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ABSTRACT 

 

 

 

 

 A growing elderly population is vulnerable to injury or death due to falls.  

Previous studies documenting the physiologic changes that occur within the vestibular 

system due to the aging process have shown moderate decreases in caloric and rotational 

chair responses.  Psychophysical testing, which has proven to be critical to understanding 

the function of the auditory and other sensory systems, has not yet been used to study 

vestibular function in the elderly.  The present study had two goals: to determine if 

psychophysical thresholds correlate with performance on standard tests of vestibular 

function, and to determine if older subjects have poorer vestibular psychophysical 

thresholds than younger subjects. 

 Eighteen older adults (age range 63-84 years) and thirteen younger adults (age 

range 20-25 years) participated in the study.  Psychophysical testing of vestibular 

function consisted of rotations about the earth-vertical axis to determine both detection 

thresholds and discrimination thresholds to angular velocity.  Standard tests of vestibular 

function included sinusoidal harmonic oscillation, steps of velocity, and caloric testing.   

 On average, older adults performed more poorly on psychophysical tests than 

their younger counterparts.  The best older adults did as well as the best younger subjects 

on both detection and discrimination tasks, but the worst older adults were far poorer than 
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the worst younger subjects.  Psychophysical thresholds did not correspond to 

performance on rotational chair testing.  These results demonstrate that normal older 

adults have a wider performance range than younger subjects on psychophysical testing.  

It also indicates that psychophysical testing accesses different information than standard 

tests of vestibular function.  This suggests that psychophysical testing may be an 

important additional method for measuring balance function in the elderly. 
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CHAPTER 1 

 

 

Introduction 

 

 

 

 

Incidence/Prevalence of Falls 

A growing elderly population is vulnerable to injury or death due to falls.  Each 

year, one in every three adults age 65 years or older will fall and two million will be 

treated in an emergency department for injuries caused by falls [Center for Disease 

Control (CDC), 2010; Hausdorff, Rios, & Edelber, 2001].  Falls can lead to injuries, such 

as hip fractures and head traumas, and can even increase the risk of early death.  

According to the CDC, over 18,000 older adults died in 2007 from fall injuries.  

Additionally, the susceptibility to falls and related injuries only increases when older 

adults in nursing homes are taken into consideration (CDC, 2009).  Also, with the 

growing elderly population, these numbers are likely to increase as the Baby Boomer 

generation reaches age 65 years.  Falls in the older adult population have been associated 

with dizziness, balance disorders, and vestibular dysfunction (Agrawal, Carey, Della 

Santina, Schubert, & Minor, 2009; Alrwaily & Whitney, 2011).  Research has also 

demonstrated a decline in quality of life in older adults who experience dizziness (Hsu, 

Hu, Wong, Wang, Luk, & Chern, 2005).  As evidenced by the aforementioned statistics, 
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research regarding imbalance in older adults is critical to better understanding falls and 

developing future treatment plans for the prevention of falls. 

Anatomy and Physiology 

 The vestibular system is integral to maintaining balance control.  The vestibular 

sensory organs of the inner ear respond to physical stimuli related to movement and 

orientation of the head in three-dimensional space (Wright & Schwade, 2007).  During 

movement, information is gathered through visual, somatosensory, and vestibular senses 

and sent to the brain for integration and perception processing (Desmond, 2004).  These 

senses help maintain clear vision during head movement, control muscles responsible for 

maintaining body posture, and provide a sense of orientation with respect to the 

surrounding environment (Wright & Schwade, 2007).  The paired vestibular organs, 

housed in the temporal bone, are comprised of three semicircular canals (superior, 

posterior, and horizontal) and two otolith organs (the utricle and saccule).  The three 

semicircular canals contain sensory receptors, which are stimulated by forces associated 

with acceleration, and are oriented at different angles with respect to the vertical and 

horizontal planes.  The superior and posterior semicircular canals are oriented vertically, 

whereas the horizontal canal is tilted upward by 30 degrees in the horizontal plane.  

Ultimately, this allows the vestibular system to encode a variety of head movements in 

different spatial planes (Wright & Schwade, 2007).  The saccule and utricle, on the other 

hand, are functionally distinct from the semicircular canals in that they are sensitive to 

linear acceleration and gravitational force.  Because these structures are sensitive to 

gravitational force, their receptors are always active and monitor the position of the head 

in space, even when there is no head movement.  This is in direct contrast to the normal 
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functioning of the semicircular canals because their receptors do not typically respond to 

static head position.  The macula sacculi are sensory neuroepithelium housed in the 

saccule and are predominantly oriented in the vertical plane (Watanuki & Schuknecht, 

1976).  Due to their position, the macula sacculi are the most sensitive to up-and-down 

movements of the head and horizontal motion along the front-to-back axis.  Conversely, 

the utricular macula is situated in the superior portion of the utricle and lies in the 

horizontal plane.  This orientation makes the utricular macula most sensitive to linear 

movements.   

 Similar to the auditory system, the vestibular system also contains hair cells that 

have their own unique functions.  As previously mentioned, the semicircular canals and 

otolith organs are sensitive to different head motions and gravitational forces.  In the 

auditory system, hair cells are stimulated by sound waves, however, in the vestibular 

system, hair cells are stimulated by movement and gravity (Desmond, 2004).  Each 

vestibular hair cell has one kinocilium and several stereocilia (Wright & Schwade, 2007).  

The stereocilia are arranged in several rows that increase in height across the cell, and has 

been described as a “stair-step” pattern.  The single kinocilium is situated near the tallest 

row of stereocilia and thus fits in with the aforementioned pattern.  Together, the 

kinocilium and stereocilia of the otolith hair cells project into a sheet of gelatinous 

material that covers the surface of the neuroepithelium.  Contained in this sheet are tiny 

crystals called otoconia, and with the gelatinous material, make up the otoconial 

membrane.  Oticonia are composed of calcium carbonate in the form of the mineral 

calcite (Thalmann, Ignatova, Kachar, Ornitz, & Thalmann, 2001).  The oticonia differ in 

size and are arranged in a definite pattern across the oticonial membrane.  During the 
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occurrence of linear head movement or gravitational force, the otoconial membrane 

undergoes small shifts in position, thereby deflecting the cilia on the underlying sensory 

cells (Wright & Schwade, 2007).  This creates changes in the electrical polarization of the 

hair cells, which in turn, causes the release of neurotransmitters.   

 All of the aforementioned vestibular neuroepithelia contain sensory cells of two 

different morphologic types (Lindeman, 1969).  The type I receptor cell is a plump, 

goblet-like shape, and is entirely surrounded by a single, large nerve ending known as the 

chalice.  The type II receptor cells are more slender and cylindrical in shape, and they 

have clusters of small nerve endings at their basal end.  In each vestibular neuroepithelia, 

groups of these receptor cells are oriented in a manner so that all cells within a group are 

either depolarized or hyperpolarized by a given movement of the otoconial membrane 

(Lindeman, 1969).  On the cristae of the semicircular ducts, all of the receptor cells are 

oriented the same manner.  In the case of the lateral crista, each hair cell is organized so 

that its kinocilium is on the side of the cell nearest to the utricle.  Therefore, if the head 

moves in a manner that results in displacement of the lateral crista toward the utricle, the 

stereocilia will be deflected toward the kinocilia, effectively depolarizing the sensory 

cells and producing increased neural excitation.  Conversely, displacement away from the 

utricle will result in hyperpolarization of the sensory cells, and will result in a reduction 

of neural excitation.   

Vestibulo-ocular reflex (VOR) and vestibulo-spinal reflex (VSR) 

 Balance control involves a number of systems that help coordinate the action of 

trunk and leg muscles in order to minimize sway and maintain the body’s center of mass 

within its base of support.  However, in order to accomplish this task, the body must 
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utilize two vestibulomotor reflexes: the vestibulo-ocular reflex (VOR) and the 

vestibulospinal reflex (VSR).  The VOR can be defined as reflexive eye movement in 

response to head movement (Desmond, 2004).  The role of the VOR is to allow stable 

gaze while the head is moving.  Gaze stabilization is imperative because images need to 

stay long enough on the retina to be encoded into neural signals (Leigh & Zee, 1991).  In 

order to achieve a steady retinal image during head movement, the information from the 

peripheral vestibular system is passed to the oculomotor pathways, where compensatory 

eye movements are generated by moving the eyes with the same velocity but in the 

opposite direction of the head motion (Baloh & Honrubia, 1990).  Ultimately, the VOR is 

extremely important during vestibular assessment and the VOR function is actually the 

foundation for many vestibular tests, such as caloric and rotational chair testing. 

The VSR, on the other hand, is one of the motor control mechanisms that 

contribute to postural stability during routine tasks, such as upright standing or walking 

and more complex tasks, such as running or jumping (Baloh & Honrubia, 1990).  In order 

to achieve this goal, the VSR must constantly receive sensory information about the 

orientation of all body segments, including the head, neck, torso, and legs.  To maintain 

postural stability, the VSR pathways must detect spatial orientation of all body segments 

with respect to an earth-fixed frame.  In addition to the vestibular system, our sensory 

systems such as proprioception and vision, supply the VSR with sensory input regarding 

the orientation of different body parts.  Proprioceptive receptors lie in the muscles and 

joints and provide information about the relative orientation of two adjacent body 

segments, whereas the visual system provides information about the relative orientation 

of the body with respect to the external environment.  Thus, the VSR incorporates 
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information from various sensory systems in order to distribute information about the 

earth, vertical to the legs, which allows synchronized reciprocal stabilization of the body 

(Baloh & Honrubia, 1990).   

Standard vestibular tests of balance 

 Vestibular function tests are an important part of the clinical assessment and 

management of patients with dizziness and other balance disorders (Goebel, 2001).  

Assessing vestibular function is unique because there is no direct access to the response 

of the vestibular end organ. Clinicians must rely on secondary motor responses to assess 

the vestibular pathways (Baloh & Honrubia, 1990).  One of the oldest tests developed to 

evaluate vestibular function is electronystagmography (ENG). ENG is based on electro-

oculography, a technique that objectively records eye movements by measuring the 

corneoretinal potential (Gans & Yellin, 2007).  When the head is rotated, movement of 

the endolymph causes an individual with normal vestibular function to produce 

compensatory eye movements away from the fluid motion.  The eyes will move slowly 

until they reach maximum deviation, then return quickly back into position because of 

central nervous system correction before repeating these compensatory motions.  This 

activity generated by the VOR is identified as nystagmus, which includes both a slow-

phase component as well as a fast-phase component.  Thus, ENG testing measures these 

ocular movements to determine if the individual’s compensatory eye movement is 

consistent with normal vestibular function.  More recently, however, 

videonystagmography (VNG) has emerged as a more popular and diagnostically efficient 

recording method.  VNG utilizes infrared video cameras to visualize and record both 

linear and torsional eye movements.  VNG and ENG protocols are essentially the same 
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and therefore, the following information will be described from a VNG test battery 

standpoint.   

 Spontaneous nystagmus is usually the first test in the VNG test battery because it 

needs to be measured early on due to its potential to influence the interpretation of all 

subsequent test results.  Spontaneous nystagmus is involuntary, unprovoked, repetitive 

eye movement that can appear in any direction (Gans & Yellin, 2007).  The presence of 

spontaneous nystagmus is indicative of pathology occurring within the peripheral or 

central nervous system (Brandt, 1993); therefore individuals with normal vestibular 

function will not demonstrate spontaneous nystagmus.  Following the spontaneous 

nystagmus testing, three ocular motor pursuit function tests including saccade, smooth 

pursuit, and optokinetic testing are next in the VNG test battery.  The saccade test 

evaluates the eyes’ ability to shift the point of visual fixation (Evans & Melancon, 1989).  

In fact, the saccade is the most rapid movement the oculomotor system is capable of 

performing.  To perform the test, the patient is seated upright and asked to face the 

stimulus.  The patient is then asked to follow and fixate, without head movement, on a 

single target that randomly moves horizontally, vertically, and diagonally, for distances 

ranging 5 to 20 degrees.  Once this testing is completed, latency, velocity, and accuracy 

of the response are measured through eye motion to determine if vestibular function for 

this task is normal.  Following saccade testing, smooth pursuit, also known as tracking, is 

performed.  Tracking examines the ocular smooth pursuit system.  The patient is 

instructed to fixate, without head movement, on a target moving in a sinusoidal pattern 

that extends 20 degrees to the right and left from center.  Eventually, the target movement 

progresses from low frequency (slow moving) to high frequency (fast moving).  Normal 
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sinusoidal tracking responses are characterized by smooth, sinusoidal movements whose 

amplitudes correspond to the motion of the target (Gans & Yellin, 2007).  The last of the 

ocular motor pursuit function tests is the optokinetic test, which measures nystagmus 

elicited by watching repetitive stimulus movement across the visual field.  True 

optokinetic testing can only be measured if the visual field is 80% filled and thus, can 

only really be accomplished using a stimulus projected on a large screen or presented 

within an enclosure.  To perform this type of testing, the patient is presented with 

horizontal stimuli moving from right to left for ~20 seconds, then left to right for ~20 

seconds.  These stimuli are presented at a slow speed (20 degrees/second) and a fast 

speed (40 degrees/second).  The patient is instructed to follow the stimuli, without head 

movement, from one direction to the other, repeating this until the ~20 seconds have 

elapsed.  Results of optokinetic testing are analyzed for symmetry in each direction of 

pursuit.  If an asymmetry is present, this indicates an abnormal response and can suggest 

a central abnormality or unilateral peripheral weakness.   

 The next component of the VNG test battery is the gaze test.  The gaze test 

records any nystagmus that is present when the head is stable and upright, and the eyes 

are in a fixed position.  Unlike the previously mentioned ocular motor pursuit function 

tests, vision is denied for the gaze test.  For this testing, five separate 20 second 

recordings are captured as the patient fixates at targets placed at 0 degrees azimuth, 20 

degrees to the right of center, 20 degrees to the left of center, 20 degrees above center, 

and 20 degrees below center.  If nystagmus is detected in any of those target positions, 

the test is repeated, at that same target, with vision to see if the vision will suppress the 

nystagmus.  The presence of nystagmus during the gaze test is consistent with numerous 
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peripheral and central nervous system pathologies.  In order to identify the site of lesion, 

the direction of the nystagmus, as well as the nature of the gaze evoked pattern, should be 

further analyzed. 

 Following the gaze test, the Dix-Hallpike positioning tests are performed. These 

tests are designed to elicit nystagmus and subjective vertigo that are caused by benign 

paroxysmal positional vertigo (BPPV).  Several studies have demonstrated an increased 

incidence of BPPV in older adults (Baloh, Honrubia, & Jacobson, 1987; Neuhauser, 

Leopold, von Brevern, Arnold, & Lempert, 2001; von Brevern et al., 2007).  BPPV is the 

result of displaced otoconia settling in the posterior semicircular canal, generating a 

gravity-dependent cupula deflection (Gans & Yellin, 2007).  It is important to note that 

the Dix-Hallpike test evaluates only BPPV as it relates to the posterior semicircular canal.  

This type of BPPV is the most prevalent due to the location of the posterior semicircular 

canal, which is just inferior to the utricle.   

Testing for BPPV requires the patient’s eyes to be open, allowing the tester to 

directly observe eye movements for nystagmus.  Traditionally, the Dix-Hallpike 

maneuver was performed with the tester standing to the side of the patient, however as 

this positioning was more cumbersome than useful, a modified Dix-Hallpike maneuver is 

used more often and will be described (Dix & Hallpike, 1952; Gans & Yellin, 2007).  For 

the modified Dix-Hallpike, the examiner stands behind the patient and the patient is 

asked to turn his or her head slightly toward the test ear. The examiner then supports the 

patient’s neck and back while the patient is lowered into a supine position.  Ultimately, 

the patient’s neck is slightly hyperextended off the examination table, allowing the 

examiner to clearly observe the patient’s eye movements.  According to Gans and Yellin 
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(2007), rapid positioning is not necessary as the provocation of BPPV symptoms is 

gravity-based and due to changing positions.  Once the Dix-Hallpike maneuver is 

completed, the patient returns to an upright position and the test is repeated with the 

patient’s head turned toward the other ear.  

In addition to the Dix-Hallpike positioning tests, further positional nystagmus 

testing may be performed.  The purpose of this type of testing is to determine if 

nystagmus can be elicited or if previously documented nystagmus can be altered when 

the head and body are placed in static positions (Gans & Yellin, 2007).  It is important for 

this testing to occur after the Dix-Hallpike maneuver so the BPPV does not contaminate 

the positional tests as positions are changed.  Positional tests require the patient to be 

placed in the following positions: supine, head/body right, and head/body left.  For the 

head/body positions, the head must be rotated 90 degrees so either ear is perpendicular to 

the ground.  Recordings of eye movement should be measured for 20 seconds in each 

position with vision denied.  If nystagmus is observed in any position, the test should be 

repeated in the same position with vision enabled.  This allows the examiner to determine 

if nystagmus can be suppressed with vision.  If nystagmus has been detected in any 

position, the direction of the nystagmus is analyzed to determine the cause or location of 

pathology.  For example, if the fast phase of the nystagmus is toward the ground, this is 

known as geotropic nystagmus, and is most likely the result of a peripheral lesion.  

Conversely, if the fast phase of the nystagmus is away from the ground, this is known as 

ageotropic nystagmus, and this is often correlated with central nervous system, 

pharmacological, or alcohol influences.  It is important to remember that nystagmus 
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found in any positional testing should always be correlated with other symptoms reported 

by the patient, such as vertigo or nausea. 

Often considered the most important part of the VNG test battery, bithermal 

caloric testing is usually the last component performed.  One advantage offered by caloric 

testing is that it specifically isolates and evaluates the ability of each horizontal 

semicircular canal (Barber & Stockwell, 1980; Gans & Yellin, 2007).  By irrigating the 

external auditory canal with warm or cool air, a temperature change is transmitted to the 

endolymph in the horizontal semicircular canal (Jacobson & Newman, 1993).  This 

simulates endolymphatic fluid movement, and mimics what happens during head 

rotation.  The use of both warm and cool air creates two different effects in the horizontal 

semicircular canal and allows the physiological integrity of both horizontal canals to be 

evaluated separately and compared.  Warm air simulation causes ampullopetal movement 

of the horizontal canal cupula, whereas cool air simulation creates ampullofugal 

movement of the cupula.  Ampullopetal is movement toward the ampulla and 

ampullofugal is movement away from the ampulla.  The effect of these movements is an 

increase in hair cell activity in the crista, which generates nystagmus.  In most cases, the 

direction of the nystagmus follows a predictable pattern.  The expected physiological 

responses to thermal stimulation are left-beating nystagmus to right cool irrigation, right-

beating nystagmus to left cool irrigation, left-beating nystagmus to left warm irrigation, 

and right-beating nystagmus to right warm irrigation (Gans & Yellin, 2007).  To begin 

caloric testing, it is important to provide the patient with instructions as well as a general 

overview of the test.  Patients should be instructed that each ear will be presented with 

both a cool and warm temperature stimulus, which will induce a response from the 
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vestibular system.  The results of this response can then be measured and analyzed to 

determine if there is a response and whether or not the response is equal from both ears.  

Patients should be informed that testing will begin with a cool stimulus to the right ear, 

then to the left ear, followed by a warm stimulus to the left ear, and ending with one to 

the right ear.  A five to ten minute break will occur between each stimulus, in order to let 

the inner ear fluids return to their normal homeostatic temperature.  This helps to prevent 

potential confounding variables that can occur from inducing a temperature change in the 

inner ear fluids.  Additionally, the patient should be cautioned that caloric testing may 

induce a spinning or floating sensation. 

To begin testing, the patient is placed in a supine position with the head elevated 

and resting at a 30 degree angle (Gans & Yellin, 2007).  Covered goggles are placed on 

the patient’s face and the patient is asked to keep his or her eyes wide open throughout 

the duration of testing.  Prior to caloric stimulation, eye recordings should be made to 

observe for any spontaneous nystagmus the patient may have.  Following this, the tester 

presents the first caloric stimulation.  There are two different irrigators available for 

caloric stimulation.  One option is a water irrigator, which consists of two baths 

containing warm and cool water, a temperature sensing device, thermostats to heat the 

water, a switch that controls water flow, and a delivery system that presents the water to 

the ear canal.  The second type of irrigator system is the air irrigator.  The air irrigator 

consists of an air flow regulator, a heater, a thermostat, and a hose or speculum that 

delivers the air to the ear canal.  One difference between the two irrigator options is the 

temperatures of the cool and warm stimuli.  Water irrigations are performed at 30 and 44 

degrees Celsius, while air irrigations are performed at 24 and 50 degrees Celsius (Gans & 
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Yellin, 2007).  Another difference is the length of time required for air irrigations versus 

water irrigations.  For air irrigations, the stimulus should be presented to the patient for 

approximately 60 seconds, whereas the time length for water irrigations is approximately 

30 seconds.  Regardless of the type of irrigator used, it is important for the tester to 

ensure that the stimulus is delivered appropriately and effectively to the patient’s ear 

canal.  Once the stimulus has been delivered, the patient maintains his or her position 

with eyes wide open and the patient’s eye movements are then recorded.  Typically, a 

fixation light inside the goggles is set to turn on 40 seconds after the irrigation has 

ceased, which is around the time the nystagmus has reached its peak amplitude.  Once the 

patient has fixated, the recording stops and the patient is able to relax until the 

presentation of the next stimulus.  This process is then repeated for the subsequent 

irrigations.  Once the tester has compiled all of the eye recordings, an analysis can be 

performed to determine vestibular function.  Right ear responses are compared to left ear 

responses to determine unilateral weakness, while right-beating nystagmus is compared 

to left-beating nystagmus to determine directional preponderance (Gans & Roberts, 

2006).  These results can be used to identify many vestibular abnormalities, such as a 

peripheral lesion, a central nervous system disorder, or brainstem or cerebellar disease 

(Evans & Melacon, 1989; Jacobson, Newman, & Peterson, 1993).     

 In addition to VNG testing, rotational chair testing is another clinical test used to 

measure vestibular function.  Rotational chair testing was developed to test VOR function 

occurring during normal active movements at frequencies of 2 to 6 Hz (Fineberg, 

O’Leary, & Davis, 1987).  Although VNG testing also tests the VOR, it is limited 

because it is only able to assess horizontal canal function at an extremely low frequency 
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of 0.003 Hz (Gans & Yellin, 2007).  Therefore, rotational chair testing was developed to 

assess horizontal canal function at higher frequencies, such as those between 2 to 6 Hz, in 

order to detect possible high frequency vestibular lesions.  Unlike caloric testing, 

rotational chair testing is not used as commonly for multiple reasons.  One reason is 

because during rotational chair testing, both labyrinths are tested simultaneously, which 

prevents ear-specific information and makes it more difficult to obtain unequivocal side-

of-lesion data.  Secondly, rotational chair testing requires the installation of expensive 

equipment that cannot be easily moved.  This equipment includes a specialized computer 

system, a darkened enclosure, and a rotational chair.   

 Preparation for patients should occur in a dark enclosure where the testing will 

occur.  This allows the patients’ eyes to begin dark-adapting.  The patient should be 

secured in the rotational chair with some type of constraint, such as a seatbelt or harness.  

Additionally, it is important to secure the patient’s feet, knees, torso, and head, so as not 

to introduce any confounding variables into the test.  The patient’s head should be tilted 

down approximately 30 degrees to place the horizontal semicircular canals parallel to the 

floor and perpendicular to the axis of rotation (Brey, McPherson, & Lynch, 2008).  

Similar to VNG testing, rotational chair testing also measures and analyzes eye 

recordings to determine if there are any vestibular abnormalities.  In order to record and 

monitor eye movements from outside the test enclosure, patients should be fit with 

goggles that contain infrared cameras, such as video-oculography (VOG).  Patients 

should be informed that there is a talk-back system that allows the tester to always be in 

communication with the patient. 
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 Once the patient is properly secured and the infrared cameras are ready to record 

eye movements, the tester should calibrate the equipment.  The calibration is used to 

determine the eye recording system’s output for a given deviation of the patient’s eyes 

when fixating on visual targets at predetermined distances from the midline (Brey et al., 

2008).  Calibration helps to ensure that proper eye position recording techniques are 

being utilized.  In most rotational chair test batteries, the calibration is usually performed 

using saccadic eye movement targets at plus or minus 10 degrees from midline, or a 

smooth pursuit test target presented at approximately .16 Hz.  Following calibration and 

similar to VNG testing protocol, the patient’s eye movements should be observed for 

spontaneous nystagmus prior to the administration of any rotational chair tests.  To test 

for spontaneous nystagmus, the patient stares at a laser target in the darkened enclosure 

for approximately 10 seconds.  After 10 seconds, the target disappears and the patient is 

instructed to stare as if the target is still in place for 30 seconds.  Eye movements are 

recorded during the 30 seconds and are analyzed for any spontaneous nystagmus. 

 The first test and one of the more common tests utilized in rotational chair test 

batteries is the sinusoidal harmonic acceleration (SHA) test.  The SHA test assesses 

balance function by measuring nystagmus produced in response to back-and-forth 

sinusoidal movement generated by the rotational chair (Gans & Yellin, 2007).  SHA 

testing simulates natural environmental motion to measure vestibular function, and for 

this reason, has become a vital component of balance function evaluations.  Similar to 

VNG testing, it is important to provide patients with instructions regarding the test 

protocol.  Prior to SHA testing, the patient should be informed that the chair will be 

rotated at several different speeds, with a short rest period in between speeds.  The first 
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rotation will be very slow and the chair will rotate 360 degrees in both directions.  The 

chair rotations will become progressively faster and the last rotation will result in a back-

and-forth sinusoidal motion.  The patient should be instructed to relax as much as 

possible and to keep his or her eyes open throughout the duration of testing.  It is helpful 

to the tester if he or she provides the patient with alerting tasks.  By providing the patient 

with alerting tasks, this ensures that the patient’s nystagmic response is not suppressed.   

In order to evaluate vestibular output over a wide range of frequencies, SHA 

testing usually incorporates a minimum of five test frequencies.  The following 

frequencies are commonly used during SHA testing: 0.01, 0.02, 0.04, 0.08, 0.16, 0.32, 

and 0.64 Hz (Brey et al., 2008; Hirsch, 1986).  Once the patient has been tested with at 

least five of the aforementioned frequencies, fixation testing is performed (Gans & 

Yellin, 2007).  For this testing, the chair is again rotated at the two highest frequencies of 

rotation, usually at 0.32 and 0.64 Hz.  The patient is instructed to fixate on a light located 

at eye level in the patient’s visual field.  During this, mental alert tasks are not performed 

because the goal of this test is to see whether or not the nystagmus can be suppressed.  

Once SHA testing is completed, the patient’s eye recordings are analyzed and the 

parameters of phase, gain, and asymmetry are examined (Li, Hooper, & Cousins, 1991).  

The analysis of these parameters helps provide information on whether vestibular 

function is normal, or in the case of vestibular abnormalities, the location of these 

abnormalities.  For example, phase abnormalities represent differences in the start of the 

stimulus (head movement in response to chair rotation) and when the patient’s 

compensatory eye movements occur (Gans & Yellin, 2007).  It has been found that most 

peripheral vestibular disorders have been associated with phase abnormalities as 
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measured by rotational chair testing (Hirsch, 1986; Li et al., 1991).  Additionally, gain 

measurements provide information on the amplitude of eye movements that occur in 

response to head movement, and which depend on the velocity of rotation.  Low gain 

measurements may be representative of bilateral chronic vestibular weakness, whereas 

increased gain can be associated with central nervous system injury (Baloh, Yee, Kimm, 

& Honrubia, 1981).  And lastly, the measurement of symmetry evaluates and compares 

clockwise and counterclockwise nystagmus.  When the chair is rotated in the clockwise 

direction, counterclockwise eye movements are generated, while rotations in the 

counterclockwise direction lead to clockwise eye movements.  In the earliest stages of 

acute, peripheral lesions, a significant asymmetry will be observed (Gans & Yellin, 

2007).  This asymmetry, however, is only present in the earliest stages of the lesion due 

to vestibular compensation occurring over time.  Additionally, patients with central 

lesions demonstrate persistent low-level asymmetry (Hamid, Hughes, Kinney, & Hanson, 

1986).  As evidenced by the previous information, SHA testing is an important 

component of the vestibular test battery as it can assist in finding vestibular deficits, 

particularly those at higher frequencies, that standard VNG testing cannot identify. 

 Another rotational chair test commonly utilized in the vestibular test battery is the 

velocity step test (VST).  VST measures the decay rate of nystagmus following an abrupt 

angular acceleration or deceleration (Brey et al., 2008).  This decay is defined as the time 

required for the nystagmus to reduce to 37% of its maximum value.  Similar to SHA 

testing, eye movements are recorded and analyzed.  Patients should be instructed that the 

chair will rotate in one direction, clockwise or counterclockwise, for approximately 45-60 

seconds.  At the end of this time window, the chair will abruptly decelerate and 
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movement will cease.  During this time, the patient’s eye movements will be recorded for 

another 30-60 seconds.  It is important to instruct the patient keep his or her eyes wide 

open even after the chair stops rotating.  Once the eye movements have been recorded, 

the test is repeated in the opposite direction.  Lastly, similar to SHA testing, VST can also 

include a fixation test to determine if the nystagmus can be suppressed following 

rotational stimulation.  Following the VST, information about gain, asymmetry, and time 

constants are obtained through analyses to determine vestibular abnormality 

(Handelsman & Shepard, 2008).  For instance, when time constants are lower than 

normal, this indicates an abnormality in the velocity storage mechanism, which is most 

consistent with peripheral involvement.  Additionally, symmetry can be analyzed to 

determine if one rotational direction produces stronger nystagmus than another.  If this is 

the case and an asymmetry is noted, it is possible to determine which peripheral system 

has the abnormality based on the direction and gain of the nystagmus.  Similar to SHA 

testing, the VST has the advantage of testing the vestibular system at higher velocities 

and frequencies than the VNG test. 

 One test that is often times performed in the VNG test battery, but in actuality 

should be performed with a rotational chair is the optokinetic test.  As previously 

mentioned, the only way to truly test the optokinetic pursuit system is in a darkened 

enclosure with a rotational chair.  The reason for this is because this type of enclosure is 

the only environment that will produce the patient’s sensation of turning (Brey et al., 

2008). However, because this is routinely measured during VNG testing, it is not often 

utilized with a rotational chair.  If performed during rotational chair testing, the test is 

carried out with the patient’s chair fixed and pointed away from the door of the enclosure.  
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A rotating visual stimulus is projected on the wall from a sphere or drum above the 

patient’s head.  Stimuli are presented horizontally from right to left for approximately 20 

seconds and then left to right for the same amount of time.  The stimuli are presented at a 

slow speed of 20 degrees per second and a fast speed of 40 degrees per second (Gans & 

Yellin, 2007).  The patient is encouraged to keep his or her eyes wide open and eye 

movements are recorded throughout the duration of the test.  Results of the eye 

movements are then analyzed for symmetry in each pursuit direction.  If an asymmetry is 

observed, this may be indicative of a central nervous system abnormality or a peripheral 

lesion when the stimulus moves in the direction of an uncompensated or active unilateral 

weakness (Leigh & Zee, 1991).  As evidenced by the previous information, optokinetic 

testing is a useful test in a vestibular test battery, regardless of how it is performed.  That 

being said, it really should be performed within the rotational chair test battery as it more 

accurately tests the optokinetic reflex.  When testing this reflex with only a light bar, it 

actually becomes a visual tracking test, rather than an optokinetic pursuit test (Brey et al., 

2008).  Therefore, to ensure best practice during vestibular testing, optokinetic testing 

should be performed within the rotational chair test battery. 

   Vestibular-evoked myogenic potential (VEMP) testing and computerized 

dynamic posturography (CDP) are two additional tests that can be performed as part of a 

vestibular test battery.  While these tests are typically not performed on a routine basis, 

simply due to both requiring specialized equipment, they still provide useful information 

regarding vestibular system function when utilized.  VEMP testing focuses on the 

vestibulocollic reflex (VCR), which is located between the saccule otolith organ and the 

sternocleidomastoid (SCM) muscle (Gans & Yellin, 2007).  Essentially, VEMP testing 
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reflects vestibular system activity that is elicited by high intensity sounds and is measured 

as a change in muscle potentials within the neck (Hall, 2007).  One advantage of utilizing 

VEMP testing is the ability to detect lesions in the saccule, inferior vestibular nerve, and 

the lower brainstem (Gans & Yellin, 2007).  VEMP testing involves placing electrodes 

on the patient’s forehead and on the patient’s SCM muscles in order to record a response.  

While there is much variation among laboratories in terms of electrode placement and 

VEMP protocol, the important component is to ensure proper electrode placement so as 

to maximize the response of the SCM muscle contraction.  Additionally, some 

laboratories will have patient’s lie in a supine position and raise his or her head to 

contract the SCM muscle, while other facilities will simply have the person sit upright 

and turn his or her head to contract the muscle.  Regardless of which method is used, the 

focus should be on maximizing muscle tension in order to record a robust response.  An 

acoustic stimulus, usually a click or tone burst, is presented to the patient via insert 

earphones or traditional headphones.  Stimulus intensity levels used during VEMP testing 

are usually 95 to 100 dB nHL.  However, with certain disorders, such as superior 

semicircular canal dehiscence, intensity levels can be as low as 70 to 75 dB nHL 

(Brantberg, Bergenius, & Tribukait, 1999).  When recording the right SCM muscle 

response, the acoustic stimulus is presented to the right ear while the patient turns his or 

her head left to properly contract the right SCM muscle.  When recording the left SCM 

muscle response, the auditory stimulus is presented to the left ear and the patient turns his 

or her head to the right.  Once muscle responses have been obtained for each SCM, 

results can be analyzed for abnormalities.  Analysis of the VEMP is typically based on 

latency or amplitude.  Additionally, the VEMP test has an advantage over other evoked 
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potentials as it is a robust response with clearly definable P13 and N23 components 

(Gans & Yellin, 2007).  The P13 and N23 components refer to the pattern of the VEMP 

response with a positive peak in the 13 millisecond latency region and then a negative 

trough at approximately 23 milliseconds (Hall, 2007).  Also, because the VEMP test is 

unique in its ability to evaluate the VCR pathway, it provides useful diagnostic 

information on both otologic and neurologic conditions, such as Meniere’s disease, 

vestibular neuritis, multiple sclerosis, and cerebellar disease (Shimizu, Murofushi, 

Sakurai, & Halmagyi, 2000; Zapala & Brey, 2004). 

 CDP is a test of balance function that assesses the patient’s ability to use sensory 

input to coordinate motor responses (Nasher & Peters, 1990).  While the majority of the 

previous vestibular tests focus on peripheral and central components of the vestibulo-

ocular system, CDP evaluates an individual’s ability to utilize information from the 

visual, vestibular, and somatosensory systems, both individually and together, to 

coordinate motor responses to maintain balance (Nasher, 1971).  Results from CDP 

provide unique information that can be compared with other tests of balance function to 

qualitatively determine the nature of a balance disorder (Nasher & Peters, 1990).  In order 

to perform CDP, the patient must be able to stand upright and unassisted with eyes open 

for periods of at least one minute (Gans & Yellin, 2007).  Additionally, the patient should 

be informed that CDP is a test of balance that is evaluated with a movement-sensitive 

platform, and at times, the platform and visual surround will move and thus, cause the 

patient to move.  The patient should also be instructed that CDP has multiple subtests and 

that each one is more challenging than the prior one.   
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 Preparation for CDP includes fitting the patient with a safety harness that 

connects to an overhead bar (Gans & Yellin, 2007).  The harness should be fit 

appropriately to the patient so that the patient’s weight is transferred through the patient’s 

lower trunk and so that the patient still has freedom of motion.  If the overhead straps are 

too tight, this could assist the patient in remaining upright and bias the results of the test.  

Once the patient has been fit with the harness, the next step involves positioning the 

patient’s feet on the platform.  Proper alignment involves directly centering the medial 

malleolus of the ankle joint over a marking stripe that transects the two footplates.  Once 

the patient’s feet have been properly aligned, testing may commence.   

 As previously mentioned, CDP has several subtests and these subtests are divided 

into two parts: the sensory organization test (SOT) and the motor control test (MCT) 

(Hunter & Balzer, 1991).  The SOT is comprised of six conditions that assess the 

patient’s ability to integrate correct sensory information, while ignoring erroneous 

sensory cues (Gans & Yellin, 2007).  Condition 1, which is the easiest condition, involves 

the patient standing on the force plate with eyes open.  Condition 2 is essentially the same 

as condition 1, however the patient’s eyes are closed and thus visual information is 

eliminated.  Condition 3 has the patient’s eyes open and the force plate stable, however 

the visual surround moves and provides inaccurate visual input.  In condition 4, the 

patient’s eyes are open and the visual surround is stable, however the support surface 

moves providing the patient with inaccurate proprioceptive cues.  For condition 5, the 

eyes are closed and the force plate moves.  This eliminates visual and somatosensory 

information and ensures that the patient is completely dependent on his or her vestibular 

system.  In condition 6, eyes are open and both the force plate and visual surround move.  
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Once again, the patient is forced to rely on vestibular information as inaccurate visual and 

somatosensory cues are being introduced to the patient.  Ultimately, the patient is 

assessed in each condition with three separate 20 second trials.            

 In addition to the SOT subtests, CDP also includes the MCT, which evaluates the 

patient’s responses to perturbations of the force plate (Gans & Yellin, 2007).  Two types 

of perturbations are used.  The first part of the test introduces random small, medium, and 

large forward-and-backward translations in the horizontal direction.  This is dependent on 

the patient’s height and the goal is to evaluate the patient’s ability to adapt to these rapid 

and abrupt movements.  The second part evaluates the patient’s ability to adapt when the 

support surface is shifted to an angle and the foot plate forces the toes upward or 

downward.  Three presentations of each translation stimulus are performed and results 

are averaged to characterize an accurate response. 

Once the SOT and MCT have been completed, results are interpreted to determine 

if a vestibular abnormality exists.  To truly analyze CDP results, response patterns of both 

the SOT and MCT should be analyzed (Gans & Yellin, 2007).  For example, prolonged 

latencies when measuring a patient’s ability to adapt to rapid forward-and-back 

translations during the MCT are indicative of extravestibular central nervous system 

lesions (Voorhees, 1989).  Additionally, responses from the MCT can also provide 

insight into a patient’s ability to perform daily balance tasks and can be used in the 

development of vestibular rehabilitation programs (Horak, Shumway-Cook, Crowe, & 

Black, 1988).  For the SOT, many of the subtests can be compared to one another to 

determine where exactly the deficit is occurring.  For example, if the patient performs 

poorly on conditions 5 and 6, condition 5 only, or condition 6 only, this suggests 
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peripheral vestibular deficits because visual and somatosensory input is in accurate in 

those conditions.  Therefore, the patient has to rely solely on vestibular information to 

maintain his or her balance (Dickins, Cyr, Graham, Winston, & Sanford, 1992).  Results 

of the SOT can also identify patients who are faking or exaggerating their true vestibular 

ability.  If a patient performed better than or equally as well on conditions 4, 5, and 6 as 

on conditions 1, 2, and 3, this is indicative of a patient who is providing inaccurate 

responses as these responses are physiologically impossible (Nasher & Peters, 1990).  As 

evidenced, CDP testing provides unique information that can be used to confirm or 

support the results of other vestibular tests.  While there are some drawbacks to utilizing 

this type of testing, such as size and cost of the equipment, CDP testing, when accessible, 

can be a very useful tool for evaluating vestibular function.        

Aging and the vestibular system 

 Developing tests that can accurately assess the aging vestibular system is 

extremely important as there is a considerable amount of research that focuses on the 

relationship between age and a decline in vestibular function.  One current topic of 

interest regarding the elderly population and the vestibular system is the high number of 

falls that occur in this population every year.  These falls have been associated with 

dizziness, balance disorders, and vestibular dysfunction (Agrawal et al., 2009; Alrwaily 

& Whitney, 2011).  Many studies have attempted to identify the specific anatomic 

changes that occur in the vestibular system during the aging process.  In fact, significant 

cell and neuronal loss with increasing age has been documented in numerous vestibular 

structures, such as the saccule, utricle, cristae ampullares of the vestibular periphery, 

primary afferent neurons, and Scarpa’s ganglia (Ishiyama, 2009; Park, Tang, Lopez, & 



 25 

Ishiyama, 2001; Rosenhall, 1973).  Initial research from Schuknecht (1964) and Reske-

Nielsen and Hansen (1964) found normal vestibular hair cell populations in an older adult 

cohort.  However, the results of these studies may have been limited by the test 

population and by the tools available during that time for vestibular research.  As time 

progressed, the number of studies in this research area increased and these studies were 

better able to evaluate the effects of age on vestibular function.  For example, Bergstrom 

(1973) counted nerve fibers associated with different branches of the vestibular nerve in 

different age groups of men and found a reduction in the number of nerve fibers of up to 

37% in the oldest population.  Research from Rosenhall (1973) supported this conclusion 

and reported as much as 20% of a reduction in the hair cell populations of the maculae 

with increasing age.  Additionally, Johnsson (1971) reported saccular degeneration in an 

older population along with a moderate nerve degeneration in utricular maculae.  From 

these results, researchers were able to identify the connection between BPPV and a 

decrease in otolithic crystals.  Lim (1984) proposed that the association between BPPV 

and aging resulted from pathology of otoconia. With increasing age, the otoconia are 

reduced in density and as a result, older adults are more likely to be predisposed to BPPV 

(Ishiyama, 2009).     

 In addition to the aforementioned physiologic changes, there is also research to 

support the relationship between balance and gait disorders and changes in cerebral white 

matter.  According to Guttmann et al. (2000), decreased white matter volume appears to 

be age-related and plays a role in the mobility impairments seen in the older adult 

population.  Research from Whitman, Tang, Lin, and Baloh (2001) and Baezner et al. 

(2008) also found associations between degeneration of cerebral white matter and gait 
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and balance dysfunction.  Baezner et al. (2008) utilized a large sample size of 639 non-

disabled older adults ranging in age from 65-84 years and found a strong association 

between the severity of age-related white matter changes and the severity of gait and 

motor compromise.  Similarly, research from Whitman et al. (2001), found a more 

modest relationship between gait and balance dysfunction and cerebral white matter 

disease.  It is evident that the aging process plays a role in the anatomic changes seen in 

older adults’ vestibular structures.       

 While it is clear that the aging process plays a role in the degeneration of both the 

vestibular periphery and central nervous system, one area where there is a significant 

amount of contrasting research is how this degeneration affects results of standard 

vestibular tests.  One vestibular test that has conflicting reports is caloric testing.  As 

previously mentioned, bithermal caloric testing is one of the more important components 

of the VNG test battery.  While some research documents age-related changes on caloric 

performance, other studies report that caloric response does not decline with age.  Early 

research showed that caloric responses increased in intensity up to the age of 40 years, 

and then progressively decreased with increasing age (Mulch & Petermann, 1979; Van 

der Laan & Oosterveld, 1974).  Additionally, Maes et al. (2010) found subtle age-related 

changes on caloric tests, more prominently during warm irrigations.  Conversely, 

Mallinson and Longridge (2004) proposed that caloric responses do not reflect 

anatomically documented age related senescence of the vestibular system.  Furthermore, 

they suggested that there is no great parallel between caloric testing and imbalance in the 

elderly.  Another recent study from Zapala, Olsholt, and Lundy (2008) also revealed no 

consistent trend with age in any of the caloric response parameters.  It is important to 
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note that while caloric testing is a useful test, it may not be a true reflection of age-related 

vestibular degeneration because it really only evaluates the integrity of the horizontal 

semicircular canal.  Based on this conflicting research, one could infer that while caloric 

testing is currently the gold standard of vestibular testing, it may not be as sensitive to 

identifying the age-related changes in vestibular function as previously thought. 

 Similar to caloric research, studies on rotational chair tests also yield differing 

opinions on whether age-related changes in vestibular function can be demonstrated.  

Maes et al. (2010) found no significant age trends for any response parameter for both the 

SHA test and the VST.  Contrastingly, decreased gain values with advanced age have 

been reported for SHA testing in the lower frequencies (Wall, Black, & Hunt, 1974), in 

the higher frequencies (Li et al., 1991) and at higher velocities (Paige, 1991).  

Interestingly, although Wall et al. (1974) were able to demonstrate age-related changes 

for the parameter of gain during SHA testing, they were not able to demonstrate any age-

related changes for the parameter of phase.  For VST, DiZio and Lackner (1990) showed 

shorter time constants for younger subjects than older subjects, while Furman and 

Redfern (2001) found no age-related trends for that same parameter.  Additionally, it 

should be noted that most of the previously described age-related trends were relatively 

small.  Obviously, research on age-related changes with respect to rotational chair tests 

produces variable results.  Therefore, it is reasonable to surmise that rotational chair 

testing is also limited in its ability to detect age-related changes in vestibular function.  

As a result, there seems to be a need for a test that can more readily identify these 

changes within the vestibular system. 
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 VEMP testing also produces varying reports on age-related trends.  For example, 

there are many studies that have documented a decrease in the amplitude of the VEMP 

response with advanced age (Ochi & Ohashi, 2003; Welgampola & Colebatch, 2001; 

Zapala & Brey, 2004).  While there appears to be a consensus on the parameter of 

amplitude with respect to VEMP responses, there appear to be some contrasting reports 

on the parameter of latency.  Basta, Todt, and Ernst (2005) were unable to demonstrate 

age-related latency differences, while Welgampola and Colebatch (2001) demonstrated 

significant prolonged N1 latency values with increasing age.  Zapala and Brey (2004) 

also reported increased P1 and N1 latencies in older adult subjects.  Additionally Maes et 

al. (2010) found age-related effects on the following VEMP response parameters: 

amplitude, threshold, and latency.  They found decreased amplitudes, increased 

thresholds, and decreased N1 latencies with advanced age.  However, there is an 

important caveat to utilizing VEMP testing to evaluate age-related changes in the 

vestibular system.  One issue that complicates the evaluation of VEMP responses for age-

related changes is that the VEMP is assessed through muscle contractions, and with 

increasing age there is a decrease in muscular function (Hagberg et al., 1989; Meredith et 

al., 1989; Tomonaga, 1977).  Therefore, it is difficult to account for this variable when 

determining whether VEMP responses are influenced by age-related changes.  It is 

evident, due to the contrasting perspectives on current standard vestibular tests, that no 

test will perfectly identify vestibular dysfunction and how this dysfunction affects 

balance in older adults.  Development of a more sensitive and specific vestibular test for 

elderly patents is necessary.    
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Psychophysics 

 Psychophysics is a branch of science that studies the relationship between the 

psychological (subjective or perceptual) and physical aspects of a stimulus (Yost, 2000).  

Historically, the methods of psychophysics were developed through two approaches. The 

first approach focused on discrimination.  Through discrimination tasks, experimenters 

were able to obtain an estimate of the smallest difference in a stimulus parameter to 

which the auditory system is sensitive.  Thus, experimenters were interested in the 

subject’s sensitivity to the stimulus change, rather than his or her ability to respond to the 

experimental situation, such is the case with response proclivity or response bias.  

Ultimately, discrimination tasks are designed to obtain a measurement of sensitivity and 

to reduce the effects of response bias. 

 The second general class of psychophysical procedures are called scaling 

procedures (Yost, 2000).  Scaling procedures are typically focused on obtaining 

information about various subjective or psychological aspects.  Specifically, scaling 

techniques go beyond measuring whether a subject can detect an auditory stimulus or 

discriminate between two auditory stimuli, and focus on how the magnitude of a 

psychological percept changes as a physical parameter changes (Allen, 2007).  

Magnitude estimation, ratio comparison, and cross-modality matching are three scaling 

techniques that require a subject to judge the magnitude of a subjective attribute, such as 

loudness or timbre (Yost, 2000).  From these techniques, experimenters are able to 

develop a scale that relates the perceived magnitude, for example, loudness, to a physical 

stimulus value, such as level in decibels.  Similar to the aforementioned psychophysical 

approach of discrimination, developing a scale must be done cautiously as there are many 
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potential sources of bias (Pradhan & Hoffman, 1963).  One way to reduce biases 

associated with scaling procedures is to use matching tasks.  If loudness scales are 

developed by matching similar stimuli, such as pure tones that vary slightly in frequency, 

the effects of bias will be much smaller (Allen, 2007). 

 The principles of psychophysics are considered the basis of modern day 

audiologic practice.  For example, current audiologic techniques for obtaining a person’s 

auditory detection and discrimination thresholds stem from historic psychophysical 

methods.  Method of limits, method of adjustment, and method of constant stimuli are all 

examples of psychophysical methods that can be utilized to collect detection and 

discrimination data.  Each method has its own set of advantages and disadvantages; 

however each one shares a common denominator of having helped shape the practice of 

modern day audiology.  These methods will be described in more detail below. 

In the method of limits, the experimenter presents auditory stimuli in either 

ascending order, which involves increasing the intensity, or descending order, which 

involves decreasing the intensity (Levitt, 1971; Nachmias & Steinman, 1965).  The 

listener is simply asked to respond with yes or no, depending on whether he or she heard 

the stimulus.  To ensure efficiency during this sequence, the low and upper stimulus 

values are determined prior to testing (Allen, 2007).  This allows stimulus values both 

above and below threshold levels to be measured.  To determine threshold level, the 

experimenter averages the stimulus values associated with changes in the listener’s 

responses, from detecting a signal to being unable to detect a signal, in both the 

ascending and descending series.  One advantage of this method is that a full range of 

performance values are able to be obtained.  However, as evidenced by the method of 
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limits protocol, one large disadvantage of this procedure is that it can be inefficient if the 

sole information of interest is threshold determination.  Because of this, many variations 

of the method of limits procedure have been developed, and it is from these variations 

that today’s pure tone thresholds for audiologic evaluations are obtained.  One common 

variation is a staircase procedure, which involves an algorithm that is used to select 

stimulus values for each trial based on the listener’s responses on preceding trial or trials.  

For example, in a one-down, one-up procedure, the stimulus value is decreased every 

time the listener correctly responds to the stimulus and is increased every time the listener 

incorrectly responds or fails to respond to the stimulus.  This results in a threshold value 

that corresponds to 50% correct performance.  This variation of the method of limits 

procedure has helped professionals in the field of audiology obtain thresholds in a more 

efficient fashion as it places nearly all trials near the level of threshold, rather than 

including values that deviate significantly, in either direction, from threshold.   

The method of adjustment is a variation of the method of limits and places more 

responsibility on the listener rather than the experimenter.  For this procedure, the listener 

varies the level of the stimulus until it appears equal to or just noticeably different from 

the reference stimulus (Cornsweet, 1962; Yost, 2000).  For example, in the measurement 

of detection thresholds, the stimulus may gradually increase or decrease, with the 

direction of change being dictated by the listener.  The instructions to the listener are to 

keep the stimulus at a value that is just barely detectable by responding when he or she 

does and does not hear the signal (Goldstein, 2010).  Therefore, the intensity of the 

stimulus may gradually increase until the listener denotes, using a response button, that 

the stimulus was audible.  At that point, the intensity of the stimulus gradually decreases 
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until the listener releases the response button indicating that the stimulus is no longer 

audible.  Following this, the stimulus intensity begins to increase once again, and the 

whole procedure is repeated.  In order to determine threshold level, the experimenter 

must analyze the average change between successive responses.  This indicates audible 

and inaudible signal values and helps to determine the level at which the listener detects 

the stimulus.  While the method of adjustment may sound more efficient than the method 

of limits, it introduces a new source of bias by placing most of the responsibility on the 

listener.  For this reason, the method of adjustment is usually not the procedure of choice 

for obtaining threshold levels. 

Lastly, the method of constant stimuli differs from the aforementioned procedures 

because rather than estimating a single threshold value, the experimenter selects a variety 

of stimulus levels that are both above and below the actual threshold level (Masin & 

Fanton, 1989; Yost, 2000).  In this procedure, several stimuli are presented at each of the 

many stimulus values and the listener is asked to respond yes when the stimuli are 

audible and no when the stimuli are inaudible.  The performance is calculated for each 

stimulus value across a block of trials.  From this information, a psychometric function 

may be generated and threshold values can then be extrapolated from these fitted 

functions (Allen, 2007; Kingdom & Prins, 2010).  Similar to the method of limits, the 

method of constant stimuli can be rather inefficient due to the wide range of stimuli being 

presented to the listener.  However, unlike the method of limits, the method of constant 

stimuli has the advantage of reducing listener bias due to its ability to randomize the 

order in which those stimulus values are presented.   
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Many of today’s audiologic practices have been greatly influenced by the 

development and modification of these methods.  In current audiologic practice, the 

methods for obtaining detection thresholds for pure tone audiometry stem from these 

psychophysical principles.  During pure tone testing, thresholds are obtained, with 

threshold being defined as the lowest intensity at which a patient is able to respond to a 

stimulus 50% of the time [American Speech-Language Hearing Association (ASHA), 

2005].  The ability to acquire detection thresholds stems from modifications to the 

aforementioned psychophysical methods.  It is from these psychophysical procedures that 

pure tone audiometry has been developed.  In fact, pure tone audiometry has long been a 

vital component to the audiologic test battery.  According to Roeser and Clark (2007), 

pure tone audiometry is unequivocally the gold standard of every audiological evaluation.  

Results of pure tone testing can be used to make initial diagnoses of normal versus 

abnormal hearing sensitivity, including the type and degree of hearing loss when the 

results are not within normal limits.  From this, the audiologist can then determine 

whether additional audiologic testing needs to be performed or if the patient should be 

referred to a medical specialist, such as an otolaryngologist (ENT).  Additionally, based 

on the results of pure tone testing, audiologists can recommend treatment intervention, 

such as that of a hearing aid, assistive listening device, or cochlear implant.   

   Psychophysical methods have tremendously helped the field of audiology to 

develop clinical tools that accurately and efficiently evaluate auditory function.  Given 

that the auditory and vestibular systems are so closely related, one might infer that 

psychophysical methods should also be used to evaluate vestibular function.  However, at 

this time, it is not common practice to use psychophysical procedures to evaluate the 
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vestibular system.  One reason these methods have not been utilized is because vestibular 

functions are most commonly assessed by observation of the visual system/eye 

movements.  Nystagmus is an easy phenomenon for a clinician to observe, particularly 

spontaneous nystagmus.  For this reason, evaluating the vestibular system through 

psychophysical methods has not been necessary.  Conversely, psychophysical methods 

were necessary to the evaluation of auditory function because historically, auditory 

reflexes were not as accessible or easy to observe as vestibular reflexes.  Prior to the 

development of auditory evoked responses, the only method for evaluating a person’s 

hearing status was to obtain detection and discrimination thresholds using psychophysical 

techniques.  While audiology has continued to evolve and produce more sophisticated 

methods for the evaluation of hearing, pure tone testing still remains common practice 

and is essential to the audiologic test battery.  Another reason psychophysical procedures 

are not common for evaluating vestibular function is that these methods can be very time 

consuming.  Prior to modifications and adaptive procedures, psychophysical methods for 

audiology were inefficient and required a lengthy time commitment.  It was only after 

modifications that evaluation of the auditory system with these measures was practical 

and efficient.  Therefore, as other vestibular tests were able to better evaluate vestibular 

function in a more practical and efficient manner, psychophysical methods were not 

employed.  Lastly, because the vestibular system is easily modeled as a second-order 

differential equation, there was never any necessity to utilize psychophysical procedures.  

A differential equation is one where the value of a function is related to a differential of 

that function.  Essentially, models of the semicircular canals and the fluid inside of the 

canals act according to a differential equation.  Because we measure the function of the 
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horizontal semicircular canal by observing eye movements, these too, follow the concept 

of a differential equation.  Therefore, by seeing how the eye movements relate to the 

speed of the rotational chair, a calculation can be performed in order to determine the 

differential equation related to the eye movements.  The values of that differential 

equation have normal standards for most people, and thus, if the performance value falls 

outside the range of normal, the individual may have vestibular dysfunction.  Ultimately, 

by having the ability to simply perform a calculation that easily models the effects of a 

rotational chair test, it is easy to see why psychophysical testing has not been used for 

present day vestibular evaluations. 

With advancing age, anatomic degradation occurs in the vestibular structures.  It 

is also clear from the various research studies, that the majority of current standard tests 

of balance are not sensitive enough to reflect these age-related changes in vestibular 

function.  This is one reason why using psychophysical methods to evaluate the 

vestibular system might be useful.  It is possible that psychophysical testing may be more 

sensitive to vestibular dysfunction, particularly dysfunction found in older adults, than 

current vestibular tests.  Additionally, psychophysical testing may yield new information 

that has not been previously documented with other vestibular tests.  This information 

might help therapists and audiologists to better create and design vestibular rehabilitation 

programs.  Another reason it might be beneficial to use psychophysical testing is because 

it has been successfully used to evaluate function of the auditory system.  The auditory 

system and vestibular system are so closely related and if a certain type of test is able to 

efficiently and accurately evaluate the auditory system, one can infer that the same type 

of test may have the same success with the vestibular system. 
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Study Objective 

Psychophysical testing may provide additional or alternate information compared 

to current standard clinical tests of balance, particularly in the elderly population.  The 

present study had two goals: to determine if older subjects have poorer vestibular 

psychophysical thresholds than younger subjects, and to determine if psychophysical 

thresholds correlate with performance on standard tests of vestibular function. 
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CHAPTER 2 

 

 

METHODS 

 

 

 

 

Subjects 

 This study was approved by the Washington University School of Medicine 

Human Studies Committee.  Eighteen older adults between the ages of 63 – 84 years 

(mean = 71 years, standard deviation = 6.7 years) and thirteen younger adults between 

the ages of 20 – 25 years (mean = 22, standard deviation = 1.4 years) participated in the 

present study.  The older adults were recruited from Washington University’s Psychology 

Department older adult volunteer pool, while the younger adults were recruited from the 

Washington University community.  All subjects participated in the psychophysical 

testing portion of the experiment, however only the older adult cohort participated in the 

standard rotational chair testing, which included sinusoidal harmonic oscillation and steps 

of velocity.  One older adult and three younger adult participants were unable to complete 

the discrimination portion of the psychophysical experiment due to time constraints, and 

therefore, these results are documented with an n of 17 and an n of 10, respectively.  

There was no history of otologic disease, neurologic disease, or a history of falling 

among any of the participants. Pure tone average (500, 1000, and 2000 Hz) auditory 

thresholds of older adult subjects were better than 50 dB HL. No subject reported being 
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aware of motor noise from the custom-designed rotational chair or other possible motion 

cues. 

Psychophysical Testing 

 The experimental apparatus consisted of a customized race car seat rotated about 

the earth-vertical axis by an electric motor (Kollmorgen Goldstar DDR D063M7, 

Danaher Motion, Radford, VA).  Subjects were held in the chair using a four-point 

harness and were surrounded by foam padding to reduce proprioceptive feedback.  

Additionally, all subjects wore a blindfold to reduce the possibility of visual cues. 

Gaussian noise generated by Matlab (MathWorks, Natick, MA) was provided by 

headphones to prevent perception of external noise, such as motor noise (FM Basic 

26000, MSA Sordin, Värnamo, Sweden or MDR-7506, Sony, Japan).  Chair motion was 

generated by custom-written software in Matlab and sent to the chair controller via the 

Matlab Data Acquisition Toolbox in conjunction with a National Instruments Data 

Acquisition device (BNC2090, Austin, TX).  Details of this method have been published 

previously, including control experiments to verify that sensory cues were limited to 

vestibular input only (Mallery, Olomu, Uchanski, Militchin, & Hullar, 2010). 

 Two separate psychophysical experiments were performed as part of this study. 

Each experiment utilized a two-alternative, two-interval forced-choice paradigm. In this 

paradigm, the subject is tested using multiple trials, each consisting of a pair of sequential 

stimulus intervals termed the “reference” and the “comparison” intervals (Green & 

Swets, 1966; Macmillan & Creelman, 2005).  The “reference” stimulus usually has a 

constant amplitude, whereas the amplitude of the “comparison” stimulus varies among 

trials.  In this experimental design, one can measure the threshold as well as the minimum 
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difference in amplitude that is required for a subject to discriminate between two stimuli.  

For special instances when the amplitude of the reference is zero, this value is labeled as 

the detection threshold. 

 The threshold is defined as the difference between the reference and comparison 

amplitudes at which subjects correctly identify the comparison interval with a certain 

accuracy.  One way to determine a threshold is to use an “adaptive staircase” model in 

which the comparison stimulus starts well above the reference stimulus and is reduced 

until the subject correctly identifies the comparison interval a certain percentage of the 

time.  For the present study, a “three-down one-up” paradigm was utilized.  In this 

paradigm, when a subject correctly identifies the comparison interval three times in a 

row, the next trial is made more difficult by decreasing the comparison stimulus 

amplitude to a level closer to the reference amplitude.  Conversely, each time a subject 

does not respond correctly, the comparison stimulus amplitude is increased to make the 

next trial easier.  Ultimately through this paradigm, a value is reached at which the 

amplitude of the comparison stimulus is relatively stable across trials (Leek 2001).  The 

mathematics of the three-down one-up design ensures that this point of stability is the 

threshold where the subject is correct 79% of the time (Leek 2001).   

 The first psychophysical experiment included obtaining detection thresholds for 

all subjects. In the detection experiment, the reference velocity of the customized 

rotational chair was zero and the initial comparison velocity was 5 deg/sec.  The second 

psychophysical experiment involved acquiring discrimination thresholds for all subjects.  

For the discrimination experiment, the reference velocity was 60 deg/sec and the initial 

comparison velocity was 75 deg/sec.  The order of the two intervals was randomized for 



 40 

both psychophysical experiments and subjects were instructed to identify which interval 

was “faster” by responding with “one” or “two”.  The trajectories of these two paradigms 

are shown in Figure 1. 

 Standard Tests of Vestibular Function 

 All older adult subjects also underwent standard tests of vestibular function, 

including sinusoidal harmonic oscillation and steps of velocity rotational chair testing 

(System 2000, Micromedical Technologies, Chatham, IL).  Subjects were seated in a 

rotational chair in a completely darkened enclosure.  A safety belt was utilized to ensure 

that subjects were securely strapped to the chair. Additionally, subjects’ heads were 

stabilized in a head rest to ensure a head-upright position.  Subjects were fit with infrared 

goggles, which allowed the tester to monitor eye movements from outside the test 

enclosure.  A speaker was also located in the enclosure to ensure that subjects were in a 

two-way communication with the tester.  Rotations were performed with the subjects’ 

eyes open while performing mental alert tasks throughout the duration of the testing.  A 

standard calibration of horizontal eye movements was performed prior to each testing 

session.  

 First, all older adult participants were subjected to sinusoidal harmonic oscillation 

testing.  Each subject underwent testing at four different frequencies: 0.025, 0.05, 0.25, 

and 0.5 Hz.  Assessing multiple frequencies during sinusoidal harmonic oscillation 

testing is analogous to testing multiple frequencies during a hearing test, and provides a 

more complete picture of an individual’s vestibular function.  During each frequency, 

subjects were instructed to keep their eyes open and  
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Figure 1.  Stimulus trajectories.  Positive numbers demonstrate clockwise chair rotation.  

Panel A:  Detection paradigm.  In this example, the comparison interval, with a peak 

velocity of 2 deg/sec, occurs prior to the reference interval. The reference interval has a 

peak velocity of 0 deg/sec (stationary).  Panel B:  Discrimination paradigm.  In this 

example, the comparison interval has a velocity of 65 deg/sec and also occurs prior to the 

reference interval.  The reference interval in this example has a peak velocity of 60 

deg/sec. 
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perform mental alert tasks.  Once data were obtained for each frequency, an analysis of 

the measurements of gain, asymmetry, and phase were performed.  Gain measures the 

amplitude of nystagmus in response to head movement and depends on the velocity of 

rotation (Hirsch, 1986).  Symmetry evaluates and compares clockwise and 

counterclockwise nystagmus. And, phase measures the temporal relationship between the 

initiation of changes in head, or chair, movement velocity and changes in eye movement 

velocity (Gans & Yellin, 2007).   

 Following sinusoidal harmonic oscillation testing, older adult subjects performed 

VST.  VST is used to measure the decay rate of nystagmus following an abrupt angular 

acceleration, or deceleration, to the right or left in the rotational chair (Brey et al., 2008).  

For the present experiment, this test was performed at 0.5 Hz in both the clockwise 

direction and counterclockwise direction.  Subjects were instructed to keep their eyes 

open and perform mental alert tasks throughout the duration of testing, even following 

the abrupt deceleration of the rotational chair.  Similar to the sinusoidal harmonic 

oscillation testing, the components of gain, phase, and asymmetry were analyzed to 

determine normal versus abnormal vestibular function.           

Testing Sessions 

 Each subject was given the option to complete all testing in one day or to divide 

the testing into two separate sessions.  Subjects were encouraged to take breaks in 

between detection and discrimination experiments.  The total test time was approximately 

one hour for younger adult subjects and approximately three hours for older adult 

subjects. 
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Data Analysis 

 The compiled psychophysical threshold data was analyzed for statistical 

differences using the Mann-Whitney U test. Additionally, Spearman’s Rank Order 

correlation was utilized to determine correlations between psychophysical data and 

standard rotational chair measurements, such as VOR gain and phase.  
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CHAPTER 3 

 

 

RESULTS 

 

 

 

 

Psychophysical detection thresholds as a function of age 

 A scatterplot of vestibular detection thresholds for both younger and older 

subjects is shown in Figure 2.  The mean detection threshold (± SD) of the younger 

population was 0.73 ± 0.32 deg/sec, while the mean detection threshold for the older 

cohort was 1.09 ± 1.13 deg/sec.  While the detection results for the younger population 

are tightly grouped, the older population demonstrates more variability in thresholds, 

including two noticeable outliers.  However, there was no statistical difference between 

the thresholds of the two groups (Mann-Whitney, p = 0.575).       

Psychophysical discrimination thresholds as a function of age 

 A scatterplot of vestibular discrimination thresholds for both the younger and 

older populations is shown in Figure 3.  The mean discrimination threshold (± SD) of the 

younger population was 4.8 ± 1.87 deg/sec and of the older population was 5.99 ± 2.27 

deg/sec.  These results demonstrate more variability than the reported detection 

thresholds for both populations.  Additionally, there are three clear outliers for the older 

adult population.  Of the three discrimination threshold outliers and two detection 

threshold outliers identified among older subjects, only one represents the same 
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participant for the two data sets.  Lastly, there was no statistical difference between 

thresholds of the two groups (Mann-Whitney, p = 0.280). 

 

 

 

 

 

 

 

 

 

 

 



 46 

Psychophysical Detection Thresholds as a Function of Age
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Figure 2.  Detection thresholds as a function of age.  Diamonds represent older subjects 

and squares represent younger subjects.   
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Psychophysical Discrimination Thresholds as a Function of Age
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Figure 3.  Discrimination thresholds as a function of age.  Diamonds represent older 

subjects and squares represent younger subjects.   
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Psychophysical thresholds as a function of gain 

 Scatterplots of psychophysical thresholds as a function of VOR gain at 0.025 Hz 

and 0.5 Hz for older adult subjects are shown in Figures 4 and 5, respectively.  Gain 

represents the velocity of eye movement divided by the velocity of head movement.  

Therefore, a score of 1 is a perfect response and 0 is no response to rotational stimulation.  

Essentially, all older adult subjects had normal results as established by the normative 

data for gain at 0.025 Hz. (Micromedical Technologies, 2004).  Additionally, no 

correlation was found between gain at 0.025 Hz and psychophysical thresholds for 

detection (Spearman’s Rank Order, r= .336, p= .182) or discrimination (Spearman’s Rank 

Order, r= .083, p= .744).  There was, however, a mild correlation found between gain at 

0.5 Hz and psychophysical thresholds for detection (Spearman’s Rank Order, r= .559, p= 

.019).  Lastly, no correlation was found between gain at 0.5 Hz and psychophysical 

thresholds for discrimination (Spearman’s Rank Order, r= .337, p= .179).    

Psychophysical thresholds as a function of phase 

 Scatterplots of psychophysical thresholds as a function of rotational chair phase 

lead at 0.025 Hz and 0.5 Hz for older adult subjects are shown in Figures 6 and 7, 

respectively.  Phase lead is the value to which compensatory eye movements lead the 

movement of the head.  No correlation was found between phase lead at 0.025 Hz and 

psychophysical thresholds for detection (Spearman’s Rank Order, r= -.269, p= .288) or 

discrimination (Spearman’s Rank Order, r= -.116, p= .652).  Additionally, no correlation 

was found between phase lead values at 0.5 Hz and psychophysical thresholds for 

detection (Spearman’s Rank Order, r= -.106, p= .680) or discrimination (Spearman’s 

Rank Order, r= -.045, p= .854).  
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Psychophysical Thresholds as a Function 

of Phase Lead at 0.025 Hz
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Figure 4.  Psychophysical thresholds as a function of rotational chair gain at 0.025 Hz for 

older adult subjects.  The solid blue line represents the upper limit for normal detection 

thresholds (1.40 deg/s) and the solid pink line represents the upper limit for normal 

discrimination thresholds (9.62 deg/s).  Data points above these lines demonstrate 

abnormal thresholds.  The dotted black line represents the lower limit for normal gain 

(0.39) and data points to the right of this line demonstrate normal gain.   
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Psychophysical Thresholds as a Function 

of Gain at 0.5 Hz
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Figure 5.  Psychophysical thresholds as a function of rotational chair gain at 0.5 Hz for 

older adult subjects.  The solid blue line represents the upper limit for normal detection 

thresholds (1.40 deg/s) and the solid pink line represents the upper limit for normal 

discrimination thresholds (9.62 deg/s).  Data points above these lines demonstrate 

abnormal thresholds.  The dotted black line represents the lower limit for normal gain 

(0.5) and data points to the right of this line demonstrate normal gain.   
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Psychophysical Thresholds as a Function 

of Phase Lead at 0.025 Hz
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Figure 6.  Psychophysical thresholds as a function of rotational chair phase lead at 0.025 

Hz for older adult subjects.  The solid blue line represents the upper limit for normal 

detection thresholds (1.40 deg/s) and the solid pink line represents the upper limit for 

normal discrimination thresholds (9.62 deg/s).  Data points above these lines demonstrate 

abnormal thresholds.  The dotted black line represents the upper limit for normal phase 

lead (32 deg) and data points to the right of this line demonstrate abnormal phase lead. 
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Figure 7.  Psychophysical thresholds as a function of rotational chair phase lead at 0.5 

Hz for older adult subjects.  The solid blue line represents the upper limit for normal 

detection thresholds (1.40 deg/s) and the solid pink line represents the upper limit for 

normal discrimination thresholds (9.62 deg/s).  Data points above these lines demonstrate 

abnormal thresholds.  The dotted black line represents the upper limit for normal phase (8 

deg) and data points to the right of this line demonstrate abnormal phase lead values. 
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CHAPTER 4 

 

DISCUSSION 

 

 

 

 

Vestibular loss: Variable, not inevitable 

 

 The data indicate that generally, with the exception of a few elderly outliers, older 

adults perform similarly to younger adults on psychophysical detection and 

discrimination tasks.  These results suggest that vestibular dysfunction is not inevitable; 

that while some older adults demonstrate vestibular abnormalities, others are able to 

maintain relatively “normal” thresholds on psychophysical detection and discrimination 

tasks.  These results were not anticipated based on previous research from Baloh, 

Enrietto, Jacobson, and Lin (2001), who reported age-related changes in vestibular 

performance on VOR responses.  One reason for the contrasting results may be due to 

variability within the aging process itself.  As evidenced by the present data, the older 

adult population demonstrated greater variability on detection and discrimination tasks 

than their younger adult cohort.  These results suggest that the aging process is a unique 

process, and one that affects each person individually.  In fact, this variability is also 

exhibited in hearing research when older adults demonstrate variable responses to high-

frequency tonal stimuli (Pearson et al., 1995).  Regardless of the variability in the natural 
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aging process, the present data suggest that specific causes of vestibular loss in the older 

adult population may one day be identifiable, and eventually, treatable.   

Psychophysical thresholds and VOR 

 The data presented here also suggest that there is no relationship between VOR 

measurements of gain and phase and psychophysical thresholds.  Although a mild 

correlation was found between VOR gain measurements at 0.5 Hz and psychophysical 

thresholds for detection, it is evident that abnormal values on standard rotational chair 

tests do not guarantee abnormal thresholds on psychophysical tasks.  Because the test 

results did not correlate, this indicates that psychophysical testing may provide 

information not afforded by previous standard rotational chair tests.  For example, as 

demonstrated in the present data, the normal range of detection thresholds and 

discrimination thresholds at 0.5 Hz for younger subjects and the majority of older adult 

subjects were less than 2 deg/sec and less than 7 deg/sec, respectively.  These data ranges 

are much smaller than previously reported ranges of normal values for maximal eye 

speed during VOR-driven eye movements.  During standard clinical testing of earth 

vertical rotations at 0.2 Hz, the range of normal eye speed is more than 36 deg/sec 

(Baloh, Honrubia, Yee, & Hess, 1984).  Additionally, the frequency of 0.4 Hz elicits eye 

speeds of more than 18 deg/sec.  These differences suggest that the psychophysical 

thresholds utilized in the present study may represent a more accurate test with increased 

sensitivity and specificity for vestibular dysfunction than conventional rotational chair 

testing. 
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Differences between detection and discrimination 

 As previously mentioned, of the three discrimination threshold outliers and two 

detection threshold outliers identified among older subjects, only one represents the same 

participant for the two data sets.  The remaining two discrimination threshold outliers and 

one detection threshold outlier represented three different individuals from the older adult 

population.  These results imply that the two thresholds may measure similar, but not 

identical peripheral involvement to central vestibular function, and thus may offer 

complementary information.  This notion could be supported by current documentation 

on the workings of the vestibular periphery.  It has been reported that there are three 

different afferent nerve fibers that transmit rotational information to the brain (Baird, 

Desmadryl, Fernandez, & Goldberg, 1988; Hullar, Della Santina, Hirvonen, Lasker, 

Carey, & Minor, 2005).  Each afferent type is likely tuned to particular head motions, as 

suggested by Beraneck and Straka (2010).  As a result, “regular” afferents might indicate 

slow or low-frequency variations in amplitude, whereas “irregular” afferents might signal 

fast or high-frequency head motions (Sadeghi, Chacron, Taylor, & Cullen, 2007).  This 

suggested difference among afferent types is proposed to be the cause for different 

responses to head thrusts and low-frequency rotational chair movements.   

 Additionally, the majority of psychophysical studies on vestibular function in 

humans with normal vestibular abilities have focused on detection thresholds (Benson, 

Hutt, & Brown, 1989; Gianna, Heimbrand, & Gresty, 1996; Grabherr, Nicoucar, Mast, & 

Merfeld, 2008) although recently there has been more research dedicated to evaluating 

discrimination thresholds (MacNeilage, Banks, DeAngelis, & Angelaki, 2010; Mallery et 

al., 2010).  The finding in the present study that more information was provided by the 
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addition of discrimination thresholds, in tandem with detection thresholds, has been well-

documented in previous studies of auditory function (Erber, 1982; Hudgins, Hawkins, 

Kaklin, & Stevens, 1947;Thibodeau, 2007).  To truly evaluate a person’s auditory ability, 

it is important to not only obtain a person’s detection thresholds across a range of 

frequencies, but also to measure how the person is able to use those thresholds to 

understand more real-world applicable stimuli, such as a speech stimulus.  For example, 

the short increment sensitivity index (SISI) test measures cochlear damage in sensory 

hearing losses.  While a person may have detection thresholds within the normal hearing 

range as graphed on an audiogram, if a cochlear pathological condition exists, results on 

the SISI will be poor as a result of the cochlear pathology (Buus, Florentine, & Redden, 

1982a; Buus, Florentine, & Redden, 1982b).  In fact, these same principles can be 

extended to other sensory systems, including the visual system, where a loss of contrast 

sensitivity is an indicator of glaucoma (Hosking et al., 2001). 

Central function 

 Psychophysical testing can be used to measure peripheral vestibular function, 

however it may also provide pertinent information about the status of the central 

vestibular system.  Recent studies have demonstrated that psychophysical measures do 

not correlate well with the VOR, which is thought to be a relatively short reflexive circuit 

present at the brainstem level (Merfeld, Park, Gianna-Poulin, Black, & Wood, 2005a; 

Merfeld, Park, Gianna-Poulin, Black, & Wood, 2005b). The VOR depends on processing 

of vestibular signals in the brainstem and providing an output to motor neurons, which 

then guide eye movements (Grabherr et al., 2008).  Conversely, perceptual responses 

involve cortical evaluation of vestibular signals, which ultimately makes them different 
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from standard VOR.  This adds credibility to the idea that psychophysical measures may 

provide useful information not obtained through standard rotational chair tests, and also, 

that these measures may be sensitive enough to evaluate vestibular structures not 

previously tested. 

Limitations of the present study 

 The present study was a preliminary report of the effect of age on psychophysical 

vestibular measures of detection and discrimination.  One clear limitation of the study 

was the relatively small number of participants, for both populations, that were included 

in the data analysis.  Also, specific to the older adult population, there was a lack of 

diversity among the participants.  Although, there was a fairly wide age range in this 

population, the subjects who participated were healthy, independent, and active 

individuals who were research volunteers from the Washington University community.  

The current study did not include any person over the age of 84 or any one who lived in 

an assisted-living environment.  This may have attributed to the results that in general, 

older adults perform similarly on detection and discrimination tasks as younger adults. 

 Another study limitation was a lack of randomization among the psychophysical 

tests administered to subjects.  Although detection and discrimination thresholds measure 

two different responses, they are obtained in a similar fashion.  That being said, there 

may have been a learning curve for subjects during psychophysical testing, which may 

have influenced the test results.  The present study attempted to reduce this potential bias 

by providing patients with a few trial runs prior to each task; however it is still possible 

that patients felt more comfortable and improved in accuracy as the testing went on. 
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CHAPTER 5 

 

 

CONCLUSION 

 

  

 

 The present study had two objectives: to determine if older adult subjects have 

poorer vestibular psychophysical thresholds than younger adults, and to ascertain whether 

psychophysical measures correspond to performance on standard rotational chair tests in 

the older adult population.  Although there were no significant differences in 

performance on psychophysical thresholds between older and younger adults, this may be 

the result of the small number of participants included in the study and the relatively 

healthy older adult population utilized.  With regards to the few outliers identified in the 

older adult population, the significance of these results is unknown.  None of the subjects 

had a history of falling, however, the data collected did not indicate whether these 

individuals had adjusted their activities to prevent falls or if other sensory systems had 

been compensating for their vestibular loss.  Also, generally speaking, there was no 

correlation found between the measures of VOR and psychophysical thresholds, with the 

exception of a mild correlation between VOR gain and detection thresholds at 0.5 Hz. 

Despite this mild correlation, it is evident that vestibular abnormality on standard 

rotational chair tests does not indicate abnormality on psychophysical tests, and vice 

versa.  Overall, these results infer that psychophysical testing accesses different 

information than that obtained on standard rotational chair testing.  As previously 

mentioned, the need is great for more specific and sensitive vestibular tests for evaluating 
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the older adult population, particularly those individuals who are susceptible to falling.  

With more and more research being conducted in this area, it is promising that 

psychophysical tests, such as those reported here, may mature into new tools for clinical 

evaluation and may help to better identify older patients with vestibular loss who are at 

risk for associated morbidities due to falls.   
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