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ABSTRACT

Proper functionality is a necessity for systems used in safety-critical applications;

consequently, software in these systems is often subject to rigorous validation and for-

mal verification that aims at ensuring expected behavior. To aid in the design of these

systems, several synchronous programming languages exist for describing determin-

istic system models suitable for formal verification and validation. Examples of such

synchronous languages include SIGNAL, Lustre, MRICDF, and Esterel. Common

application domains for synchronous programs include avionics, automotive control,

process control, and defense systems. In many cases, rigorous formal verification of

these systems is unfeasible because the methods, such as theorem proving and model

checking, are too expensive. A theorem proving approach requires a great deal of

user involvement and expertise, and a model checking approach may not be feasible

on systems of substantial complexity due to computation constraints. This thesis

presents the design, implementation, and evaluation of SAGA, a prototype tool for

the automated validation of synchronous reactive embedded systems. SAGA shifts

the testing effort associated with critical systems from creating individual test cases

manually to reasoning about the safety and environment properties of a system. The

approach SAGA takes is to generate relevant inputs to the system-under-test from a

user-specified environment description, and to validate the resulting system behavior

against user-specified safety properties. This overview of SAGA includes a thorough
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user’s guide and important implementation details. Additionally, the validation pro-

cess with SAGA is qualitatively assessed. The assessment is done through a case

study involving the celebrated steam boiler control specification problem. Results

from this case study reveal the utility of SAGA in exposing non-trivial system errors.
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CHAPTER 1

INTRODUCTION

1.1 Problem Statement and Motivation

Proper functionality is a must for systems used in safety-critical applications;

consequently, software in these systems is subject to rigorous validation and formal

verification that aims at ensuring expected behavior [21, 1, 16]. The rise in autonomy

in modern-day embedded systems has been accompanied by a rise in software com-

plexity, which has made the verification and validation of these systems an increasing

challenge [24, 19]. The failure of such systems, particularly in safety-critical appli-

cations, can result in serious injury, loss of life, environmental damage, or negative

economic repercussions [15, 9]. According to the National Institute of Standards and

Technology, in 2002 the cost to the US economy due to software errors was estimated

to be $59.5 billion [27].

The problems associated with current-day verification and validation (V&V) meth-

ods also concern national security. In Technical Horizons, a report establishing the

vision for U.S. Air Force key science and technology focus areas for 2010-2030, V&V

is highlighted as a main research focus area [24]. The relative ease with which modern

autonomous systems can be developed poses an advantage to adversaries who may

choose to field such systems without the burden of ensuring them trustworthy [24].
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In many cases, rigorous formal verification is unfeasible because the methods,

such as theorem proving and model checking, are costly [23, 10]. The type of costs

associated with each method varies based on the type of formal verification being

performed. A theorem proving approach requires a great deal of user involvement

and expertise [10]. A model checking approach may not be feasible on systems of

substantial complexity due to computation constraints [10]. Figure 1.1 illustrates the

state space explosion problem associated with model checking. The approach taken

in model checking is to conduct an exhaustive exploration of the program state space;

therefore when given an automaton A with M number of states and n Boolean inputs,

the state space S of A that must be explored grows exponentially as the number of

inputs n increases as follows: S(A) = M ∗ 2n.

Figure 1.1: Exponential Growth of Automaton State Space

1.2 Contribution

The primary contribution of this thesis is SAGA, the SIGNAL Auto-Generated

Assayer. SAGA is a prototype tool designed and implemented for the automated
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validation of synchronous reactive embedded systems. It provides a framework which

shifts the testing effort associated with critical systems from manually creating indi-

vidual test cases to reasoning about the safety and environment properties of a system.

The purpose behind the development of SAGA is to provide a means towards increas-

ing the effectiveness and lessening the effort associated with the validation process of

modern-day embedded systems.

The operation of SAGA is fully defined in this thesis. A detailed overview describes

the validation process in SAGA, from system environment simulation to checking

system safety properties. A thorough guide to using SAGA is also included. In the

guide, a cruise control system is used to illustrate a complete working example.

Finally, a qualitative assessment of SAGA is done through a case study. The case

study consists of the application of SAGA to the celebrated steam boiler controller

specification problem. For the purpose of this case study, an implementation of the

steam boiler controller was developed using the SIGNAL language. Using safety prop-

erties derived directly from the specification, the system is validated in two scenarios:

(i) a realistic runtime environment, where the typical operation of the system can

be inspected and (ii) a stress scenario in which threshold values are exceeded and

boundary operating cases are observed.

1.3 Related Work

The motivating purpose behind the development of synchronous languages has

been to provide a suitable means for correctly implementing safety-critical systems,

hence their formal verification and validation has been a research subject of great

attention. Of these languages, Lustre has received the most interest from industry
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and academia due to its successful commercialization [4]. Many of the automatic

testing tools developed for reactive systems are therefore for Lustre programs. Some

of these tools include Lutess, Lurette, and GATeL [4].

An overarching theme in automated validation is the use of synchronous ob-

servers as established in [18]. This approach lends itself adequate for synchronous

programs since communication among synchronous processes is an ordered procedure

that avoids the problem of non-determinism in the interleaving of asynchronous pro-

cesses. Many of the tools for Lustre take a monoformalistic approach, where the test

generator is specified using the same language as the system programming language.

One such approach is done in [17]. Test generation in [17] is done by specifying a

set of Lustre invariants which impose constraints on the possible input vectors that

a random generator may produce, and analyzing the runtime behavior with safety

properties (also specified in Lustre). This approach has the obvious advantage that a

user won’t need to learn an additional specification language, but may in turn limit

the overall capabilities of a tool.

Both Lutess and Lurette use synchronous observers and a monoformalistic test

specification with language extensions. The testing methods they adopt are random,

property-guided, operational profiled-based, and pattern-based testing [4, 25]. The

tool GATeL takes a different approach. Given a specified property, GATeL provides a

sequence of input vectors which will arrive the program from an initial configuration

to a state which will test the property. GATeL therefore requires the full specifica-

tion of the system-under-test in order to find such a sequence of input vectors [4].

Currently, Sigali is the only verification tool available for SIGNAL programs, and

is included in the Polychrony Toolset. Sigali, however, does not include automatic
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testing capabilities [7]. No other tools for SIGNAL currently exist in the domain of

this work.

1.4 Thesis Organization

The work presented in this Thesis is organized as follows:

• Chapter 2 gives an introduction to the synchronous languages and the syn-

chronous approach to validation. A brief overview of the SIGNAL language is

given and a cruise control system is presented as an example SIGNAL program.

• Chapter 3 provides an overview of SAGA and defines its approach to environ-

ment simulation and safety validation.

• Chapter 4 serves as a guide for using SAGA by providing a definition of its

syntax and required file formats. A complete example of a validation session on

the cruise control system is included.

• Chapter 5 presents a case study on the celebrated steam boiler controller spec-

ification problem as a qualitative assessment of SAGA.

• Chapter 6 describes important design decisions and implementation details of

SAGA.
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CHAPTER 2

BACKGROUND AND THEORY

2.1 Synchronous Programming Languages

The synchronous programming languages provide a favorable approach to describ-

ing reactive embedded systems [13, 11, 5]. A reactive system is one that interacts

with its environment by producing a response to every event. In particular, the sys-

tem must properly respond to the environment before a second event acts upon it;

therefore, reactive systems are typically subject to strict timing constraints, and re-

quire concurrent determinism [22, 13]. The synchronous languages provide means for

ensuring concurrent determinism and abstracting timing requirements from the soft-

ware specification of a system [13, 5]. The synchronous deterministic system models

are suitable for formal verification and validation, and are therefore commonly used

in specifying safety-critical applications [5, 8]. Some synchronous programming lan-

guages include Esterel, SIGNAL, Lustre, Argos, and MRICDF [13, 8]. Common appli-

cation domains for synchronous programs include signal processing systems, avionics,

automotive control, nuclear power control, and defense systems [28, 26].
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2.1.1 Synchronous Hypothesis

Synchronous languages vary in programming style, but are all based on the same

computation model. This computation model is founded on the synchronous hypoth-

esis. The synchronous hypothesis states that computation and communications are

instantaneous from the point of view of logical time [5, 12]. Figure 2.1 illustrates the

concept of synchronous computation.

Figure 2.1: Synchronous Software Operation

The synchronous model is fundamentally a time abstraction that assumes the

hardware timing constraints are met by the system [11]. A step in execution denotes

a logical instant in time. Each step in a synchronous system is an ordered sequence

consisting of the reception of inputs, the internal program computation, and the

generation of output values. The execution of a synchronous program consists of a

sequence of steps.
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2.1.2 Synchronous Validation

The synchronous paradigm is suitable for automated validation due its inherent

determinism. An overarching theme in automated validation of synchronous programs

is the use of synchronous observers as established in [18]. By observer, it is meant a

second program that monitors the runtime behavior of the program under test [14].

This approach is adequate for synchronous programs since communication among

synchronous processes is a strict sequence of atomic steps that avoids the problem of

non-determinism in the interleaving of asynchronous processes [14].

More specifically with reactive systems, the synchronous observers are an envi-

ronment property observer and a safety property observer that work in conjunction

with a test generator. The purpose of an environment observer is to ensure that

only relevant test cases are produced by the test case generator. In practice, this is

typically implemented by specifying environment test profiles. Given a sequence of

test cases, the purpose of a safety observer is to ensure the system behavior meets

specified safety properties; therefore, rather than explicitly providing a test suite, a

collection of invariant safety properties must be specified.

2.2 SIGNAL

SIGNAL is a polychronous (i.e. synchronous, multi-clock) dataflow specification

language. Polychronous components allow multiple clock rates, and are therefore

suitable for describing distributed systems [13, 12]. In a dataflow description of a

program, each concurrent statement can effectively have a different clock by having

dependencies on different signals. This concept is often found in hardware description

languages, where a statement is updated only when an event, such as a rising-edge,

8



Construct Type Syntax
Parallel Composition (| P | Q |)

Restriction P where x

Assignment y := x

y := F(x1,x2,...,xn)

Delay Assignment y := x $ init c

Sampling Assignment y := x when z

Merging Assignment y := x default z

Table 2.1: Assignment Statements in SIGNAL

occurs on one of its signals. At each step in the execution of a SIGNAL program,

each signal can be either present or absent [11].

SIGNAL was developed in Rennes, France at the Research Institute in Computer

Science and Random Systems (IRISA) [11]. A SIGNAL compiler is included in the

Polychrony toolset which is freely distributed by the ESPRESSO team at IRISA [28].

A commercial implementation of Polychrony, called RT-Builder, is supplied by the

company GeenSoft for industrial scale projects [20, 11].

2.2.1 Primitive Language Constructs

The SIGNAL primitive language constructs are briefly introduced here, and an

example of the SIGNAL specification for a cruise control system is provided in the fol-

lowing section. For a complete guide to the SIGNAL language, the reader is referred

to [6]. The primitive language constructs of SIGNAL are summarized in Table 2.1.

The individual statements that make up a program in SIGNAL are added through

parallel composition. The parallel composition of P and Q means that both state-

ments execute concurrently. In a SIGNAL program, a subprocess declaration is done

9



by using a restriction statement. The restriction statement declares x as being con-

tained in P .

A concurrent assignment statement will assign the current step value of the signal

x to the signal y. A delay assignment is much like a concurrent assignment, but with

the inclusion of a delay operation. The delay operator “ $ ” is used to assign the

previous-step value of x to y. The sampling assignment can be used to assign a value

to y when a given signal x is present and true or an expression is logically true. A

merge assignment can be used to assign the value of x to y when x is present, or the

value of z to y when x is absent and z is present.

2.2.2 Example: A Cruise Control System

A cruise control system is incrementally introduced in this section to provide an

example of a SIGNAL program. The full program listing is provided in Appendix

A. The cruise control system is further used in chapter 4 as the system-under-test

for an example of a validation session in SAGA. For sake of clarity, this example

provides a simple abstraction of an actual cruise control. The system is simplified

by using the output signals throttle and brake as Boolean assertions to control the

vehicle speed differential. Furthermore, the system is restricted to a single-clocked

specification, where all signals share the same clock. A diagram of the cruise control

system is presented in Figure 2.2.

The diagram illustrates the system inputs and outputs which constitute the cruise

control interface. Listing 2.1 shows the corresponding interface specification in SIG-

NAL. These statements are the preamble to the body description of the system. The

10



Figure 2.2: Cruise Control System Diagram

set input is used to activate cruise control, and the cancel input is used to deac-

tivate cruise control. The speed inc and speed dec inputs are used to increment

and decrement, respectively, the cruise control speed. The input speed is an integer

value provided to the cruise control system which represents the current reading from

a speed sensor in the vehicle. The outputs throttle and brake are used by the

cruise control system to increase or decrease, respectively, the speed of the vehicle.

Finally, the ctrl on disp output is used to indicate whether cruise control is active

or inactive.

1 process cruiseControl =

2 ( % inputs %

3 ? integer speed; % speed sensor %

4 boolean set , % turn ON cruise control %

5 cancel , % turn OFF cruise control %

6 speed_inc , % increase cruise speed %

7 speed_dec; % decrease cruise speed %

8 % outputs %

9 ! boolean throttle , % throttle control %

10 brake , % brake control %

11 ctrl_on_disp; % control indicator %

12 )

Listing 2.1: Cruise Control: Input and Output Interface
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The internal variables control on and cruise speed are declared in Listing 2.2.

The control on variable is used to store the current status of the system. A value of

true for control on indicates the cruise control system is active. The cruise speed

variable is used to store the speed at which the cruise control system must maintain

the vehicle.

1 where % local variables %

2 boolean control_on; % cruise control state %

3 integer cruise_speed; % cruise control speed %

4 end % cruiseControl %

Listing 2.2: Cruise Control: Internal Variables

The body of the program is presented in Listing 2.3. It is important to keep

in mind that assignment statements are executed concurrently within a step. The

statement in line 1 assigns a value to the internal variable control on of true when

set is true, else false when cancel is true; otherwise, it maintains its previous-step

value control on$. The output signal ctrl on disp in line 5 reflects the value of

the internal variable control on.

1 ( | control_on := ( true when set )

2 default ( false when cancel )

3 default ( control_on$ init false )

4

5 | ctrl_on_disp := control_on

6

7 | cruise_speed := ( speed when set ) default ( (cruise_speed$ init

0)+1 when speed_inc )

8 default ( (cruise_speed$ init 0) -1 when speed_dec )

9 default ( cruise_speed$ init 0 )

10

11 | throttle := ( false when ( (speed >= cruise_speed) and

control_on) )

12



12 default ( true when (( speed < cruise_speed) and control_on) )

13 default false

14

15 | brake := ( false when ((speed <= cruise_speed) and control_on) )

16 default ( true when ( (speed > cruise_speed) and control_on) )

17 default false

18 | )

Listing 2.3: Cruise Control: Signal Assignments

Line 7 provides that when set is asserted, the current value of speed is saved in

the internal variable cruise speed; else if speed inc or speed dec are asserted, the

value of cruise speed is incremented or decremented, respectively, by one unit. The

default value of cruise speed is otherwise its previous-step value cruise speed$.

For cruise control to effect a speed increase, the output signal throttle is used.

Line 11 states throttle will only be true when control on is active and the value

of input signal speed, the current vehicle speed, is below cruise speed. The output

signal brake is also only true when control on is active, but instead requires the

speed to be greater than cruise speed.
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CHAPTER 3

AN OVERVIEW OF SAGA

3.1 SAGA Defined

The SIGNAL Auto-Generated Assayer (SAGA) is an automated validation tool for

synchronous reactive embedded systems. It is built to work with SIGNAL programs as

part of an investigation of the automatic testing of synchronous reactive systems. The

main purpose of SAGA is to shift the testing effort associated with critical systems

from the onerous procedure of manually creating individual test cases to reasoning

about the safety and environment properties of a system.

SAGA provides a framework with which, given the current-day computational

resources and a properly specified environment, a system may be simulated through

multiple lifetimes of operation under varying scenarios; hence, rather than using an

exhaustive exploration, SAGA provides the means for conducting a smart search in

the practically infinite state space of a modern non-trivial application.

3.2 Approach

When a SIGNAL program is compiled, source code is generated in either C, C++

or Java code by the Polychrony Environment [11]. The generated code can be used

for simulation or deployment purposes. SAGA works with the simulation executable
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program compiled from C code. The diagram in Figure 3.1 illustrates the general

architecture of SAGA. Given the executable program of the system-under-test, only

information about the system interface concerning the inputs and outputs must be

furnished to SAGA. This allows for black-box testing where no knowledge is required

of the system code, which may be proprietary or confidential. SAGA reads the

interface information from a user-provided initialization file.

Figure 3.1: Architecture Diagram of SAGA

In addition to the initialization file, SAGA makes use of an environment descrip-

tion file and a safety description file containing the environment and safety properties,

respectively, specified by a user for a system. The properties in these files are written

with SAGA-specific syntax. Complete with these files, SAGA can run a validation

session of specified length. The length in a session is defined by the number of steps
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(discrete logical instants) through which the system must be elapsed. During each

step, SAGA generates a set of inputs to the system-under-test in accordance with the

environment properties and checks the corresponding system behavior against the

safety properties.

Upon the completion of each session, a log is generated of the entire simulation.

This log contains the values of the provided inputs and observed outputs at each

step. If a safety violation was detected during the test, a warning is displayed on

the standard output and the corresponding step at which the problem occurred is

annotated in the log. The entire data set is formatted in a comma-separated values

(CSV) file for ease of data manipulation in parsing or generation of visual graphs.

3.3 Environment Simulation

The SAGA simulated environment is generated in accordance to the user-provided

environment description. The environment is reactive with the system-under-test and

therefore also takes into account the past inputs and outputs. For this reason, the user

may specify initial conditions to the system (initial I/O values). For data-direction

clarity, the convention is used of referring to signals from the environment to the

system-under-test as inputs, and signals from the system-under-test to the environ-

ment as outputs. SAGA currently supports integer and Boolean data-types as input

and output for environment simulation. For integer input generation, the user may

specify a value range by setting max and min values. The default value range is the

compiler-specific signed integer range. A linear constraint may also be set on the in-

teger inputs, where a value may only increment or decrement by a single unit during

each step.
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It is important to note that since outputs are the response of the system-under-test

to the simulated environment, only the generation of inputs to the system-under-test

is controlled by SAGA. The overall behavior of the environment, i.e generated in-

puts, is obtained from the collection of individually specified environment properties.

To specify environment properties, the following four mechanisms which are incor-

porated into SAGA may be used: explicit constraint, probability-based constraint,

operational-profile, and pattern profile. These mechanisms make use of a variety of

logical and relational operators, such as greater-than, less-than-or-equal-to, not-equal-

to, etc. The mechanisms available, thoroughly detailed in Chapter 4, are introduced

here:

• Explicit Constraint : a constraint between either a) an input and an output

signal, b) two input signals, or c) an input signal and a value. The type of

constraint is defined by the logical or relational operator used. The explicit

constraint is satisfied by SAGA at every step in the simulation, meaning appro-

priate values are assigned to the input signal(s) so as to make the constraint

true. For example, when an explicit constraint relating an input to an output is

declared, such as input1 < output1, SAGA satisfies this condition by assigning

a value to input1 that is less than the value of output1.

• Probability-based Constraint : a constraint defined similarly to an explicit con-

straint, but rather than being satisfied at every step, is only satisfied on a

specified probability bias. The specified probability bias P , a real number con-

tained in [0, 1], corresponds to the probability of an associated constraint C

being satisfied during the current step in simulation. It holds therefore, that

the logical negation of the associated constraint, ¬C is satisfied on a 1−P basis.
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For example, a probability-based constraint such as P ( input1 < output1 )

= 0.75 states that during any given step, there is a 75% probability of input1

being less than output1 and hence a 25% probability of input1 being greater

than or equal to output1.

• Operational Profile: a reaction to a specified system event. The system event

is denoted as an enter-condition, which is a propositional statement about the

values of the previous-step signals. Given the enter-condition to an operational

profile is true, then an associated constraint is satisfied on a specified probabil-

ity bias. An operational profile is a probability-based constraint which becomes

active if its enter-condition is true. The associated constraint condition is sat-

isfied in the current step. For example, OP input1 = true − > P( input1

= true ) = 0.85 END OP means that if the value of input1 was true in

the previous step (i.e. the enter-condition is true), then current step value of

input1 has an 85% probability of being true. If the enter-condition is false, no

assertion is made about the current value of input1. It is of special importance

to note, as this example demonstrated, that an enter-condition refers to the

previous step I/O values, and the constraint which must be satisfied pertains

to the current step values.

• Pattern Profile: a sequence of reactions to a specified system event. Given the

enter-condition of a pattern profile property evaluates to true, the first con-

straint in a sequence of probability constraints is satisfied on a specified prob-

ability bias. On the following execution step, the next probability constraint is

likewise satisfied; therefore, each constraint in a pattern has a its own specified
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probability bias. The pattern exits once a constraint is not satisfied (i.e. when

a probability evaluates to false). After exiting, the enter-condition must once

again be true for the pattern to be re-entered. An example pattern profile is as

follows,

PATTERN output3 = 100 − > P( input2 = 2 ) = 0.95 − > P( input2 =

4 ) = 1 − > P( input2 = 8 ) = 0.9 END PATTERN. Given output3 had

a value of 100 in the previous step, there is a 95% chance input2 will be given

a value of 2 in the current step. Subsequently, input2 is guaranteed (100%

probability) to be assigned the value 4 in the following step and has a 90%

chance of having a value of 8 two steps ahead. The probabilities assigned in a

pattern profile are viewed as independent events relating to the current step of

execution, consequently the actual probability of satisfying the last constraint

in a sequence is in reality a compound probability (trivially, the product of all

preceding probabilities).

Altogether, the validation methods in conjunction with relational operators allow

for a wide-range of specifications which may be tailored to different types of systems

and testing goals. A proper environment description in which a combination of com-

mon patterns of operation that occasionally deviate from typical behavior allows for

an extensive exploration of the relevant state space of a system. Furthermore, the

environment properties may be written so as to conduct specialized tests to search

around system thresholds and boundary conditions in order to increase robustness.
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3.4 Safety Validation

During each step in a simulation, the safety validation phase occurs after the

system-under-test has reacted to the SAGA generated inputs. The validation process

in SAGA consists of checking the execution of the system against the user specified

safety properties. Similar to the environment description, the safety description is a

collection of individual properties that together encompass the overall safe behavior

of a system. The safety properties must therefore be written so as to express the

conservative set of states in which nothing bad happens.

In SAGA, safety properties are written as invariant propositional statements on

the inputs and outputs of a system with the use of logical and mathematical relational

operators. Each property must be true throughout the entire execution for a system

to be safe. The safe behavior of a system is therefore contained in the intersection of

the set of states described by each safety property, as is illustrated in Figure 3.2.

Although, the use of temporal logic is not fully incorporated into SAGA valida-

tion, a delay operator $ allows invariant properties to be set between current and

previous-step signals. The delay operator $, inherited from the Signal language, al-

lows one to refer to the previous-step value of a signal. It can be used by appending

it to an input or output signal as such: input3$. This operator can therefore be used

to include temporal aspects into a safety property.

Individual safety properties may be specified as single or multiple nested propo-

sitional statements by using logical operators and parenthesis. For example, using

Boolean data-type signals output1, and output2 a property could be written us-

ing logical operators as follows, SAFE output1 OR output2 END SAFE. The
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Figure 3.2: Safety Properties and the System State Space

property states that either output1 or output2 must always be true. A second prop-

erty could be specified using a integer data-type signal output3, a relational opera-

tor, and the delay operator, in the following manner, SAFE output3 > output3$

END SAFE. This property checks that the current value of output3 is always

greater than its previous step value output3$. With proper use of parenthesis and

logical connectives, individual properties may be as extensive as necessary. By nest-

ing statements and using basic operators, a more complex property may be written

as follows, SAFE ( output3 > 100 ) AND ( ( output1 = output1$ ) OR (

input1 ≥ output3 ) ) END SAFE. The requirements this property imposes on a

system, is that output3 must be greater than 100 and either the value of output1

is equal to its past value or input1 is greater-than-or-equal to output3. Generally,
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a safety violation is detected by SAGA during the validation phase when any one of

the properties, such as the ones presented here, in a safety description evaluate to

false during any given step in a simulation.

The aim of a well-written safety description must be to conservatively restrict the

system to trusted behavior. It may be challenging to produce safety properties at

times because it is not always evident what kind of system behavior can cause prob-

lems; however, even when SAGA does not detect an error condition due to lack of a

thorough specification, an inspection of the simulation log may in many cases reveal

program bugs. Furthermore, engagement in the activity of creating safety properties

by the system designer can in itself lead to the discovery of system design errors or

bugs.
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CHAPTER 4

USING SAGA

4.1 Compiling and Running SAGA

SAGA is a console application that accepts the required specification files and

optional flags as parameters to run a simulation. In order to install SAGA, it must

first be compiled from source code. To compile the latest version of SAGA, a plain

“make” command can be used on the makefile provided in the base directory of

the source code folder. The makefile requires the GNU Compiler Collection (GCC).

Upon compilation, an executable “SAGA” is generated in the base directory. This

executable may be moved to the desired installation directory. SAGA may then be

executed from its install directory as a console application using a UNIX shell. Upon

running SAGA without providing parameters, the following help menu is displayed

which explains the use of individual flags:

Usage:

SAGA [flags] ... [length] [init_file] [env_file] [safe_file]

Description:
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Run a validation session of length [length] for a specified

system , whose I/O interface is contained in [init_file ]. The

environment is generated with respect to the properties

specified in [env_file] and the system is validated with

respect to the properties specified in [safe_file ]. The output

of the session is logged in a comma separated variable file

"[ system name]_trace_[TIMESTAMP ].csv".

Flags:

-v

Verbose mode. Provides detailed information about the

simulation. It is recommended to pipe the output of SAGA

to a text file when using verbose mode. An example

execution would be of the format:

SAGA -v 100 init.txt env.txt safe.txt > log.txt

-i

Manual initialization. A prompt is provided to enter

information about the System (rather than providing [

initial_file] ).

-help init

Provides information about the contents and format of the

initialization file as required by SAGA.

-help env

Provides information about the contents and format of the

environment description file as required by SAGA.

-help safe

Provides information about the contents and format of the

safety description file as required by SAGA.

Listing 4.1: SAGA Help Menu

The file parameters [init_file], [env_file], [safe_file] above refer to the

directory location of the initialization, environment, and safety files, respectively.

The test length parameter, [length], specifies the number of steps (discrete logical

instants) in the simulation. As an example, the configuration of SAGA for a validation

session of the cruise control system introduced in Section 2.2.2 is used in this and

following sections. To execute SAGA for the purpose of running a validation session

on the cruise control system, the following command is used:
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SAGA -v 50 cruiseControl_init.txt cruiseControl_env.txt cruiseControl_safe.txt

In the above command, the flag “-v” provides a verbose output to the standard

output regarding the status of the simulation. The files cruiseControl_init.txt,

cruiseControl_env.txt, and cruiseControl_safe.txt represent the correspond-

ing initialization, environment, and safety descriptions located in the local SAGA

directory and used for the cruise control system. Each file is presented in the follow-

ing sections.

4.2 Specifying Initialization

In order to run a simulation, SAGA requires interface information about the

system-under-test. The interface information can be provided to SAGA through

an initialization file or manually through a prompt by using the -i flag. Since the

prompt for manually entering information is self-explanatory, only the initialization

file format is presented here. The initialization file requires information about the

inputs and outputs of the system-under-test, and allows the user to specify system

initial conditions and set options regarding environment control.

4.2.1 File Format

The initialization file must contain the complete interface information of the

system-under-test regarding the name of the executable program and its input and

output signals. In addition, an initial value can be specified for any I/O signal in the

file to start a simulation from a predetermined state. Integer input signals must be

specified with additional attributes including min and max values, as well as whether
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or not they should be linearly constrained. For linearly constrained integer signals, the

environment will only generate values within single-unit increments or decrements.

The information is parsed from the file in a specific order and therefore the file must

be formatted properly.

The required information and ordering is as follows:

1. The name of the executable program for the system-under-test.

2. The number of Boolean input signals.

3. The number of Boolean output signals.

4. The number of integer input signals.

5. The number of integer output signals.

6. A list of the Boolean input names and initial values, for example:

Boolean_input 0

7. A list of the Boolean output names and initial values, for example:

Boolean_output 1

8. A list of the integer input names, their corresponding initial, min, and max
values, and whether or not ( 1 or 0) they should be linearly constrained, for
example:

integer_input 35 0 400 1

9. A list of the integer output names and their corresponding initial values, for
example:

integer_output 5

In the initialization file, tab and newline characters are effectively treated the same

as space characters and can be used as delimiters for organization. The data provided

must be consistent throughout; therefore the number of signals of each data-type
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specified, must match an equivalent count of signal names. If there any inconsistencies

in the file are detected, SAGA will produce a relevant error and quit. For any value in

the file, the place holder “x” can be used to generate default values. By default, integer

input signals have min and max values equivalent to the corresponding compiler-

specific min and max signed integer values, and are not linearly constrained. For

any signal, its default initial condition is randomly chosen. By random, it is meant a

uniform probability of its possible values.

4.2.2 Example: Cruise Control Initialization

A sample configuration for the cruise control system with the interface information

provided in Section 2.2.2 is as follows:

1 % -----------------------------

2 % --------cruiseControl -------

3 % -----------------------------

4

5 % Name of system -under -test

6 cruiseControl

7

8 % Number of Boolean input and output signals

9 % [No. input] [No. output]

10 4 3

11

12 % Number of Integer input and output signals

13 % [No. input] [No. output]

14 1 0

15

16 % Names of Boolean signals (must match SUT signal name) and initial

values

17 % [name] [init_value]

18 set 0 % inputs

19 cancel 0

20 speed_inc 0

21 speed_dec 0

22 throttle 0 % outputs

23 brake 0
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24 ctrl_on_disp 0

25

26 % Names of Integer signals (must match SUT signal name), initial

value

27 % minimum value , maximum value , and linear constraint

28 % [name] [init_value] [min_value] [max_value] [linear]

29 speed 30 0 300 1 % input

Listing 4.2: Contents of “cruiseControl init.txt”

The initialization file presented above follows the formatting specified in Section

4.2.1. The Boolean values true and false are represented using 1 and 0 respectively.

Furthermore, comments are included to help organize the file. The percent charac-

ter % is universally used by SAGA to denote a comment; therefore, any characters

following the percent character in a line are ignored.

4.3 Specifying the Environment

The environment description is a collection of properties which are used to describe

the behavior of the system environment. The different types of properties which

can be used are described in Section 3.3. In this section, the syntax of each type

of property is detailed and examples of properties as applied to the environment

description of the cruise control system are provided.

4.3.1 Syntax

The syntax is formally introduced in Backus-Naur Form (BNF). The four mech-

anisms for describing the environment properties are defined as follows:

Explicit Constraint

explicit constraint ::= in signal operator ( signal | value )
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signal ::= in signal | out signal | prev signal

out signal ::= output signal

in signal ::= input signal

prev signal ::= in signal$ | out signal$

value ::= Boolean | integer

operator ::= logical | relational

Probability-based Constraint

probability constraint ::= P( explicit constraint ) = probability

probability ::= 0 ≤ real ≤ 1

Operational Profile

operational profile ::= OP enter condition -> probability constraint END OP

enter condition ::= prev signal operator ( prev signal | value )

Pattern Profile

pattern ::= PATTERN enter cond -> prob const lst END PATTERN

prob const lst ::= probability constraint | probability constraint -> prob const lst

The available operators are provided in Table 4.1. In general, relational operators

can be used on integer data-type signals, while logical operators can be used on

Boolean data-type signals or with expressions which evaluate to a Boolean value. The

“+” and “−” are special operators used increment or decrement an integer signal by
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Comments Operator Type
Equality = Relational/Logical

Difference != Relational/Logical
Disjunction OR/|| Logical
Conjunction AND/&& Logical

Greater Than >,>= Relational
Less Than <,<= Relational
Increment + Arithmetic
Decrement - Arithmetic

Table 4.1: SAGA Operators

a specified value. They effectively add or subtract the value of the right expression

to/from the signal on the left side.

When generating the environment during each step, SAGA ensures that every

input signal is assigned a value. Given an environment description is composed of one

or more properties, individual signals can be used in more than one property. Priority

is given to satisfying signals in properties in the following order: pattern profile,

operational profile, probability-based constraint, and explicit constraint. When a

signal is used in two properties of the same type, the first property in top-down

order in the description file is used to generate a value for the signal. When a signal

which has already been assigned a value is used in a property that relates it to a

different signal which has not been assigned a value, the property is satisfied by

only assigning a new value to the second signal, or ignored if the constraint is not

satisfiable. Furthermore, when a signal is not used in any one property, by default it

is assigned a random value within its defined range.
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4.3.2 Example: Cruise Control Environment

The following excerpt provides properties used to describe a realistic environment

for the cruise control system.

1 % Speed up when throttle is activated

2 OP throttle = 1 -> P( speed > speed$ ) = 1 END_OP

3

4 % Driver increases speed more often when in cruise control

5 P( speed_inc = 1 ) = 0.60

6 P( speed_dec = 1 ) = 0.20

7

8 % If user decreases speed , more likely to continue decreasing

9 OP speed_dec$ = 1 -> P( speed_dec = 1 ) = 0.7

10

11 % Speed sensor fault

12 P( speed > 9000 ) = 0.01

Listing 4.3: Excerpt from “cruiseControl env.txt”

In line 2 of Listing 4.3, we observe a property of the environment which states that

when the Boolean output throttle is true, the integer input speed will increase in

value i.e. have a greater value than speed$, its previous-cycle value. The environment

models the theoretical driver as someone who tends to increase their speed more often

when they are using the cruise control feature of the automobile, as is illustrated in

lines 5 and 6, by assigning a higher probability to the speed inc input signal; however,

the property in line 9, accounts for the fact that if a driver decreases speed once, they

will more than likely continually do so. Finally, the property in line 12 states there

is a 1% probability that the value of speed is over 9000, which effectively simulates

a sensor glitch with a discontinuous jump to a large, unrealistic value.
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4.4 Specifying Safety Validation

The safety description is a collection of properties that specify the safe behavior

of a system. These properties are checked at every step in a simulation. A violation

of safety in the system is detected when any of the properties evaluates to false. This

concept is more thoroughly described in Section 3.4.

4.4.1 Syntax

A safety property can be defined by a single expression or by multiple expressions

connected by well-formed parentheses and logical operators as follows:

safety property ::= SAFE first expression END SAFE

first expression ::= expression operator expression

expression ::= signal | value | “ ( ” expression operator expression “ ) ”

signal ::= input signal | output signal | prev signal

out signal ::= output signal

in signal ::= input signal

prev signal ::= in signal$ | out signal$

value ::= Boolean | integer

operator ::= logical | relational

This format allows for basic propositional statements, as well as more complex

statements containing several nested parenthesis. A current limitation on the syntax

is that each nested expression must consist of three arguments, where the the middle
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argument must be a operator and the leftmost and rightmost arguments can be a

signal, value, or a subsequent nested expression.

4.4.2 Example: Cruise Control Safety

The following Listing provides properties taken from the safety description used

with the cruise control system.

1 % Throttle or brake control should not be active if cruise control

is OFF

2 SAFE ( ( throttle or brake ) and ( ctrl_on_disp = 0 ) ) = 0 END_SAFE

3

4 % Brake and throttle should not be activated simultaneously

5 SAFE ( brake = 0 ) or ( throttle = 0 ) END_SAFE

6

7 % When cancel is true , cruise , throttle , and brake control should be

OFF

8 SAFE ( ( cancel = 1 ) and ( ( ( ctrl_on_disp = 0) and ( throttle = 0

) ) and ( brake = 0 ) ) ) or ( cancel = 0 ) END_SAFE

Listing 4.4: Excerpt from “cruiseControl safe.txt”

A very basic expectation of a cruise control system is declared in line 2 of List-

ing 4.4, which states that neither throttle or brake should be asserted while the

cruise control is OFF, as is indicated by ctrl on disp, the control state display.

Furthermore, the property in line 5 stipulates that brake and throttle should not

be asserted simultaneously. The last property in line 8 states that when cancel is

asserted, meaning the driver wishes to turn OFF cruise control, the system responds

accordingly.
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4.5 Interpreting Results

The output of every validation session in SAGA is logged in a CSV file named

[system name] trace [time stamp].csv. This file contains the values generated

and received at every step. When a safety violation is detected, a warning is displayed

on the standard output and the log is annotated on the corresponding step.

Given the initialization, environment, and safety descriptions provided for the ex-

ample cruise control system, the results of the first ten steps are displayed in Figure

4.1. These values show that the set signal was asserted at logical time two and ef-

fectively turned cruise control ON. Throughout the following steps, the speed inc

signal is asserted, which in turn activates throttle and effects increases in speed.

Figure 4.1: Cruise Control Simulation Log

By plotting the values generated by SAGA for the speed signal, a visual repre-

sentation of the system behavior is obtained in Figure 4.2. The figure is annotated
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with key events from the simulation.

Figure 4.2: Speed Signal in Cruise Control

The visual representation of the data shows typical, expected operation of the

cruise control; however, a warning on the standard display and an inspection of the

simulation log yield a surprise on cycle #36 displayed in Figure 4.3. The detected

error is apparent upon examination of the input and output signals. The problem,

evident by the status display ctrl on disp, is that the system turned ON and re-

mained ON, even though the cancel input was asserted.

Upon examination of the cruise control system Signal specification introduced in

Section 2.2.2 the error points to the implementation of the local variable control on
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Figure 4.3: A Safety Violation

used to process the state of the system. The faulty code snippet is provided in Listing

4.5.

1 | control_on := ( true when set )

2 default ( false when cancel )

3 default ( control_on$ init false )

Listing 4.5: Cruise Control: A Bug Exposed

The test case exposed that when set and cancel where simultaneously asserted,

cancelwas ignored. Therefore, if a driver operating this system would have attempted

to turn OFF cruise control and accidentally pressed both set and cancel, the system

would have remained ON. This implementation is not correct with the desired safe

specification of the system. Semantically, the root of the problem is the improper use

of the default operator in the program. In Signal, the default operator gives priority

to its left argument, and only if the left expression evaluates to false is the right

expression evaluated. An appropriate correction in this example is to give cancel

priority over set as is done in the altered code snippet in Listing 4.6.
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1 | control_on := ( false when cancel )

2 default ( true when set )

3 default ( control_on$ init false )

Listing 4.6: Cruise Control: Altered Code
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CHAPTER 5

CASE STUDY: STEAM BOILER

5.1 Introduction

The purpose of this chapter is to demonstrate the effectiveness of the simulation

and validation capabilities of SAGA as applied to a system of substantial complexity.

To that end, a well-known verification problem, the steam boiler control specification

[2], was chosen. This specification has been often used for the purpose of demonstrat-

ing the application of formal methods to a real-life industrial application in order to

unify scientific progress in the field with practices in industry [3]. The steam boiler

problem, though most frequently used for examples of verification, was selected since

its full specification is readily available and many in the target audience are familiar

with it. The specification is used to develop an initial implementation of a steam

boiler system with the SIGNAL programming language. Given the purpose of testing

is to expose the presence of errors, not prove their absence, the goal in implementing

the steam boiler is to provide a working example with which the effectiveness of the

validation process in SAGA of exposing errors can be qualitatively assessed.
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5.2 Steam Boiler Specification

A steam boiler program is a control application that moderates the level of water

inside a steam boiler by turning water pumps ON and OFF. The control program must

function properly; otherwise a quantity of water too high or too low could damage

the steam boiler or the driven turbine. An informal specification for such a system

constitutes the steam boiler specification problem presented in [2]. The case study

program is implemented directly from the aforementioned text. A brief overview of

the specification is provided here. For the complete specification details, the reader

should refer to the original text. The SAGA files and the full program listing of

the SIGNAL implementation of the steam boiler developed for this case study are

provided in Appendix B. For ease of readability, the input and output signals in the

implementation are consistent with the naming of the sent and received messages of

the original specification.

5.2.1 Overview

A diagram of the steam boiler environment is depicted in Figure 5.1. This diagram

demonstrates the constraints of the control application, which are namely the water

level limits and the available physical devices. The implemented values associated

with each water level limit are presented in Table 5.1.

The steam boiler physical environment effectively consists of four pump units, a

water release valve, a water level sensor, and a steam sensor. Each pump unit consists

of a pump, which can be turned ON and OFF by the program, and a pump controller

that provides information to the program regarding whether or not water is flowing

through the pump. The program is informed of the current amount of water in the
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Parameter Comment Value Unit
C Maximal Capacity 150 liter

M1 Minimal Limit 20 liter
M2 Maximal Limit 130 liter
N1 Minimal Normal 60 liter
N2 Maximal Normal 90 liter

Table 5.1: Implementation Values of Physical Constants

steam boiler and the amount of steam being produced, by a water level sensor and

a steam sensor, respectively. The water release valve is used by the program only

during start-up in order to lower the amount of water to the desired initial level.

Figure 5.1: Steam Boiler Physical Diagram
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The steam boiler program can be modeled as a synchronous system since it must

follow a five second cycle, denoted as a step, in which the reception of messages,

analysis of information received, and response to messages must happen, in that order.

A simplified diagram of the steam boiler program interface is presented in Figure 5.2.

The input and output signals constitute the messages between the program and the

physical units.

Figure 5.2: Steam Boiler Program Simplified Interface

The behavior of the steam boiler program is primarily determined by its current

mode. The five possible modes of operation are the following:

• Initialization: The program begins in this mode from start-up. It awaits until

the steam boiler is ready, and ensures the water level is initially within N1 and

N2 by opening the water release valve or activating a pump if necessary before

starting.

• Normal : While in this mode, the program tries to maintain the water level

closely within N1 and N2. The program remains in this mode while no faults
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are detected in the physical units and the water level is not risking reaching M1

or M2.

• Degraded : In this mode, the program attempts to maintain a satisfactory water

level given the presence of a fault on one of the physical units other than the

water level sensor.

• Rescue: When the water level sensor has a fault, the program enters this mode.

In this mode, the program attempts to maintain a satisfactory water level by

taking into account the maximum physical dynamics of the system.

• Emergency stop: The program enters this mode when the water level is risking

reaching M1 or M2, the external stop signal was asserted, or a message trans-

mission error is detected. In this mode, the program stops and the physical

environment is responsible for taking appropriate actions.

5.2.2 Implementation Limitations

The steam boiler program was implemented with some assumptions and limi-

tations. These choices where made in order to provide a simplistic model for the

physical evolution of the system, and to accommodate the fact that SAGA currently

only supports integer type numbers. The limitations are the following:

• Quantity measurements of liters are in whole units and are therefore represented

by integers. These include the steam output and water level measurements.

• A working pump will deliver water at its constant rate of 0.2 ltrs/sec (i.e. 1

liter every 5 seconds) where 5 seconds represent one step. This represents the

nominal capacity of each pump.
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Program Mode mode Value
Initialization 1

Normal 2
Degraded 3

Rescue 4
Emergency Stop 5

Table 5.2: Program Mode Corresponding to mode Values

• The system produces steam in discrete values (ltrs/step) directly related to the

water level, as shown in Listing 5.4.

• The stop signal must only be asserted once, rather than three times in a row,

for the program to go into emergency stop mode.

5.3 Validation

Given a complete system specification, the validation process in SAGA is a straight

forward activity. The safety properties of a system can be directly implemented from

the specification, and thus be done concurrently with system design. The afore-

mentioned approach is taken in this case study. A large number of properties, each

relating to a functional requirement or set of requirements, may be written to pro-

duce a thorough validation. For brevity, only a handful of safety and environment

properties are presented here. A following discussion on some of the nontrivial errors

detected in the implementation is then provided.
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5.3.1 From Specification to Safety Description

A set of safety properties that correspond to the specification are presented in

Listing 5.1. As a reference, Table 5.2 provides the values corresponding to each pro-

gram mode for the signal mode in the implementation. In line 1, the property declares

that either the program is in emergency stop mode or the stop signal is not true. This

effectively states that the program should not be in a mode other than emergency

stop if the stop signal is asserted. The following property in line 3, provides that the

program cannot be in normal mode if the water level has reached or surpassed the

maximal or minimal limits. When a pump and pump controller do not have matching

states, it constitutes an equipment failure and the program must respond accordingly;

therefore, the property in line 5 states that if pump state1 and pump ctrl state1 do

not have the same value, the program must be in degraded, rescue, or emergency stop

mode. This property is also applied to pumps 2,3, and 4 (not shown here). Finally, the

properties declared starting at line 7 check for transmission failures by ensuring that

the program acknowledges every message received that requires an acknowledgment.

1 SAFE ( mode = 5 ) or ( stop != 1 ) END_SAFE

2

3 SAFE ( mode != 2 ) or ( ( level <= 130 ) and (level >= 20 ) )

END_SAFE

4

5 SAFE ( pump_state1 = pump_ctrl_state1 ) or ( ( ( mode = 3 ) or (

mode = 4 ) ) or ( mode = 5) ) END_SAFE

6

7 SAFE ( ( pump_repaired1$ == 1 ) and ( pump_repaired_ack1 == 1 ) ) or

( pump_repaired1$ == 0 ) END_SAFE

8 SAFE ( ( pump_ctrl_repaired1$ == 1 ) and ( pump_ctrl_repaired_ack1

== 1 ) ) or ( pump_ctrl_repaired1$ == 0 ) END_SAFE

9 SAFE ( ( level_repaired$ == 1 ) and ( level_repaired_ack == 1 ) ) or

( level_repaired$ == 0 ) END_SAFE
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10 SAFE ( ( steam_repaired$ == 1 ) and ( steam_repaired_ack == 1 ) ) or

( steam_repaired$ == 0 ) END_SAFE

Listing 5.1: Steam Boiler Safety Properties

5.3.2 Environment Simulation

Two approaches are taken for simulating a test environment in this case study: (i)

describing a realistic runtime environment, where the typical operation of the system

under usual conditions can be inspected and (ii) describing a stress scenario in which

threshold values are exceeded and boundary operating cases are observed. The two

approaches are illustrated using portions of the steam boiler environment description

and their associated result.

Typical Operation

For the purpose of simulating the typical operation of the system, the environment

must be described so as to be correctly responsive to the system-under-test. This is

achieved by ensuring that the output of the program effects an appropriate change in

the environment. The properties in Listing 5.2 demonstrate this by assigning a high

probability to providing the correct response when a pump is opened or closed. The

response is the pump and pump controller state change according to the program

action.

1 OP close_pump1 = 1 -> P( pump_state1 == 0 ) = 0.95 END_OP

2 OP close_pump2 = 1 -> P( pump_state2 == 0 ) = 0.95 END_OP

3 OP close_pump3 = 1 -> P( pump_state3 == 0 ) = 0.95 END_OP

4 OP close_pump4 = 1 -> P( pump_state4 == 0 ) = 0.95 END_OP

5

6 OP open_pump1 = 1 -> P( pump_state1 == 1 ) = 0.95 END_OP

7 OP open_pump2 = 1 -> P( pump_state2 == 1 ) = 0.95 END_OP
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8 OP open_pump3 = 1 -> P( pump_state3 == 1 ) = 0.95 END_OP

9 OP open_pump4 = 1 -> P( pump_state4 == 1 ) = 0.95 END_OP

10

11 OP close_pump1 = 1 -> P( pump_ctrl_state1 == 0 ) = 0.95 END_OP

12 OP close_pump2 = 1 -> P( pump_ctrl_state2 == 0 ) = 0.95 END_OP

13 OP close_pump3 = 1 -> P( pump_ctrl_state3 == 0 ) = 0.95 END_OP

14 OP close_pump4 = 1 -> P( pump_ctrl_state4 == 0 ) = 0.95 END_OP

15

16 OP open_pump1 = 1 -> P( pump_ctrl_state1 == 1 ) = 0.95 END_OP

17 OP open_pump2 = 1 -> P( pump_ctrl_state2 == 1 ) = 0.95 END_OP

18 OP open_pump3 = 1 -> P( pump_ctrl_state3 == 1 ) = 0.95 END_OP

19 OP open_pump4 = 1 -> P( pump_ctrl_state4 == 1 ) = 0.95 END_OP

Listing 5.2: Following Program Orders

Furthermore, the water level is set to increase according the the number of active

pumps in Listing 5.3. Since each pump has a throughput of 1 ltr/step, the water

level must increase by 1 liter for each active pump at every step. The water level

of the steam boiler is also affected by the quantity of exiting steam. The amount of

water leaving as steam is subtracted from the water level in line 6. Finally, in line 8

when the water release valve is on, the water level is decreased at a constant rate of

4 liters/step.

1 OP pump_state1 = 1 -> P( level + 1 ) = 0.99 END_OP

2 OP pump_state2 = 1 -> P( level + 1 ) = 0.99 END_OP

3 OP pump_state3 = 1 -> P( level + 1 ) = 0.99 END_OP

4 OP pump_state4 = 1 -> P( level + 1 ) = 0.99 END_OP

5

6 P( level - steam ) = 1

7

8 OP valve = 1 -> P( level - 4 ) = 1 END_OP

Listing 5.3: Water Level
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For sake of simplicity, the amount of steam leaving the boiler is modeled based on

the current amount of water. Therefore the properties in Listing 5.4 provide a direct

relationship between the water level and steam output.

1 OP level <= 150 -> P( steam == 1 ) = 1 END_OP

2 OP level <= 80 -> P( steam == 2 ) = 1 END_OP

3 OP level <= 65 -> P( steam == 3 ) = 1 END_OP

4 OP level <= 20 -> P( steam == 4 ) = 1 END_OP

5 OP level <= 10 -> P( steam == 5 ) = 1 END_OP

Listing 5.4: Steam Production

An unsolicited signal indicating a unit fault is acknowledged or has been repaired

when the program has not sent a fault detected signal is considered an erroneous

transmission and will force the program to emergency stop mode; therefore, to keep

the environment running with minimal faults the signals by default are set false as is

shown in Listing 5.5. Solicited acknowledgments however, are given a high probability

of occurring. The “unit repaired” messages are treated similarly (not shown here).

1 pump_fault_ack1 = 0

2 pump_fault_ack2 = 0

3 pump_fault_ack3 = 0

4 pump_fault_ack4 = 0

5

6 pump_ctrl_fault_ack1 = 0

7 pump_ctrl_fault_ack2 = 0

8 pump_ctrl_fault_ack3 = 0

9 pump_ctrl_fault_ack4 = 0

10

11 level_fault_ack = 0

12 steam_outcome_fault_ack = 0

13

14 OP pump_fault_detected1$ == 1 -> P( pump_fault_ack1 = 1 ) = 1 END_OP

15 OP pump_fault_detected2$ == 1 -> P( pump_fault_ack2 = 1 ) = 1 END_OP

16 OP pump_fault_detected3$ == 1 -> P( pump_fault_ack3 = 1 ) = 1 END_OP
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17 OP pump_fault_detected4$ == 1 -> P( pump_fault_ack4 = 1 ) = 1 END_OP

18

19 OP pump_ctrl_fault_detected1$ == 1 -> P( pump_ctrl_fault_ack1 = 1 )

= 1 END_OP

20 OP pump_ctrl_fault_detected2$ == 1 -> P( pump_ctrl_fault_ack2 = 1 )

= 1 END_OP

21 OP pump_ctrl_fault_detected3$ == 1 -> P( pump_ctrl_fault_ack3 = 1 )

= 1 END_OP

22 OP pump_ctrl_fault_detected4$ == 1 -> P( pump_ctrl_fault_ack4 = 1 )

= 1 END_OP

23

24 OP level_fault_detected$ == 1 -> P( level_fault_ack = 1 ) = 1 END_OP

25 OP steam_fault_detected$ == 1 -> P( steam_outcome_fault_ack = 1 ) =

1 END_OP

Listing 5.5: Unsolicited and Solicited Messages

In the environment description presented, many actions that corresponds to the

expected behavior are given a high, though not absolute, probability of occurring.

This maintains that the system may still deviate from the typical operation and

therefore does not restrict the behavior in its entirety. The purpose of such a specifi-

cation is to create interesting observable events that may help expose bugs which are

not directly being searched.

With the specified properties, a simulation with test length of 150 steps is con-

ducted. The safety properties are temporarily ignored and discussed in the following

section. The SAGA initialization file is written to provide a cold start of the steam

boiler with an initial water level of 110. The resulting behavior is best observed by

plotting the interesting data. The values for the level signal, which represents the

water level, are observed in Figure 5.3 and the steam output is observed in Figure

5.4 by plotting the values for the steam signal.
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Figure 5.3: Steam Boiler Typical Operation: Water Level

Figure 5.4: Steam Boiler Typical Operation: Steam Output
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Given the initial water level value is above the maximal normal capacity, the

steam boiler opens the water release valve until the level is between minimal normal

and maximal normal. The program then issues the program ready signal and enters

normal mode. When in normal mode, the program effectively maintains the water

level in the normal operating range by opening and closing pumps accordingly.

Stress Operation

In order to observe the operation of the steam boiler program under a chaotic

scenario, an environment description that asserts the occurrence of a water leak is

used. Using the previous description from Section 5.3.2 to initially maintain the

typical system behavior, a single property, presented in Listing 5.6, can be added to

force the desired behavior. The water leak in the steam boiler is effectively simulated

using a patter profile whose enter-condition is satisfied when the current water level is

at a specific value (in this case 65 liters). The pattern ensures that level is continually

decreased until it reaches a very low value. Once the pattern profile is entered, the

constraints that sequentially follow are satisfied in subsequent steps. This behavior

is guaranteed because each constraint in the pattern has a 100% probability of being

satisfied.

1 PATTERN

2 level = 65

3 -> P( level - 4 ) = 1

4 -> P( level - 7 ) = 1

5 -> P( level - 9 ) = 1

6 -> P( level - 11 ) = 1

7 -> P( level - 13 ) = 1

8 END_PATTERN

Listing 5.6: Simulating a water leak

The result which the pattern profile effects in the simulation is shown in Figure

5.5, where the values of the level signal are plotted.
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Figure 5.5: Steam Boiler Stress Operation: Water Leak

5.3.3 Nontrivial Bugs

The validation process for the program reveals some safety violations with the

implementation contained in Appendix B. The nontrivial problems that were exposed

are described. The problems associated with each violation were determined after

inspection of the execution trace in the annotated simulation log. They are as follows:

• The program remains in normal mode when the pump controller only momen-

tarily changes to a state which does not match the corresponding pump state.

The proper behavior is for the program to enter degraded mode, given the

equipment failure is detected. The program should have then asserted the
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pump ctrl fault detected signal, in which case it must wait for an acknowl-

edgment pump ctrl fault ack and a subsequent repair message pump ctrl repaired

in order to return to normal mode. This error was detected due to a violation

of the safety property introduced in line 5 of Listing 5.1.

• When in rescue mode, the program may erroneously assert open pump and

close pump back-to-back repeatedly as high and low water level estimates reach

thresholds. The program enters rescue mode when a fault is detected in the

water level measuring unit, at which point it must calculate the water level based

on the amount of steam being produced and the throughput of the active pumps.

The open pump signal is asserted when the low estimate reaches the minimal

normal limit and the current state of the pump is closed. The close pump

signal is asserted when the high estimate reaches the maximal normal limit and

the current state of the pump is open. Therefore, when both the high and low

estimates reach their limit, the program generates the problematic behavior.

This problematic behavior was detected during an inspection of the system

runtime activity in a simulation log.
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CHAPTER 6

DESIGN AND IMPLEMENTATION DETAILS

This chapter presents information about some of the important design decisions

and implementation details of SAGA. More specifically, it discusses why SIGNAL was

chosen as the target language, how a testing harness is built for a simulation, how

numerical probabilities are evaluated, and how environment generation and safety

validation are handled. The information presented here is not meant to serve as

an exhaustive design overview, but rather as a high-level description of some of the

important technical details of SAGA.

6.1 Why SIGNAL?

SAGA was developed as part of an investigatory project in automatic test case

generation from formal specifications. It has initially been designed to work with

synchronous programs specified in the SIGNAL language. SIGNAL was chosen as

the target synchronous language for several practical reasons. The SIGNAL compiler

is incorporated into the Polychrony tool set whose binaries and source are freely dis-

tributed under the GPLv2 license [28]. Also, the language is well documented since it

has accumulated an extensive amount of technical literature over the years. Although

SIGNAL has mostly been used in academic research rather than industry, it has been
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gaining the recent attention from industry due to its multi-rate (polychronous) nature

that makes it suitable for specifying parallel and distributed systems[12]. This aspect

of SIGNAL makes it suitable for a future direction of this project in the validation of

parallel and distributed systems.

6.2 Testing Harness

A black-box model of the system under test is used in SAGA for validation. In

order to achieve dynamic synchronous control of the program being tested, SAGA

creates a testing harness by making use of simulation executables generated from

the Polychrony environment. The simulation executables are SIGNAL programs that

have been compiled from code generated by the Polychrony environment. In order

to run a simulation with the executables, a user must create a file for each input and

output signal of the program. In the file, the user must enter the values for each

signal at every step [11]. SAGA takes advantage of this feature by using the files as

buffers in order to control the system under test. Figure 6.1 illustrates this concept.

Figure 6.1: Testing Harness for Dynamic Synchronous Control

54



The intermediary files are created as named pipes in order to enable interpro-

cess communication between SAGA and the system under test. A named pipe is a

file type which allows multiple processes to simultaneously read and write from it.

This mechanism allows SAGA to generate values for all input signal and read values

from all output signals at every step, and therefore concurrently simulate a runtime

environment.

6.3 Evaluating Probabilities

The use of probabilities in SAGA gives great flexibility to attributing realistic

behaviors to an environment. It is important to understand on a quantitative basis the

meaning of such an operation in order to understand its capabilities and limitations.

The method of how probabilities are evaluated in SAGA is therefore presented here.

Given that a decision must be made with Px, a probability basis for property x,

then Rxy, a random number for property x during simulation step y, is generated by

SAGA. The following corresponding inequality is then evaluated:

(Rxy mod 100) + 1

100
≤ Px

where Px ∈ R , 0 ≤ Px ≤ 1, and Rxy ∈ Z+.

If the inequality is true, property x is satisfied in simulation step y. The ran-

dom number Rxy is generated using the pseudo-random sequence generation function

rand() from the standard C++ library. In order to provide distinct values for dif-

ferent simulations using the same initialization and environment description files, the

random number generator is seeded with the current system time at the start of each

simulation.
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6.4 Handling Properties

With speed being a crucial aspect of simulation tools, many design decisions were

made in consideration of running time. Generating the environment and checking

safety from properties composes the bulk of the computation work. The work done

by SAGA at each iteration is effectively bounded by the number of properties that

must be satisfied or checked, and the total number of system input and output signals.

In most cases, this number is relatively small compared to the total number of steps.

Furthermore, since each property is initially parsed from its description file and stored

in program memory, a file read operation bottle neck is avoided. The overall execution

time of a simulation in SAGA is therefore primarily dependent on the total number

of simulated steps (i.e. the user-specified test length).

Generating an environment consists of providing a value for every input signal to

the system at every simulation step. The values selected must be consistent with the

specified environment properties. At each step, every property in the list is evaluated

in the manner described in Section 3.3. This effectively assigns values to all the

signals which have properties associated with them. The set of possible values for the

remaining signals is only restricted by the signal data type and specified initialization

minimum and maximum values. These signals are therefore assigned a value randomly

chosen from their possible set.

Checking safety in a simulation entails verifying the specified properties hold at

every step in execution. In SAGA, each safety property is stored in a binary tree

data structure when it is first parsed from the description file. The binary tree allows

for an intuitive and organized way of checking the truth value of logical statements.

For example, the property in Listing 6.1, taken from the steam boiler case study, is
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stored in SAGA as illustrated in Figure 6.2. The tree arrangement is described using

the BNF symbols introduced in Section 4.4.1.

1 SAFE ( mode != 2 ) or ( ( level <= 130 ) and (level >= 20 ) )

END_SAFE

Listing 6.1: A Safety Property

Figure 6.2: Binary Tree Representation of a Safety Property

When a safety property is stored in SAGA, the operator of the first expression

always comprises the root node of the tree. Every node in the tree corresponds to the

operator in the local expression; therefore, each node must be composed of either two

child nodes, two leaves, or a node and a leaf. The leaves in the tree can be either a

signal or value. The tree structure is therefore always a full binary tree, where every
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node must have two children, but not a perfect binary tree because not all leaves will

have the same depth level.

In order to check the truth value of a property, a recursive function is used to

traverse the tree from the root node to the bottom-most nodes. Each node then

returns a value determined by evaluating with its operator the values of its child

nodes or leaves. The truth value of each node is computed as the function returns

back to the root node. Once both child nodes of the root note have returned a value,

the truth value of the property is determined.
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CHAPTER 7

CONCLUSION

7.1 Summary and Conclusion

The main contribution of this thesis is the design, implementation, and qualitative

assessment of SAGA, a prototype utility for the automated validation of SIGNAL

programs. SAGA provides a framework which shifts the testing effort associated

with critical systems from manually creating individual test cases to reasoning about

the safety and environment properties of a system. An overview of the methodology

and a detailed user’s guide of SAGA is presented. In the user’s guide, a thorough

example of SAGA as applied to the validation of a cruise control system is included

for completeness.

A qualitative assessment of the utility of SAGA is presented. The assessment

consists of a case study of SAGA as applied to the validation of the celebrated steam

boiler control specification problem, a system of substantial complexity. For this case

study, an implementation of the steam boiler program is developed in the SIGNAL

language. Results from the validation of the steam boiler program show that SAGA

is able to reveal non-trivial errors in the design of the system-under-test.
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7.1.1 Lessons from the Case Study

From the case study, the following important observations were made about the

validation process in SAGA:

• Given an initial specification of a system, the validation process in SAGA can

start concurrently with the design and development phases of the software de-

velopment cycle. This promotes, in general, a good practice for the development

of safe software systems.

• The SAGA environment description requires sufficient detail to expose inter-

esting system behavior, but should not be overly constraining. Given a loosely

specified environment where signal inputs are mostly generated randomly, a

system will seldom evolve into more interesting states. Conversely, if signals are

generated from an overly rigid specification, the system will always be tested

against the same input routines. The appropriate level of environment specifi-

cation must therefore be carefully considered and will be unique to each system

test agenda.

• Writing safety properties need not be an entirely creative process. Many of the

safety properties of a system can be systematically inferred from the system

specification itself.

7.2 Future Work

Future work of interest concerning the development of SAGA involves primarily

making technical improvements and additions. Three such improvements are key:
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1. Full incorporation of temporal logic for the description of safety properties.

SAGA currently handles statements about the immediate previous state through

use of a delay operator, but does not support temporal propositions which make

use of other notions of time such as until or since. Incorporating temporal logic

for describing safety would provide more flexibility in the types of properties

that may be specified.

2. Support for polychronous systems. The SIGNAL language allows for the speci-

fication of polychronous systems, where each input signal has its own activation

clock. Currently, validation in SAGA is limited to single-clocked systems, where

all signals share the same activation clock (i.e. a value is generated for all signals

during every step). Adding support for the validation of polychronous systems

would require the incorporation of environment description mechanisms which

take into consideration the presence or absence (i.e. clock) of each signal. The

polychronous model provides suitable means for describing distributed systems,

a domain in which the application of automated validation is of interest.

3. Compatibility with other synchronous languages. SAGA has been initially de-

veloped to work with SIGNAL programs. Since SAGA performs black box test-

ing on compiled executables, the methodology for validation effectively remains

the same for all synchronous programs. The only accommodation required

would be a suitable testing harness for each program type. Of the synchronous

languages, Lustre seems the most appealing due to its wider audience and com-

mercial success.
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APPENDIX A

CRUISE CONTROL PROGRAM LISTING

1 % Cruise Control System

2 % Author: Vahid Rajabian Schwart

3

4 process cruiseControl = % ----- Cruise Control System ----- %

5 ( % inputs %

6 ? integer speed; % speed sensor %

7 boolean set , % turn ON cruise control %

8 cancel , % turn OFF cruise control %

9 speed_inc , % increase cruise speed %

10 speed_dec; % decrease cruise speed %

11 % outputs %

12 ! boolean throttle , % throttle control %

13 brake , % brake control %

14 ctrl_on_disp ;) % control indicator %

15 ( % system specification %

16 % clock restrictions %

17 | throttle ^= brake ^= ctrl_on_disp ^= speed

18 | speed ^= set ^= cancel ^= speed_inc ^= speed_dec

19

20 | control_on := ( true when set )

21 default ( false when cancel )

22 default ( control_on$ init false )

23

24 | ctrl_on_disp := control_on

25

26 | cruise_speed := ( speed when set ) default ( (cruise_speed$ init

0)+1 when speed_inc )

27 default ( (cruise_speed$ init 0) -1 when speed_dec )

28 default ( cruise_speed$ init 0 )

29

30 | throttle := ( false when ( (speed >= cruise_speed) and

control_on) )

31 default ( true when (( speed < cruise_speed) and control_on) )
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32 default false

33

34 | brake := ( false when ((speed <= cruise_speed) and control_on) )

35 default ( true when ( (speed > cruise_speed) and control_on) )

36 default false

37

38 | ) where % local variables %

39 boolean control_on; % cruise control state %

40 integer cruise_speed; % cruise control speed %

41 end % cruiseControl %
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APPENDIX B

STEAM BOILER FILES

B.1 Initialization

1 %

2 % Steam Boiler Initialization

3 %

4

5 % Name of system under test

6 steamBoiler

7

8 % Number of Boolean input and output signals

9 % [No. input] [No. output]

10 31 30

11

12 % Number of Integer input and output signals

13 % [No. input] [No. output]

14 2 1

15

16 % Names of Boolean signals (must match SUT signal name) and initial

value

17 % [name] [init_value]

18 stop 0 % inputs

19 steam_boiler_waiting 0

20 physical_units_ready 0

21 pump_state1 0

22 pump_state2 0

23 pump_state3 0

24 pump_state4 0

25 pump_ctrl_state1 0

26 pump_ctrl_state2 0

27 pump_ctrl_state3 0

28 pump_ctrl_state4 0

29 pump_repaired1 0
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30 pump_repaired2 0

31 pump_repaired3 0

32 pump_repaired4 0

33 pump_ctrl_repaired1 0

34 pump_ctrl_repaired2 0

35 pump_ctrl_repaired3 0

36 pump_ctrl_repaired4 0

37 level_repaired 0

38 steam_repaired 0

39 pump_fault_ack1 0

40 pump_fault_ack2 0

41 pump_fault_ack3 0

42 pump_fault_ack4 0

43 pump_ctrl_fault_ack1 0

44 pump_ctrl_fault_ack2 0

45 pump_ctrl_fault_ack3 0

46 pump_ctrl_fault_ack4 0

47 level_fault_ack 0

48 steam_outcome_fault_ack 0

49

50 program_ready 0 % outputs

51 valve 0

52 open_pump1 0

53 open_pump2 0

54 open_pump3 0

55 open_pump4 0

56 close_pump1 0

57 close_pump2 0

58 close_pump3 0

59 close_pump4 0

60 pump_fault_detected1 0

61 pump_fault_detected2 0

62 pump_fault_detected3 0

63 pump_fault_detected4 0

64 pump_ctrl_fault_detected1 0

65 pump_ctrl_fault_detected2 0

66 pump_ctrl_fault_detected3 0

67 pump_ctrl_fault_detected4 0

68 level_fault_detected 0

69 steam_fault_detected 0

70 pump_repaired_ack1 0

71 pump_repaired_ack2 0

72 pump_repaired_ack3 0

73 pump_repaired_ack4 0

74 pump_ctrl_repaired_ack1 0

75 pump_ctrl_repaired_ack2 0

76 pump_ctrl_repaired_ack3 0

77 pump_ctrl_repaired_ack4 0

78 level_repaired_ack 0

79 steam_repaired_ack 0

80
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81 % Names of Integer signals (must match SUT signal name), initial

value

82 % minimum value , maximum value , and linear constraint

83 % [name] [init_value] [min_value] [max_value] [linear]

84 level 110 0 900 1

85 steam 0 0 900 1

86 mode 1

B.2 Safety Description

1 %

2 % Safety Description

3 %

4

5 % Rescue or emergency stop mode if level sensor is faulty

6 SAFE ( ( level <= 150 ) and ( level >= 0 ) ) or ( ( mode = 4) or (

mode = 5 ) ) END_SAFE

7

8 % Emergency mode if stop is asserted

9 SAFE ( mode = 5 ) or ( stop != 1 ) END_SAFE

10

11 % Cannot be in normal mode unless water level is near max and min

normal

12 SAFE ( mode != 2 ) or ( ( level <= 110 ) and (level >= 40 ) )

END_SAFE

13

14 % Valve must only be used in initialization

15 SAFE ( valve = 0 ) or ( mode = 1 ) END_SAFE

16

17 % Pumps are working , or the program must be in degraded , rescue or

emergency stop mode

18 SAFE ( pump_state1 = pump_ctrl_state1 ) or ( ( ( mode = 3 ) or (

mode = 4 ) ) or ( mode = 5) ) END_SAFE

19 SAFE ( pump_state2 = pump_ctrl_state2 ) or ( ( ( mode = 3 ) or (

mode = 4 ) ) or ( mode = 5) ) END_SAFE

20 SAFE ( pump_state3 = pump_ctrl_state3 ) or ( ( ( mode = 3 ) or (

mode = 4 ) ) or ( mode = 5) ) END_SAFE

21 SAFE ( pump_state4 = pump_ctrl_state4 ) or ( ( ( mode = 3 ) or (

mode = 4 ) ) or ( mode = 5) ) END_SAFE

22

23 % Program must acknowledge messages

24 SAFE ( ( pump_repaired1$ == 1 ) and ( pump_repaired_ack1 == 1 ) ) or

( pump_repaired1$ == 0 ) END_SAFE

25 SAFE ( ( pump_repaired2$ == 1 ) and ( pump_repaired_ack2 == 1 ) ) or

( pump_repaired2$ == 0 ) END_SAFE
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26 SAFE ( ( pump_repaired3$ == 1 ) and ( pump_repaired_ack3 == 1 ) ) or

( pump_repaired3$ == 0 ) END_SAFE

27 SAFE ( ( pump_repaired4$ == 1 ) and ( pump_repaired_ack4 == 1 ) ) or

( pump_repaired4$ == 0 ) END_SAFE

28

29 SAFE ( ( pump_ctrl_repaired1$ == 1 ) and ( pump_ctrl_repaired_ack1

== 1 ) ) or ( pump_ctrl_repaired1$ == 0 ) END_SAFE

30 SAFE ( ( pump_ctrl_repaired2$ == 1 ) and ( pump_ctrl_repaired_ack2

== 1 ) ) or ( pump_ctrl_repaired2$ == 0 ) END_SAFE

31 SAFE ( ( pump_ctrl_repaired3$ == 1 ) and ( pump_ctrl_repaired_ack3

== 1 ) ) or ( pump_ctrl_repaired3$ == 0 ) END_SAFE

32 SAFE ( ( pump_ctrl_repaired4$ == 1 ) and ( pump_ctrl_repaired_ack4

== 1 ) ) or ( pump_ctrl_repaired4$ == 0 ) END_SAFE

33

34 SAFE ( ( level_repaired$ == 1 ) and ( level_repaired_ack == 1 ) ) or

( level_repaired$ == 0 ) END_SAFE

35 SAFE ( ( steam_repaired$ == 1 ) and ( steam_repaired_ack == 1 ) ) or

( steam_repaired$ == 0 ) END_SAFE

36

37 % Program should not open and close the same pump

38 SAFE ( open_pump1 = 0 ) or ( close_pump1 = 0 ) END_SAFE

39 SAFE ( open_pump2 = 0 ) or ( close_pump2 = 0 ) END_SAFE

40 SAFE ( open_pump3 = 0 ) or ( close_pump3 = 0 ) END_SAFE

41 SAFE ( open_pump4 = 0 ) or ( close_pump4 = 0 ) END_SAFE

B.3 Environment Description

1 %

2 % Steam Boiler Environment

3 %

4

5 % Respond to program ready

6 OP program_ready = 1 -> P( physical_units_ready = 1 ) = 0.99 END_OP

7

8 % Infrequent assertion of stop

9 P( stop = 1 ) = 0.01

10

11 % No steam output during initialization

12 OP mode = 1 -> P( steam = 0 ) = 1 END_OP

13

14 % Decrease water level when valve is open

15 OP valve = 1 -> P( level - 4 ) = 0.98 END_OP

16

17 % No unsolicited messages

18 steam_boiler_waiting = 0
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19 physical_units_ready = 0

20 pump_repaired1 = 0

21 pump_repaired2 = 0

22 pump_repaired3 = 0

23 pump_repaired4 = 0

24 pump_ctrl_repaired1 = 0

25 pump_ctrl_repaired2 = 0

26 pump_ctrl_repaired3 = 0

27 pump_ctrl_repaired4 = 0

28 level_repaired = 0

29 steam_repaired = 0

30 pump_fault_ack1 = 0

31 pump_fault_ack2 = 0

32 pump_fault_ack3 = 0

33 pump_fault_ack4 = 0

34 pump_ctrl_fault_ack1 = 0

35 pump_ctrl_fault_ack2 = 0

36 pump_ctrl_fault_ack3 = 0

37 pump_ctrl_fault_ack4 = 0

38 level_fault_ack = 0

39 steam_outcome_fault_ack = 0

40

41 % Close/open pumps according to program orders

42 OP close_pump1 = 1 -> P( pump_state1 == 0 ) = 0.95 END_OP

43 OP close_pump2 = 1 -> P( pump_state2 == 0 ) = 0.95 END_OP

44 OP close_pump3 = 1 -> P( pump_state3 == 0 ) = 0.95 END_OP

45 OP close_pump4 = 1 -> P( pump_state4 == 0 ) = 0.95 END_OP

46 OP open_pump1 = 1 -> P( pump_state1 == 1 ) = 0.95 END_OP

47 OP open_pump2 = 1 -> P( pump_state2 == 1 ) = 0.95 END_OP

48 OP open_pump3 = 1 -> P( pump_state3 == 1 ) = 0.95 END_OP

49 OP open_pump4 = 1 -> P( pump_state4 == 1 ) = 0.95 END_OP

50

51 OP close_pump1 = 1 -> P( pump_ctrl_state1 == 0 ) = 0.95 END_OP

52 OP close_pump2 = 1 -> P( pump_ctrl_state2 == 0 ) = 0.95 END_OP

53 OP close_pump3 = 1 -> P( pump_ctrl_state3 == 0 ) = 0.95 END_OP

54 OP close_pump4 = 1 -> P( pump_ctrl_state4 == 0 ) = 0.95 END_OP

55 OP open_pump1 = 1 -> P( pump_ctrl_state1 == 1 ) = 0.95 END_OP

56 OP open_pump2 = 1 -> P( pump_ctrl_state2 == 1 ) = 0.95 END_OP

57 OP open_pump3 = 1 -> P( pump_ctrl_state3 == 1 ) = 0.95 END_OP

58 OP open_pump4 = 1 -> P( pump_ctrl_state4 == 1 ) = 0.95 END_OP

59

60 % Keep pump state constant unless changed by system

61 P( pump_state1 == pump_state1$ ) = 0.99

62 P( pump_state1 == pump_state2$ ) = 0.99

63 P( pump_state1 == pump_state3$ ) = 0.99

64 P( pump_state1 == pump_state4$ ) = 0.99

65

66 % Keep pump control state constant unless changed by system

67 P( pump_ctrl_state1 == pump_ctrl_state1$ ) = 0.99

68 P( pump_ctrl_state1 == pump_ctrl_state2$ ) = 0.99

69 P( pump_ctrl_state1 == pump_ctrl_state3$ ) = 0.99
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70 P( pump_ctrl_state1 == pump_ctrl_state4$ ) = 0.99

71

72 % Increase water level with each pump

73 OP pump_state1 = 1 -> P( level + 1 ) = 0.99 END_OP

74 OP pump_state2 = 1 -> P( level + 1 ) = 0.99 END_OP

75 OP pump_state3 = 1 -> P( level + 1 ) = 0.99 END_OP

76 OP pump_state4 = 1 -> P( level + 1 ) = 0.99 END_OP

77

78 % Decrease water level according to steam production %

79 OP steam != 0 -> P( level - steam ) = 1 END_OP % delete below lines

80

81 % Steam output increases as level decreases

82 OP level <= 150 -> P( steam == 1 ) = 1 END_OP

83 OP level <= 80 -> P( steam == 2 ) = 1 END_OP

84 OP level <= 65 -> P( steam == 3 ) = 1 END_OP

85 OP level <= 20 -> P( steam == 4 ) = 1 END_OP

86 OP level <= 10 -> P( steam == 5 ) = 1 END_OP

87

88 % Transmission responses

89 OP pump_fault_detected1$ == 1 -> P( pump_fault_ack1 = 1 ) = 1 END_OP

90 OP pump_fault_detected2$ == 1 -> P( pump_fault_ack2 = 1 ) = 1 END_OP

91 OP pump_fault_detected3$ == 1 -> P( pump_fault_ack3 = 1 ) = 1 END_OP

92 OP pump_fault_detected4$ == 1 -> P( pump_fault_ack4 = 1 ) = 1 END_OP

93

94 OP pump_ctrl_fault_detected1$ == 1 -> P( pump_ctrl_fault_ack1 = 1 )

= 1 END_OP

95 OP pump_ctrl_fault_detected2$ == 1 -> P( pump_ctrl_fault_ack2 = 1 )

= 1 END_OP

96 OP pump_ctrl_fault_detected3$ == 1 -> P( pump_ctrl_fault_ack3 = 1 )

= 1 END_OP

97 OP pump_ctrl_fault_detected4$ == 1 -> P( pump_ctrl_fault_ack4 = 1 )

= 1 END_OP

98

99 OP level_fault_detected$ == 1 -> P( level_fault_ack = 1 ) = 1 END_OP

100 OP steam_fault_detected$ == 1 -> P( steam_outcome_fault_ack = 1 ) =

1 END_OP

B.4 Program Listing

1 % Steam boiler controller initial implementation

2 % Author: Vahid Rajabian Schwart

3 % Implemented from the specification presented

4 % in: Jean -Raymond Abrial , Egon B r g e r , and Hans Langmaack.

5 % Formal Methods for Industrial Applications:

6 % Specifying and Programming the Steam Boiler Control.
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7 % LNCS 1165, Springer -Verlag , October 1996.

8

9 process steamBoiler =

10 ( % inputs %

11 ? integer level ,

12 steam;

13

14 boolean stop ,

15 steam_boiler_waiting ,

16 physical_units_ready ,

17 pump_state1 , pump_state2 ,

18 pump_state3 , pump_state4 ,

19 pump_ctrl_state1 , pump_ctrl_state2 ,

20 pump_ctrl_state3 , pump_ctrl_state4 ,

21 pump_repaired1 , pump_repaired2 ,

22 pump_repaired3 , pump_repaired4 ,

23 pump_ctrl_repaired1 , pump_ctrl_repaired2 ,

24 pump_ctrl_repaired3 , pump_ctrl_repaired4 ,

25 level_repaired ,

26 steam_repaired ,

27 pump_fault_ack1 , pump_fault_ack2 ,

28 pump_fault_ack3 , pump_fault_ack4 ,

29 pump_ctrl_fault_ack1 , pump_ctrl_fault_ack2 ,

30 pump_ctrl_fault_ack3 , pump_ctrl_fault_ack4 ,

31 level_fault_ack ,

32 steam_outcome_fault_ack;

33

34 % outputs %

35 ! integer mode;

36

37 boolean program_ready ,

38 valve ,

39 open_pump1 , open_pump2 , open_pump3 , open_pump4 ,

40 close_pump1 , close_pump2 , close_pump3 , close_pump4 ,

41 pump_fault_detected1 , pump_fault_detected2 ,

42 pump_fault_detected3 , pump_fault_detected4 ,

43 pump_ctrl_fault_detected1 , pump_ctrl_fault_detected2 ,

44 pump_ctrl_fault_detected3 , pump_ctrl_fault_detected4 ,

45 level_fault_detected ,

46 steam_fault_detected ,

47 pump_repaired_ack1 , pump_repaired_ack2 ,

48 pump_repaired_ack3 , pump_repaired_ack4 ,

49 pump_ctrl_repaired_ack1 , pump_ctrl_repaired_ack2 ,

50 pump_ctrl_repaired_ack3 , pump_ctrl_repaired_ack4 ,

51 level_repaired_ack ,

52 steam_repaired_ack;

53

54 )

55 % clock equations: model as single -clocked system %

56 (
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57 | mode ^= program_ready ^= valve ^= open_pump1 ^= open_pump2 ^=

open_pump3 ^=

58 open_pump4 ^= close_pump1 ^= close_pump2 ^= close_pump3 ^=

close_pump4 ^=

59 pump_fault_detected1 ^= pump_fault_detected2 ^=

pump_fault_detected3 ^=

60 pump_fault_detected4 ^= pump_ctrl_fault_detected1 ^=

61 pump_ctrl_fault_detected2 ^= pump_ctrl_fault_detected3 ^=

62 pump_ctrl_fault_detected4 ^= level_fault_detected ^=

63 steam_fault_detected ^= pump_repaired_ack1 ^= pump_repaired_ack2

^=

64 pump_repaired_ack3 ^= pump_repaired_ack4 ^=

pump_ctrl_repaired_ack1 ^=

65 pump_ctrl_repaired_ack2 ^= pump_ctrl_repaired_ack3 ^=

66 pump_ctrl_repaired_ack4 ^= level_repaired_ack ^=

steam_repaired_ack ^=

67 level ^= steam ^= stop ^= steam_boiler_waiting ^=

physical_units_ready ^=

68 pump_state1 ^= pump_state2 ^= pump_state3 ^= pump_state4 ^=

69 pump_ctrl_state1 ^= pump_ctrl_state2 ^= pump_ctrl_state3 ^=

70 pump_ctrl_state4 ^= pump_repaired1 ^= pump_repaired2 ^=

pump_repaired3 ^=

71 pump_repaired4 ^= pump_ctrl_repaired1 ^= pump_ctrl_repaired2 ^=

72 pump_ctrl_repaired3 ^= pump_ctrl_repaired4 ^= level_repaired ^=

73 steam_repaired ^= pump_fault_ack1 ^= pump_fault_ack2 ^=

pump_fault_ack3 ^=

74 pump_fault_ack4 ^= level_fault_ack ^= steam_outcome_fault_ack ^=

75 pump_fault1 ^= pump_fault2 ^= pump_fault3 ^= pump_fault4 ^=

76 pump_ctrl_fault1 ^= pump_ctrl_fault2 ^= pump_ctrl_fault3 ^=

77 pump_ctrl_fault4 ^= water_level_measuring_unit_fault ^=

78 steam_level_measuring_unit_fault ^= transmission_fault ^=

79 steam_boiler_waiting_received ^= physical_units_ready_received ^=

80 rescue_estimate_high ^= rescue_estimate_low ^= pump_count ^= pmp1

^=

81 pmp2 ^= pmp3 ^= pmp4 ^= pump_fault_count ^= pmpflt1 ^= pmpflt2 ^=

82 pmpflt3 ^= pmpflt4 ^= steam_delta ^= level_delta

83

84 % program mode %

85 | mode := EMERGENCY_MODE when ( stop

86 or steam_level_measuring_unit_fault

87 or transmission_fault

88 or ( level >= (M2 -10) ) or ( level <= (M1+10) )

89 or (( mode$ init INIT_MODE = INIT_MODE) and (steam /=0) )

90 or ( water_level_measuring_unit_fault and (( mode$ init INIT_MODE

) = INIT_MODE) )

91 or ( (pump_fault1 or pump_ctrl_fault1)

92 and (pump_fault2 or pump_ctrl_fault2)

93 and (pump_fault3 or pump_ctrl_fault3)

94 and (pump_fault4 or pump_ctrl_fault4) ) ) default

95 RESCUE_MODE when ( physical_units_ready_received$ init false

96 and water_level_measuring_unit_fault ) default
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97 DEGRADED_MODE when ( physical_units_ready_received$ init false

98 and not(water_level_measuring_unit_fault)

99 and (pump_fault1 or pump_fault2 or pump_fault3 or pump_fault4

100 or pump_ctrl_fault1 or pump_ctrl_fault2

101 or pump_ctrl_fault3 or pump_ctrl_fault4) ) default

102 NORMAL_MODE when ( physical_units_ready_received$ init false )

103 default mode$ init INIT_MODE

104

105 % control %

106 | valve := ( true when ( level > N2 ) default false ) when ( mode =

INIT_MODE )

107 default false

108

109 | open_pump1 := ( true when ((level < N1) and (pump_state1=false))

default false )

110 when ( mode=NORMAL_MODE or mode=DEGRADED_MODE or mode=

INIT_MODE )

111 default ( true when (( rescue_estimate_low < N1) and (pump_state1

=false)) default false ) when ( mode = RESCUE_MODE )

112 default false

113 | open_pump2 := ( true when ((level < N1) and (pump_state2=false))

default false )

114 when ( mode=NORMAL_MODE or mode=DEGRADED_MODE or mode=

INIT_MODE )

115 default ( true when (( rescue_estimate_low < N1) and (pump_state2

=false)) default false ) when ( mode = RESCUE_MODE )

116 default false

117 | open_pump3 := ( true when ((level < N1) and (pump_state3=false))

default false )

118 when ( mode=NORMAL_MODE or mode=DEGRADED_MODE or mode=

INIT_MODE )

119 default ( true when (( rescue_estimate_low < N1) and (pump_state3

=false)) default false ) when ( mode = RESCUE_MODE )

120 default false

121 | open_pump4 := ( true when ((level < N1) and (pump_state4=false))

default false )

122 when ( mode=NORMAL_MODE or mode=DEGRADED_MODE or mode=

INIT_MODE )

123 default ( true when (( rescue_estimate_low < N1) and (pump_state4

=false)) default false ) when ( mode = RESCUE_MODE )

124 default false

125

126 | close_pump1 := ( true when ((level > N2) and (pump_state1=true))

default false )

127 when ( mode=NORMAL_MODE or mode=DEGRADED_MODE or mode=

INIT_MODE )

128 default ( true when (( rescue_estimate_high > N2 and (pump_state1

=true)) default false ) when ( mode = RESCUE_MODE )

129 default false

130 | close_pump2 := ( true when ((level > N2) and (pump_state2=true))

default false )
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131 when ( mode=NORMAL_MODE or mode=DEGRADED_MODE or mode=

INIT_MODE )

132 default ( true when (( rescue_estimate_high > N2 and (pump_state2

=true)) default false ) when ( mode = RESCUE_MODE )

133 default false

134 | close_pump3 := ( true when ((level > N2) and (pump_state3=true))

default false )

135 when ( mode = NORMAL_MODE or mode=DEGRADED_MODE or mode=

INIT_MODE )

136 default ( true when (( rescue_estimate_high > N2 and (pump_state3

=true)) default false ) when ( mode = RESCUE_MODE )

137 default false

138 | close_pump4 := ( true when ((level > N2) and (pump_state4=true))

default false )

139 when ( mode=NORMAL_MODE or mode=DEGRADED_MODE or mode=

INIT_MODE )

140 default ( true when (( rescue_estimate_high > N2 and (pump_state4

=true)) default false ) when ( mode = RESCUE_MODE )

141 default false

142

143 % rescue mode calculations %

144 % estimate water level %

145 % high estimate - assume faulty pumps are open %

146 | rescue_estimate_high := (level$ init 0) when (

water_level_measuring_unit_fault

147 and not(water_level_measuring_unit_fault$ init false))

148 default ( (rescue_estimate_high$ init 0) - steam + pump_count +

pump_fault_count )

149 when ( water_level_measuring_unit_fault )

150 default level

151 % low estimate - assume faulty pumps are closed %

152 | rescue_estimate_low := (level$ init 0) when (

water_level_measuring_unit_fault

153 and not(water_level_measuring_unit_fault$ init false))

154 default ( (rescue_estimate_low$ init 0) - steam + pump_count)

155 when ( water_level_measuring_unit_fault )

156 default level

157

158 % count working pumps %

159 | pmp1 := 0 when ( (pump_fault1 or pump_ctrl_fault1) and not(

pump_state1$ init false) ) default 1

160 | pmp2 := 0 when ( (pump_fault2 or pump_ctrl_fault2) and not(

pump_state2$ init false) ) default 1

161 | pmp3 := 0 when ( (pump_fault3 or pump_ctrl_fault3) and not(

pump_state3$ init false) ) default 1

162 | pmp4 := 0 when ( (pump_fault4 or pump_ctrl_fault4) and not(

pump_state4$ init false) ) default 1

163 | pump_count := ( pmp1 + pmp2 + pmp3 + pmp4 )

164

165 % count faulty pump units ( controller or pump ) %

166 | pmpflt1 := 1 when ( pump_fault1 or pump_ctrl_fault1) default 0
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167 | pmpflt2 := 1 when ( pump_fault2 or pump_ctrl_fault2) default 0

168 | pmpflt3 := 1 when ( pump_fault3 or pump_ctrl_fault3) default 0

169 | pmpflt4 := 1 when ( pump_fault4 or pump_ctrl_fault4) default 0

170 | pump_fault_count := ( pmpflt1 + pmpflt2 + pmpflt3 + pmpflt4 )

171

172 % communications %

173 | program_ready := ( true when ( steam_boiler_waiting_received and

(steam = 0 )

174 and ( level < N2 ) and ( level > N1 ) ) default false)

175 when ( mode = INIT_MODE )

176 default false

177

178 % Acknowledge messages %

179 | pump_repaired_ack1 := true when ( pump_repaired1$ init false )

default false

180 | pump_repaired_ack2 := true when ( pump_repaired2$ init false )

default false

181 | pump_repaired_ack3 := true when ( pump_repaired3$ init false )

default false

182 | pump_repaired_ack4 := true when ( pump_repaired4$ init false )

default false

183

184 | pump_ctrl_repaired_ack1 := true when ( pump_ctrl_repaired1$ init

false ) default false

185 | pump_ctrl_repaired_ack2 := true when ( pump_ctrl_repaired2$ init

false ) default false

186 | pump_ctrl_repaired_ack3 := true when ( pump_ctrl_repaired3$ init

false ) default false

187 | pump_ctrl_repaired_ack4 := true when ( pump_ctrl_repaired4$ init

false ) default false

188

189 | level_repaired_ack := true when ( level_repaired$ init false )

default false

190 | steam_repaired_ack := true when ( steam_repaired$ init false )

default false

191

192 % fault detection %

193 % pump faults %

194 | pump_fault1 := true when pump_fault_detected1

195 default false when pump_repaired1

196 default pump_fault1$ init false

197 | pump_fault2 := true when pump_fault_detected2

198 default false when pump_repaired2

199 default pump_fault2$ init false

200 | pump_fault3 := true when pump_fault_detected3

201 default false when pump_repaired3

202 default pump_fault3$ init false

203 | pump_fault4 := true when pump_fault_detected4

204 default false when pump_repaired4

205 default pump_fault4$ init false

206
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207 % pump controller faults %

208 | pump_ctrl_fault1 := true when pump_ctrl_fault_detected1

209 default false when pump_ctrl_repaired1

210 default pump_ctrl_fault1$ init false

211 | pump_ctrl_fault2 := true when pump_ctrl_fault_detected2

212 default false when pump_ctrl_repaired2

213 default pump_ctrl_fault2$ init false

214 | pump_ctrl_fault3 := true when pump_ctrl_fault_detected3

215 default false when pump_ctrl_repaired3

216 default pump_ctrl_fault3$ init false

217 | pump_ctrl_fault4 := true when pump_ctrl_fault_detected4

218 default false when pump_ctrl_repaired4

219 default pump_ctrl_fault4$ init false

220

221 % pump unit faults 1) non -responsiveness 2) spontaneous change %

222 | pump_ctrl_fault_detected1 := true when ( (( open_pump1$ init false)

and not(pump_ctrl_state1))

223 or (( close_pump1$ init false) and pump_ctrl_state1) )

224 default true when ( (open_pump1$ init false or close_pump1$ init

false)

225 and (pump_ctrl_state1 = pump_ctrl_state1$ init false) )

226 default false

227 | pump_ctrl_fault_detected2 := true when ( (( open_pump2$ init false)

and not(pump_ctrl_state2))

228 or (( close_pump2$ init false) and pump_ctrl_state2) )

229 default true when ( (open_pump2$ init false or close_pump2$ init

false)

230 and (pump_ctrl_state2 = pump_ctrl_state2$ init false) )

231 default false

232 | pump_ctrl_fault_detected3 := true when ( (( open_pump3$ init false)

and not(pump_ctrl_state3))

233 or (( close_pump3$ init false) and pump_ctrl_state3) )

234 default true when ( (open_pump3$ init false or close_pump3$ init

false)

235 and (pump_ctrl_state3 = pump_ctrl_state3$ init false) )

236 default false

237 | pump_ctrl_fault_detected4 := true when ( (( open_pump4$ init false)

and not(pump_ctrl_state4))

238 or (( close_pump4$ init false) and pump_ctrl_state4) )

239 default true when ( (open_pump4$ init false or close_pump4$ init

false)

240 and (pump_ctrl_state4 = pump_ctrl_state4$ init false) )

241 default false

242

243 | pump_fault_detected1 := false when ( pump_ctrl_fault1 )

244 default true when ( (( open_pump1$ init false) and not(pump_state1)

)

245 or (( close_pump1$ init false) and pump_state1) )

246 default false

247 | pump_fault_detected2 := false when ( pump_ctrl_fault2 )

75



248 default true when ( (( open_pump2$ init false) and not(pump_state2)

)

249 or (( close_pump2$ init false) and pump_state2) )

250 default false

251 | pump_fault_detected3 := false when ( pump_ctrl_fault3 )

252 default true when ( (( open_pump3$ init false) and not(pump_state3)

)

253 or (( close_pump3$ init false) and pump_state3) )

254 default false

255 | pump_fault_detected4 := false when ( pump_ctrl_fault4 )

256 default true when ( (( open_pump4$ init false) and not(pump_state4)

)

257 or (( close_pump4$ init false) and pump_state4) )

258 default false

259

260 % measure faults 1) known system capacity exceed %

261 % 2) delta change inconsistent with physical system %

262 | level_fault_detected := true when ( (level < 0) or (level > C)

263 or (level_delta$ init 0) > 4 ) default false

264 | level_delta := (level - (level$ init 110)) when (level > (level$

init 110)) %Must provide init value%

265 default ( (level$ init 110) - level) when (level < (level$ init

110))

266 default 0

267

268 | steam_fault_detected := true when ( (steam$ init 0 < 0) or (steam$

init 0 > C)

269 or (steam_delta$ init 0) > 4 ) default false

270 | steam_delta := (steam - (steam$ init 0)) when (steam > (steam$

init 0)) %Must provide init value%

271 default (( steam$ init 0) - steam) when (steam < (steam$ init 0))

272 default 0

273

274

275 % water level measuring unit fault %

276 | water_level_measuring_unit_fault := true when

level_fault_detected

277 default false when level_repaired

278 default water_level_measuring_unit_fault$ init false

279

280 % steam level measuring unit fault %

281 | steam_level_measuring_unit_fault := true when

steam_fault_detected

282 default false when steam_repaired

283 default steam_level_measuring_unit_fault$ init false

284

285 % transmission fault: No response %

286 | transmission_fault := true when ( (( pump_fault_detected1$ init

false) and (not pump_fault_ack1))

287 or (( pump_fault_detected2$ init false) and (not pump_fault_ack2))

288 or (( pump_fault_detected3$ init false) and (not pump_fault_ack3))
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289 or (( pump_fault_detected4$ init false) and (not pump_fault_ack4))

290 or (( pump_ctrl_fault_detected1$ init false) and (not

pump_ctrl_fault_ack1))

291 or (( pump_ctrl_fault_detected2$ init false) and (not

pump_ctrl_fault_ack2))

292 or (( pump_ctrl_fault_detected3$ init false) and (not

pump_ctrl_fault_ack3))

293 or (( pump_ctrl_fault_detected4$ init false) and (not

pump_ctrl_fault_ack4))

294 or (( level_fault_detected$ init false) and (not level_fault_ack))

295 or (( steam_fault_detected$ init false) and (not

steam_outcome_fault_ack))

296 % transmission fault: Unsolicited response %

297 or ((not pump_fault1) and pump_fault_ack1)

298 or ((not pump_fault2) and pump_fault_ack2)

299 or ((not pump_fault3) and pump_fault_ack3)

300 or ((not pump_fault4) and pump_fault_ack4)

301 or ((not pump_ctrl_fault1) and pump_ctrl_fault_ack1)

302 or ((not pump_ctrl_fault2) and pump_ctrl_fault_ack2)

303 or ((not pump_ctrl_fault3) and pump_ctrl_fault_ack3)

304 or ((not pump_ctrl_fault4) and pump_ctrl_fault_ack4)

305 or ((not water_level_measuring_unit_fault) and level_fault_ack)

306 or ((not steam_level_measuring_unit_fault) and

steam_outcome_fault_ack) )

307 default false

308

309 % track message information %

310 | steam_boiler_waiting_received := true when steam_boiler_waiting

311 default steam_boiler_waiting_received$ init false

312

313 | physical_units_ready_received := true when physical_units_ready

314 default physical_units_ready_received$ init false

315

316

317 |) where

318 % physical constants %

319 constant integer C = 150; % maximal boiler capacity %

320 constant integer M1 = 20; % minimal limit %

321 constant integer M2 = 130; % maximal limit %

322 constant integer N1 = 60; % minimal normal %

323 constant integer N2 = 90; % maximal normal %

324

325 % program states %

326 constant integer INIT_MODE = 1;

327 constant integer NORMAL_MODE = 2;

328 constant integer DEGRADED_MODE = 3;

329 constant integer RESCUE_MODE = 4;

330 constant integer EMERGENCY_MODE = 5;

331

332 % local variables %

333 % system faults %
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334 boolean pump_fault1 , pump_fault2 ,

335 pump_fault3 , pump_fault4 ,

336 pump_ctrl_fault1 , pump_ctrl_fault2 ,

337 pump_ctrl_fault3 , pump_ctrl_fault4 ,

338 water_level_measuring_unit_fault ,

339 steam_level_measuring_unit_fault ,

340 transmission_fault ,

341 % transmission data %

342 steam_boiler_waiting_received init false ,

343 physical_units_ready_received init false;

344

345 % physical data %

346 integer level_delta init 0,

347 steam_delta init 0,

348 rescue_estimate_high init 0,

349 rescue_estimate_low init 0,

350 pmp1 , pmp2 , pmp3 , pmp4 ,

351 pump_count init 0,

352 pmpflt1 , pmpflt2 , pmpflt3 , pmpflt4 ,

353 pump_fault_count init 0;

354

355 end; % steamBoiler %
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