedia.org/wiki/HTML.

[7] Institute of Electrical and Electronics Engineers, Inc.. (2006). Code of Ethics IEEE,

http://www.ieee.org/. Retrieved at July 28, 2009, from the website temoa : Open Educational

Resources (OER) Portal at http://www.temoa.info/node/23284

[8]"JavaScript Tutorial." JavaScript Tutorial. W3C School, n.d. Web. 20 Aug. 2014.

http://www.w3schools.com/js/

[9]"JQuery Tutorial." JQuery Tutorial.W3C School, n.d. Web. 20 Aug. 2014.

http://www.w3schools.com/jQuery/

[10] Miles, Troy. The Plot Chart.Digitalimage.The Rock N Coder.N.p., 28 May 2012. Web. 13

Apr. 2015. http://therockncoder.blogspot.com/2012/05/jquery-mobile-charts.html.

[11] Myer, Thomas. Beginning PhoneGap. Indianapolis, In.: Wiley, 2012. Print.

40

[12] "News." World Development Report 2015 Explores "Mind, Society, and Behavior" N.p., 2

Dec. 2014. Web. 14 Jan. 2015.http://www.worldbank.org/en/news/feature/2014/12/02/world-

development-report-2015-explores-mind-society-and-behavior

[13] Passino, Kevin. "Models, Dynamics, and Analysis of Poverty." Humanitarian Engineering

Creating Technologies That Help People. Columbus: Bede, 2015. 70-95. Print.

[14] Peter. CSS-Style.Digitalimage.Basic CSS Tutorial.N.p., n.d. Web. 13 Apr. 2015.

www.theinternetdigest.net.

[15] Shotts, Kerri, and Suresh Mogre. PhoneGap 3.x Mobile Application Development Hotshot:

Create Useful and Exciting Real-world Apps for IOS and Android Devices with 12 Fantastic

Projects. 2nd ed. N.p.: Packt, n.d. Safari Books Online. 5 June 2014. Web. 07 Apr. 2015.

[16] Urquizo, Arturo. A block diagram of a PID controller in a feedback

loop.Digitalimage.Wikipedia.N.p., 6 Apr. 2015. Web. 13 Apr. 2015.

http://en.wikipedia.org/wiki/PID_controller.

