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ABSTRACT

Distortion product otoacoustic emission (DPOAE) delay estimation has important im-

plications for models of emission generation and cochlear mechanics. However, the DPOAE

signal environment makes the accurate estimation of DPOAE onset a difficult task. To date,

two Fourier domain methods have been used exclusively inf1 andf2 sweep methods for

DPOAE delay estimation. However, these sweep methods suffer from serious limitations.

Additionlly, the two different sweep methods result in large differences in the estimated

DPOAE delay, which are incompatible with the physical reality. In this study, a novel

technique is employed for DPOAE latency estimation based onzero-phase filtering and

penalized contrast changepoint estimation. This method has the advantage that it can be

applied to a DPOAE time series evoked with a single(f1, f2) primary tone pair. The results

are compared in the same human subjects against the traditional Fourier methods. The

changepoint method provides support for the notion that thedifference between thef1 and

f2 sweeps is artifactual and that thef2 sweep times may be closer to the true delay.
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CHAPTER 1

INTRODUCTION

Otoacoustic emissions (OAEs) are retrograde pressure waves in the ear canal originat-

ing from the cochlea and generated by a physiologically vulnerable mechanism (Kemp,

1978). The most common taxonomy for evoked OAEs is based on the nature of the stimu-

lus. Transient evoked otoacoustic emissions (TEOAEs) are elicited by clicks (80-100µsec

in duration) and tone pips (2-4 msec). Stimulus frequency emissions (SFOAEs) are evoked

by a continuous tonal stimulus at a single angular frequency.

The third type of evoked OAE and the focus of this project are distortion product otoa-

coustic emissions (DPOAEs). DPOAEs are evoked by a superposition of sinusoidal stimuli.

In the majority of experimental and clinical conditions, two tones are presented to the ear. If

the two evoking tones are denoted asf1 andf2 (also known as the primaries) withf1 < f2,

the DPOAEs will take the formmf1 ± nf2 wherem,n ∈ Z. Since the exact form of the

cochlear nonlinearity is unknown, it is not possible to predict which intermodulation dis-

tortion products are generated. Among those observed in humans with varying regularity

are:f2−f1, 2f1−f2, 3f1−2f2, and2f2−f1 (Moulin & Kemp, 1996). The so-called cubic

distortion product (CDP) with frequency2f1 − f2 is by far the most robust and therefore

most clinically significant.
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Numerous studies have shown that the amplitude of the CDP is dependent on the over-

all and relative levels of the evoking stimuli as well as their frequency ratio (f2/f1) (Har-

ris, Lonsbury-Martin, Stagner, Coats, & Martin, 1989; Gaskill & Brown, 1990; Kummer,

Janssen, Hulin, & Arnold, 2000). If one allowsL1 to denote the sound pressure level (SPL)

of f1 andL2 to denote the SPL off2, then forL2 from 20 to 65 dB SPL, the empirically

optimumL1 is well approximated by the affine equationL1 = 0.4L2 + 42 (Kummer et al.,

2000). ForL2 = 55 dB SPL, this implies that settingL1 = 64 dB SPL will result in the

maximum amplitude CDP. A large-scale study of normal and impaired listeners found that

overall primary levels ofL1 = 65 andL2 = 55 dB SPL produced the greatest separation

in the CDP amplitude distributions of normal and impaired ears (Stover, Gorga, Neely, &

Montoya, 1996). Reducing the overall primary tone levels resulted in a large number of

normal ears resembling impaired ears, while increasing thelevels caused a large number

of impaired ears to more closely resemble normal ears. Further, it has been demonstrated

in human ears that varyingf2/f1 over a range of[1.1, 1.3] will result in an approximately

quadratic power function with the maximum amplitude CDP occurring near 1.22 (Harris et

al., 1989; Gaskill & Brown, 1990; Fahey, Stagner, & Martin, 2006). Based on these find-

ings primary tone levels of 65-55 and a primary tone ratio of 1.22 have become the clinical

defaults for DPOAE testing.

1.1 OAE Sources

There is broad consensus that normally-functioning outer hair cells (OHCs) are a nec-

essary condition for the generation of OAEs, while the mechanisms by which the emis-

sions are produced and escape the cochlea remain poorly understood (Brown, McDowell,

& Forge, 1989; Jaramillo, Markin, & Hudspeth, 1993; Camalet, Duke, Julicher, & Prost,
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2000; Shera, 2004). Perhaps surprisingly, there is no consensus on how outer hair cells

actually feed energy into the traveling wave to produce the emissions. The electromotil-

ity of the OHC lateral cell membrane has been demonstrated convincingly, but it is not

clear that this electromotility is sufficient to produce themechanical energy responsible for

OAEs. In animals with no OHC motility, OAEs are most likely produced by nonlinearities

in the OHC stereociliary bundle movements (Crawford & Fettiplace, 1985). OHC stere-

ocilia have demonstrated a threshold displacement in the depolarizing direction. When this

threshold is reached, an active process within the bundle produces a force, which causes

nonlinear behavior in the displacement. There is increasing evidence that this process also

contributes to mammalian OAEs (Oghalai, 2004; Ruggero, 2004).

In order for OAEs to be effective noninvasive probes of cochlear function, it is critical

that their generation mechanisms be fully understood. Unfortunately, there are still consid-

erable challenges in describing the biophysics of the cochlea as a prerequisite for under-

standing emissions. Models of wave motion are often highly idealized proceeding from a

reduced two-chamber cochlear model with the scala vestibuli separated from the scala tym-

pani by the basilar membrane. Clearly, this model ignores both Reissner’s membrane and

the organ of Corti. While the thickness and homogeneity of Reissner’s membrane arguably

warrant its exclusion in a simplified cochlear model, there is a complex mechanical inter-

action of elements in the organ of Corti, which cannot be ignored without compromising

the ultimate utility of the model. However, incorporating the organ of Corti into exisiting

cochlear models is a formidibable task.

Ignoring the cellular biomechanical detail, the extant theory of evoked OAEs describes

two general generator mechanisms. One mechanism is the nonlinear distortion generated
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when two or more traveling waves interact. This is referred to as the “wave-fixed” or “dis-

tortion” type emission (Knight & Kemp, 2001; Shera, 2004). The wave-fixed mechanism

describes OAE generation as being a property of the traveling waves, specifically the max-

imal traveling wave interaction off1 andf2 near thef2 place. The potentially confusing

part of that statement is the reference to thef2 place. Thef2 place is important only in that

it provides a spatial description of where the wave interaction takes place. The wave-fixed

mechanism is an inherent part of the traveling wave interaction independent of the position

along the basilar membrane where it occurs. The 2nd type of emission is thought to arise

from impedance perturbations along the cochlea that produce scattering in response to the

traveling wave. This is referred to as “place-fixed” or “reflection” type emissions (Zweig &

Shera, 1995; Knight & Kemp, 2001; Shera, 2004). It is not unlike the scattering that occurs

when a pulse traveling down a rope encounters structural inhomogeneities, e.g. changes in

density. A major line of research in evoked OAEs is concernedwith determining whether

the stimulus-based taxonomy reflects differences in how OAEs are generated and whether

these emissions break down along the lines of distortion or reflection types (Shera, 2004).

Currently there is no consensus on this point. Some groups have argued that SFOAEs and

TEOAEs have a common generation mechanism (reflection type), while DPOAEs are in

part distinct from the other two (distortion and reflection type) (Shera & Guinan, 1999;

Shera, 2004). Others have proposed that all emissions contain a mixture of emission types

(sources) with the dominant contributions depending on changes in the parameters used to

evoke them (Yates & Whitnell, 1999; Knight & Kemp, 2001; Goodman, Withnell, & Shera,

2003). In TEOAEs for example, the spectrum of the short duration stimulus has significant

energy spread over a wide frequency range. An argument can bemade that the traveling
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waves generated by the stimulus participate in wave-fixed type interactions over a spatially-

distributed region of the cochlea generating a number of distortion product emissions with

considerable spectral extent (Yates & Whitnell, 1999).

For DPOAEs the dominant view until the early 1990s was that nonlinear distortion

(wave-fixed) near the higher frequency primary was the sole source (Kemp, 1978; Kemp

& Brown, 1983; Allen & Neely, 1992). The view that all distortion products are gener-

ated near thef2 place makes specific predictions concerning DPOAE phase. The scaling

symmetry of the cochlea predicts that the phase of the emission will be approximately

independent of frequency for a fixedf2/f1 if the source is located near the peak of the

traveling wave (Zweig & Shera, 1995; Shera & Guinan, 1999). This is due to the fact that

the number of wavelengths a traveling wave completes beforereaching its characteristic

place is approximately frequency independent. Support forthis scaling symmetry in the

basilar membrane mechanics of healthy animals dates from the early 1970s (Rhode, 1971).

Accordingly, the emission phase will be nearly identical regardless of whether it was gen-

erated with a relatively low or high frequency stimulus. ForDPOAEs evoked with a fixed

f2/f1 of ≈ 1.22 this is a good approximation. Studies have shown that fixing the ratio of

the primary tones and sweeping them over a nearly three octave range results in less than

a π radian shift in the phase of the emission as measured via the argument of its discrete

Fourier transform (DFT) coefficient (Shera & Guinan, 1999; Knight & Kemp, 2001).

1.1.1 The DPOAE Two-source Model

While DPOAE phase behavior is nearly constant for a fixed primary tone ratio of 1.22,

the same cannot be said of DPOAE magnitude when measured overa fine frequency scale,

e.g. 1/32 of an octave (He & Schmiedt, 1993). In these experiments DPOAE power
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is shown to fluctuate in a quasi-periodic manner as a functionof frequency with relative

minima and maxima over ranges of 10-20 dB SPL. This phenomenon is commonly referred

to asDPOAE fine structure. The intrigue of DPOAE fine structure was deepened by the

discovery that these power fluctuations can be virtually eliminated by the introduction of a

low-level suppressor tone near the2f1 − f2 frequency. This motivated the hypothesis that

there is a 2nd DPOAE source at the characteristic place of thedistortion product, which

for 2f1 − f2 is apical to both primary tones (Heitmann, Waldman, Schnitzler, Plinkert, &

Zenner, 1998).

In the so-calledtwo-source modelthe nonlinear interaction off1 andf2 near thef2

place generates both basally and apically propagating waves. The apically moving wave

proceeds to its characteristic place where it generates a SFOAE, which then reflects basally

(Talmadge, Long, Tubis, & Dhar, 1999). The CDP recorded in the ear canal is thought

to be a mixture of one distortion product and one reflection emission. Phase differences

in the two sources cause frequency-dependent interferencepatterns in the ear canal, which

produce the fine structure.

As soon as the two-source model was proposed, reports emerged that questioned whether

the source profile of DPOAEs was even more complicated. For example, experiments in

rodents have provided support for the contribution of cochlear loci basal to thef2 charac-

teristic place in the generation of DPOAEs (Martin, Stagner, Jassir, Telischi, & Lonsbury-

Martin, 1999). Further, there is some evidence that only theso-calledlower sideband

distortion products with frequencies lower thanf1 can be meaningful discussed in terms

of wave-fixed and place-fixed contributions (Prijs, Schneider, & Schoonhoven, 2000). In

any event, the ability to “unmix” the CDP has obvious theoretical and clinical implications.

The direct clinical implication stems from the fact that thecurrent hypothesis test for the
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presence or absence of the CDP is used to infer cochlear status at thef2 place (Mills, 1997;

Kalluri & Shera, 2001). It may be that the conditions under which DPOAEs are acquired

clinically (f2/f1 ≈ 1.22, 65-55 dB SPL primaries) make the traveling wave interaction

mechanism (wave-fixed) dominant (Knight & Kemp, 2000). If this is demonstrated to be

the case, then thef2 place inference is supported and there may be little clinical need for

added complexity such as the introduction of a suppressor tone. In terms of the theoretical

implication, if DPOAEs are to expand their clinical utilitybeyond the current “normal-

abnormal” hypothesis test, a detailed knowledge of their generation mechanisms is critical.

1.2 DPOAE Delay Estimation

Motivated largely by the question of source localization, there has been considerable

interest over the past decade in the temporal behavior of theCDP (Kimberley, Brown, &

Eggermont, 1993; Stover, Neely, & Gorga, 1996; Whitehead, Stagner, Martin, & Lonsbury-

Martin, 1996; Tubis, Talmadge, & Tong, 2000). Typical clinical measurements employ a

Fourier transform of the ear canal pressure recordings and then retain only the estimated

squared magnitudes of the Fourier coefficients. Both of these operations obscure the ability

to discern the temporal evolution of the CDP. The ability to examine the temporal behav-

ior of the CDP has important implications for source localization questions since sources

from disparate regions in the cochlea would be expected to have different latencies. Tech-

niques that measure the temporal behavior of the CDP would allow us to visualize how the

contributions of these putative sources varied as acquisition parameters and cochlear status

differed.

To date, two Fourier-domain methods have been used to estimate the latency of DPOAEs,

thephase gradient(Kimberley et al., 1993; Mahoney & Kemp, 1995; Prijs et al., 2000) and
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the IFFT method (or impulse response method) (Stover, Neely, & Gorga, 1996; Konrad-

Martin et al., 2002). The phase gradient method is an approximation to the group delay,

while the IFFT method approximates an impulse response for the cochlear “filter”. Both

methods constitute clever attempts to estimate DPOAE delay. However, they still suf-

fer from limitations that affect their interpretation as true physical delays of the DPOAE.

These limitations are exposed most clearly in the large discrepancy between delay estimates

obtained with different paradigmatic implementations of the phase gradient and impulse re-

sponse methods (Mahoney & Kemp, 1995; Stover, Neely, & Gorga, 1996).

The problem of estimating the temporal behavior of the DPOAEis a problem of joint

time-frequency analysis. Unfortunately, DPOAE time series pose significant problems for

time-frequency analysis. The evoking tones are typically at least 50 dB above the CDP and

are recorded simultaneously thereby obscuring any distortion product visualization in the

time domain. The phase gradient and impulse response methods are born out of a recog-

nition of these challenges but produce results which are notcompletely reconcilable with

the goal of estimating the DPOAE delay. It is the purpose of this study to examine these

problems from a novel perspective. First, we derive an expression for phase derivatives

approximated by the phase gradient method. This analysis uses a wave-fixed assumption

(f2 place generation site) and invokes the scaling symmetry andexponential frequency

map of the cochlea to explain the discrepancies seen in the currently utilized delay estima-

tion protocols. Secondly, a paradigmatic modification of DPOAE data collection is used

in conjunction with time domain filtering and spectral changepoint estimation (Lavielle,

2005) to obtain DPOAE time delays. The changepoint delay estimates are then compared

phase-gradient and impulse-reponse delays in normal-hearing human subjects.
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The plan of this report is as follows. In the next chapter, some preliminary background

on relevant time-frequency concepts and random processes is presented. Additionally, a

detailed explanation of the phase-gradient and impulse response methods and the associated

f1 andf2 sweep paradigms is given. The group delay of the CDP under thewave-fixed

hypothesis and standard cochlear assumptions is derived. In chapter 3, the data acquisition

methods including the pulsed primary and primary phase rotation paradigm used in human

DPOAE data collection are described. Subsequently, DPOAE results from human subjects

are presented. The final chapter contains the discussion of the findings and prospectus for

further work.
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CHAPTER 2

DPOAE DELAY ESTIMATION-MATHEMATICAL AND
ALGORITHMIC FOUNDATIONS

The description of a signal jointly in time and frequency, ortime and scale is a problem

encountered in a wide variety of disciplines. Changing frequencies is a ubiquitous part of

our sensory experience. Both our auditory and visual systems are tuned to notice change

and often ignore steady state conditions. This property of the nervous system has an obvi-

ous evolutionary basis. For prey and predator alike, it is the detection of change which is

critical to survival. Yet in spite of the basic role that changing frequencies play in our au-

ditory and visual experience, time-frequency notions suchasinstantaneous frequencyand

group delayare not easy to define mathematically and often even more difficult to estimate

in practice (Boashash, 1992).

2.1 The Hilbert SpaceL2(R)

The most useful space for the analysis of signals is the spaceof square-integrable (in

the Lebesque sense) complex-valued functions defined on thereal numbers,L2(R). In the

discussions to follow a bar over a function or scalar denotesthe complex conjugate. In

physical terms,L2(R) is the space of signals with finite energy. For a function,g(t), to be
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an element of the space we require
∫

∞

−∞

|g(t)|2dt <∞

In other words if we take the absolute value squared of the function and “sum” those values

over the extended real line, a real number must be obtained. There are innumerable physical

situations in which the absolute square of a signal is a key consideration making this signal

space a natural one to consider. In electromagnetics, the kinetic energy imparted to a charge

placed in a field is proportional to the square of the field. In sound, the energy density is

proportional to the pressure squared. In circuits, the power is proportional to the voltage

squared.

Let us define the real-valued scalar corresponding to the above integral as the squared

normof g(t), which we denote as||g(t)||2. Clearly when the norm (||g(t)||) is finite, g(t)

can be normalized as

g(t)

||g(t)||
Note in this case

∫

∞

−∞

| g(t)||g(t)|||
2dt

=
1

||g(t)||2
∫

∞

−∞

|g(t)|2dt

= 1

There are instances mathematically when it is convenient tohave a unit norm. Additionally,

it permits us to draw an analogy between the energy density ofa signal and a probability

density function, which we shall do for the calculation of moments.

It is often advantageous to represent elements of our space of signals as a superposi-

tion of basic building blocks. There are an infinite number ofchoices of these building
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blocks. An important consideration is whether a particularrepresentation of the signal will

yield any useful insight. Certainly, one of the most useful representations for elements of

L2(R) is the Fourier transform, which uses complex exponentials,eiωt, as the “atomic”

elements. It can be shown that an arbitrary element,g(t), of L2(R) admits the following

representation where equality is in the mean-square sense.

g(t) =
1√
2π

∫

∞

−∞

(
1√
2π

∫

∞

−∞

g(t′)e−iωt
′

dt′)eiωtdω

if we define

ĝ(ω) =
1√
2π

∫

∞

−∞

g(t)e−iωtdt

we have

g(t) =
1√
2π

∫

∞

−∞

ĝ(ω)eiωtdω

and thereforêg(ω) gives us the contribution tog(t) from the angular frequencyω. We

emphasize that, in general,ĝ(ω) is complex-valued and therefore contains both amplitude

and phase information since it can be written in the polar form |ĝ(ω)|eiψ(ω) whereψ(ω)

denotes the argument. Note that ifg(t) is a real-valued signal then

ĝ(ω) =
1√
2π

∫

∞

−∞

g(t)e−iωtdt

=
1√
2π

∫

∞

−∞

g(t)eiωtdt

=
1√
2π

∫

∞

−∞

g(t)e−i(−ω)tdt

= ĝ(−ω)

Therefore for real-valuedg(t) the Fourier transform exhibits conjugate symmetry, i.e. the

Fourier transform at negative angular frequencies is the complex conjugate of the Fourier
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transform at the corresponding positive angular frequencies. It also follows from the above

that|ĝ(ω)|2 is an even function ofω.

The energy contained in a signal should not depend on the way we choose to represent

it. Representations that preserve the norm of a signal are therefore quite useful. The Fourier

transform has this property, namely that||g(t)||2 = ||ĝ(ω)||2. In integral form this means

that
∫

∞

−∞

|g(t)|2dt =

∫

∞

−∞

|ĝ(ω)|2dω

If we view the nonegative real-valued|ĝ(ω)|2 as a density, then|ĝ(ω)|2dω represents the

fractional energy ofg(t) contained in a small frequency interval just as|g(t)|2dt represents

the fractional energy contained in a small time interval. Itstands to reason that we can then

define the average frequency in the usual way that averages are defined, i.e.

µω =

∫

∞

−∞

ω|ĝ(ω)|2dω

Similarly, the average duration of a signal can be defined as

µt =

∫

∞

−∞

t|gt(t)|2dt

Additionally, just as variance is defined as the 2nd central moment (aboutµ), the bandwidth

of a signal can be defined as

σ2
ω =

∫

∞

−∞

(ω − µω)2|ĝ(ω)|2dω

and the variance of a signal in time can be similarly defined as

σ2
t =

∫

∞

−∞

(t− µt)2|g(t)|2dt

From the above it seems that we need to know the Fourier transform of a function in order to

compute the average frequency and bandwidth. Likewise, it seems intuitive that we cannot
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compute the first moment of a signal in time solely by knowledge of its Fourier transform.

Suprisingly and conveniently, this is not the case. There isa way to calculate the average

frequency simply from knowledge of the time signal and its derivative. This is done via the

use of a frequencyoperator(Cohen, 1995). If we define the frequency operator as

Wg(t) =
1

i

d

dt
g(t)

then the average frequency can be obtained as

µω =

∫

∞

−∞

g(t)Wg(t)dt

The proof is as follows

µω =

∫

∞

−∞

ω|ĝ(ω)|2dω

=

∫

ω

ω(
1√
2π

∫

t

g(t)e−iωtdt)(
1√
2π

∫

t′
g(t′)eiωt

′

dt′)dω

=
1

2π

∫

ω

∫

t

∫

t′
ωg(t′)g(t)eiω(t′−t)dt′dtdω

note
∂

∂t′
eiω(t′−t) = iωeiω(t′−t)

=
1

i2π

∫

ω

∫

t

∫

t′
g(t′)g(t)

∂

∂t′
eiω(t′−t)dt′dtdω

=
1

i

∫

t

∫

t′
g(t′)g(t)

∂

∂t′
(

1√
2π

∫

ω

1√
2π
e−iωteiωt

′

dω)dt′dt

=
1

i

∫

t′

∫

t

g(t′)g(t)
∂

∂t′
δ(t′ − t)dtdt′

=
1

i

∫

t′
g(t′)

∂

∂t′

∫

t

g(t)δ(t′ − t)dtdt′

=
1

i

∫

t′
g(t′)

d

dt′
g(t′)dt′

14



To illustrate the utility of this result consider the following amplitude and frequency

modulated signal

g(t) = (
α

π
)1/4e−αt

2/2+i(ω0t+βt2/2)

with α > 0. The amplitude is modulated in an exponentially decaying manner bye−αt
2/2

while the phase is quadratically modulated. The average frequency is seen to beω0. How-

ever, to prove this result by using the Fourier transform is not a trivial task. Fortunately, the

frequency operator provides a much easier way to findµω. To show that we can compute

this without knowing the Fourier transform recognize that if we setα = 1
2σ2 then

√

α

π
e−αt

2

is the form of a Gaussian probability density function with mean zero. Next we note that

Wg(t) =
1

i

d

dt
g(t) =

√

α

π
(iαt+ βt+ ω0)e

−αt2/2+i(ω0t+βt2/2)

Therefore
∫

∞

−∞

g(t)
1

i

d

dt
g(t)

=

∫

∞

−∞

√

α

π
(iαt+ βt+ ω0)e

−αt2dt

=

∫

∞

−∞

ω0

√

α

π
e−αt

2

dt = ω0

since the the integral does not depend onω0, it may be pulled outside the integral sign. We

then recognize the integral as a Gaussian probability density function which integrates to

one.

The first moment of the signal in time can be computed solely byknowledge of its

Fourier transform in an analogous manner through the use of the time operator

T ĝ(ω) = −1

i

d

dω
ĝ(ω)
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with

µt =

∫

∞

−∞

ĝ(ω)T ĝ(ω)dω

The proof is similar to the one for the frequency operator. Note that if we write the Fourier

transform of a signal in polar form as

ĝ(ω) = |ĝ(ω)|eiψ(ω)

whereψ(ω) is the spectral phase then

µt =

∫

ω

ĝ(ω)− 1

i

d

dω
ĝ(ω)dω

=

∫

ω

|ĝ(ω)|eiψ(ω) − 1

i
{|ĝ(ω)|′eiψ(ω) + iψ′(ω)|ĝ(ω)|eiψ(ω)}dω

=

∫

ω

−ψ′(ω)|ĝ(ω)|2dω

From the above we see that the first moment of a signal in time can be obtained by inte-

grating the negative of the first derivative of the spectral phase against the energy density in

frequency. In this way−ψ′(ω) can be interpreted as the instant of appearance of a specific

frequencyω. This is termed thegroup delay. If we takeω to be the angular frequency of

a DPOAE then−ψ′(ω) is the instant that the DPOAE appears in the time signal. The key

question then becomes how do we estimate−ψ′(ω). In DPOAE data this is done by the

use of phase gradients.

2.2 Estimating−ψ′(ω) in DPOAE Data–Phase Gradients

A number of investigators have attempted to use the phase (argument of the Fourier

coefficient) as an estimate of DPOAE delay (Kimberley et al.,1993; Whitehead et al.,

1996; Bowman, Eggermont, Brown, & Kimberley, 1998). One of the most common ways

16



to estimate the delay (latency) of DPOAEs is a paradigm in which one of the primary

frequencies is fixed and the other is swept in frequency (Kimberley et al., 1993; Mahoney

& Kemp, 1995; Prijs et al., 2000). These are referred to asphase gradientmethods and

have been widely used both to estimate cochlear traveling wave delay (Kimberley et al.,

1993; Mahoney & Kemp, 1995; Prijs et al., 2000) and to providetheoretical models for

DPOAE generation (Tubis, Talmadge, & Tong, 2000; Tubis, Talmadge, Tong, & Dhar,

2000). In anf1 sweep paradigm,f2 is fixed whilef1 is swept in frequency. As in all

swept frequency paradigms, the(f1, f2) frequency pairs are constrained to vary over a

range of ratios from≈ [1.1, 1.3]. Outside of this range, it is difficult to obtain distortion

products even in normal-hearing listeners with large CDP amplitudes under typical testing

conditions. Thef1 sweep method is implemented as follows.

2.2.1 f1 Sweep Method

Fix f2 at an arbitrary frequency (e.g. 2 kHz) whilef1 is swept in some small frequency

step (e.g. 25 Hz) from≈ 1540 to ≈ 1820. This would result in 12(f1, f2) pairs of the

form:

(1540, 2000) (1565, 2000) (1590, 2000) . . . (1665, 2000) . . . (1815, 2000)

Obviously with each of these pairs a different CDP is elicited. Just as the pairs are given

in order of increasingf1 frequency, the CDP will increase in frequency from1080 to 1630.

Note that with a fixedf2 if f1 is moved in 25-Hz increments, the CDP will move in2f1 or

50 Hz increments. The algorithm is implemented as follows.

1. Data is acquired at each(f1, f2) pair. This will require a requisite amount of time

domain averaging in order to elicit a detectable CDP if at all.
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Figure 2.1: Top: Raw phases for subjects M1 and F1 as a function of CDP frequency for
the 3 kHzf1 sweep used in this study. Bottom: Unwrapped phases for the plots in the top
panels. The delays are estimate as the slope of the least squares linear fit.

2. The data is Fourier transformed and the Fourier coefficient (complex-valued) for each

significant CDP is retained in a vector.

3. The phase is unwrapped, i.e. phase changes exceedingπ radians are replaced by their

2π complement and a simple first order linear regression model of the form

φCDP = β0 + β1fCDP + ǫCDP

is fit whereφCDP represents the unwrapped DP phase,fCDP the CDP frequency (in

Hz) andǫCDP represents the error term. The negative of the slope of the least squares

fit (scaled by1/2π if Hz are used) is used as the estimate of the group delay. In Figure

2.1,f1 sweep data is shown for a fixedf2 of 3 kHz for two subjects.
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Recall that using the time operator, it was shown that the negative of the derivative of

the spectral phase has the interpretation as the instant when a frequency appears.

There are three chief problems with the phase-gradient method. First, the sweep paradigm

acquires a number of phase measurements at different frequencies, all the(f1, f2) pairs, and

estimates the derivative as the best linear fit to the unwrapped phases. As a result, data ac-

quisition must always involve a number of(f1, f2) pairs. This requires both excess time and

renders the overall delay estimate sensitive to the behavior of just one or two(f1, f2) pairs.

Next, the derivative is assumed to be constant requiring thegroup delay to be the same at

each of the CDP frequencies. Note that there is nothing in thedefinition of group delay

that requires the derivative to be constant. In principle, this is a severe constraint. Phase

gradient methods are only able to arrive one delay estimate.In other words, if the two-

source model described in the introduction is accurate, thephase gradient method would

have no way to unmix the sources. Both wave-fixed and place-fixed emissions would be

measured as a single phase contribution at the CDP frequencies via the argument of the

Fourier coefficient. In fact, the phase gradient method is implicitly based on the distor-

tion model of DPOAEs. For example, in an odd order nonlinearity, a superposition of two

tones,(f1, f2), results in a cubic distortion product (among others) with aphase that de-

pends on the evoking tone phase via the relationship2θ1− θ2 with θ1 denoting the phase of

f1 andθ2 denoting the phase off2. Under the distortion model of OAE emission, the CDP

phase in a fixedf2-sweptf1 paradigm reflects the phase off1 at thef2 place. Recall that

the scaling symmetry of the cochlea results in a constant phase for a fixedf2/f1. However,

thef1 sweep paradigm changes the relationship between the primary tone traveling wave

patterns by systematically movingf1 and thereby changing the phase of the resulting CDP.

Finally, the linear regression model assumes equal variance of the error terms,ǫCDP . Given
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our knowledge of human DPOAEs evoked with different primarytone ratios, this is not a

valid assumption.

2.2.2 f2 Sweep Method

In thef2 sweep method, thef1 primary is fixed andf2 is swept in a small frequency

step. Again, the(f1, f2) ratios are constrained to fall in the[1.1, 1.3] range in order to elicit

CDPs with a reasonable probability in normal-hearing persons. In the case of thef2 sweep,

the CDP frequency will move the same increment as thef2 step because of its2f1 − f2

dependence. The measurement paradigm proceeds exactly as described for thef1 sweep

method with the reversed roles of the primaries.

In may seem incompatible with thef2 place hypothesis to attempt to measure DPOAE

delay with af2 sweep paradigm. The key is to understand that in af2 sweep paradigm,

the higher frequency primary is only being moved a few hundred Hz. Even if it could be

recorded with perfect accuracy, the difference in delay fora CDP emerging from say the

4300 Hz place on the cochlea as opposed to the 4000 Hz place would be infinitesimally

small.

In spite of biologic arguments for why thef1 sweep andf2 sweep paradigms should

exhibit negligible differences, striking contrasts are routinely observed between the two.

DPOAE delays recorded with thef2 sweep are approximately twice as long as those

recorded with thef1 sweep method (Kimberley et al., 1993; Mahoney & Kemp, 1995;

Moulin & Kemp, 1996). It is important to consider how these differences arise. Based on

purely physical considerations, they must be artifacts of the measurement process. This

question has been addressed in detail in a previous paper andan approximate relationship

between thef1 andf2 sweep methods derived (Tubis, Talmadge, Tong, & Dhar, 2000). In
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the next section, a complementary analysis is presented that reaches substantively the same

conclusions reached by the authors of the earlier paper.

2.3 Model relating thef1 sweep andf2 sweep phase gradient estimates

In this model, the DPOAE spectral phase,ψ(ωdp), is expressed as the sum of two com-

ponents, an anterograde component,
−→
φ (xg, ωdp), which depends on the phases off1 andf2

at the generator region and a retrograde component
←−
φ (xg, ωdp) so that

ψ(ωdp) =
−→
φ (xg, ωdp) +

←−
φ (xg, ωdp)

In order to derive an expression for the derivative of the spectral phase in terms of the

anterograde and retrograde components, the total differentials are examined term by term.

The total differential of the anterograde component, (
−→
ψ (ωdp)), is

d
−→
ψ (xg, ωdp) =

∂
−→
φ (xg, ωdp)

∂ωdp
dωdp +

∂
−→
φ (xg, ωdp)

∂xg
dxg

Similarly, the total differential of the retrograde component, (
−→
ψ (ωdp)), is

d
←−
ψ (xg, ωdp) =

∂
←−
φ (xg, ωdp)

∂ωdp
dωdp +

∂
←−
φ (xg, ωdp)

∂xg
dxg

Next the explicit dependence ofωdp onω1 andω2 is worked into the model. Equating the

differentials the following relations are obtained

dωdp = 2dω1

dωdp = −dω2

The total differential for the anterograde component is given by

2
∂
−→
φ (xg, ω1)

∂ω1

dω1 −
∂
−→
φ (xg, ω2)

∂ω2

dω2 +
∂
−→
φ (xg, ωdp)

∂xg
dxg
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where the dependence of the phase-place derivative onωdp has been momentarily main-

tained on purpose. Note thatωdp in the retrograde component is the emission phase and

therefore cannot be explained via a straightforward dependence on the primary tone phases.

The DPOAE group delay becomes

− dψ(ωdp)

dωdp
= −2

∂
−→
φ (xg, ω1)

∂ω1

dω1

dωdp
+
∂
−→
φ (xg, ω2)

∂ω2

dω2

dωdp
− ∂
−→
φ (xg, ωdp)

∂xg

dxg
dωdp

. . .

− (
∂
←−
φ (xg, ωdp)

∂ωdp
+
∂
←−
φ (xg, ωdp)

∂xg

dxg
dωdp

)

Now we return to the anterograde phase-place derivative given by

∂
−→
φ (xg, ωdp)

∂xg

dxg
dωdp

again utilizing the relationshipωdp = 2ω1−ω2 and noting thatdωdp/dω1 = 2 anddωdp/dω2 =

−1, the above may be rewritten as

∂
−→
φ (xg, ωdp)

∂xg

dxg
dωdp

= 2
∂
−→
φ (xg, ω1)

∂xg

dxg
dωdp

− ∂
−→
φ (xg, ω2)

∂xg

dxg
dωdp

Using the above, the group delay may be rewritten as

− dψ(ωdp)

dωdp
= −2(

∂
−→
φ (xg, ω1)

∂ω1

dω1

dωdp
+
∂
−→
φ (xg, ω1)

∂xg

dxg
dωdp

) + (
∂
−→
φ (xg, ω2)

∂ω2

dω2

dωdp
+
∂
−→
φ (xg, ω2)

∂xg

dxg
dωdp

) .

− (
∂
←−
φ (xg, ωdp)

∂ωdp
+
∂
←−
φ (xg, ωdp)

∂xg

dxg
dωdp

)

Note that for anf1 sweepdω2 = 0, while in anf2 sweepdω1 = 0. Further, the generator

region is assumed to be fixed at thef2 place and therefore can be written solely as a function

of f2, i.e. xg(ω2). Accordingly, in anf1 sweep paradigm

dxg
dωdp

= 0
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while in anf2 sweep paradigm this derivative is nonzero.

In simplifying the expression for group delay, we considerf1 sweep first. In order to

subsequently distinguish the group delays obtained with different sweep paradigms, letD1

denote−dψ/dωdp obtained with thef1 sweep andD2 denote the group delay observed with

thef2 sweep. It follows thatD1 can be written as

D1 = −∂
−→
φ (xg, ω1)

∂ω1

− ∂
←−
φ (xg, ωdp)

∂ωdp

where we have used

2
dω1

dωdp
= 1

In order to analyzeD2, the group delay for thef2 sweep method, it is instructive to

invoke the scale-invariance of the cochlea, which results in a constant anterograde phase

for
−→
φ (xi, ωi) wherexi is the characteristic place for the frequencyωi. Mathematically, this

is expressed as

−→
φ (xi, ωi) = K

whereK denotes a constant and therefore

d
−→
φ

dωi
=
∂φ(xi, ωi)

∂ωi
+
∂φ(xi, ωi)

∂xi

dxi
dωi

= 0

It is well known that the rate of change of frequency with respect to place in the cochlea

is proportional to frequency with the characteristic frequencies monotonically decreasing

from the base of the cochlea (near the oval window) to the apex. This relationship can be

written as a differential equation where the independent variable isx, the spatial position

along the cochlea, and the dependent variable isω(x).

dω

dx
= −λω λ > 0
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The above is an ordinary first order differential equation, which can be solved as follows

dω

dx
= −λω

dω

dx
+ λω = 0

set µ(x) = e
R

λdx = eλx

dω

dx
eλx + λeλxω = 0

d

dx
(ω(x)eλx) = 0

∫

d

dx
(ω(x)eλx)dx = C

ω(x) = Ce−λx

whereC is a constant of integration. Returning to the expression for the derivative of the

anterograde phase of an arbitrary frequency at its characteristic place, we obtain

∂
−→
φ (xi, ωi)

∂ωi
= −∂

−→
φ (xi, ωi)

∂xi

dxi
dωi

=
∂
−→
φ (xi, ωi)

∂xi

1

λωi

and therefore

∂
−→
φ (xi, ωi)

∂ωi
λωi =

∂
−→
φ (xi, ωi)

∂xi

In order to derive an expression forD2, recall the expression for group delay derived earlier

− dψ(ωdp)

dωdp
= −2(

∂
−→
φ (xg, ω1)

∂ω1

dω1

dωdp
+
∂
−→
φ (xg, ω1)

∂xg

dxg
dωdp

) + (
∂
−→
φ (xg, ω2)

∂ω2

dω2

dωdp
+
∂
−→
φ (xg, ω2)

∂xg

dxg
dωdp

) .

− (
∂
←−
φ (xg, ωdp)

∂ωdp
+
∂
←−
φ (xg, ωdp)

∂xg

dxg
dωdp

)
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In the wave-fixed model, the generation region of the CDP is held to vary withω2. Accord-

ingly, we have

dxg
dωdp

=
dxg
dω2

dω2

dωdp

substituting this into the expression for group delay, we obtain

− dψ(ωdp)

dωdp
= −2(

∂
−→
φ (xg, ω1)

∂ω1

dω1

dωdp
+
∂
−→
φ (xg, ω1)

∂xg

dxg
dω2

dω2

dωdp
) + . . .

dω2

dωdp
(
∂
−→
φ (xg, ω2)

∂ω2
+
∂
−→
φ (xg, ω2)

∂xg

dxg
dω2

) +−(
∂
←−
φ (xg, ωdp)

∂ωdp
+ . . .

+
∂
←−
φ (xg, ωdp)

∂xg

dxg
dω2

dω2

dωdp
)

In order to simplfy the expression forD2, the anterograde and retrograde components

are examined separately. First, the anterograde component,
−→
D 2, can be written as

−→
D 2 = −2(

∂
−→
φ (xg, ω1)

∂ω1

dω1

dωdp
+
∂
−→
φ (xg, ω1)

∂xg

dxg
dω2

dω2

dωdp
) + . . .

dω2

dωdp
(
∂
−→
φ (xg, ω2)

∂ω2
+
∂
−→
φ (xg, ω2)

∂xg

dxg
dω2

)

The first term is seen to be zero becausedω1 = 0 in anf2 sweep. Further, due to the scale

invariance of the cochlea, the term

∂
−→
φ (xg, ω2)

∂ω2

+
∂
−→
φ (xg, ω2)

∂xg

dxg
dω2

is recognized as the perfect differential of
−→
φ (xi, ωi) = K and therefore is equal to zero.

Therefore, the anterograde component ofD2 simplifies to

−→
D2 = −2

∂
−→
φ (xg, ω1)

∂xg

dxg
dω2

dω2

dωdp

Converting the phase-place derivative above into a phase-frequency derivative, we obtain

−→
D 2 = −2

∂
−→
φ (xg, ω1)

∂ω1
λω1

dxg
dω2

dω2

dωdp
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Given the differential equation describing the cochlear place-frequency map and the rela-

tion ω2 = 2ω1 − ωdp, the above can be rewritten as

−→
D2 = −2

∂
−→
φ (xg, ω1)

∂ω1

λω1
dxg
dω2

dω2

dωdp

−→
D2 = −2

∂
−→
φ (xg, ω1)

∂ω1
λω1 −

1

λω2
(−1)

−→
D2 = 2

ω1

ω2

(−∂
−→
φ (xg, ω1)

∂ω1

)

Next we write the retrograde component ofD2 (
←−
D2) as

←−
D 2 = −∂

←−
φ (xg, ωdp)

∂ωdp
− ∂
←−
φ (xg, ωdp)

∂xg

dxg
dω2

dω2

dωdp

= −∂
←−
φ (xg, ωdp)

∂ωdp
− ∂
←−
φ (xg, ωdp)

∂ωdp
(λωdp)(−

1

λω2
)(−1)

= 2
ω1

ω2
(−∂
←−
φ (xg, ωdp)

∂ωdp
)

Combining the previous result for
−→
D2, we obtain

D2 = 2
ω1

ω2
(−∂
−→
φ (xg, ω1)

∂ω1
− ∂
←−
φ (xg, ωdp)

∂ωdp
)

Recalling that

D1 = −∂
−→
φ (xg, ω1)

∂ω1

− ∂
←−
φ (xg, ωdp)

∂ωdp

it follows that

D2

D1
= 2

ω1

ω2

In the above it was shown that under a wave-fixed hypothesis and by invoking the scale

invariance of the cochlea, thef2 sweep delay is expected to exceed thef1 sweep delay by

a factor of2ω1/ω2. Givenω2/ω1 ratios in the interval[1.1, 1.3] it follows that thef2 sweep
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delay should be≈ 1.54 to 1.82 times thef1 sweep delay. While theoretically theD2/D1

ratio is a function of bothω1 andω2, the phase gradient method produces only one group

delay estimate. An important question that remains to be addressed for the phase gradient

methods is how the reductionist approach necessitated by the phase gradient method affects

the estimates ofD1 andD2 and accordingly the proposed relationship

D2 = 2
ω1

ω2
D1

In the above, the group delay obtained with thef2 sweep paradigm is predicted to be

approximately two times the group delay obtained with thef1 sweep. Note that for the

range of primary frequency ratios used in the sweep methods,this factor will vary from

2(1/1.1) to 2(1/1.3). This prediction will subsequently betested against data collected in

human subjects.

2.4 Impulse Response Method

In addition to the phase-gradient methods, the impulse response method has been ex-

tensively used to estimate DPOAE delay (Stover, Neely, & Gorga, 1996; Konrad-Martin,

Neely, Keefe, Dorn, & Gorga, 2001). In the previous section,it was noted that the phase

gradient methods are only capable of producing one group delay estimate. This estimation

method is incompatible with the theory that there are at least 2 sources of the ear-canal CDP.

The impulse response method of DPOAE delay estimation was developed to overcome this

limitation(Stover, Neely, & Gorga, 1996).

2.4.1 The Impulse Response in LTI Systems

The use of the impulse response is indispensible in the theory of linear translation-

invariant systems. For an LTI system, the response to an arbitrary input is completely
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characterized by the convolution of the input with the system’s impulse response function.

Equivalently, we may take the Fourier transform of the inputand multiply it by the Fourier

transform of the system’s impulse response, known as the system transfer function. This

follows from the well-known result that convolution in one domain is equivalent to multi-

plication in the canonically conjugate domain. In the conventional sense, filtering an input

signal invovles convolving it with a given impulse response, h(t), or equivalently multiply-

ing the Fourier transform of the input bŷh(ω).

Recall that in thef1 andf2 sweep paradigms, CDPs are elicited at a number of different

frequencies. For each of these CDP frequencies, a complex number (the DFT coefficient)

is obtained. If these DFT coefficients are placed in a vector with some appropriate spacing

indicative of their frequency separation, this vector can be viewed as the transfer function

of a cochlearfilter. It then follows that the inverse DFT of the transfer function is the

impulse response. The peak of the cochlear impulse responseis taken as the CDP delay.

If the DFT coefficients are only placed at positive frequencies, the impulse response

will be complex-valued. A real-valued signal must display conjugate symmetry in the

Fourier domain. Previous work with the impulse response method has created real-valued

impulse response functions by satisfying the conjugate symmetry property, i.e. by placing

the complex conjugate of the DFT coefficients in the appropriate DFT bins. In this work,

the analytic signal corresponding to the impulse response is preferred. The envelope of the

analytic signal provides a better estimate of the peak of theimpulse response and therefore

the putative CDP delay. The following algorithm is used to produce the impulse response

estimate.

1. The DFT of the averaged DPOAE time data is computed.
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Figure 2.2: Top:f1 sweep (3 kHz) phase gradient data for subjects M1 and F1. Thisdata
was shown in Figure 2.1 Bottom: The impulse response functions (voltage squared) for
the 3 kHzf1 sweep data. The impulse response functions peak at 3 msec, which is in
agreement with the least squares fit to the phase gradients.

2. The DFT coefficient for the CDP is retained and placed in theappropriate place in a

vector of zeros (positive frequencies only).

3. The DFT vector is multipled by a factor of 2 to create the Fourier transform of the

analytic signal.

4. The inverse DFT is computed and the resulting vector is theanalytic signal corre-

sponding the impulse response. The modulus is used to estimate the CDP delay.

In Figure 2.2, the estimated impulse response functions areshown for two subjects

along with the corresponding phase gradient estimates.
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2.5 Changepoint Detection

In this study, a novel application of changepoint detectionfor DPOAE time series is

introduced. This section serves as a brief introduction to changepoint detection in general

and to the specific technique for dependent observations used in this study.

In order to properly define the problem of changepoint estimation, it is necessary to

define the notion of a random, or stochastic process. A real-valued stochastic, or random,

process is a mapping from the Cartesian product of some indexset and an outcome space

into the real numbers. Recall that a random variable (RV) is ameasurable function mapping

some outcome space,Ω, into the real numbers such that the inverse image of the mapping

is a contained within theσ-algebra of subsets ofΩ. If we denote the real number assigned

to an arbitraryω ∈ Ω asX(ω), then a real-valued random process assigns a real number

to each pairing of elements from the index set and the outcomespace. If we denote the

index set asT , then a stochastic process may be denoted asX(t, ω) with t ∈ T . The index

set may be countable or uncountable. The index set is often time, but need not be. The

probability measure defined on the underlying outcome space, TxΩ, induces a probability

measure onX(t, ω). Therefore, a random process can be simply thought of a sequence of

random variables. Examples of such processes in audiology are evoked potential and OAE

waveforms.

Note that there is nothing in the definition of a random process which requires that

the probability measure is the same for eacht. As an illustration, a random proccess can

be defined on a countable index set, such that for event, the random variables follow a

N(1, 1) probability law, while for oddt the random variables are exponentially distributed

with parameter 1.
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2.5.1 Stationarity

Since a random process is a sequence of random variables, it stands to reason that we

will be interested in the relationships among the RVs that make it up. Specifically, we will

be interested in the joint distribution of the constituent RVs, i.e.P (X1 ≤ x1 ∩X2 ≤ x2 ∩

X3 ≤ x3 . . .). Clearly, for all but trivial processes, the joint distribution will be too large to

specify. This is especially true in practice when the process is being estimated from a finite

number of observations. In many cases, it helps to make simplifying assumptions about

the process. If these assumptions constitute a reasonable approximation to the process, the

estimation problem may be tractable. One of the most common assumptions in the study of

random processes is that ofstationarity. The most common form of stationarity is actually

second order stationarityA random process,Xt, is said to be second order stationary if

1. E(xt) = µ whereµ is a constant independent of time.

2. E(|xt|2) <∞.

3. γ(r, s) = E{(xr − µr)(xs − µs)} = E{(xr+t − µr)(xs+t − µs)} = γ(r + t, s+ t).

whereE denotes the expectation operator andγ(r, s) is the autocovariance between points

r ands. If the process does not satisfy the above it is referred to asnonstationary. In

summary, the above requirements require that the process has a mean value and variance

that do not depend on what segment of the process that we are looking at. In Figure 2.3,

we show an example of a DPOAE time series where the contribution of the primary tones

has been removed by a method to be described in a later section. This process constitutes

one realization of what would be considered a stationary process.
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Figure 2.3: A DPOAE time series withf1 and f2 removed by phase rotation and time
averaging. Note that the mean value of the data and its variance (the variability) do not
change appreciably if small segments of the data are considered one at a time.
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Figure 2.4: A DPOAE time series withf1 and f2 removed by phase rotation and time
averaging. Note that near 30 msec and again near 180 msec, theprocess variance has
changed.

In actuality, Figure 2.3 was produced by zooming in on 100 msec of the DPOAE time

series. In Figure 2.4, the entire 200 msec of data is shown. Itis clear while the mean of

the data is independent of the index (time), the variance of the process is not. There is a

marked change in the variance somewhere around 30 msec and again near 180 msec. The

data may be regarded as piecewise stationary, but not globally stationary.

2.5.2 Changepoint Detection

In many applications, it is critical to determine when some aspect of a random process

has changed (Basseville & Nikiforov, 1993). In general, we assume that the statistics of

the process are determined by some parameterθ ∈ Θ which remains constant between

changepoints. As a simple gross characterization, the timeseries shown in Figure 2.4
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contains two changepoints, one near 30 msec and another near180 msec. The process is

parameterized by some parameter,θ from 0 to 30 msec (and perhaps again from 180 to 200

msec), and byθ′ 6= θ from 30 to 180 msec.

Changepoint techniques may be used to detect changes in the mean, variance, empiri-

cal distribution function, and the empirical spectral distribution of a stationary process in a

specified band of frequencies (Picard, 1985; Basseville & Nikiforov, 1993; Lavielle & Lu-

dena, 2000; Lavielle, 2005). In this study we use a method, which simultaneously detects

all the changepoints in the empirical spectral distribution function of a 2nd order stationary

random process by minimizing a penalized contrast function(Lavielle & Ludena, 2000;

Lavielle, 2005). If we denote the periodogram of the processxt over thej-th segment as

Ij(ω) =
1

2πnk
|

tj
∑

t=tj−nk+1

xte
−iωt|2

Then

Fj(λ) =

∫ λ

0

Ij(ω)dω

denotes the energy in the band[0, λ]. Lavielle & Cardenas (2000) suggest the following

contrast estimator

−nk
N

∑

j

Fj(λ)2

This contrast estimator is then weighted by a term which penalizes over estimation of the

number of changepoints. In Figure 2.5, the penalized contrast estimator is applied to the

DPOAE time series shown in Figure 2.4. The estimator returnstwo changepoints, one at

37.4 msec and one at 180.5 msec.
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Figure 2.5: A DPOAE time series with changepoints noted at 37.4 and 180.5 msec.

35



CHAPTER 3

METHODS AND RESULTS

3.1 Methods

3.1.1 Human Subjects

Nine subjects, 3 male and 6 female, participated in the experiment. All subjects were

paid for their participation. The subject selection criteria for this experiment were: 1.)

normal hearing as defined by air conduction thresholds≤ 15 dB HL at the standard au-

diometric frequencies and the absence of any significant air-bone gap, 2.) clear canals and

normal tympanograms on the day of testing, and 3.) normal click-evoked TEOAEs on the

day of testing.

3.1.2 DPOAE Acquisition

DPOAE data were acquired inf1 andf2 sweep paradigms “centered” onf2 frequencies

of 2, 3, and 4 kHz. In thef1 sweep paradigm, thef2 frequencies were fixed at 2, 3, or 4

kHz respectively. For each acquisition,f1 was initially set at the nearest Fourier frequency

resulting in an approximatef2/f1 ratio of 1.3. Subsequently,f1 was increased in 25 Hz

steps until an approximatef2/f1 ratio of 1.1 was reached. This resulted in 11(f1, f2) pairs

for the 2-kHzf1 sweep and 13(f1, f2) pairs for the 3 and 4-kHzf1 sweeps.

36



Frequency f1 Sweep f2 Sweep

2 kHz [1080, 1580] [1130, 1480]
3 kHz [1710, 2310] [1760, 2110]

Table 3.1: CDP ranges elicited by thef1 andf2 sweep paradigms for 2 and 3 kHz. By con-
struction, the ranges overlap as much as possible while satisfying the necessary constraints.

An error in the setup of the 4 kHzf2 sweep made that data unsuitable for analysis.

Subsequently, in discussing thef2 sweeps, reference will only be made to 2 and 3 kHz. For

thef2 sweeps, the lower frequency primary (f1) was fixed at a Fourier frequency yielding

an approximate primary tone ratio of 1.22 when the higher frequency primary was 2 or 3

kHz. For example, in the 3-kHzf2 sweep, the lower frequency primary was fixed at 2455

Hz yielding 3000/2455 = 1.22. Thef1 frequency for the 2-kHzf2 sweep was fixed at

1640 Hz. In each of thef2 sweeps, the higher frequency primary was moved in 50-Hz

steps from approximately 150-300 Hz above to 200-300 Hz below its “centerpoint” (2 or

3 kHz). Thef1 andf2 sweeps were designed so that the essentially the same range of

cubic distortion products were elicited in both paradigms subject to the constraint that the

1.1 ≤ f2/f1 ≤ 1.3 ratios. The ranges of CDP frequencies elicited in 2 and 3 kHz paradigms

are given in Table 3.1.

For each(f1, f2) frequency pair, eighty acquisitions of 200 msec in durationwere ob-

tained. Each of these acquisitions consisted of 4000 pointssampled at 20 kHz. The result-

ing 4000x80 data matrix was stored for offline analysis. The lower frequency primary was

presented at 65 dB SPL for the entire 200 msec. The higher frequency primary was pulsed

on for 150 msec beginning at 25 msec and terminating at 175 msec. At the beginning and

end of the pulsed primary, 2.5 msec cosine-squared windows were used to reduce spectral
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spread. The higher frequency primary was presented at 55 dB SPL. The pulsed paradigm

was utilized to provide a clear marker for the onset of the CDP. Evoking the distortion

product requires stimulation of the cochlea by both primarytones. The delayedf2 onset

facilitates the detection of the CDP because each time series contains a number of sample

points prior to the onset (in this case a minimum of 500).

In addition to the pulsedf2 primary, the phases of both primaries were rotated in a

systematic way designed to greatly reduce the energy contributions of primary tones in the

data. The phase of thef1 primary was rotated byπ/4 radians in each acquisition, while the

phase of thef2 primary was rotated byπ/2. Due to the phase rotation, averaging any 8 (or

integer multiple of 8) consecutive acquisitions largely eliminated ear canal contributions

from bothf1 andf2 in the recording. Note that the anterograde component of theCDP,

−→
φ (xg, ωdp), is not eliminated since the actual starting phases off1 andf2 could not be

controlled precisely enough in the ear canal. This is illustrated in Figure 3.1 on the next

page. In Figure 3.1 the intial phases off1 andf2 were -0.90 and -0.94 radians respectively,

it is clear that the2θ1 − θ2 contribution of the primary phases is nonzero. However, the

phase rotation of the primaries is maintained at integer multiples ofπ/4 for f1 andπ/2 for

f2, which maintains the phase cancellation.

In theory the contribution off1 andf2 is completely eliminated with this technique.

However, these recordings were made in the ear canals of human subjects and it is impos-

sible to eliminate small movements, e.g. swallowing, head movement, etc., that introduce

phase perturbations in the recording. As a result, in practice this phase cancellation of the

primary tones is rarely perfect, but in compliant subjects it does result in substantial can-

cellation off1 andf2. The DPOAE data acquisition paradigm is summarized as follows:
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Figure 3.1: Top:f1 phases recorded in the ear canal of one subject as a function of ac-
quisition number. The initial phase is -0.90 radians. Note that the phase increments by
π/4 radians. Bottom:f2 phases recorded in the ear canal of one subject as a function of
acquisition number. The initial phase is -0.94 radians. Note that the phase increments by
π/2 radians.

• Each acquisition was 200 msec in length. The sampling rate was fixed at 20 kHz.

For each acquisition 4000 data points were acquired. This resulted in a frequency

resolution of 5 Hz. Eighty 200 msec acquisitions were obtained for each(f1, f2)

pair.

• The phase off1 was rotatedπ/4 radians and the phase off2 was rotatedπ/2 radians

for each acquisition.

• f1 was presented for the entire 200 msec acquisition, whilef2 was on from 25-150

msec.

3.1.3 Data Analysis-Phase-gradient and Impulse Response Methods

The resultingf1 andf2 sweeps were subjected to analysis with the appropriate phase-

gradient and impulse response methods. All the(f1, f2) pairs which elicited a significant
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CDP were used in the analysis. In fitting a linear regression model to the unwrapped phases,

a bisquare weighting function was used to avoid the sensitivity of the standard least squares

technique to outliers with large residuals. The sensitivity of the standard least squares

technique is illustrated in Figure 3.2 The estimated delaysobtained with the phase gradient
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Figure 3.2: Top left: Least squares linear fit to 3 kHzf2 sweep data. Note the final un-
wrapped phase measurement is an outlier. Top right: Robust linear fit using the bisquare
weighting function. This penalizes the large residual in the final phase measurement and
thereby excludes it from the linear fit. Bottom: The impulse response function estimate
(magnitude squared). The delay from the impulse response isin much better agreement
with the robust fit.

and impulse response methods were in good agreement. This isillustrated in Figure 3.3 The

linear fit is seen to be quite strong with the exception of a fewoutliers. Upon inspection,

it was clear that the outliers were the result of the phase gradient estimates. Even with

robust regression methods, there were cases in which a regression model could not be fit
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Figure 3.3: Impulse response delays vs phase gradient method delays for all subjects all
sweeps. The correlation is quite strong except for a few outliers, which are errors in the
phase gradient method.

to the data rendering the phase gradient method unusable. Insubsequent data analysis, the

impulse response method delays will be used exclusively.

3.1.4 Zero-phase Filtering with Changepoint Estimation

Prior to changepoint estimation all time series were convolved with an equiripple FIR

filter to improve the SNR. The time series were convolved withthe filter, the output re-

versed, and run through the filter again to remove phase effects. The filters were constructed

so that the CDP frequency was centered in a 600-Hz passband. The stopbands were an ad-

ditonal 400 Hz below and above the respective passband edges. The transfer function of the

filter was purposely designed to be very conservative in order to avoid artifactual ringing

that could be detected as a spurious changepoint in the spectral distribution. After filtering
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each time series was checked for the presence of spectral artifacts at the CDP frequency by

taking the DFT of the 1st 500 points of the series. Sincef2 was presented beginning at 25

msec, only artifact could account for the presence of the CDPin the 1st 500 points. In those

cases wheref1 was not perfectly cancelled and was within 300 Hz of the CDP, an IIR notch

filter was first used to removef1 to prevent artifactual results in the changepoint analysis.

The removal off1 when necessary was also accomplished with zero-phase filtering.

Changepoint estimation was performed on empirical spectral distribution function as

outlined in (Lavielle, 1999). A conservativeα-level test of10−5 was used. This is the level

recommended in Lavielle(2005) because the method is tryingto simultaneously estimate

all the changepoints in the process. In order to obtain the relative delay of the CDP, anf2

time series was obtained by averaging every 4-th acquisition of the same data matrix. This

series was used to obtained an absolutef2 delay (recall thatf2 was turned on at 25 msec

and reached its maximum amplitude at 27.25 msec). No filtering was necessary in these

time series due the magnitude off2. The absolutef2 delay was then subtracted from the

absolute CDP delay to obtain the relative CDP delay.

Unlike the phase-gradient and impulse response methods, the changepoint technique

can be applied to every primary tone ratio yielding in principleN different delays where

N is the number of(f1, f2) pairs. A larger SNR will yield a more accurate estimate of

the changepoint. Accordingly, a weighted average of the changepoint delay was computed

by multiplying each delay by the ratio of its local SNR to the total SNR and summing the

result.
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Figure 3.4: Boxplots off1 sweep data by frequency (impulse response method). There isa
significant decrease in delay as a function of frequency.

3.2 Results

3.2.1 Impulse Response Method Results

The delay times obtained in thef1 andf2 sweep paradigms in this study were in good

agreement with those reported previously (Kimberley et al., 1993; Mahoney & Kemp,

1995; Stover, Neely, & Gorga, 1996). In particular, a repeated measures ANOVA showed

a significant decrease in both thef1 andf2 sweep times as a function of frequency. This is

shown for thef1 sweep data with 2,3, and 4 kHz in Figure 3.4.

Both f2 sweeps resulted in significantly larger estimated group delays than theirf1

sweep counterparts. Figure 3.5 shows the delay times by frequency and sweep method.
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Figure 3.5: Top:f1 sweep times as a function of frequency. Bottom:f2 sweep times as a
function of frequency.

Recall in chapter 2, a relationship was derived between thef1 andf2 sweep delays

based on the scale invariance property of the cochlea and a wave-fixed assumption. The

proposed relationship was given by

D2 = 2
ω1

ω2
D1

For the ratios ofω1/ω2 used in this study, the minimum value of this factor is 1/1.3 and the

maximum is given by 1/1.1. In Figure 3.6, a scatterplot off1 vs. f2 sweep times for the 2

and 3 kHzf1 andf2 sweeps is presented along with two lines indicating the minimum and

maximum slopes of the proposed relationship given above.
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linear relationship between thef1 andf2 sweep times (2 and 3 kHz) with the maximum
slope, while the dashed line indicates the minimum slope.

3.2.2 Changepoint Estimation Results

Empirically a local SNR of at least 28 dB was required for the detection of the CDP

delay as a changepoint. This resulted in a failure to producechangepoint delay estimates

in a few subjects, particularly in thef2 sweeps (recall the conservativeα = 10−5) in one

or more of the sweep methods. For another subset of subjects,the local SNRs were high

enough that significant changepoints were recorded at virtually every(f1, f2) pair in several

of the sweeps. In Figure 3.7, we present an averaged DPOAE time series and its filtered

counterpart with the significant changepoint (in absolute time) indicated

Similar to the impulse response (phase gradient) method, there was a significant de-

crease in delay as a function of frequency for the changepoint method. These results are
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Figure 3.7: Top left: averaged DPOAE time series. Top right:The same time series shown
in the top right panel zoomed in on the 1st 50 msec. Bottom left: The filtered time se-
ries. Bottom right: The filtered series zoomed in on the 1st 50msec with the changepoint
indicated.

presented in Figure 3.8. The reader is invited to compare these results with those presented

in Figures 3.4 and 3.5.
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Figure 3.8:f1 sweep delays for the changepoint method as a function of frequency.
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Finally, thef1 andf2 sweeps were compared with the changepoint method. While there

was a significant difference between thef1 andf2 sweep times for the impulse response

method, the different sweep paradigms failed to show any significant difference with the

changepoint method as illustrated in Figure 3.9
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Figure 3.9:f1 andf2 sweep delays for the changepoint method (2 and 3 kHz).

In summary, both the impulse response (phase gradient) and changepoint methods show

significant decreases in delay as a function of frequency. Thef2 sweep delays were signif-

icantly longer than thef1 sweep delays with the impulse response method, while there was

no significant difference between the sweep methods with thechangepoint technique.
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CHAPTER 4

DISCUSSION

In this study, a novel technique for the delay estimation of DPOAEs was presented. The

method relied on a pulsed-primary paradigm with phase rotation to reduce the significant

contribution of the nuisance frequencies,f1 andf2. A penalized contrast method was then

used to estimate the onset of the DPOAE as a change in the spectral distribution in a local

frequency neighborhood. Additionally, a complementary approach to Tubis et al.(2000)

was presented which predicted under a wave-fixed hypothesisthat thef1 delay estimated

with the phase gradient method should be approximately twice thef2 sweep delay. This

has been reported in previous studies and was shown to be in good agreement with the de-

lays observed in these data. Further, significant decreasesin estimated delay were found in

thef1 andf2 sweeps as the frequency increased. This also is in good agreement with pre-

vious work. The average changepoint delays also decreased significantly as the frequency

increased from 2 to 4 kHz for thef1 sweep and 2 to 3 kHz for thef2 sweep. Unlike with

phase gradient and impulse response methods, there was no significant difference between

thef1 andf2 sweep delays estimated with the changepoint method.

Purely based on physical reasoning, there is no way that the infintesimal movement

in the generator region could account for a doubling in the delay. For this reason, others

have cautioned against interpreting the phase gradient results (and hence impulse response
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methods results as well) as true delays (Tubis, Talmadge, Tong, & Dhar, 2000). The ques-

tion arises if any of the current methods yield results whichare close to the true delay. In

other words, should more faith be placed in thef1 sweep orf2 sweep delays. The delays

measured with the changepoint method more closely resembled f2 sweep delays. How-

ever, it is unclear how the conservativeα-level used in the changepoint method may have

affected the results. Recall that since the penalized contrast method attempts to estimate

all the changepoints in the data, Lavielle (2005) recommends a very small rejection region

in order to eliminate false positives. It could be argued that in this application, there is

substantiala priori information about the changepoints, which may permit a lessstringent

α level without the risk of false alarms. Relaxing theα level, would presumably not affect

the hypothesis that the differences between thef1 andf2 sweeps is an artifact of the phase

gradient and impulse response methods, but it could very well affect which delay appeared

to be more accurate. Finally, it should be noted that visual inspection of high-SNR wave-

forms show the DPOAE beginning a few cycles before the estimated changepoint, but still

in much better agreement with thef2 sweep delays.

There are several cautionary notes. First and foremost, thesample size and frequencies

used in this study were extremely limited. Frequencies lower than 2 kHz were not included

because of the high noise environment and highly nonwhite background. Additionally,

the CDP is further away in frequency space as the frequency increases, which permits

better phase cancellation (and or filtering) off1. Still, the data acquisition error can be

rectified and the 4 kHzf2 sweep included in future work. It is also plausible to include

5 kHz and perhaps 6 kHz in future work. While these data provide limited support for

the hypotheses that the delay differences between thef1 andf2 sweeps is artifactual and

the delay time of the DPOAE is underestimated by thef1 sweep method, further study
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is needed. Further study is planned to build on these results. The filtering method used

in this study may not be optimal and there is certainly additional work to be done in that

regard. The measurement paradigm also should be given more consideration. Currently,

there is more data collected in thef1 sweep paradigm than in thef2 sweep. This was

done to replicate previous work, but in the changepoint method it was detrimental to the

calculation of an average delay. With fewer measurements, it was less probable that enough

CDPs would be elicited to produce an average delay estimate with reasonable variance.

Finally, the flexibility of the changepoint method was not exploited to its fullest extent. For

example, questions surrounding the validity of the second source model were not addressed

in this study. Putative interference within the time seriesor an asymmetry between DPOAE

onset and offset are questions which may be amenable to this type of changepoint analysis.

If the time between the end off2 and the offset of the CDP is found to be significantly

longer, than the time between the onset off2 and the CDP onset, that may provide evidence

for a longer latency source.

In spite of its limitations, the study has resulted in some intriguing findings. It has

provided several testable hypotheses to guide future work.Further, it has provided some

theoretical basis for the observed differences in thef1 andf2 phase gradients. Finally, it has

provided a methodological framework for DPOAE delay estimates which are more readily

interpretable as true delays than the current methods.
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