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ABSTRACT

Distortion product otoacoustic emission (DPOAE) delayneation has important im-
plications for models of emission generation and cochlesotranics. However, the DPOAE
signal environment makes the accurate estimation of DPQ#seta difficult task. To date,
two Fourier domain methods have been used exclusivefy end f, sweep methods for
DPOAE delay estimation. However, these sweep methodsrdtdfa serious limitations.
Additionlly, the two different sweep methods result in kardifferences in the estimated
DPOAE delay, which are incompatible with the physical fgaliln this study, a novel
technique is employed for DPOAE latency estimation basedesn-phase filtering and
penalized contrast changepoint estimation. This methedhmadvantage that it can be
applied to a DPOAE time series evoked with a single f») primary tone pair. The results
are compared in the same human subjects against the tredifourier methods. The
changepoint method provides support for the notion thatlifierence between thg and

f2 sweeps is artifactual and that tiigesweep times may be closer to the true delay.
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CHAPTER 1

INTRODUCTION

Otoacoustic emissions (OAES) are retrograde pressureswavbe ear canal originat-
ing from the cochlea and generated by a physiologically endhle mechanism (Kemp,
1978). The most common taxonomy for evoked OAEs is basedeonature of the stimu-
lus. Transient evoked otoacoustic emissions (TEOAES)lariéeel by clicks (80-10Qusec
in duration) and tone pips (2-4 msec). Stimulus frequencdgsions (SFOAES) are evoked
by a continuous tonal stimulus at a single angular frequency

The third type of evoked OAE and the focus of this project aséottion product otoa-
coustic emissions (DPOAES). DPOAEs are evoked by a supégogf sinusoidal stimuli.

In the majority of experimental and clinical conditionspttones are presented to the ear. If
the two evoking tones are denotedfasnd f, (also known as the primaries) with < fs,
the DPOAEs will take the formn f; + nf, wherem,n € Z. Since the exact form of the
cochlear nonlinearity is unknown, it is not possible to pcedhich intermodulation dis-
tortion products are generated. Among those observed irmahswith varying regularity
are: fo— f1,2f1— f2, 3f1—2f5, and2 f, — f1 (Moulin & Kemp, 1996). The so-called cubic
distortion product (CDP) with frequen@yf; — f, is by far the most robust and therefore

most clinically significant.



Numerous studies have shown that the amplitude of the CD&psratlent on the over-
all and relative levels of the evoking stimuli as well as tHegquency ratio [,/ f1) (Har-
ris, Lonsbury-Martin, Stagner, Coats, & Martin, 1989; Glsk Brown, 1990; Kummer,
Janssen, Hulin, & Arnold, 2000). If one allovis to denote the sound pressure level (SPL)
of f; and L, to denote the SPL ofs, then for L, from 20 to 65 dB SPL, the empirically
optimum /L, is well approximated by the affine equatién = 0.4L, + 42 (Kummer et al.,
2000). ForL, = 55 dB SPL, this implies that settinfy; = 64 dB SPL will result in the
maximum amplitude CDP. A large-scale study of normal andaiingal listeners found that
overall primary levels of.; = 65 andL, = 55 dB SPL produced the greatest separation
in the CDP amplitude distributions of normal and impairets€&tover, Gorga, Neely, &
Montoya, 1996). Reducing the overall primary tone leveliled in a large number of
normal ears resembling impaired ears, while increasindeteds caused a large number
of impaired ears to more closely resemble normal ears. Eyrthhas been demonstrated
in human ears that varying,/ f; over a range of1.1, 1.3] will result in an approximately
guadratic power function with the maximum amplitude CDPwdag near 1.22 (Harris et
al., 1989; Gaskill & Brown, 1990; Fahey, Stagner, & Marti®0B). Based on these find-
ings primary tone levels of 65-55 and a primary tone ratio.@2have become the clinical

defaults for DPOAE testing.

1.1 OAE Sources

There is broad consensus that normally-functioning oudérdells (OHCs) are a nec-
essary condition for the generation of OAEs, while the madms by which the emis-
sions are produced and escape the cochlea remain poorlystoai (Brown, McDowell,

& Forge, 1989; Jaramillo, Markin, & Hudspeth, 1993; Camalatke, Julicher, & Prost,



2000; Shera, 2004). Perhaps surprisingly, there is ho osnseon how outer hair cells
actually feed energy into the traveling wave to produce thessions. The electromotil-
ity of the OHC lateral cell membrane has been demonstratedirtingly, but it is not
clear that this electromotility is sufficient to produce thechanical energy responsible for
OAEs. In animals with no OHC motility, OAEs are most likelyopluced by nonlinearities
in the OHC stereociliary bundle movements (Crawford & fpddite, 1985). OHC stere-
ocilia have demonstrated a threshold displacement in theldezing direction. When this
threshold is reached, an active process within the bundidyzes a force, which causes
nonlinear behavior in the displacement. There is incrggsiidence that this process also
contributes to mammalian OAEs (Oghalai, 2004; Ruggero4200

In order for OAES to be effective noninvasive probes of ceahfunction, it is critical
that their generation mechanisms be fully understood. timfately, there are still consid-
erable challenges in describing the biophysics of the @achk a prerequisite for under-
standing emissions. Models of wave motion are often higihdalized proceeding from a
reduced two-chamber cochlear model with the scala vestibparated from the scala tym-
pani by the basilar membrane. Clearly, this model ignorés Beissner's membrane and
the organ of Corti. While the thickness and homogeneity aé&teer's membrane arguably
warrant its exclusion in a simplified cochlear model, thera complex mechanical inter-
action of elements in the organ of Corti, which cannot be igdavithout compromising
the ultimate utility of the model. However, incorporatirigetorgan of Corti into exisiting
cochlear models is a formidibable task.

Ignoring the cellular biomechanical detail, the extanbtiyeof evoked OAEs describes

two general generator mechanisms. One mechanism is thmmeantlistortion generated



when two or more traveling waves interact. This is refergedd the “wave-fixed” or “dis-
tortion” type emission (Knight & Kemp, 2001; Shera, 2004heTwave-fixed mechanism
describes OAE generation as being a property of the trayelaves, specifically the max-
imal traveling wave interaction of, and f, near thef, place. The potentially confusing
part of that statement is the reference to fhelace. Thef; place is important only in that
it provides a spatial description of where the wave intéoadiakes place. The wave-fixed
mechanism is an inherent part of the traveling wave intema@ghdependent of the position
along the basilar membrane where it occurs. The 2nd type @fséon is thought to arise
from impedance perturbations along the cochlea that peodoattering in response to the
traveling wave. This is referred to as “place-fixed” or “reflen” type emissions (Zweig &
Shera, 1995; Knight & Kemp, 2001; Shera, 2004). It is notkenthe scattering that occurs
when a pulse traveling down a rope encounters structurahiggeneities, e.g. changes in
density. A major line of research in evoked OAEs is concemghd determining whether
the stimulus-based taxonomy reflects differences in how ©&#€ generated and whether
these emissions break down along the lines of distortioefteation types (Shera, 2004).
Currently there is no consensus on this point. Some growssdrgued that SFOAEs and
TEOAESs have a common generation mechanism (reflection ,tyggle DPOAES are in
part distinct from the other two (distortion and reflectigpe) (Shera & Guinan, 1999;
Shera, 2004). Others have proposed that all emissionsin@itaixture of emission types
(sources) with the dominant contributions depending omgha in the parameters used to
evoke them (Yates & Whitnell, 1999; Knight & Kemp, 2001; Goaah, Withnell, & Shera,
2003). In TEOAESs for example, the spectrum of the short domadtimulus has significant

energy spread over a wide frequency range. An argument camabde that the traveling



waves generated by the stimulus participate in wave-fixge ityteractions over a spatially-
distributed region of the cochlea generating a number abdien product emissions with
considerable spectral extent (Yates & Whitnell, 1999).

For DPOAEs the dominant view until the early 1990s was thatlinear distortion
(wave-fixed) near the higher frequency primary was the solece (Kemp, 1978; Kemp
& Brown, 1983; Allen & Neely, 1992). The view that all distamb products are gener-
ated near theg;, place makes specific predictions concerning DPOAE phase.staling
symmetry of the cochlea predicts that the phase of the eonisgill be approximately
independent of frequency for a fixeld/ f; if the source is located near the peak of the
traveling wave (Zweig & Shera, 1995; Shera & Guinan, 1999)sTs due to the fact that
the number of wavelengths a traveling wave completes be&aehing its characteristic
place is approximately frequency independent. Supporthisrscaling symmetry in the
basilar membrane mechanics of healthy animals dates frematly 1970s (Rhode, 1971).
Accordingly, the emission phase will be nearly identicglaelless of whether it was gen-
erated with a relatively low or high frequency stimulus. B&*OAEs evoked with a fixed
f2/ f1 of &~ 1.22 this is a good approximation. Studies have shown that fixmegratio of
the primary tones and sweeping them over a nearly three ectange results in less than
a r radian shift in the phase of the emission as measured viargiuenant of its discrete

Fourier transform (DFT) coefficient (Shera & Guinan, 1999jdht & Kemp, 2001).
1.1.1 The DPOAE Two-source Model

While DPOAE phase behavior is nearly constant for a fixed anjntone ratio of 1.22,
the same cannot be said of DPOAE magnitude when measured @aerfrequency scale,

e.g. 1/32 of an octave (He & Schmiedt, 1993). In these experiments DP@Awer



is shown to fluctuate in a quasi-periodic manner as a funafdnequency with relative
minima and maxima over ranges of 10-20 dB SPL. This phenomisrmmmonly referred

to asDPOAE fine structure The intrigue of DPOAE fine structure was deepened by the
discovery that these power fluctuations can be virtualipilated by the introduction of a
low-level suppressor tone near thg — f> frequency. This motivated the hypothesis that
there is a 2nd DPOAE source at the characteristic place aflitertion product, which
for 2f; — f5 is apical to both primary tones (Heitmann, Waldman, ScheritPlinkert, &
Zenner, 1998).

In the so-calledwo-source modethe nonlinear interaction of; and f, near thef;
place generates both basally and apically propagatingsvai/ke apically moving wave
proceeds to its characteristic place where it generate ©ABFwhich then reflects basally
(Talmadge, Long, Tubis, & Dhar, 1999). The CDP recorded endhr canal is thought
to be a mixture of one distortion product and one reflectiomssion. Phase differences
in the two sources cause frequency-dependent interfepatterns in the ear canal, which
produce the fine structure.

As soon as the two-source model was proposed, reports editbageuestioned whether
the source profile of DPOAESs was even more complicated. Famele, experiments in
rodents have provided support for the contribution of ceahloci basal to th¢, charac-
teristic place in the generation of DPOAEs (Matrtin, Stagdassir, Telischi, & Lonsbury-
Martin, 1999). Further, there is some evidence that onlysithwalledlower sideband
distortion products with frequencies lower thgncan be meaningful discussed in terms
of wave-fixed and place-fixed contributions (Prijs, Scheeid& Schoonhoven, 2000). In
any event, the ability to “unmix” the CDP has obvious thelgadtand clinical implications.

The direct clinical implication stems from the fact that therent hypothesis test for the



presence or absence of the CDP is used to infer cochleas sifattef, place (Mills, 1997;
Kalluri & Shera, 2001). It may be that the conditions undeichiDPOAES are acquired
clinically (f2/fi ~ 1.22, 65-55 dB SPL primaries) make the traveling wave interactio
mechanism (wave-fixed) dominant (Knight & Kemp, 2000). iktls demonstrated to be
the case, then thg place inference is supported and there may be little climead for
added complexity such as the introduction of a suppressex. im terms of the theoretical
implication, if DPOAEs are to expand their clinical utilityeyond the current “normal-

abnormal” hypothesis test, a detailed knowledge of thelegation mechanisms is critical.
1.2 DPOAE Delay Estimation

Motivated largely by the question of source localizatidrere has been considerable
interest over the past decade in the temporal behavior o€ (Kimberley, Brown, &
Eggermont, 1993; Stover, Neely, & Gorga, 1996; Whitehetajiger, Martin, & Lonsbury-
Martin, 1996; Tubis, Talmadge, & Tong, 2000). Typical ofiai measurements employ a
Fourier transform of the ear canal pressure recordings lzaw etain only the estimated
squared magnitudes of the Fourier coefficients. Both otlogerations obscure the ability
to discern the temporal evolution of the CDP. The ability taraine the temporal behav-
ior of the CDP has important implications for source locai@n questions since sources
from disparate regions in the cochlea would be expectedue tidferent latencies. Tech-
niques that measure the temporal behavior of the CDP wola ais to visualize how the
contributions of these putative sources varied as acguigiarameters and cochlear status
differed.

To date, two Fourier-domain methods have been used to gstihelatency of DPOAEsS,

thephase gradientKimberley et al., 1993; Mahoney & Kemp, 1995; Prijs et a00Q) and



the IFFT method (or impulse response method) (Stover, Neely, & Gadr§a6; Konrad-
Martin et al., 2002). The phase gradient method is an appraton to the group delay,
while the IFFT method approximates an impulse responséhtocochlear “filter”. Both
methods constitute clever attempts to estimate DPOAE detéywever, they still suf-
fer from limitations that affect their interpretation asdrphysical delays of the DPOAE.
These limitations are exposed most clearly in the largeejmncy between delay estimates
obtained with different paradigmatic implementationd&f phase gradient and impulse re-
sponse methods (Mahoney & Kemp, 1995; Stover, Neely, & Gdr§86).

The problem of estimating the temporal behavior of the DP@\& problem of joint
time-frequency analysis. Unfortunately, DPOAE time sepese significant problems for
time-frequency analysis. The evoking tones are typicdllgast 50 dB above the CDP and
are recorded simultaneously thereby obscuring any distoproduct visualization in the
time domain. The phase gradient and impulse response nsetinedorn out of a recog-
nition of these challenges but produce results which areomipletely reconcilable with
the goal of estimating the DPOAE delay. It is the purpose i $tudy to examine these
problems from a novel perspective. First, we derive an esgioa for phase derivatives
approximated by the phase gradient method. This analysis aisvave-fixed assumption
(f> place generation site) and invokes the scaling symmetryeapdnential frequency
map of the cochlea to explain the discrepancies seen in thently utilized delay estima-
tion protocols. Secondly, a paradigmatic modification ofOME data collection is used
in conjunction with time domain filtering and spectral chepgint estimation (Lavielle,
2005) to obtain DPOAE time delays. The changepoint delaynasts are then compared

phase-gradient and impulse-reponse delays in normaidgganman subjects.



The plan of this report is as follows. In the next chapter, sq@reliminary background

on relevant time-frequency concepts and random procesgaesented. Additionally, a
detailed explanation of the phase-gradient and impulg®rese methods and the associated
f1 and f> sweep paradigms is given. The group delay of the CDP undewdve-fixed
hypothesis and standard cochlear assumptions is derivethapter 3, the data acquisition
methods including the pulsed primary and primary phaseioot@aradigm used in human
DPOAE data collection are described. Subsequently, DP@AHIts from human subjects
are presented. The final chapter contains the discussidwe dirndings and prospectus for

further work.



CHAPTER 2

DPOAE DELAY ESTIMATION-MATHEMATICAL AND
ALGORITHMIC FOUNDATIONS

The description of a signal jointly in time and frequencytiore and scale is a problem
encountered in a wide variety of disciplines. Changingdestries is a ubiquitous part of
our sensory experience. Both our auditory and visual systmna tuned to notice change
and often ignore steady state conditions. This properth@hiervous system has an obvi-
ous evolutionary basis. For prey and predator alike, itésdatection of change which is
critical to survival. Yet in spite of the basic role that clgarg frequencies play in our au-
ditory and visual experience, time-frequency notions sagihstantaneous frequenand
group delayare not easy to define mathematically and often even moreudiffo estimate

in practice (Boashash, 1992).

2.1 The Hilbert SpaceL*(R)

The most useful space for the analysis of signals is the splasguare-integrable (in
the Lebesque sense) complex-valued functions defined aedhaumbers?(R). In the
discussions to follow a bar over a function or scalar dentitescomplex conjugate. In

physical terms[?(R) is the space of signals with finite energy. For a functigi), to be

10



an element of the space we require

/ " gt < o0

[e.e]

In other words if we take the absolute value squared of thetifoimand “sum” those values
over the extended real line, a real number must be obtairteeteTare innumerable physical
situations in which the absolute square of a signal is a kagideration making this signal
space a natural one to consider. In electromagnetics, iedi&ienergy imparted to a charge
placed in a field is proportional to the square of the field. dargl, the energy density is
proportional to the pressure squared. In circuits, the pasvproportional to the voltage
squared.

Let us define the real-valued scalar corresponding to theesintegral as the squared
normof g(t), which we denote ag(t)||>. Clearly when the norm||(¢)]]) is finite, g(¢)

can be normalized as

Note in this case

> g(t) 2
/_oo'||g<t>||' .
! / ()t

@O J e
=1

There are instances mathematically when it is convenidmte a unit norm. Additionally,
it permits us to draw an analogy between the energy densiysignal and a probability
density function, which we shall do for the calculation ofmments.

It is often advantageous to represent elements of our sgegigrals as a superposi-
tion of basic building blocks. There are an infinite numbechbices of these building

11



blocks. An important consideration is whether a partictggresentation of the signal will
yield any useful insight. Certainly, one of the most useégresentations for elements of
L?(R) is the Fourier transform, which uses complex exponenti&té, as the “atomic”
elements. It can be shown that an arbitrary elemgt}, of L?(R) admits the following

representation where equality is in the mean-square sense.

—zwt’dt zwtd
o= [ (g [ ot et

if we define

A

1 > —iwt
o) = = / (e

we have

o) = o= [ allea
and thereforej(w) gives us the contribution tg(¢) from the angular frequency. We
emphasize that, in generglw) is complex-valued and therefore contains both amplitude
and phase information since it can be written in the polamfgj(w)|e™“) wherev(w)

denotes the argument. Note thay{t) is a real-valued signal then

g(w) = E/ (t)e—wtdt
¢—_ Yot dt
R i)t
r/ &
= g(~w)

Therefore for real-valued(t) the Fourier transform exhibits conjugate symmetry, i.e. th

Fourier transform at negative angular frequencies is timepdex conjugate of the Fourier

12



transform at the corresponding positive angular frequesndt also follows from the above
that|g(w)|? is an even function af.

The energy contained in a signal should not depend on the waghaose to represent
it. Representations that preserve the norm of a signal areftire quite useful. The Fourier
transform has this property, namely thit(t)||* = ||g(w)||>. In integral form this means

that
/OO |g(t)[*dt = /_OO |§(w)[Pdw

—00 [e.9]

If we view the nonegative real-valugd(w)|* as a density, thefij(w)|*dw represents the
fractional energy ofi(¢) contained in a small frequency interval just a&)|*dt represents
the fractional energy contained in a small time intervastdinds to reason that we can then

define the average frequency in the usual way that averageketined, i.e.

o = / wlg(w)|2dw

[e.e]

Similarly, the average duration of a signal can be defined as

e — / tgt(t)|2dt

[e.9]

Additionally, just as variance is defined as the 2nd centahent (about:), the bandwidth

of a signal can be defined as

- [ " (= p13(w) P

[e.e]

and the variance of a signal in time can be similarly defined as

- [ "t ) lg(t)Pdt

[e.9]

From the above it seems that we need to know the Fourier trangff a function in order to
compute the average frequency and bandwidth. Likewisegitns intuitive that we cannot

13



compute the first moment of a signal in time solely by knowkedgits Fourier transform.
Suprisingly and conveniently, this is not the case. Thegewsay to calculate the average
frequency simply from knowledge of the time signal and ite\@give. This is done via the

use of a frequencgperator(Cohen, 1995). If we define the frequency operator as

Wo(t) =+ 2g(0)

then the average frequency can be obtained as

[ = / N g(t)Wg(t)dt

— o0

The proof is as follows

o = / wl3(w) P

/ . m / Jedt)(—= F tlg(t/)ei“’t’dt’)dw

——/// wg(tg(t)e“ D dt dtdw
T JoJt Jy
w(t'—t)

/// (t)g =0 4t dt dw

note —— @t — j el
e~ Wt du)di' dt

ot

_1 / / g(t’)g(t)g(ﬁ o

Z// ) —5t—t)dtdt
:1/ e )at, /g(t)é( — )t

| et

~.

Q.| =
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To illustrate the utility of this result consider the follovg amplitude and frequency

modulated signal

g(t) = (%)1/4e—at2/2+i(wot+6t2/2)

with @ > 0. The amplitude is modulated in an exponentially decayingmea bye /2
while the phase is quadratically modulated. The averaggiéecy is seen to he,. How-
ever, to prove this result by using the Fourier transfornoisatrivial task. Fortunately, the
frequency operator provides a much easier way to findTo show that we can compute

this without knowing the Fourier transform recognize thate seta = # then

ge—m‘?
s

is the form of a Gaussian probability density function witkan zero. Next we note that

1d ,
Wy(t) = - —9(t) = \/g(mt + Bt + wp)e ot/ HilwotBE/2)

Therefore

/ GEET)

—00 ?

dt
= / \/E (it + Bt + wo)e " dt
o VT
= / wo\/ge_“ﬂdt = wy
o T

since the the integral does not depend.gnit may be pulled outside the integral sign. We
then recognize the integral as a Gaussian probability tefusiction which integrates to
one.

The first moment of the signal in time can be computed solelkrywledge of its

Fourier transform in an analogous manner through the udeedfrhe operator

Tow) = L)

7 dw

15



with

p= [ FTg
The proof is similar to the one for the frequency operatorteNbat if we write the Fourier

transform of a signal in polar form as

§w) = g(w)[e™

wherey(w) is the spectral phase then

From the above we see that the first moment of a signal in timebeaobtained by inte-
grating the negative of the first derivative of the specthalge against the energy density in
frequency. In this way-¢’(w) can be interpreted as the instant of appearance of a specific
frequencyw. This is termed thgroup delay If we takew to be the angular frequency of

a DPOAE then-¢’(w) is the instant that the DPOAE appears in the time signal. Hye k
question then becomes how do we estimaté(w). In DPOAE data this is done by the

use of phase gradients.

2.2 Estimating—1’(w) in DPOAE Data—Phase Gradients

A number of investigators have attempted to use the phagan(ent of the Fourier
coefficient) as an estimate of DPOAE delay (Kimberley et H093; Whitehead et al.,
1996; Bowman, Eggermont, Brown, & Kimberley, 1998). Oneh& most common ways
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to estimate the delay (latency) of DPOAEs is a paradigm inctvlane of the primary
frequencies is fixed and the other is swept in frequency (leirely et al., 1993; Mahoney
& Kemp, 1995; Prijs et al., 2000). These are referred tplasse gradienmethods and
have been widely used both to estimate cochlear traveling wialay (Kimberley et al.,
1993; Mahoney & Kemp, 1995; Prijs et al., 2000) and to provltkoretical models for
DPOAE generation (Tubis, Talmadge, & Tong, 2000; Tubismialge, Tong, & Dhar,
2000). In anf; sweep paradigmf, is fixed while f; is swept in frequency. As in all
swept frequency paradigms, tlig;, f2) frequency pairs are constrained to vary over a
range of ratios fromr [1.1, 1.3]. Outside of this range, it is difficult to obtain distortion
products even in normal-hearing listeners with large CDPldaudes under typical testing

conditions. Thef; sweep method is implemented as follows.
2.2.1 f; Sweep Method

Fix f, at an arbitrary frequency (e.g. 2 kHz) whifeis swept in some small frequency
step (e.g. 25 Hz) froms 1540 to ~ 1820. This would result in 12 f;, f>) pairs of the

form:
(1540,2000) (1565,2000) (1590, 2000)...(1665,2000)...(1815,2000)

Obviously with each of these pairs a different CDP is elitit@ust as the pairs are given
in order of increasing; frequency, the CDP will increase in frequency fraf®0 to 1630.
Note that with a fixedf; if f; is moved in 25-Hz increments, the CDP will move2ify or

50 Hz increments. The algorithm is implemented as follows.

1. Data is acquired at eaglf;, f>) pair. This will require a requisite amount of time

domain averaging in order to elicit a detectable CDP if at all
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Figure 2.1: Top: Raw phases for subjects M1 and F1 as a funofi€DP frequency for
the 3 kHzf; sweep used in this study. Bottom: Unwrapped phases for tite i the top
panels. The delays are estimate as the slope of the leasesduear fit.

2. The datais Fourier transformed and the Fourier coefti¢g@mplex-valued) for each

significant CDP is retained in a vector.

3. The phase is unwrapped, i.e. phase changes exceethdians are replaced by their

2m complement and a simple first order linear regression mddakedorm

¢cpp = Bo + Bifepp + €cpp

is fit wheregqpp represents the unwrapped DP phake; » the CDP frequency (in
Hz) andeqpp represents the error term. The negative of the slope of #st $gjuares
fit (scaled byl /27 if Hz are used) is used as the estimate of the group delayglréi

2.1, f1 sweep data is shown for a fixgd of 3 kHz for two subjects.
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Recall that using the time operator, it was shown that thatingof the derivative of
the spectral phase has the interpretation as the instamt a/frequency appears.

There are three chief problems with the phase-gradientadeffirst, the sweep paradigm
acquires a number of phase measurements at different freigseall the f1, f>) pairs, and
estimates the derivative as the best linear fit to the unve@dpbhases. As a result, data ac-
quisition must always involve a number(gf;, f>) pairs. This requires both excess time and
renders the overall delay estimate sensitive to the behaf/jast one or twq f;, f2) pairs.
Next, the derivative is assumed to be constant requiringtbep delay to be the same at
each of the CDP frequencies. Note that there is nothing irdéfimition of group delay
that requires the derivative to be constant. In princigies ts a severe constraint. Phase
gradient methods are only able to arrive one delay estimatether words, if the two-
source model described in the introduction is accuratepki@se gradient method would
have no way to unmix the sources. Both wave-fixed and plaeg-f@emissions would be
measured as a single phase contribution at the CDP freqeeenia the argument of the
Fourier coefficient. In fact, the phase gradient method iglicitly based on the distor-
tion model of DPOAESs. For example, in an odd order nonlirtgaai superposition of two
tones( f1, f2), results in a cubic distortion product (among others) withhase that de-
pends on the evoking tone phase via the relation&hip- 0, with 6; denoting the phase of
f1 andé, denoting the phase ¢%. Under the distortion model of OAE emission, the CDP
phase in a fixedf,-swept f; paradigm reflects the phase fifat the f, place. Recall that
the scaling symmetry of the cochlea results in a constargefua a fixedf,/ f,. However,
the f; sweep paradigm changes the relationship between the priome traveling wave
patterns by systematically movirfg and thereby changing the phase of the resulting CDP.

Finally, the linear regression model assumes equal vaiahihe error termspp. Given
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our knowledge of human DPOAESs evoked with different primianye ratios, this is not a

valid assumption.

2.2.2 fy Sweep Method

In the f, sweep method, thé¢, primary is fixed andf; is swept in a small frequency
step. Again, thé f,, f») ratios are constrained to fall in th& 1, 1.3] range in order to elicit
CDPs with a reasonable probability in normal-hearing pesstn the case of thg sweep,
the CDP frequency will move the same increment asfthstep because of it3f; — f>
dependence. The measurement paradigm proceeds exactgathdd for thef; sweep
method with the reversed roles of the primaries.

In may seem incompatible with th@ place hypothesis to attempt to measure DPOAE
delay with af, sweep paradigm. The key is to understand that jia aweep paradigm,
the higher frequency primary is only being moved a few huddie. Even if it could be
recorded with perfect accuracy, the difference in delayaf@DP emerging from say the
4300 Hz place on the cochlea as opposed to the 4000 Hz pladd weunfinitesimally
small.

In spite of biologic arguments for why thg sweep andf; sweep paradigms should
exhibit negligible differences, striking contrasts aretnoely observed between the two.
DPOAE delays recorded with thé sweep are approximately twice as long as those
recorded with thef; sweep method (Kimberley et al., 1993; Mahoney & Kemp, 1995;
Moulin & Kemp, 1996). It is important to consider how thes#eatiences arise. Based on
purely physical considerations, they must be artifactshefrheasurement process. This
guestion has been addressed in detail in a previous papemaapproximate relationship

between thef; and f, sweep methods derived (Tubis, Talmadge, Tong, & Dhar, 2000)
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the next section, a complementary analysis is presentécethehes substantively the same

conclusions reached by the authors of the earlier paper.
2.3 Model relating the f; sweep andf, sweep phase gradient estimates

In this model, the DPOAE spectral phaséw,,), is expressed as the sum of two com-
ponents, an anterograde compone%(xg, wap), Which depends on the phasesfofind f,

at the generator region and a retrograde compoge(n:g, wap) SO that

«—

V(W) = 6 (g wap) + 6 (2, wap)

In order to derive an expression for the derivative of thecgpé phase in terms of the
anterograde and retrograde components, the total diffaleare examined term by term.

The total differential of the anterograde componeﬁ)it(a(zdp)), is

— a—> ,
di (xg, wap) = dedp +
p

33@ W
ag dp) dl’g
Ly
Similarly, the total differential of the retrograde comjgo, @ (wWap)), is

— 0 ¢ (24, wap)

—
dip (24, wap) = dwg, + Mdz

Oway i Oz, 7

Next the explicit dependence of;, onw; andw, is worked into the model. Equating the

differentials the following relations are obtained

dedp = 2du)1

dwgy, = —dws

The total differential for the anterograde component iegitay

28¢ ($g7wl)dw1 09 ($97W2)dw2 n 9 ¢ (7, wap)

d
Owq Ows Oz g
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where the dependence of the phase-place derivative;phas been momentarily main-
tained on purpose. Note thaf, in the retrograde component is the emission phase and
therefore cannot be explained via a straightforward depecelon the primary tone phases.

The DPOAE group delay becomes

— — —
dp(wap) _20¢ (g, w1) dwy N 09 (xg,ws) dwy 0 ¢ (x4, wap) dy

dway Owq dway Ows dwp oz, dway
— —
_ (8¢ (g, wap) i 0 ¢ (x4, wap) dg )
Oway 0z, dwap

Now we return to the anterograde phase-place derivativengiy

85(1'9, Wap) dx,

Oz, dwap

again utilizing the relationship,, = 2w; —w» and noting thatlw,,/dw, = 2 anddw,,/dws =
—1, the above may be rewritten as

8E(a:g,wdp) dz, _ 285(%,@01) dry 0E(a:g,w2) dx,

Oz, dw gy, Oz dw gy, Oz, dw gy,

Using the above, the group delay may be rewritten as

— — — —
_ dy(wap) _ _2(0¢ (g, wr) dwy N 0¢ (rg,wr) dx, )+ <8¢ (xg,ws) dwy 0 ¢ (T4, ws) dx, )
dwg, Owy;  dwgy Ory  dwgy Owy  dwgy Oz,  dwgy
«— —
- (8¢ (g, wap) T 0 ¢ (x4, wap) dg )
Oway 0z, dwap

Note that for anf; sweepdw, = 0, while in an f, sweepdw; = 0. Further, the generator
region is assumed to be fixed at tfigplace and therefore can be written solely as a function
of fs, i.e. z,(w2). Accordingly, in anf; sweep paradigm

dz,

=0

dwdp
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while in an f, sweep paradigm this derivative is nonzero.

In simplifying the expression for group delay, we consigesweep first. In order to
subsequently distinguish the group delays obtained witarént sweep paradigms, &t
denote—dv /dwg, obtained with thef;, sweep and), denote the group delay observed with

the f, sweep. It follows thai); can be written as

0 (rgw) 00 (wa)

D, =
! 8w1 &udp

where we have used

dwl —1

dwdp

In order to analyzeD,, the group delay for th¢, sweep method, it is instructive to
invoke the scale-invariance of the cochlea, which resalta constant anterograde phase
for E(xi, w;) wherez; is the characteristic place for the frequengy Mathematically, this
is expressed as

whereK denotes a constant and therefore

dwi n &ui 833‘2 dwi

=0

It is well known that the rate of change of frequency with esxgo place in the cochlea
is proportional to frequency with the characteristic fregcies monotonically decreasing
from the base of the cochlea (near the oval window) to the .aphbis relationship can be

written as a differential equation where the independengakite isz, the spatial position

along the cochlea, and the dependent variahl€ ig.

d
ﬁ:—xw A> 0
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The above is an ordinary first order differential equatiohich can be solved as follows

dw

i

dx “

dw

% + )\w =

set  p(z) = el M = M
d

& e + AeMw =

dz

d

—(w(x)e*) =0

dx

/ %(w(m)e’\x)dm =C

where(' is a constant of integration. Returning to the expressionte derivative of the

anterograde phase of an arbitrary frequency at its chaistatglace, we obtain

5’3(%%) _ _az(xiawi) dx;

Ow,- N 01', dwi
06 (z,wi) 1
N 8@ )\wi
and therefore
00 (ri,w) . 09 (wi,w;)
8&)2‘ )\wl n 8@

In order to derive an expression fbk, recall the expression for group delay derived earlier

_ dp(wap) _ _2(83(%,001) duwr n 8?(:69,001) dx, N 8$(xg,w2) dws n 83(%,002) dx,
dwgy, Owr dwgy, Oz, dw gy, Ows dw gy, Oz dwgy,
_ <8¢ (x4, wap) X 0 ¢ (x4, wap) dg )
&udp 8xg dwdp
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In the wave-fixed model, the generation region of the CDP g toevary withw,. Accord-

ingly, we have

dry  dry dw,

dwdp n dw2 dwdp

substituting this into the expression for group delay, wiiwb

— —
_ d(wap) _ _2(8¢ (g, w1) dwy N 0 ¢ (xg,wr) dr, dws
dwgy, 0w dwg, 0z, dws dwgy,
dws, (ag(xgvu&) i ag(xgvu&) dzg _(82@970‘)@) n
dwgy, Owo Oz, dwo Owap
0 ¢ (T4, wap) dry dws

Oz, dws dwgy,

In order to simplfy the expression fdp,, the anterograde and retrograde components

are examined separately. First, the anterograde compoﬁgnban be written as

1_52 _ _2<8z($g>w1) dwy n 83(%@1) dzy dwsy
a(")1 dwdp ox g de dwdp
— —
dwy ,0 ¢ (14, ws) n 0 ¢ (x4, ws) dz,
dwgp”  Owsy Oz,  dws

The first term is seen to be zero becadse = 0 in an f, sweep. Further, due to the scale

invariance of the cochlea, the term

00 (wg,w0) | 90 (g, 00) do,

awZ 81]9 dw2
is recognized as the perfect differentialgf(xi,wi) = K and therefore is equal to zero.
Therefore, the anterograde componenbgfsimplifies to

0? (g, w1) dzy dws

Oz dws dwgy,

H
D2:—2

Converting the phase-place derivative above into a phasgrncy derivative, we obtain

dzg dwsy

a—)
32 — _9 ¢ (x97 wl))\wl

Ow1 dws dwgy,
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Given the differential equation describing the cochleacptrequency map and the rela-

tion wy = 2w; — wyy, the above can be rewritten as

-
— 0¢ (rg,wr), dx, dwy
Dy = -2 L hwy =2

2 Owr v dws dwgy,
— 83@ wi) 1

8_1> 2
Dy = Qﬂ(_igﬁ gcg’wl))
) W1

Next we write the retrograde component/of (T)Q) as

_ag(xgawdp) - 3?(@],0)@) dzy dws

D2 = Owap Oz dws dwgy,
00 (g wm) 00 (rgwn), 1
= ey Do, (Awap)( Aw2>< 1)
-
_ 2%(_0¢(axg,wdp))
2 Wdp

Combining the previous result fd?Q, we obtain

86 0%
Dy = 2%(— ¢(01L’g,w1) _ ¢ (axmwdp)
2 W1 Wdp

)

Recalling that
09 (xg,w1) 00 (34,wap)

D =
! 8w1 &udp
it follows that
Dy _ w1
D1 )

In the above it was shown that under a wave-fixed hypothesi®gpimvoking the scale
invariance of the cochlea, thg sweep delay is expected to exceed fheweep delay by
a factor of2w; /w,. Givenws /wy ratios in the intervall.1, 1.3] it follows that thef, sweep
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delay should bex 1.54 to 1.82 times thef; sweep delay. While theoretically the, /D,
ratio is a function of bothv; andw,, the phase gradient method produces only one group
delay estimate. An important question that remains to beesdéd for the phase gradient
methods is how the reductionist approach necessitatecelphifise gradient method affects

the estimates ob; and D, and accordingly the proposed relationship
D2 - 2ﬂD1
)

In the above, the group delay obtained with tfiesweep paradigm is predicted to be
approximately two times the group delay obtained with fhesweep. Note that for the
range of primary frequency ratios used in the sweep methbasfactor will vary from
2(1/1.1) to 2(1/1.3). This prediction will subsequentlytested against data collected in

human subjects.

2.4 Impulse Response Method

In addition to the phase-gradient methods, the impulseoresppmethod has been ex-
tensively used to estimate DPOAE delay (Stover, Neely, &g@pf996; Konrad-Matrtin,
Neely, Keefe, Dorn, & Gorga, 2001). In the previous sectibmjas noted that the phase
gradient methods are only capable of producing one growgyastimate. This estimation
method is incompatible with the theory that there are at Rasurces of the ear-canal CDP.
The impulse response method of DPOAE delay estimation wadaged to overcome this

limitation(Stover, Neely, & Gorga, 1996).
2.4.1 The Impulse Response in LTI Systems

The use of the impulse response is indispensible in the yhablinear translation-
invariant systems. For an LTI system, the response to atrampiinput is completely
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characterized by the convolution of the input with the syssampulse response function.
Equivalently, we may take the Fourier transform of the irgmud multiply it by the Fourier
transform of the system’s impulse response, known as themygansfer function This
follows from the well-known result that convolution in onerdain is equivalent to multi-
plication in the canonically conjugate domain. In the cori@nal sense, filtering an input
signal invovles convolving it with a given impulse responis), or equivalently multiply-
ing the Fourier transform of the input lyw).

Recall that in thef; and f, sweep paradigms, CDPs are elicited at a number of different
frequencies. For each of these CDP frequencies, a complakenthe DFT coefficient)
is obtained. If these DFT coefficients are placed in a vecttir gome appropriate spacing
indicative of their frequency separation, this vector carviewed as the transfer function
of a cochlearfilter. It then follows that the inverse DFT of the transfer funatis the
impulse response. The peak of the cochlear impulse respteeen as the CDP delay.

If the DFT coefficients are only placed at positive frequesgithe impulse response
will be complex-valued. A real-valued signal must displanjugate symmetry in the
Fourier domain. Previous work with the impulse responséhntehas created real-valued
impulse response functions by satisfying the conjugatensgtry property, i.e. by placing
the complex conjugate of the DFT coefficients in the appedprDFT bins. In this work,
the analytic signal corresponding to the impulse respapesiferred. The envelope of the
analytic signal provides a better estimate of the peak oiftipellse response and therefore
the putative CDP delay. The following algorithm is used todarce the impulse response

estimate.

1. The DFT of the averaged DPOAE time data is computed.
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Figure 2.2: Top:f; sweep (3 kHz) phase gradient data for subjects M1 and F1.dE&
was shown in Figure 2.1 Bottom: The impulse response funst{@oltage squared) for
the 3 kHz f; sweep data. The impulse response functions peak at 3 msed) i8hn
agreement with the least squares fit to the phase gradients.

2. The DFT coefficient for the CDP is retained and placed irejyropriate place in a

vector of zeros (positive frequencies only).

3. The DFT vector is multipled by a factor of 2 to create therkauransform of the

analytic signal.

4. The inverse DFT is computed and the resulting vector isatfaytic signal corre-
sponding the impulse response. The modulus is used to ¢stiima CDP delay.
In Figure 2.2, the estimated impulse response functionstawe/n for two subjects

along with the corresponding phase gradient estimates.
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2.5 Changepoint Detection

In this study, a novel application of changepoint detectamDPOAE time series is
introduced. This section serves as a brief introductiorhengepoint detection in general
and to the specific technique for dependent observatiombkingbis study.

In order to properly define the problem of changepoint egtonait is necessary to
define the notion of a random, or stochastic process. A r&@aled stochastic, or random,
process is a mapping from the Cartesian product of some iseleand an outcome space
into the real numbers. Recall that a random variable (RV)mgasurable function mapping
some outcome spacg, into the real numbers such that the inverse image of the mgpp
is a contained within the-algebra of subsets 6i. If we denote the real number assigned
to an arbitraryw € 2 as X (w), then a real-valued random process assigns a real number
to each pairing of elements from the index set and the outcspaee. If we denote the
index set ag’, then a stochastic process may be denotell @sw) with ¢ € T'. The index
set may be countable or uncountable. The index set is oftes, thut need not be. The
probability measure defined on the underlying outcome space, induces a probability
measure orX (¢,w). Therefore, a random process can be simply thought of a sequa#
random variables. Examples of such processes in audioleggvaked potential and OAE
waveforms.

Note that there is nothing in the definition of a random prec&kich requires that
the probability measure is the same for eaclhs an illustration, a random proccess can
be defined on a countable index set, such that for ¢yéime random variables follow a
N(1,1) probability law, while for odd the random variables are exponentially distributed

with parameter 1.
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2.5.1 Stationarity

Since a random process is a sequence of random variablemadssto reason that we
will be interested in the relationships among the RVs thdtemtup. Specifically, we will
be interested in the joint distribution of the constituelRi.e. P(X; < x; N X, < x9N
X3 < z3...). Clearly, for all but trivial processes, the joint distritan will be too large to
specify. This is especially true in practice when the precedeing estimated from a finite
number of observations. In many cases, it helps to make gyimgl assumptions about
the process. If these assumptions constitute a reasongir@xamation to the process, the
estimation problem may be tractable. One of the most commsumaptions in the study of
random processes is thatsihtionarity The most common form of stationarity is actually

second order stationarith random processy;, is said to be second order stationary if
1. E(x;) = n wherey is a constant independent of time.
2. E(|zy|?) < .

3. 7(T7 S) = E{(xr - MT)(:ES - ,us)} = E{(xr-i-t - ,ur)(xs-l—t - ,Us)} = 7(r +t,s+ t)'

whereE denotes the expectation operator afid s) is the autocovariance between points
r ands. If the process does not satisfy the above it is referred tocastationary In
summary, the above requirements require that the procesa heean value and variance
that do not depend on what segment of the process that weakiadoat. In Figure 2.3,
we show an example of a DPOAE time series where the contoitbati the primary tones
has been removed by a method to be described in a later se€t@process constitutes

one realization of what would be considered a stationarggss.
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DPOAE Time Series
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Figure 2.3: A DPOAE time series witlf;, and f, removed by phase rotation and time
averaging. Note that the mean value of the data and its \@iéhe variability) do not
change appreciably if small segments of the data are carsidae at a time.
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DPOAE Time Series
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Figure 2.4: A DPOAE time series witlf;, and f; removed by phase rotation and time
averaging. Note that near 30 msec and again near 180 mseprdbess variance has
changed.

In actuality, Figure 2.3 was produced by zooming in on 100awdehe DPOAE time
series. In Figure 2.4, the entire 200 msec of data is shows.clear while the mean of
the data is independent of the index (time), the variancé®frocess is not. There is a
marked change in the variance somewhere around 30 msec amdhagr 180 msec. The

data may be regarded as piecewise stationary, but not gicvationary.

2.5.2 Changepoint Detection

In many applications, it is critical to determine when sorapext of a random process
has changed (Basseville & Nikiforov, 1993). In general, wsuane that the statistics of
the process are determined by some paranteter © which remains constant between

changepoints. As a simple gross characterization, the sienes shown in Figure 2.4
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contains two changepoints, one near 30 msec and anothet®@ansec. The process is
parameterized by some paramefrom 0 to 30 msec (and perhaps again from 180 to 200
msec), and by’ # 0 from 30 to 180 msec.

Changepoint techniques may be used to detect changes inedne rariance, empiri-
cal distribution function, and the empirical spectral disition of a stationary process in a
specified band of frequencies (Picard, 1985; Basseville l§ifdliov, 1993; Lavielle & Lu-
dena, 2000; Lavielle, 2005). In this study we use a method;w$imultaneously detects
all the changepoints in the empirical spectral distribufinction of a 2nd order stationary
random process by minimizing a penalized contrast fundti@vielle & Ludena, 2000;

Lavielle, 2005). If we denote the periodogram of the procgssrer thej-th segment as

tj

1 ,
I _ —iwt |2
(W) 2 | t_t§ ze |

=tj—np+1

Then

denotes the energy in the bafid \]. Lavielle & Cardenas (2000) suggest the following
contrast estimator
—5 2 B
j
This contrast estimator is then weighted by a term which jmssgover estimation of the
number of changepoints. In Figure 2.5, the penalized cshéstimator is applied to the

DPOAE time series shown in Figure 2.4. The estimator rettwieschangepoints, one at

37.4 msec and one at 180.5 msec.
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DPOAE Time Series with Changepoints
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Figure 2.5: A DPOAE time series with changepoints noted at aind 180.5 msec.

35



CHAPTER 3

METHODS AND RESULTS

3.1 Methods

3.1.1 Human Subjects

Nine subjects, 3 male and 6 female, participated in the éxgert. All subjects were
paid for their participation. The subject selection cidefior this experiment were: 1.)
normal hearing as defined by air conduction thresheldss dB HL at the standard au-
diometric frequencies and the absence of any significafttanie gap, 2.) clear canals and
normal tympanograms on the day of testing, and 3.) normei-elvoked TEOAES on the

day of testing.
3.1.2 DPOAE Acquisition

DPOAE data were acquired if and f, sweep paradigms “centered” ghfrequencies
of 2, 3, and 4 kHz. In the¢f; sweep paradigm, thé frequencies were fixed at 2, 3, or 4
kHz respectively. For each acquisitiofy,was initially set at the nearest Fourier frequency
resulting in an approximatg,/ f; ratio of 1.3. Subsequently; was increased in 25 Hz
steps until an approximatg/ f; ratio of 1.1 was reached. This resulted in(¥1, f2) pairs

for the 2-kHz f; sweep and 138f;, f») pairs for the 3 and 4-kHZ; sweeps.
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Frequency f, Sweep  f; Sweep

2 kHz (1080, 1580]  [1130, 1480]
3 kHz [1710,2310] [1760, 2110]

Table 3.1: CDP ranges elicited by tlieand f, sweep paradigms for 2 and 3 kHz. By con-
struction, the ranges overlap as much as possible whikhgat) the necessary constraints.

An error in the setup of the 4 kHf, sweep made that data unsuitable for analysis.
Subsequently, in discussing tiiesweeps, reference will only be made to 2 and 3 kHz. For
the f, sweeps, the lower frequency primarfs X was fixed at a Fourier frequency yielding
an approximate primary tone ratio of 1.22 when the higheguiescy primary was 2 or 3
kHz. For example, in the 3-kH%, sweep, the lower frequency primary was fixed at 2455
Hz yielding 3000/2455 = 1.22. The f; frequency for the 2-kHz, sweep was fixed at
1640 Hz. In each of the¢; sweeps, the higher frequency primary was moved in 50-Hz
steps from approximately 150-300 Hz above to 200-300 Hzvhék “centerpoint” (2 or
3 kHz). Thef,; and f; sweeps were designed so that the essentially the same range o
cubic distortion products were elicited in both paradigmisjsct to the constraint that the
1.1 < fo/f1 < 1.3ratios. The ranges of CDP frequencies elicited in 2 and 3 ldflagigms
are given in Table 3.1.

For each( f1, f2) frequency pair, eighty acquisitions of 200 msec in duratie@ne ob-
tained. Each of these acquisitions consisted of 4000 psartpled at 20 kHz. The result-
ing 400x80 data matrix was stored for offline analysis. The lowerdisgy primary was
presented at 65 dB SPL for the entire 200 msec. The highendrezy primary was pulsed
on for 150 msec beginning at 25 msec and terminating at 17%.mgehe beginning and

end of the pulsed primary, 2.5 msec cosine-squared wind@ws used to reduce spectral
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spread. The higher frequency primary was presented at 55°iB Bhe pulsed paradigm
was utilized to provide a clear marker for the onset of the CBWking the distortion
product requires stimulation of the cochlea by both printanes. The delayed, onset
facilitates the detection of the CDP because each timesseoigtains a number of sample
points prior to the onset (in this case a minimum of 500).

In addition to the pulsed; primary, the phases of both primaries were rotated in a
systematic way designed to greatly reduce the energy batitshs of primary tones in the
data. The phase of thg primary was rotated by /4 radians in each acquisition, while the
phase of thef; primary was rotated by /2. Due to the phase rotation, averaging any 8 (or
integer multiple of 8) consecutive acquisitions largelynehated ear canal contributions
from both f; and f, in the recording. Note that the anterograde component oCDE,
z(xg,wdp), is not eliminated since the actual starting phaseg, adnd f, could not be
controlled precisely enough in the ear canal. This is ithted in Figure 3.1 on the next
page. In Figure 3.1 the intial phasesfgfand f; were -0.90 and -0.94 radians respectively,
it is clear that thed, — 6, contribution of the primary phases is honzero. However, the
phase rotation of the primaries is maintained at integetipie$ of /4 for f; andr /2 for
f2, which maintains the phase cancellation.

In theory the contribution off; and f, is completely eliminated with this technique.
However, these recordings were made in the ear canals ofrhauigects and it is impos-
sible to eliminate small movements, e.g. swallowing, headement, etc., that introduce
phase perturbations in the recording. As a result, in pradtiis phase cancellation of the
primary tones is rarely perfect, but in compliant subjettioies result in substantial can-

cellation of f; and f,. The DPOAE data acquisition paradigm is summarized asvistio
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f1 Phase Rotation

Radians
bbb ko

L L L L L L L
10 20 30 40 50 60 70 80

f2 Phase Rotation

Radians

L L L L L L E|
10 20 30 50 60 70 80

40
Acquisition

Figure 3.1: Top:f; phases recorded in the ear canal of one subject as a fundte o
quisition number. The initial phase is -0.90 radians. Nog# the phase increments by

7 /4 radians. Bottom:f, phases recorded in the ear canal of one subject as a fundtion o
acquisition number. The initial phase is -0.94 radians.eNbat the phase increments by
/2 radians.

e Each acquisition was 200 msec in length. The sampling ratefiwad at 20 kHz.
For each acquisition 4000 data points were acquired. Tkigiterl in a frequency
resolution of 5 Hz. Eighty 200 msec acquisitions were oladifor each(fi, f2)

pair.

e The phase of; was rotatedr/4 radians and the phase fif was rotatedr /2 radians

for each acquisition.

e f1 was presented for the entire 200 msec acquisition, whilwas on from 25-150

msec.
3.1.3 Data Analysis-Phase-gradient and Impulse Responseethods

The resultingf; and f; sweeps were subjected to analysis with the appropriateephas

gradient and impulse response methods. All(tfie f2) pairs which elicited a significant
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CDP were used in the analysis. In fitting a linear regressiodehto the unwrapped phases,
a bisquare weighting function was used to avoid the seitgit¥the standard least squares
technique to outliers with large residuals. The sensytioit the standard least squares

technique is illustrated in Figure 3.2 The estimated detdained with the phase gradient

Radians

N o N A~ o

|
IS

|
=)

Least squares fit

Robust fit

e 4.6 msec

S
o .
>,

-2
-4

-6

o N & o

k'Y 5.8 msec

1800 1900 2000

CDP Frequency (Hz)

2100

1800 1900 2000

CDP Frequency (Hz)

2100

Impulse response (magnitude squared)

Ih@)?

Figure 3.2: Top left: Least squares linear fit to 3 kidzsweep data. Note the final un-
wrapped phase measurement is an outlier. Top right: Rolmgsrlfit using the bisquare

weighting function. This penalizes the large residual ia final phase measurement and
thereby excludes it from the linear fit. Bottom: The impulssponse function estimate
(magnitude squared). The delay from the impulse responsensich better agreement

with the robust fit.

and impulse response methods were in good agreement. Thistisated in Figure 3.3 The
linear fit is seen to be quite strong with the exception of a demiers. Upon inspection,
it was clear that the outliers were the result of the phasdigna estimates. Even with

robust regression methods, there were cases in which assegmemodel could not be fit
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Scatterplot of Phase Gradient and Impulse Response Delays
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Figure 3.3: Impulse response delays vs phase gradient thdiays for all subjects all
sweeps. The correlation is quite strong except for a fewiargtlwhich are errors in the
phase gradient method.

to the data rendering the phase gradient method unusaldabsequent data analysis, the

impulse response method delays will be used exclusively.

3.1.4 Zero-phase Filtering with Changepoint Estimation

Prior to changepoint estimation all time series were core@with an equiripple FIR
filter to improve the SNR. The time series were convolved lith filter, the output re-
versed, and run through the filter again to remove phasegff€be filters were constructed
so that the CDP frequency was centered in a 600-Hz passbhrdtdpbands were an ad-
ditonal 400 Hz below and above the respective passband.etigesransfer function of the
filter was purposely designed to be very conservative inraimavoid artifactual ringing

that could be detected as a spurious changepoint in therapeistribution. After filtering
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each time series was checked for the presence of specifatrtat the CDP frequency by
taking the DFT of the 1st 500 points of the series. Sificevas presented beginning at 25
msec, only artifact could account for the presence of the @Dire 1st 500 points. In those
cases wher¢, was not perfectly cancelled and was within 300 Hz of the CDPR notch
filter was first used to removg to prevent artifactual results in the changepoint analysis
The removal off; when necessary was also accomplished with zero-phasenfilter

Changepoint estimation was performed on empirical spledis&ribution function as
outlined in (Lavielle, 1999). A conservativelevel test ofl0~—° was used. This is the level
recommended in Lavielle(2005) because the method is tgirggmultaneously estimate
all the changepoints in the process. In order to obtain tlaive delay of the CDP, aif,
time series was obtained by averaging every 4-th acquisitidghe same data matrix. This
series was used to obtained an absolgtdelay (recall thatf, was turned on at 25 msec
and reached its maximum amplitude at 27.25 msec). No fijesias necessary in these
time series due the magnitude ff The absolutef; delay was then subtracted from the
absolute CDP delay to obtain the relative CDP delay.

Unlike the phase-gradient and impulse response methoelshi@ingepoint technique
can be applied to every primary tone ratio yielding in pnoeiN different delays where
N is the number of f1, f2) pairs. A larger SNR will yield a more accurate estimate of
the changepoint. Accordingly, a weighted average of thagipoint delay was computed
by multiplying each delay by the ratio of its local SNR to tltal SNR and summing the

result.
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f1 Sweep Times by Frequency

msec

2kHz 3kHz 4kHz

Figure 3.4: Boxplots of, sweep data by frequency (impulse response method). Thare is
significant decrease in delay as a function of frequency.

3.2 Results

3.2.1 Impulse Response Method Results

The delay times obtained in thig and f, sweep paradigms in this study were in good
agreement with those reported previously (Kimberley et H993; Mahoney & Kemp,
1995; Stover, Neely, & Gorga, 1996). In particular, a repdaheasures ANOVA showed
a significant decrease in both tlieand f, sweep times as a function of frequency. This is
shown for thef; sweep data with 2,3, and 4 kHz in Figure 3.4.

Both f, sweeps resulted in significantly larger estimated groupydethan theirf;

sweep counterparts. Figure 3.5 shows the delay times bydrery and sweep method.
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msec

msec

f1 Sweep Times by Frequency

2kHz 3kHz

f2 Sweep Times by Frequency

2kHz 3kHz

Figure 3.5: Top:f; sweep times as a function of frequency. Bottofpsweep times as a
function of frequency.

Recall in chapter 2, a relationship was derived betweenfthend f, sweep delays
based on the scale invariance property of the cochlea and/e-fix@d assumption. The

proposed relationship was given by

D, =2 D,
%)

For the ratios ofv; /w, used in this study, the minimum value of this factor is 1/1n8 the
maximum is given by 1/1.1. In Figure 3.6, a scatterplofofs. f, sweep times for the 2
and 3 kHzf; and f, sweeps is presented along with two lines indicating the mmimh and

maximum slopes of the proposed relationship given above.
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F1-F2 Sweep Delays

D2=2(U1.1)D1 - ¢

F2 Sweep Delay (msec)

b5 3 35 4 I
F1 Sweep Delay (msec)

Figure 3.6: Scatterplot of; vs f; sweep times. The solid line represents the proposed
linear relationship between th&é and f, sweep times (2 and 3 kHz) with the maximum
slope, while the dashed line indicates the minimum slope.

3.2.2 Changepoint Estimation Results

Empirically a local SNR of at least 28 dB was required for tle¢edtion of the CDP
delay as a changepoint. This resulted in a failure to prodbemgepoint delay estimates
in a few subjects, particularly in thg sweeps (recall the conservatiwve= 10~°) in one
or more of the sweep methods. For another subset of subjbetigcal SNRs were high
enough that significant changepoints were recorded agliytavery( f1, f>) pair in several
of the sweeps. In Figure 3.7, we present an averaged DPOAd&games and its filtered
counterpart with the significant changepoint (in absolute} indicated

Similar to the impulse response (phase gradient) methede twvas a significant de-

crease in delay as a function of frequency for the changépo@thod. These results are
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Time-averaged DPOAE Data
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Figure 3.7: Top left: averaged DPOAE time series. Top rigihte same time series shown
in the top right panel zoomed in on the 1st 50 msec. Bottom [Efie filtered time se-
ries. Bottom right: The filtered series zoomed in on the 1sns@c with the changepoint

indicated.

presented in Figure 3.8. The reader is invited to compasetresults with those presented

in Figures 3.4 and 3.5.
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f1 Sweep Changepoint Times
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Figure 3.8:f; sweep delays for the changepoint method as a function ofidrmacy.
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Finally, the f; and f, sweeps were compared with the changepoint method. While the
was a significant difference between tfieand f, sweep times for the impulse response
method, the different sweep paradigms failed to show anyifsignt difference with the

changepoint method as illustrated in Figure 3.9

f1-f2 Sweep Changepoint Times

o

msec
7
|

2 kHz f1 2 kHz f2 3 kHz f1 3 kHz f2

Figure 3.9:f; and f, sweep delays for the changepoint method (2 and 3 kHz).

In summary, both the impulse response (phase gradientyemtjepoint methods show
significant decreases in delay as a function of frequencg.fTsweep delays were signif-
icantly longer than the¢; sweep delays with the impulse response method, while thase w

no significant difference between the sweep methods witbhlhegepoint technique.
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CHAPTER 4

DISCUSSION

In this study, a novel technique for the delay estimation BIZIAESs was presented. The
method relied on a pulsed-primary paradigm with phaseiostab reduce the significant
contribution of the nuisance frequenciggsand f,. A penalized contrast method was then
used to estimate the onset of the DPOAE as a change in theapéstribution in a local
frequency neighborhood. Additionally, a complementargrapch to Tubis et al.(2000)
was presented which predicted under a wave-fixed hypothesishe f; delay estimated
with the phase gradient method should be approximatelyetiyie f, sweep delay. This
has been reported in previous studies and was shown to be@thagyeement with the de-
lays observed in these data. Further, significant decréasstimated delay were found in
the f; and f, sweeps as the frequency increased. This also is in goodragneevith pre-
vious work. The average changepoint delays also decreagdticantly as the frequency
increased from 2 to 4 kHz for thf sweep and 2 to 3 kHz for thg sweep. Unlike with
phase gradient and impulse response methods, there wagnificant difference between
the f; and f, sweep delays estimated with the changepoint method.

Purely based on physical reasoning, there is no way thatfiredsimal movement
in the generator region could account for a doubling in thaydeFor this reason, others
have cautioned against interpreting the phase gradiemtsgéand hence impulse response
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methods results as well) as true delays (Tubis, Talmadgey, ® Dhar, 2000). The ques-
tion arises if any of the current methods yield results wladh close to the true delay. In
other words, should more faith be placed in thesweep orf; sweep delays. The delays
measured with the changepoint method more closely resentblsweep delays. How-
ever, it is unclear how the conservatiwdevel used in the changepoint method may have
affected the results. Recall that since the penalized asnhinethod attempts to estimate
all the changepoints in the data, Lavielle (2005) recommaendery small rejection region
in order to eliminate false positives. It could be argued thahis application, there is
substantiah priori information about the changepoints, which may permit aséssgent

« level without the risk of false alarms. Relaxing théevel, would presumably not affect
the hypothesis that the differences betweenfihend f, sweeps is an artifact of the phase
gradient and impulse response methods, but it could veryaffett which delay appeared
to be more accurate. Finally, it should be noted that visuspection of high-SNR wave-
forms show the DPOAE beginning a few cycles before the estichehangepoint, but still
in much better agreement with ttfe sweep delays.

There are several cautionary notes. First and foremossaimple size and frequencies
used in this study were extremely limited. Frequencies tdten 2 kHz were not included
because of the high noise environment and highly nonwhitkdraund. Additionally,
the CDP is further away in frequency space as the frequermgases, which permits
better phase cancellation (and or filtering) fof Still, the data acquisition error can be
rectified and the 4 kHZ; sweep included in future work. It is also plausible to in@ud
5 kHz and perhaps 6 kHz in future work. While these data pevVighited support for
the hypotheses that the delay differences betweerfitlaad f, sweeps is artifactual and

the delay time of the DPOAE is underestimated by fhesweep method, further study
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is needed. Further study is planned to build on these resiile filtering method used
in this study may not be optimal and there is certainly addal work to be done in that
regard. The measurement paradigm also should be given ransideration. Currently,
there is more data collected in thfe sweep paradigm than in th& sweep. This was
done to replicate previous work, but in the changepoint ogtihwas detrimental to the
calculation of an average delay. With fewer measuremdamsg less probable that enough
CDPs would be elicited to produce an average delay estimilteraasonable variance.
Finally, the flexibility of the changepoint method was nopksited to its fullest extent. For
example, questions surrounding the validity of the secondce model were not addressed
in this study. Putative interference within the time seaean asymmetry between DPOAE
onset and offset are questions which may be amenable tyga®t changepoint analysis.
If the time between the end gf and the offset of the CDP is found to be significantly
longer, than the time between the onsef.ohnd the CDP onset, that may provide evidence
for a longer latency source.

In spite of its limitations, the study has resulted in someigning findings. It has
provided several testable hypotheses to guide future wieudkther, it has provided some
theoretical basis for the observed differences infihend f, phase gradients. Finally, it has
provided a methodological framework for DPOAE delay estasavhich are more readily

interpretable as true delays than the current methods.
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