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Abstract 

The amyloid-b (Ab) peptide has long been considered to be the driving force behind 

Alzheimer’s disease (AD). However, clinical trials that have successfully reduced Ab burden in 

the brain have not slowed the cognitive decline, and in some instances have resulted in adverse 

outcomes. While these results can be interpreted in different ways, a more nuanced picture of Ab 

is emerging that takes into account the facts that the peptide is evolutionarily conserved and is 

present throughout life in cognitively normal individuals. Recent evidence indicates a role for Ab 

as an antimicrobial peptide (AMP), a class of innate immune defense molecule that utilizes 

fibrillation to protect the host from a wide range of infectious agents. In humans and in animal 

models, infection of the brain frequently leads to increased amyloidogenic processing of the Ab 

precursor protein (AbPP) and resultant fibrillary aggregates of Ab. Evidence from in vitro and in 

vivo studies demonstrates that Ab oligomers have potent, broad-spectrum antimicrobial 

properties by forming fibrils that entrap pathogens and disrupt cell membranes. Importantly, 

overexpression of Ab confers increased resistance to infection from both bacteria and viruses. 

The antimicrobial role of Ab may explain why increased rates of infection have been observed in 

some of the AD clinical trials that depleted Ab. Perhaps progress towards a cure for AD will 

accelerate once treatment strategies begin to take into account the likely physiological functions 

of this enigmatic peptide. 
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Amyloid-b is linked to Alzheimer’s disease 

 In 1906, Dr. Alois Alzheimer presented a case study for the Meeting of Southwest 

German Psychiatrists. His patient, Auguste D., had suffered from profound and progressive 

dementia, personality changes and sleep disruption. After her death at age 55, Dr. Alzheimer 

examined her brain and noticed severe cortical atrophy, as well as intensely-stained protein 

deposits in the form of intraneuronal tangles and extraneuronal plaques [1]. The latter 

neuropathological feature has since become the primary focus of research on Alzheimer’s 

disease (AD). These extracellular plaques are formed from the amyloid-b (Ab) peptide, a 40- or 

42-amino acid fragment of the amyloid precursor protein (AbPP). AbPP has two possible 

cleavage pathways. In the non-amyloidogenic pathway, AbPP is cleaved sequentially by a- and 

g-secretases to form three soluble fragments. In the amyloidogenic pathway, AbPP is first 

cleaved by b-secretase, followed by g-secretase, thereby releasing the AD-associated Ab 

fragment [2]. 

 The “Amyloid cascade hypothesis” has guided much of the research in AD for the past 

25 years [3]. The hypothesis posits that the deposition of Ab plaques initiates a series of 

pathological events which lead to the development of AD. Accordingly, the majority of AD drug 

candidates entering clinical trials have focused on depleting Ab. Yet of more than 200 

compounds advanced to at least stage 2 trials in the past 30 years, only four have received FDA 

approval for the treatment of AD; these four show limited therapeutic benefit and none target Ab 

[4].  

 Interestingly, a problem shared by many of the anti-Ab clinical trials is an increased 

incidence of infections among the study participants. For instance, meningoencephalitis 

developed in approximately 6% of trial participants who received the first active immunotherapy 
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that was targeted against Aß, AN-1792 [5-7]. An increase in infections, specifically orolabial 

herpes relapse, was reported in clinical trials of the b-site AbPP cleaving enzyme 1 (BACE1)-

inhibitor E2609 [8], the γ-secretase inhibitor Semagacestat [9, 10], and the Aß-binding 

compound ELND005 [11, 12], while trials of the γ-secretase inhibitor Tarenfurbil reported 

increased rates of upper respiratory infections [13]. Skin and/or gastrointestinal reactions, often 

associated with infections, have been frequently observed in patients treated with active and 

passive immunizations against Aß, inhibitors of BACE1 or γ-secretase, or Aß-binding 

compounds [14-19]. In patients treated with the γ-secretase inhibitor Avagacestat, the rate of 

infections increased in a dose-dependent manner, with 42.5% of patients in the highest dose 

group developing infections, compared to 21.4% in the placebo group [20]. AbPP is expressed in 

many of the peripheral tissues where these infections were observed, including the skin, lungs, 

and intestines [21]. 

This relationship between Ab inhibition and susceptibility to infection raises the 

possibility that Ab plays a role in immune function. Indeed, several new lines of evidence 

indicate that Ab may function within the innate immune system as an antimicrobial peptide 

(AMP), an ancient class of peptides with potent and broad-spectrum antimicrobial activity. The 

evidence in support of this intriguing possibility will be reviewed in the following sections. 

Amyloidogenic peptides serve several physiological roles 

The tendency of Ab to aggregate into insoluble plaques has led many to consider it as an 

aberrant peptide with no physiological function. However, functional amyloidogenic peptides are 

common in biological systems, having been found in both prokaryotic and eukaryotic life forms 

[22]. For instance, amyloids fulfill multiple roles in humans: in red blood cells, amyloids help to 

facilitate cellular adhesion and movement [23], while amelogenin, the main component of the 



 5 

enamel protein matrix in teeth, self-assembles into amyloid-like structures in vitro and in vivo 

[24]. At least 31 human peptide hormones are stored in an amyloid-like conformation in 

secretory granules of the pituitary gland [25]. Thus the amyloidogenic nature of Ab does not 

exclude the possibility that it may serve a physiological function. 

Ab’s ubiquity hints at the likelihood of a functional role. The sequence of Ab is highly 

conserved in the AbPP orthologs of more than 70% of vertebrate species, in addition to many 

invertebrates [26-28]. In cognitively normal humans, Ab is present in the brain throughout life, 

as well as in the cerebrospinal fluid (CSF) and blood plasma [29-31]. Naked mole rats 

(Heterocephalus glaber) are the longest-lived rodent species, yet their brains naturally possess 

very high concentrations of soluble Ab, comparable to those found in the 3xTg-AD mouse 

model of AD [32]. The widespread presence of Ab in diverse evolutionary taxa suggests that it is 

maintained by positive selection. 

Attempts to deplete Ab often have negative consequences. In rat cortical neurons, 

depletion of Ab by secretase inhibition or anti-Ab antibodies results in loss of cell viability, 

while co-incubation with Ab40, the most common Ab isotype, rescues cells in a concentration-

dependent manner, with significant protective effects being observed at concentrations as low as 

10 pm [33]. Bolkan and colleagues were the first to demonstrate a functional role for Ab in vivo 

by showing that the Drosophila ortholog of human BACE1, dBACE1, is necessary for glial 

survival. RNAi knockdown of dBACE1 in photoreceptor neurons resulted in the progressive 

degeneration of glia within their target zone, the lamina cortex, indicating that the AbPP b-

cleavage function of BACE1 within neurons is required for survival of their target glia [34]. In 

humans, clinical trials of anti-Ab therapies frequently report adverse effects. In addition to the 

increased rate of infections, other negative outcomes include cancers, neurovascular 
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disturbances, and cortical atrophy [4, 19, 35], suggesting that this peptide may serve multiple 

physiological functions in humans. 

Infections can induce Ab production 

The identification of microbial DNA within Ab plaques has given support to Robinson 

and Bishop’s proposal [36, 37] that Ab may aggregate in response to the presence of infectious 

agents in the brain. Wozniak and colleagues used an in situ polymerase chain reaction (PCR) to 

detect DNA of herpes simplex virus-1 (HSV-1) in brain tissue from six AD patients and five 

cognitively normal elderly individuals, who had all tested positive for HSV-1 infection. In the 

AD brains, 90% of Ab plaques contained HSV-1 DNA and 72% of the DNA was associated with 

plaques. In contrast, 80% of plaques within the healthy brains contained HSV-1 DNA and 24% 

of the DNA was associated with plaques. The authors suggested that AD may result from higher 

than normal Ab deposition in response to HSV-1 infection, either due to an overproduction of 

Ab or a reduced rate of clearance [38]. Additionally, Miklossy examined three AD brains known 

to be infected with the spirochete Borrelia burgdorferi and found that the Ab plaques colocalized 

with the bacterial antigen and DNA [39]. These results demonstrate that, at least in cases where 

infection is confirmed, a large proportion of Ab plaques contain viral or bacterial DNA. 

The association is further supported by direct causative evidence that infectious 

pathogens can stimulate the production of Ab (Table 1). In human subjects, HSV-1 encephalitis 

is associated with reduced levels of Ab42 in the CSF compared to healthy controls [40]. A similar 

reduction is found in AD and serves as an indirect indication of enhanced Ab42 deposition in the 

brain [41].  HSV-1 infection of human and rat neuronal cultures activates the amyloidogenic 

pathway of AbPP processing while inhibiting Ab degradation, leading to intracellular Ab 

accumulation [42-46]. Wozniak and colleagues replicated these results in vivo by infecting 
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BALB/c mice with HSV-1 either intranasally or by ear scarification. Ab42 deposits were 

observed in temporal cortex sections five days after infection. Cell culture experiments revealed 

that intracellular concentrations of Ab were significantly increased as early as 24 hours post-

infection and that infected cells increased their expression of both BACE-1 and nicastrin, a 

component of g-secretase. An increase in these two enzymes is unusual, considering that HSV-1 

infection activates double-stranded RNA-activated protein kinase (PKR), a defensive viral sensor 

that shuts down protein synthesis [46]. Interestingly, activation of PKR simultaneously triggers 

an increase in BACE1 activity, leading to an increased production of Ab [47]. Importantly, the 

same group later showed that antiviral treatments greatly reduce Ab accumulation in HSV-1 

infected cells. Treatment with the antiviral agent Acyclovir, which inhibits replication of HSV-1, 

reduced the intensity of intracellular Ab staining to 28% of that in untreated infected cells, while 

also reducing the levels of BACE-1 and nicastrin [48]. A more potent antiviral, BAY 57-1293, 

further reduced Aβ deposition in HSV-1 infected cells, while no intracellular Aβ could be 

detected following treatment with a combination of the two antiviral drugs [49].  

Kristen and colleagues showed that HSV-2 is also capable of altering AbPP processing. 

Following exposure to HSV-2, neuroblastoma cells that overexpressed human AbPP strongly 

increased their intracellular levels of Ab. Infected cells displayed a decline in a-secretase activity 

and reduced levels of its proteolytic products, sAbPPa and a-carboxy terminal fragment (CTF). 

However, there were no changes in AbPP expression or β-secretase activity, suggesting that the 

non-amyloidogenic pathway of AbPP processing was selectively inhibited in response to HSV-2 

infection, whereas amyloidogenic processing was unimpaired. Infected cells also showed a 

disruption of Ab autophagy, as evidenced by an accumulation of Ab-containing autophagic 

compartments that failed to fuse with lysosomes [50]. A recent study suggested that 
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pseuodorabies virus (PRV), a member of the herpesviridae family related to HSV-3, may also 

increase Ab deposition. In the brains of PS2-Tg2576 double transgenic mice that had been 

infected with PRV, the levels of insoluble Ab40 and Ab42 were 20-40 fold higher than in the 

brains of noninfected mice. Interestingly, the control mice (C57BL/6) also showed a significant 

(4-fold) increase in the brain levels of insoluble Ab42 in response to infection by PRV [51]. 

Additional studies have investigated the amyloid pathology that is associated with 

infection by human immunodeficiency virus (HIV). In an autopsy study of brain tissue from 162 

individuals infected with HIV, who had died at an average age of 43 years, approximately half of 

the frontal cortices were found to contain Ab plaques and intraneuronal inclusions of Ab [52]. In 

cell culture aggregates from human AD brains, treatment with the HIV factor Tat led to 

increased concentrations of soluble Aβ and a reduced activity of the Aβ-degrading enzyme 

neprilysin [53, 54]. In a more recent study, exosomes containing mRNA and protein of the HIV 

Nef gene were isolated from HIV-infected humans. Neuroblastoma cells exposed to these 

exosomes showed increased rates of Aβ production and secretion [55]. These observations 

suggest that neurons respond to the presence of HIV by upregulating their expression of Aβ. 

Bacteria are also capable of inducing Ab deposition. When BALB/c mice were 

intranasally infected with Chlamydia pneumoniae that had been cultured from a human AD 

brain, the C. pneumoniae successfully infiltrated the olfactory bulb and persisted for at least three 

months post-infection [56]. Immunohistochemical analysis of the olfactory bulb and cerebrum 

revealed the presence of Ab deposits, a subset of which were positive for thioflavin-s, an 

indicator of fibrillary Ab. The number of deposits increased from an average of 7 per mouse at 

one month post-infection to 189 per mouse at three months post-infection [56]. However, a study 

attempting to replicate the above data reported key differences. Boelen and colleagues detected 
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Ab deposits after infection with a respiratory isolate of C. pneumoniae, but failed to detect 

thioflavin-s-positive Ab fibrils. They also noted that the number of deposits was substantially 

lower than had been observed in the previous study, with only one or two deposits per mouse 

[57]. A follow-up study by Little and colleagues, which used a laboratory strain of C. 

pneumoniae, reported that the number of Ab deposits peaked at two months post-infection with 

an average of 60 plaques per mouse and then returned to control levels four months after 

infection [58]. Importantly, the strains of C. pneumoniae used by Boelen et al. and in the second 

study by Little et al. only persisted in the brain tissue for one week and one month post-infection, 

respectively. In contrast, the original study by Little et al. reported that the infection persisted for 

at least three months after the initial exposure. Thus the continuing presence of an infective agent 

may be necessary to maintain a high number of Ab deposits [56]. 

Treponema palladium and Borrelia burgdorferi are spirochetal bacteria that cause 

neurosyphilis and Lyme neuroborreliosis, respectively. In humans, these diseases have a 

neuropathological course that resembles AD, including progressive dementia, cortical atrophy, 

neuroinflammation and Ab deposition [59, 60]. Cultured rat neurons and glia exposed to B. 

burgdorferi or bacterial lipopolysaccharide (LPS) upregulate their AbPP expression and display 

morphological changes that resemble the amyloid deposits of AD after 2-8 weeks of exposure to 

the spirochetes [61]. The common oral bacterium Porphyromonas gingivalis has also been linked 

to Ab deposition. AbPP-Tg mice infected by oral administration of P. gingivalis showed 

significantly increased levels of LPS in the brain, demonstrating the spread of the infection to the 

CNS. Infected mice had an increased load of Ab plaques in the hippocampus, and higher 

concentrations of both Ab40 and Ab42 in the hippocampus and cortex. In mouse neuronal cell 
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cultures, exposure to LPS from P. gingivalis caused the cells to increase their secretion of Ab40 

and Ab42 in a concentration-dependent manner [62]. 

 Taken together, these findings demonstrate that viral or bacterial infections shift AbPP 

processing toward the amyloidogenic pathway, resulting in increased rates of Ab production and 

deposition. Thus perturbations in Ab levels may indicate the presence of an infection. For 

instance, the reduced CSF titers of Ab42 in both HIV [40, 63] and bacterial meningitis [40, 64] 

may be a consequence of increased rates of Ab deposition in brain tissues in response to the 

infection. Indeed, in eight patients with acute purulent bacterial meningitis who showed reduced 

levels of Ab42 in the CSF, successful treatment of the infection resulted in a rebound to control 

Ab42 levels [64], consistent with a curtailing of Ab deposition in the brain. 

Antimicrobial properties of Ab 

The idea that Ab may serve as a part of the innate immune system was first proposed by 

Robinson and Bishop in what they termed the “Bioflocculant hypothesis.” They posited that 

Ab’s aggregative properties could make it ideal for surrounding and sequestering pathogenic 

agents in the brain, and by so doing it would limit the spread of the pathogen and prepare it for 

phagocytosis. They noted that Ab’s positive charge would be attracted to the negatively-charged 

membranes of microbes [36, 37]. In a recent study, Pulze and colleagues identified a similar 

amyloid bioflocculant in humans. Neutrophil extracellular traps (NETs), a decondensed 

chromatin network produced by immune cells to entrap microbial pathogens, were shown to 

contain amyloid fibrils as a structural backbone. Amyloid structures that could be stained with 

Congo red and thioflavin-s were observed in activated neutrophils, and were found to colocalize 

with the DNA of the extracellular NET structures. The positive charge of the NET amyloid likely 

assists in targeting microbes, allowing it to distinguish between negatively-charged pathogen 
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membranes and zwitterionic host membranes [65]. In addition to neutrophils, activated 

eosinophils, monocytes/macrophages and mast cells can secrete NETs, suggesting that amyloid 

bioflocculants could be an integral part of human innate immunity [66-68]. 

Many AMPs have an amyloid structure. The b-sheet structure of these amyloids can 

spontaneously insert into membranes, forming channels that trigger death by ion dyshomeostasis 

[69]. This useful property led to conservation of amyloid AMPs across broad evolutionary taxa, 

such as longipin in the arachnid Acutisoma longipes [70] and microcin E492 in the bacterium 

Klebsiella pneumoniae RYC492 [71]. A number of amyloid AMPs are known to function in 

humans. For instance, eosinophils, a type of white blood cell important for innate immunity, 

utilize the amyloidogenic major basic protein-1 (MBP-1) to combat pathogens [72]. In response 

to infection, MBP-1 released by eosinophils rapidly aggregates at the bacterial surface, leading to 

agglutination that limits the infection’s spread and facilitating phagocytosis by immune cells [72, 

73]. MBP-1 also displays bactericidal activity by triggering lysis or other disruptions of the 

bacterial cell membrane. This function is largely dependent on the aggregative nature of MBP-1, 

as prevention of amyloid fibrillation by using antibodies that bind to b-sheet-rich oligomers 

improves bacterial cell viability and reduces membrane damage [72]. Similar mechanisms are 

utilized by other human AMPs, including thrombin-derived C-terminal fragments, protegrin-1, 

and semen-derived enhancer of viral infection [74-76]. 

If Ab is indeed an AMP, it ought to be released by activated immune cells, as has been 

demonstrated by several studies. Cultures of immortalized microglial cells constitutively express 

Ab and upregulate its production following exposure to bacterial LPS [77]. Primary human 

monocyte cultures strongly increase Ab secretion following lipoprotein phagocytosis or LPS 

stimulation [78], while monocytes activated with T-cell mitogens increase AbPP transcription, 
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translation and secretion [79]. Like other amyloid AMPs, Ab spontaneously forms cation 

channels in cell membranes, leading to cell death by ion dyshomeostasis [80-83]. Ab also 

contains a U-shaped b-strand-turn-b-strand motif that is highly conserved in many amyloid 

AMPs [69].  

Several recent studies have shown that Ab possesses antimicrobial activity against a 

variety of human pathogens (Table 2). Soscia and colleagues provided direct evidence that Ab 

functions as an AMP. The ‘minimum inhibitory concentration’, defined as the “lowest 

concentration able to visibly inhibit growth overnight”, for Ab40 and Ab42 was determined for 

twelve common pathogens, with the archetypal human AMP, LL-37, being used as a basis for 

comparison. Ab displayed antimicrobial activity against eight of the pathogens, including gram-

positive and gram-negative bacteria, and the yeast species, Candida albicans. For seven of these, 

Ab had a potency equal to or exceeding that of LL-37. Additionally, homogenates from AD 

brains were shown to significantly inhibit the growth of C. albicans when compared to 

homogenates from non-demented brains. This difference was observed for the temporal lobe, 

where Ab load is high in AD, but not for the cerebellum, where Ab load is low. Within the 

temporal lobe homogenates, the level of C. albicans inhibition was significantly correlated with 

Ab concentration, and the tissue’s antimicrobial properties were attenuated by immunodepletion 

with anti-Ab antibodies [84]. 

 Spitzer and colleagues have confirmed the antimicrobial properties of Ab [85]. 

Following incubation with Ab42, four bacterial species and the yeast C. albicans showed 

agglutination into large clusters, and Ab was observed bound to the microbial surface. This 

effect was not observed with any other sizes of Ab fragments. Scanning electron microscopy of 
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Enterococcus faecalis treated with Ab42 showed that the bacteria had acquired a dysmorphic 

shape and accumulated large amount of amorphic material between the cells. All five 

microorganisms exhibited reduced viability following Ab42 treatment, as demonstrated through 

flow cytometry, autofluorescence analysis, and culture plate seeding. By contrast, treatment of 

human THP-1 cells with identical concentrations of Ab42 did not result in agglutination or 

toxicity [85]. Spitzer and colleagues suggested that the capacity of Ab42 to selectively agglutinate 

pathogens could be due to the fact that the heparin-binding site of Ab has an affinity for the 

polysaccharides mannan and glucan, which are found in the cell walls of bacteria and fungi. 

Other studies have expanded Ab’s antimicrobial repertoire to include viruses [86]. In 

human primary neuronal and glial co-cultures, Ab was shown to be as effective as the antiviral 

Acyclovir at attenuating the pathological responses to HSV-1 infection [87]. Other groups 

confirmed the protective effects of Ab against HSV-1 infection in fibroblast, epithelial and 

neuronal cell lines [88], as well as in neuroglioma/glioblastoma co-cultures [42]. It appears that 

Aβ interferes with the HSV-1 fusogenic protein gB, thereby preventing the virus from fusing 

with the plasma membrane and infecting the cell [86]. Ab is also protective against the H3N2 

and H1N1 strains of influenza A virus, causing aggregation of viral particles and enhanced 

phagocytosis by neutrophils and macrophages [89]. Indeed, Ab’s potent and broad-spectrum 

antimicrobial properties have prompted the suggestion that it could serve as a model for 

developing novel peptide antibiotics [90]. 

A recent study [91] confirmed Ab’s in vivo function as an AMP. One-month-old 5XFAD 

mice and wild-type mice received injections of Salmonella typhimurium into the cerebral cortex. 

The 5XFAD mice, which constitutively express human Ab, survived for a significantly longer 

period than the wild-type mice. Consistent with enhanced immunity, the 5XFAD mice also had 
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lower clinical scores of encephalomyelitis progression, reduced weight loss and a lower S. 

typhimurium load. These effects were unlikely to have been due to immunological priming, as no 

significant differences were observed in the number of astrocytes or microglia in the brain, or in 

the levels of ten different pro-inflammatory cytokines. In contrast, AbPP knockout mice showed 

a non-significant trend toward accelerated mortality compared to the wild-type mice.  

These results were mirrored for C. albicans infection in the nematode Caenorhabditis 

elegans, which showed significantly reduced mortality in strains that expressed Ab compared to 

wild-type nematodes that do not express Ab. Similarly, in human neuroblastoma cells and 

Chinese hamster ovary cells exposed to C. albicans, the addition of picomolar concentrations of 

Ab to the culture medium enhanced cell survival and reduced fungal load, with Ab42 showing 

greater anti-fungal potency than Ab40 [91]. These Ab concentrations are comparable to those 

found in the cerebrospinal fluid of healthy individuals and are below the minimum inhibitory 

concentration by two orders of magnitude [84]. When cultured in medium containing Ab, C. 

albicans yeast cells were observed to be entrapped by Ab fibrils. Similar entrapment also 

occurred for S. typhimurium and C. albicans in mouse and nematode models, respectively [91].  

The results described in this section provide compelling evidence that Ab confers 

immune resistance in living organisms, in line with the entrapment mechanism described by the 

Bioflocculant hypothesis [36, 37], and they provide strong support for the idea that Ab functions 

as an AMP in the human innate immune system. 

Implications for an infectious etiology of AD 

The possibility that infection triggers the pathogenesis of AD has received attention for 

several decades [92], and was recently the topic of an editorial coauthored by 29 prominent 

neuroscientists and microbiologists [93]. An infectious etiology for AD is supported by results 
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from genome-wide association studies reporting that genes involved with immune regulation are 

associated with an increased risk of AD [94]. Notably, Apolipoprotein E (APOE), the major 

known genetic risk factor for sporadic AD, has been shown to influence susceptibility to viral 

and bacterial infections [95]. For instance, in HIV-infected individuals, APOE-e4 homozygosity 

increases susceptibility to opportunistic infections and increases mortality [96]. A report by 

Dobson and colleagues found that the N-terminal region of APOE inhibited the infectivity of 

three viruses and two bacterial species [97]. This suggests that APOE may also function as an 

AMP, which is consistent with the protective effects of APOE against multiple types of 

pathogens [98]. As APOE is also present in Ab plaques, these molecules may function together 

as components of the innate immune system. 

A recent Next Generation Sequencing study reported that AD brains contain 5-10 fold 

higher bacterial reads than the brains of non-demented controls [99], and several studies from the 

Carrasco lab have observed a high prevalence of fungal infections in the brains and CSF of AD 

patients compared to none observed in non-AD patients [11, 100-104]. Meta-analyses have 

concluded that evidence of infection by periodontal bacteria, HSV-1, Epstein-Barr virus, 

spirochetes, or C. pneumoniae is strongly associated with increased AD risk [105-107]. Many of 

these pathogens have a high prevalence in the general population, and co-infection with multiple 

agents is common. Bu and colleagues demonstrated that increasing seropositivities of viral 

(HSV-1 and cytomegalovirus) and bacterial (B. burgdorferi, C. pneumoniae, and H. pylori) 

pathogens, as well as overall infectious burden, are independently associated with AD risk [108]. 

This was confirmed by a recent study that analyzed brain samples from 10 AD and 8 control 

brains. Immunohistochemical and PCR analyses revealed polymicrobial infections consisting of 
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bacteria and fungi in the samples. Notably, DNA of the gram-positive bacterium Burkholderia 

sp. was detected in 7/10 AD and 0/8 control samples [104].  

The role of Ab as an AMP can be interpreted in the context of a pathogen hypothesis for 

AD, in which a viral or bacterial infection of the brain may trigger the production, secretion and 

aggregation of Ab. In some individuals a critical threshold may be surpassed, after which the rate 

of Ab aggregation exceeds the capacity for clearance [109]. Thus by triggering an increase in the 

levels of extracellular Ab, brain pathogens may contribute to the initiation of AD. The late age of 

onset of AD may reflect a declining resistance to infection and an increased permeability of the 

blood-brain barrier [110, 111], which would facilitate an increased rate of pathogen entry into the 

brain and/or a re-activation of latent infections.  

The utility of antibiotic, antiviral or antifungal drugs in the treatment of AD is an area 

that deserves further investigation. A small study on this topic had encouraging results, as 

eradication of H. pylori in infected AD patients was associated with reduced five-year mortality 

[112]. The antibiotics rifampicin and doxycycline have also shown promise for preventing 

memory decline in animal models of AD [113, 114], although human trials indicate they have 

little effect after the onset of symptoms [115]. These results suggest that resolution of the 

primary infection may be a necessary first step prior to anti-Ab therapy, or even as a preventative 

measure.   

The evidence reviewed here supports the view that one of the physiological roles of Ab is 

to defend the brain and other tissues from microbial invasion. In the light of Ab’s likely function 

as an AMP, the high incidence of infections among clinical trials that have attempted to deplete 

Ab is not surprising, as by removing this AMP, the pathogens that triggered the Ab response will 

be left unhindered to multiply. Perhaps better progress will be made towards a cure for AD if 
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future treatment strategies take into account the likely physiological functions of this enigmatic 

peptide. 
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Pathogen Pathogen type Effects References 
Herpes simplex virus-1 Virus Ab deposition 

AbPP phosphorylation 
Amyloidogenic AbPP 
processing 
¯ Non-amyloidogenic 
AbPP processing 
¯ Ab degradation 
¯ CSF Ab42 

[40, 42-46, 116, 117] 

Herpes simplex virus-2 Virus Ab intracellular 
accumulation 
¯ Non-amyloidogenic 
AbPP processing,  
¯ Ab degradation 

[50] 

Pseudorabies virus  
(suid herpesvirus-1) 

Virus  Insoluble Ab [51] 

HIV-1 Virus Ab deposition 
↑AbPP expression 
Amyloidogenic AbPP 
processing 
¯ Ab degradation 
¯ CSF Ab42 

[40, 53-55, 63, 118-120] 

Chlamydia pneumoniae Bacterium Ab deposition [56-58] 

Treponema palladium Bacterium Ab deposition [60] 
Borrelia burgdorferi Bacterium Ab deposition 

AbPP production 
[59, 121, 122] 

Porphyromonas 
gingivalis 

Bacterium ↑Aβ deposition [62] 

 

Table 1. Summary of infections that can alter AbPP processing and Ab deposition. 
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Pathogen Pathogen type Activity References 
Herpes simplex virus-1 Virus ¯ Infectivity, ¯ neuropathological 

responses in cell lines 
¯ Viral replication 

[42, 87, 88] 

Influenza A Virus ¯ Infectivity in cell lines,  viral 
aggregation,  immune 
phagocytosis 

[89] 
 

Enterococcus faecalis Bacterium, 
gram-positive 

¯ Growth in culture 
 Aggregation 
 Cellular dysmorphic shape 

[84, 85] 

Escherichia coli Bacterium, 
gram-negative 

¯ Growth in culture 
 Aggregation 

[84, 85] 

Listeria monocytogenes Bacterium, 
gram-positive 

¯ Growth in culture 
 Aggregation 

[84, 85] 

Salmonella typhimurium Bacterium, 
gram-negative 

 Survival, ¯ infection 
progression, 
¯ Bacterial load in Ab 
overexpressing mice 

[91] 

Staphylococcus aureus Bacterium, 
gram-positive 

¯ Growth in culture 
 Aggregation 

[84, 85] 

Staphylococcus 
epidermidis 

Bacterium, 
gram-positive 

¯ Growth in culture [84] 

Streptococcus agalactiae Bacterium, 
gram-positive 

¯ Growth in culture [84] 

Streptococcus 
pneumoniae 

Bacterium, 
gram-positive 

¯ Growth in culture [84] 

Candida albicans Fungus  Survival in Ab expressing 
nematodes 
 Survival, ¯ fungal load in Ab 
overexpressing cell lines 
¯ Growth in culture 
 Aggregation 

[84, 85, 91] 

 

Table 2. Antimicrobial properties of Ab. 
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