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INTRODUCTION


Environmental mercury contamination, whether by elemental, inorganic or


organometallic compounds, has been recognized recently as a serious water


quality problem in many areas of the world. In the past, the general consen­


sus had been that mercury entering lakes or rivers was rapidly removed from


the water phase by either chemical or physical interactions with suspended


solids and underlying sediments. Furthermore, it was assumed that once


contained in the sediments it remained in a relative inert, biologically


unavailable form. Recent studies, however, have shown that the aforementioned


is not the case; mercury compounds are readily translocated through the water


column, concentrated via the food chain, and subsequently reach as well as


accumulate in man. Although the interest in mercury as a pollutant is rela­


tively new to the western hemisphere, this has not been the case in other


areas of the world. Japan and Sweden have had to cope with the problem for


years.


The most notable examples of environmental contamination with mercury


occurred in Japan between 1953 and 1970 (1, 2). In Minamata, between 1953


and 1961, 121 fishermen and their families were stricken with a mysterious


illness characterized by cerebellar ataxia, constriction of visual fields,


and dysarthria. Of these 121 cases, a total of 46 deaths resulted. Addi­


tional cases of mercury-induced poisoning, termed "Minamata Disease," were


seen in the coastal town of Niigata and in the riverside villages along the


Agano River between 1965 and 1970. Six persons died and another forty-one


were irreversibly poisoned. In both incidents, the disease broke out mainly


among fishermen and their families, and also among other people who fished


frequently and/or liked to eat locally caught aquatic produce. Characteris­


tically, the patients in Minamata as well as in Niigata had eaten a great




amount of fish and/or shellfish from contaminated waters.


Even though no deaths were reported in Sweden, the mercury pollution


problem became apparent after seed-eating bird populations began to decrease


drastically. This conclusion resulted from a study of museum specimens which


showed that mercury levels in bird feathers were nearly constant from 1840


and 1965 (3), coincident with the introduction of alkylmercury compounds used


as anti-fungal seed dressings (4).


Although mercury and its compounds have long been known to be toxic, it


has not been generally recognized that hazards could arise from the disposal


of mercurials into aquatic environments nor was it recognized that mercury


could undergo a myriad of biochemical transformations. Recent studies (5-8)


indicate that many common inorganic and organic mercury compounds which are


discharged by industry into public waters, settle in bottom muds and are


converted into alkylmercury compounds, i.e.: mono- and dimethylmercury.


Even though both inorganic and organic mercury compounds enter natural waters,


mono- and dialkyl forms of mercury present the greatest threat to all food


chains due to their mobility in water and their solubility in membrane lipids.


Mercury present in fish as well as other aquatic organisms is almost entirely


in the methylmercury form.


In order to overcome environmental problems caused by mercury, it is


essential to understand the fate of mercury in aquatic ecosystems. Several


interesting questions have been posed by these observations, and therefore the


objectives of this research were: (a) to study the dynamics of inorganic ­


organic mercury transformation in situt in a model lacustrine environment;


(b) to follow the fate of mercury, so mobilized through the various trophic


levels of a typical food chain; (c) to elucidate the role of microparticu­


lates in the active and/or passive transport of mercury; and (d) to evaluate




the hypothesis that a mercury cycle, as such, does indeed exist in nature,


Utilizing recent advances made in the microbiologist1s armamentarius of


techniques, the following study was initiated.




LITERATURE REVIEW


Sources of Mercury in the Environment


Prior to the turn of the century (3, 9, 10), mercury release into the


environment was largely accounted for as the result of natural actions, viz,


via: (a) the weathering of crustal rocks (11-13), and (b) vulcanism and/or


evaporation from deposits (14). The form in which mercury appears in rocks


is not entirely clear, however, it is probably reduced to the metallic form


at magmatic temperatures, vaporized, and eventually combined with residual


sulfur to form the sulfide, cinnabar (15). In weathering reactions, these


sulfides may be oxidized to the metal (Hg°) on to the soluble mercuric ions


2*4*

(H  ) • Whether released in solution or the solid form, it is clear that


©


most of the element traverses the natural water systems in association with


the particulates held in suspension (16-20) or in their underlying bed sedi­


ments (8, 21, 22), Mercury in the atmosphere ultimately reaches the earth


either by dry fallout or by precipitation and it is captured by the soil


whereby rainfall-induced erosion and leaching return it, in part, to these


same streams or other waters.


With the advent of civilization, human activities have had a profound


impact on the release of mercury and/or its compounds into the environment.


For centuries, man's contribution was mainly limited to its release through


the atmosphere from fossil fuels such as coal (23), lignite and/or petroleum


(24). As industrialization developed, smelting processes for other metals,


the ores of which contain mercury, added to our contribution. As man devel­


oped sophisticated needs, numerous and varied uses for mercurials were found.


While some are conservative of the metal, others allow leakage, and still


others deliberately introduce mercury compounds into the environment. Among


those promoting leakage, the use of the flow mercury cathode cell, to




produce chlorine and sodium hydroxide by electrolysis in the chlor-alkali


industry is among the greatest offenders (25). Recognition that metallic


mercury through its oligodynamic action could function as an insecticide (26)


opened the door for the use of mercurials in the agriculture industry. Use of


mercury compounds in the production of fungicides, which are employed as seed


dressings, foliage sprays, and for garden and lawn applications, as well as


slimicides in the pulp and paper industry are among the major deliberately


introduced sources of this element in the environment. In addition to con­


tamination of waterways by the effluents from hospitals, dental facilities,


chemical laboratories and homes, mercury compounds are frequently formed in


side reactions when used as catalysts in the manufacture of other chemical


compounds. Subsequent studies revealed that methylmercury was entering Mina­


mata Bay and the Agano River near Niigata through waste effluents discharged


from vinyl chloride and acetaldehyde manufacturing plants. It was these


sources of mercury that proved to be the etiology of "Minamata Disease11 in


Japan.


Since this tragic occurrence of mercury poisoning at Minamata Bay (1)


and Niigata (2) considerable attention has been directed towards an elimina­


tion and understanding of the occurrence of these complexes in the environment.


Almost simultaneously, the Swedes (3, 4, 27) demonstrated that mercury


toxicity was the cause of widespread mortality in seed-eating birds (pheas­


ants, partridges, pigeons, finches) following the introduction of mercurial


fungicides, such as methylmercy dicyandiamide, as seed dressings in their


agrarian programs.


More recently, detection of abnormally high concentrations of mercury


compounds in fish caught in Lake St. Clair and Lake Erie brought the problem


of mercury contamination of natural water systems to public attention in




North America (25).


In retrospect, it appears that the North American continent is no excep­


tion to trends seen elsewhere in the world--considerable amounts of mercury


and/or its compounds have also been released into the environment and that


most has found its way into natural water systems. This has been documented


in the United States (28) and is undoubtedly true in other countries.


Mercury Conversion in the Biosphere


Generally speaking one finds mercury being discharged into nature in one


of the following forms: (a) as metallic mercury, Hg°; (b) as inorganic diva­


2+ "h


lent mercury, Hg ; (c) as pheny lmercury, C H-Hg ; (d) as me thy lmercury,


CH Hg ; (e) as dimethylmercury, CH HgCH , or (f) as alkoxi-alkylmercury,


CH3O-CH2-CH2-Hg
+.


To understand the ecological effects of the different kinds of discharges


and the risk factors involved, the transforming reactions between the differ­


ent compounds of mercury in nature are of central significance. The conse­


quences of these transforming reactions are particularly obvious when it


concerns the deposits of mercury in the sediments of lakes and rivers, which


can be mobilized through conversion to other, more hard-to-bind forms. These


deposits are primarily made up from pheny lmercury found in fiber banks, down­


stream from pulp and paper mills, and inorganic mercury, either metallic or


divalent with its high affinity for organic mud, in bottom sediment. Oxida­

2+


tion of metallic mercury (Hg°) to divalent mercury ions (Hg ) can and has


been shown experimentally (29) to occur under conditions present at the


bottoms of lakes and rivers.


Despite the fact that most inorganic mercury, as previously mentioned,


is found in association with suspended solids (16-20) or immobilized in the




sediment (8, 22) and does not often exist in hazardous concentration in


solution, it serves as a ready reservoir for alteration by microorganisms


2-f

(7, 30-32). Investigations (31) have shown that Hg , whether discharged


initially in this state or chemically oxidized from metallic mercury via


the method described by JernelBv (29), is methylated in waters and natural


sediments by bacteria under anaerobic conditions, be it enzymatically as


with the methanogenic bacteria or non-enzymatic via the transfer of methyl


o I 2-|­

groups from Co to Hg in biological systems. FagerstrBm and JernelBv (33)


reported that methylation also occurred in the top layer of sediments if they


were continuously oxygenated. Furthermore, all microorganisms capable of


synthesizing alkyl B-12 type compounds are capable of CH Hg synthesis (34,


35). From experimental data, it appears that all forms of mercury may be


converted directly or indirectly to either mono- or dime thy lmer cury (29). An


alkaline pH favors a higher proportion of CH HgCH^ as related to CH Hg


because the former is rapidly degraded to the latter in acid conditions.


Additionally, it has been found (36) that mercury methylation rates are


influenced by a number of environmental and biological parameters, such as:


pH, high organic sediment index (i.e., the product of the percent organic


carbon and organic nitrogen in a given sample), increased microbial activity,


and elevated mercury concentrations. In addition to their ability to tneth­


ylate mercury, microorganisms may also degrade organic mercury compounds (37­


41). Evidence suggests that microbial decomposition of organomercurials


2+ 2+


involves cleavage of the C-Hg bond, reduction of Hg to Hg°, and liberation


of the corresponding alkanes (42). For example, a member of the genus


Pseudomonas isolated from the soil and grown in a medium containing phenyl­


mercuric acetate (PMA) appeared to bind PMA to the cell surface prior to


being reduced to metallic mercury (43). It was shown that a reduced




nicotinamide adenine dinucleotide (NADH) generating system and a sulfhydryl


compound were required to form Hg°. Thus, the common intracelLular reductant


NADH may be responsible for mercury metabolism in microorganisms. Similarly,


C2H5Hg
+, C HgHg"1", and CH3Hg

+ were degraded to Hg° and ethane, benzene, and


methane, respectively (42). Relatedly, Spangler et al. (44) isolated 207


bacterial cultures from fish and sediments taken from Lake St. Clair. Thirty


cultures were capable of aerobic demethylation with twenty-two and twenty-one


of the above thirty being facultative anaerobes and anaerobes, respectively.


These authors further showed that the degradation of organomercury was a


reductive demethylation reaction resulting in the formation of methane and


2+

inorganic (Hg° or Hg ) mercury.


Microbial conversion of inorganic reserves to organomercury compounds


concurrently demonstrate increased solubility in the overlying water, thus


improving elemental mobility within the suspending matrix, in addition to


increasing their solubility in the lipid components of biological active


membranes. Whether the aquatic protists can extract methylated mercury com­


pounds from water in preference to the assimilation of inorganic compounds


directly from the surrounding medium (45-47) or not, they are able to concen­


trate the mercury within themselves to levels considerably higher than those


prevailing in their environment. Further up the food chain the mercury


concentration in organisms (48-53) increases either by absorption directly


from the milieu, with food sources from lower trophic levels (54), or by a


combination of both means. Should these organisms, be they macro or micro in


nature, remain in the same locale until their demise, the mercury in their


cells and/or tissues can be returned to nature in several ways, namely:


(a) evapoation as dime thy lmer cury through decomposition; (b) return to the


sediment pool via reductive demethylation, or (c) volatilization of


8




methylated mercury compounds in sediments and soils.


What then is the ultimate fate of a mercury contaminated aquatic environ­


ment? Although a modicum of mercury is no doubt removed from a given locale


through vaporization and movement of macroflora and fauna, mobility of the


biomass and colloidal particulates—be it voluntary or not—is likely to


remove more mercury. Thus if a mercury source is depleted, a body of water


theoretically could be expected to cleanse itself of its mercury burden. In


fact, however, the likelihood of this occurring has recently been diminished


by experiments showing the rate at which microbial methylation in bottom


sediments brings about the mobilization of bound mercury (29), the presence


of a depot of readily available mercury within the sediment bed, and the


replenishment of said depot by reductive demethylation (39, 44).




MATERIALS AND METHODS


Sample Collection


Between September, 1967 and June, 1969, 5 gallon water samples were


collected by boat at various stations in the western basin of Lake Erie.


Each sample was collected using a hand pump from midway between the water


surface and the lake bottom (usually 15 to 20 feet in the western basin).


All samples were stored in chemically cleaned glassware at 4°C until trans­


portation, processing and/or testing could be accomplished. Many of the


360 samples analyzed were collected prior to and during the major mercury


scare in the lake.


Sample Processing (Figure 1)


Upon reaching the laboratory, 100 ml aliquots of each sample were


removed for analysis. The remainder of each 5 gallon sample was processed by


continuous-flow high-speed centrifugation (Sorvall RC-2B equipped with a


Szent-Gorgi continuous-flow attachment) at 4°C with a 45 ml per minute flow


rate and a gravitational force of 27,000. This permitted the removal of


particles down to 0.3 |j.m. The supernatant was then passed through the centri­


fuge at 27,000 x g with a flow rate of 11 ml/min to affect the removal of


colloids down to 0.1 |am. Solid residue from these fractionations were sub­


sequently placed on top of gradients constructed of sucrose with a linear


density of 1,0765 (19% wt/vol) to 1.2241 (497O wt/vol) and centrifuged at


1,500 x g for 1 hour (55-57). Bands were collected by using a Beckman tube-


cutting device and the particulates contained therein were either dialysed


(utilizing Union Carbide dialysis tubing) against or washed in "mercury-free


diluent11 (see below) by high-speed centrifugation (27,000 x g for 30 min).
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Figure 1.


Flow Diagram of Procedure Utilized During Experimentation
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Total Mercury Determination


Utilizing the technique of Hatch and Ott (58) in conjunction with the


apparatus described below (Figure 2) the total mercury content of each fraction


was determined by flameless or cold vapor atomic absorption spectrophotometry•


Aliquots of each specimen under study were transferred to 250 ml round-


bottomed flasks. To the contents of each flask were added 25 ml 18 N sulfuric


acid, 10 ml 7 N nitric acid, and enough "mercury-free diluent11 to make 100 ml.


Treating each reaction flask individually, 20 ml of a sodium chloride-hydroxy­


lamine sulfate solution (60 ml of a 257o, wt/vol, hydroxylamine sulfate and


50 ml of a 307o, wt/vol, sodium chloride solution diluted to 500 ml with


Mmercury-free diluent11) followed by 10 ml of a 107o wt/vol stannous sulfate


solution in 0.5 N sulfuric acid was added. Immediately the reaction vessel


was attached to the aeration apparatus forming a closed system. The mercury


vapor thus produced was analyzed for its absorption at 2535 X in a quartz-


windowed cell. Absorbance values displayed on the digital readout were


recorded for 4 min at 30 sec intervals. These readings were averaged,


reduced by that of the reagent control and utilized for calculating the total


mercury content of a given sample by comparison with curves prepared from


known standards, e.g.: Figure 3.


flMercury-Free Diluent1'


All water utilized to make reagents as well as dilutions was triple


distilled, filtered via 0.45 [im membrane filtration (Millipore) and steam


sterilized (121°C, 15 psi).


Aquarium (Model Lake)


In an attempt to study a regulated mercury spill in a controlled environ­


ment, a model lake was created in a 20 gallon aquarium (Figures 4-6).
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Figure 2•


Schematic of Apparatus Employed to Measure Total Mercury


Via the Cold Vapor Atomic Adsorption Spectrophotometric Technique
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Figure 3.


Typical Standard Curve
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Figure 4.


Diagram of Model Lake
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Figure 5.


Cross Sectional Diagram of Stratified Model Lake Bed Sediments
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Figure 6.


Aquarium Floor Plan


22




Aquarium Floor Plan 

-74.9 cm-

Ee u 
u 
00 a>

cvi 

N. 8cm 

-77.5 cm-

Site of Regulated Mercury o Fish Feeding Station 
(Hg°) Spill 

• Sampling Site for Sediment Cores 



General Layout (Figure 4)


Aeration


Laboratory air, after passing through either the fritted glass


sparger or the filtration unit (packed to a depth of 10 cm with Finny


Filter Floss - Finney Product, Inc.; 602 Main Street; Cincinnati, Ohio


45202) was adjusted to yield a total flow rate of 500 ml/min.


Filtration


Filter Floss, moistened with "mercury-free diluent" was packed to a


depth of 10 cm and replaced every 7 days. Filter entrapped detritus was


dislodged from expended floss by gentle washing with "mercury-free


diluent.11 Materials thusly collected were dried at 50°C for 24 hours,


weighed, resuspended by vortex action in 65.0 ml of the same diluent and


analyzed for total mercury content.


Illumination


Light was provided by means of a plant simulating fluorescent bulb


(Sylvania-Enhance) mounted in the aquarium cover. The distance from the


bulb surface to the water interface was 6 cm. At weekly intervals, the


lamp surface and both sides of its portal were cleaned with commercial


window cleaner (Windex) to remove accumulated films.


Temperature


The .aquarium and its contents were allowed to equilibrate to ambient


laboratory temperatures and kept within that range, i.e., fluctuating


between 20°C and 25°C.


Water


All water utilized within the model was double distilled, filtered
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(via 0.45 jjitn Millipore) to remove suspended particulates, and autoclaved


(121°C, 15 psi) to eliminate unwanted protists. The affluent to effluent


flow rate (Figure 3) was adjusted to 2.0 ml/min.


Sediment Bed (Figure 5)


The sediment bed of the model lake was constructed in the following


manner, beginning at the bottom and progressing to the topmost, layers of


sand (1.0 cm), potting soil (0.5 cm), Olentangy River mud (0.5 cm), potting


soil (0.5 cm), sand (1.0 cm), Aquarium Gravel (1.5 cm), and Aquarium Pebbles


(2.0 cm) were stratified.


Aquarium Gravel


Pure natural white Aquarium Gravel (Noah's Ark Pet Center; 1603


West Lane Avenue; Columbus, Ohio 43221) with an average diameter of


2 mm was utilized.


Aquarium Pebbles


Black Decorative Aquarium Pebbles (Melody Brand Products; Maud,


Ohio) having a mean diameter of 0.5 cm were employed as the top layer.


Olentangy River Mud


Mud collected immediately after the first Spring thaw (April 5,


1976) was obtained along the bank of the Olentangy River approximately


200 yards south of the Brake Union (The Ohio State University —


Columbus Campus). This layer served as our inoculum in that it con­


tained in addition to mercury methylating microbes found in most sedi­


ments (29); water mites of the genus Tyrrellia; several genera of


gastropods, i.e., Campeloma and Helisoma; and copious amounts of


oligochaete worms, vis.: Tubifex sp.
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Potting Soil 

Stim-U-Plant Potting Soil (Stim-U-Plant Laboratories, Inc.; 

Columbus, Ohio 43216) was employed throughout this study. 

Sand 

Pure silica sand, 20-30 mesh (850-600 (jm) was thrice washed in


"mercury-free diluent11 and dried at 80°C for use.


Ecosystem


One week following the establishment of an equilibrium in the aquarium,


36 goldfish (Carrassius auratus), averaging 4 g in weight, were introduced


into the ecosystem. Fish were fed Longlive Shrimp-el-etts Pelleted Fish Food


(The Hartz Mountain Co.; Harrison, New Jersey 02029) daily (1 pellet/fish)


at the feeding station (Figure 6). The ecosystem was then allowed to re-


equilibrate for a one-month period.


Regulated Mercury Spill


Following the removal of base line sediment cores, 1 gram of metallic


mercury (Hg°) was introduced, at the appropriate site (Figure 6), into the


mud layer via a pyrex standpipe. Said glass tube was gently removed by a


twisting action to re-stratify the bed sediment.


Sampling


Attached Planktonic Biomass


At 7 day intervals, gelatinous materials attached to the inner


glass surface of the aquarium were removed using a single-edge razor


blade (Gem). After drying at 50°C for 24 hours and being weighed,


specimens were resuspended using a Vortex Mixer in 65 ml of "mercury­


free diluent" and analyzed for total mercury content.
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Filter Entrapped Detritus


See previous section entitled "Filtration."


Goldfish


At the requisite time intervals, individual fish were sacrificed by


placing them in liquid nitrogen (-196°C), dried at 50°C for 48 hours,


weighed and suspended in 65 ml of "mercury-free diluent." Total mercury


content was determined following digestion of the entire specimen with


25 ml 18 N sulfuric acid and 10 ml 7 N nitric acid. A 48 hour digestion


at ambient temperature was employed.


Sediment Cores


Utilizing a truncated 25 ml pipette, sediment cores were taken


weekly from pre-selected sites (Figure 6). Following drying at 50°G for


24 hours samples were weighed and analyzed for total mercury content


utilizing the technique designed by Hatch and Ott (58) for rock samples.


Snails


Gastropods were processed in the same fashion as goldfish (see


previous section), with one exception; the digestion period at ambient


temperature was shortened to 24 hours.


Water


Sixty-five ml aliquots were processed in a manner identical to


those samples removed from the western basin of Lake Erie.


Volume Measurements


Water suspended particulates were measured following vortex mixing by


placing 10.0 ml in a 12 ml graduated (in 0.1 ml subdivisions) conical centri­


fuge tube and centrifuging (Sorvall GLC-l) in a swinging-bucket head at


27




1000 rpm for 10 min. When measurements were completed, the sediment was


resuspended and the entire 10*0 ml specimen was analyzed for total mercury-


content.


Weight Measurements


Removal of suspended particulates was accomplished by centrifugation at


1009 rpm for 10 min. Following drying at 50°C for 24 hours each specimen was


weighed. Aliquots were resuspended in 65 ml of "mercury-free diluent" and


analyzed for mercury.


Weight vs. Volume Measurements


Volume measurements were made according to the aforementioned protocol;


upon completion each sample was resuspended, dried at 50°C for 24 hours, and


weighed.
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RESULTS


Initially the work conducted for this project was concerned with the


presence of mercury in the western basin of Lake Erie (Table 1). Previous


work has demonstrated: that mercury has been deposited into this area of the


lake; that the aqueous environment of this region contains a large number of


particulates (59, 60), both inorganic and organic; and that there are micro­


organisms capable of methylating the mercury pool present in the sediment.


However, little information was available concerning which, if any, of the


micro-components of the water column play a significant role in mercury trans­


location. Utilizing the protocol delineated in Figure 1 in conjunction with


standard curves, mercury levels were determined for water samples and com­


ponent fractions from predetermined sites in the western basin of Lake Erie


(Tables 2 and 3)• The results of these analyses indicated that mercury is:


(a) present in varying amounts and locales of the western basin, (b) consis­


tently present in higher measurable levels in areas of the lake away from the


stronger lake currents, i.e., in bays and/or harbors, (c) readily detectable


for long periods of time, (d) particle associated, and (e) present in amounts


directly related to particle density.


In an attempt to observe the kinetics of mercury translocation throughout


the bed sediment and its overlying water column as well as to study the entry


of mercury into the food chain and its concentration via movement from lower


to higher trophic levels, a laboratory model (Figures 4 and 6) of a lake was


developed. After the bottom sediment was stratified (Figure 5), the flora


and fauna added, and lake currents simulated, a 1 month period was allowed


for an equilibrium to be established in the ecosystem. Once baseline data


was obtained for all model components (Table 4) a regulated mercury (Hg°)


spill was introduced into the test system. Utilizing the techniques
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TABLE 1


Sample

Number


16


39


42


43


51


69


91


105


106


107


115


122


"k


Location


B


A


B


B


B


B


A


D


A


C


B


B


Date

Collected


9-09-67


6-10-68


6-17-68


6-21-68


7-02-68


8-02-68


8-26-68


10-15-68


10-22-68


10-29-68


5-16-69


6-26-69


A = Rattlesnake Island Area


B * Middle Island Area


Q =r Put-In-Bay and Gibraltar Island Harbor Area


D « Sandusky Bay Area
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TABLE 2 

Sample Number


Fraction

Number 39 91 106 105 107


Total Mercury In Parts Per Billion


1 34 51 63 564 473


2 22 33 42 372 281


3 10 16 19 181 185


4 1 1 1 12 15


5 1 2 2 16 17


6 1 2 2 19 25


7 1 2 2 23 29


8 2 3 3 37 34


9 2 4 4 46 39


10 4 7 8 79 48


11 9 12 19 131 66


12 8 14 16 167 170


13 1 0 2 11 9


14 0 1 1 6 7


15 0 1 1 9 8


16 0 1 1 13 10


17 0 1 1 14 15


18 1 1 2 17 17


19 1 1 2 20 24


20 2 2 3 35 39


21 3 5 5 51 45
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TABLE 3 

Fraction 
Number 16 42 

Sample Number 

43 51 69 115 122 

Total Mercury in Parts Per Billion 

1 56 139 200 260 383 398 452 

2 42 98 172 182 290 347 388 

3 11 39 21 74 91 41 57 

4 1 3 3 3 15 16 15 

5 2 4 3 5 18 17 16 

6 2 7 6 6 20 19 18 

7 4 9 14 8 22 21 26 

8 4 11 19 11 32 31 33 

9 5 14 24 17 36 36 41 

10 8 19 39 49 49 73 84 

11 15 31 58 81 97 127 147 

12 8 28 13 63 79 32 46 

13 2 9 5 9 11 4 10 

14 0 1 0 3 0 0 1 

15 0 1 0 4 3 0 1 

16 0 2 0 5 4 1 1 

17 0 2 0 6 7 1 1 

18 1 3 1 6 9 2 2 

19 1 4 2 8 12 3 4 

20 3 7 3 13 17 6 8 

21 3 8 7 17 26 19 27 
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previously described, total mercury levels of the various components were


monitored over a 10-month period.


As can be seen from the data in Figure 7, mercury is first detectable in


sediment cores from Site #1 (Figure 6)2 weeks post-introduction and shortly


thereafter (+4 weeks) at the other sites. Equilibrium is reached throughout


the entire sediment after 13 weeks. Upon closer examination, it appeared that


mercury moved outward from its initial site in an infinite series of concen­


tric circles and as the distance from said source increased, the time required


for mercury to reach any subsequent sampling sites (Figure 6) decreased.


After traversing the entire sediment bed, mercury next appears in the


overlying water column (Figured) and eventually reaches an equilibrium —


0.6 of that found in the sediment. Several weeks following the detection of


mercury in tank water, we initially detected the accumulation of a planktonic


biomass attached to glass surfaces. Subsequent examination of this material


showed that it contained mercury (Figure 8) and its mode of accumulation


suggested that it was derived from the surrounding water matrix. Approximately


4 weeks after the first appearance of an attached film on glass surfaces, both


phytoplankton and zooplankton (containing mercury) were visually detected in


tank waters. Mechanical concentration of said suspended particulates occurred


via filtration (Figure 8)#


The gastropod components of our ecosystem thrived and produced numerous


offspring throughout the time span of our experiment. After an initial lag


period both species concentrated mercury 1000 fold in relation to their


surrounding milieu (Figure 9). Mercury accumulation in both species closely


corroborates what is known concerning their feeding habits (61), viz.:


mercury appears in Helisoma trivolvis only after it appears in the periphyton


film attached to glass, known to be a source of nutriment and in Campeloma
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TABLE 4 

Sample 

Aquarium Gravel 

Total Mercury 
in jig 

per gram 

0.025 

Aquarium Pebbles 0.041 

Fish Food Pellets 0.005 

Olentangy River Mud 0.013 

Potting Soil 0.005 

Sand 0.008 

Test Sediment Core 0.027 

Tubifex sp. 0.016 

Water 0.000 
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Figure 7.


Kinetics of Mercury Translocation Through Model Lake Bed Sediments
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Figure 8.


Particle Mediated Mercury Mobility in the Water Column
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Figure 9.


Mercury Accumulation in Model Lake Gastropods
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decisa subsequent to the appearance of a floe of decomposing organic matter


deposited between the 22nd and 24th week on the underlying rocks* The latter


snail is characteristically found burrowing through soft mud and feeds on


decomposing organic material present in or on it (61).


A similar case can be made for the modelfs ichthyic constituents (Figure


10); once mercury accumulation and concentration (1000 x) is initiated it pro­


ceeds at a rate and to levels unaccountable for by externally provided food­


stuffs (Table 4).


As mentioned previously, data obtained from the fractionated water


samples collected in situ clearly suggested (Tables 2 and 3) that the mercury


load of a given sample is present in amounts directly related to particle


density. To test this hypothesis, suspended elements (mostly organic plank­


ton) of the model's ecosystem were scrutinized. A linear relationship


between both packed biomass volume (Figure 11) and dry particulate weight


(Figure 12) in relation to total mercury content was observed. Finally by


plotting the volume of suspended particulates against their dry weight


(Figure 13) we note that the mercury load carried, either actively or


passively, via organic particles is surface associated.


41




Figure 10,


Mercury Accumulation in the Model Lake Fish Population
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Carassius auratus 



Figure 1L.


The Effect of Particle Volume on its Associated Mercury Content
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Figure 12.


The Effect of Particle Weight on its Associated Mercury Content
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Figure 13.


Particle Volume Versus Particle Weight for a Given Mercury Burden
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DISCUSSION


From the experiments evaluating the role played by particulates in


lacustrine mercury movement (Tables 1, 2 and 3), one readily notes that the


mercury content of the western basin varies with the location from which the


specimen was taken as well as the date. As to be expected, areas of the lake


with diminished water flow, viz.: the bays and/or the harbors have a ten­


dency to show elevated levels of mercury; whether this is due to entrapment of


locally solubilized deposits, accumulation from external sources, or by means


of comparison, depletion of the mercury borne particulates in less quiescent


areas by rapid surface movement is not discernable. Data contained herein is


in concert with the observations of Kovacik and Walters (62) who showed,


through their work with sediment cores taken in the western basin, that


Rattlesnake Island lies within an area showing only background- values of


mercury whereas Middle Island is in a province rich in surface mercury pollu­


tion. The latter is due, no doubt in part, to contaminated waters from Lake


St. Clair entering via the Detroit River and traveling long-shoreward along


the northern most or Canadian shore.


Through the use of differential centrifugation it can be readily seen


that the majority of the mercury burden of a given water column lies within


the organic component (planktonic elements >0.3 \im) while the remaining


amounts are associated with colloidal inorganics (e.g., clay 0.3-0.1 \im)• No


matter which of the two distinct components it is found in, mercury has


unequivocally been shown to be associated with suspended particulates; the


charge on any one given particle being directly correlated to its density.


The mechanisms involved in this so called "particle adsorption" can in part


be explained by the affinity of mercury for the sulfhydryl group which can


bind it to suspended organic matter, both living, like plankton, or non-living,
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like peat and humus. No doubt, the affinity of zero oxidation state mercury


dissolved in water for lipids and the predilection of mono- and dimethyl


mercury for these very same membrane components, relative to their solubility


in water, facilitates their adsorption by aquatic organisms. Other than


Krauskopf's observations (17) that microcrystalline iron oxides and mont­


morillonite clay absorbed 2+ mercury from water, little is known concerning


the adsorption of mercury on inorganic substrates, their ion-exchange proper­


ties, or differential adsorption for the numerous inorganic species in solu­


tion and/or suspension. The possibility, however, that through microbial


metabolism a zoogloeal mass encases inorganic particulates converting them to


"pseudo-organic particulates" should not be discounted.


Baseline mercury determinations (Table 4) of model lake components


revealed our choice of inoculum, Olentangy River mud, to be low--0.013 fig"


in mercury content. The validity of this information was confirmed by ascer­


taining the level of mercury accumulation in Tub if ex species (Table 4) from


their environment. Concentration was shown to be by a factor of 1.23, well


within the range (1.20 + 0.26) described by JernelBv (29).


After the introduction of mercury into the equilibrated ecosystem, one


first detects the appearance of mercury migrating through the bed sediments


(Figure 7). The initial time lag seen between the metal's introduction and


its detection can be accounted for if one considers the possible mechanisms


involved in benthonic mediated mercury translocation. A priori evidence


suggests that a major factor in such mechanisms is the differential solu­


bility exhibited by the various mercury compounds. Although absorption by


organisms may be facilitated by the affinity of zero oxidation state mercury


dissolved in water for lipids, as already noted, it is not likely that this


is an important factor since mercury occurs predominantly in the 2 state in
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oxygenated water where aquatic organisms must live. On the other hand, how­


ever,	 methylmercury compounds are more soluble in lipids than are 2 mercury


or metallic mercury in solution; they are also about 100 times more soluble in


lipids than in water (63). This allows methylmercury compounds to penetrate


more readily than the inorganic forms of mercury into cells, and as a conse­


quence increase the mobility. The key to this theory resides in the conver­


sion of metallic (Hg°) mercury to methylated derivatives and its associated


increase in solubility. By combining known facts concerning mercury methyla­


tion with the c[e facto data contained herein, we theorize that the following


sequence of events has occurred:


A.	 Upon exposure to the metallic mercury, microorganisms from the


heterogenous population of the benthos are selected that are*


tolerant of both inorganic and organic mercury compounds, and


+ 2+


capable of producing CH Hg from either Hg° or Hg


B# An increase in numbers of the previously selected microbes occurred


with the concurrent establishment of the necessary enzymatic


machinery to bring about methylation.


C.	 Microbially mediated methylation of the inorganic mercury in


solution occurred in the top layer of the continuously oxygenated


sediment (33).


D.	 Biologically initiated autocatalytic mobilization of methylated


mercury occurs from the rapidly advancing front of multiplying


microbes.


E.	 In the lower layers of the sediment, bed and/or areas where micro­


bial metabolism has depleted the oxygen supply, microorganisms are


selected that while being refractile to both forms of mercury are


52




capable of producing Hg° from either CH Hg or CH HgCH .


F.	 The increase in numbers of such microbial populations is paralleled


with a like increase in their metabolic processes.


G.	 Reductive demethylation of methyl mercury to methane and inorganic


mercury was promoted by the myriad of bacteria thus stimulated


(37-44).


By coupling the concomitant methylation of inorganic mercury and


demethylation of methylmercury with the selection and growth (or motility) of


specialized microbial populations, one can readily visualize the cascade of


events necessary to initiate and bring about the translocation of mercury.


Let us for a moment consider our original mercury source - a 1 g sphere of


metallic mercury. In light of our theory, what is its fate? With each cycle


of the previously mentioned series of events the surface area of inorganic


mercury increases; subsequent to and in conjunction with this change in


availability of mercury we have an ever-increasing population of actively


metabolizing microorganisms available to translocate said element thus


requiring less time.


Upon the establishment of a mercury equilibrium in the stratified, model-


lake sediments, mercury begins to appear in the overlying water column.


Microscopic examination of the water matrix showed that the appearance of


mercury correlated directly with the migration of the planktonic biomass


composed of phytoplankton, protists, and zooplankton into the overlying layer.


As these particulates migrate through the fluid medium, they have a predilec­


tion for attachment to solid surfaces, mainly the aquarium glass. Once the


periplankton film encases all exposed surfaces (approximately 4 weeks after


its initial appearance), macroscopic examination of tank waters reveals an
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increasing population of mercury bound particulates readily removed by filtra­


tion (Figure 8).


At this stage of the experimentation, mercury begins to appear in the


brown, ramshorn-shaped gastropod, viz.; Helisoma trivolvis. This flat-coiled


snail is characteristically a browsing species which feeds on the algal com­


ponent of the periplankton film with its own attached periphytic, methylating


bacteria. Aquarium enthusiasts employ this species for this very reason, to


keep the glass clear of the algal film which otherwise obscures the view of


fish or other aquarium animals (61),


Between the 22nd and 24th weeks, a dense floe of organic, decomposing


detritus appears on the surface of the underlying stratum. Shortly there­


after, mercury was detected in ovate-conical, green-pigmented -- Gampeloma


decisa. Dense populations of this species of gastropod are often found in or


on mud near wharves and promontories used by fishermen* Here the substrate is


often enriched by fish entrails and discarded bait (64). It evidently feeds


on decomposing, organic material present#


With the advent of unattached, organic micro-particulates in the water


column, one notices the simultaneous accumulation of mercury in the resident


goldfish (Carassius auratus)* This observation suggested two possible


mechanisms for the mercury uptake seen, i.e., (a) mercury containing elements


in suspension supplemented the diet of these fish, (b) inorganic mercury in


solution was methylated and adsorbed by the fish directly from water via


bacteria growing on their slimy bodies. The linear increase of mercury and


its concentration in goldfish tissue (Figure 10), may actually continue for


years, rather than weeks, as has been reported with other species of fish (49),


From our experiments we can only hypothesize the fate of mercury as it climbs


one trophic level of the food chain and encounters Homo sapiens.
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In an attempt to ascertain how a mercury burden is translocated via


these water borne, organic particles, our attention was focused on their


physical attributes, namely: volume and weight. Data contained herein


(Figures 11-13) shows that while mercury increases with the weight of such


particulates; a ma: e profound relationship (increase), however, is demon­


strated with their volume. Upon examination of a given sample for these two


parameters, it was observed that the weight of a given microbial population


reached a plateau whereas the volume of the very same cells contained therein


continued to increase. This clearly suggested that mercury translocation


mediated via these particulates under study was a surface related phenomenon.


Indeed this is not a surprising observation since numerous other, activities


seen in protists are largely due to their high surface to volume ratio.


In summary, mercury probably moves through the environment in a number of


important ways, e.g.: (a) the translocation through the bottom sediments as


described herein and which may be considered as a biologically autocatalytic


process, (b) the translocation on micro and macro particulates in the water


column in a relationship probably bearing upon surface to volume ratio, and/or


(c) the mobilization of mercury in association with the motility of the


benthonic macrofauna, such as oligochaete worms, gastropods and fish.
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SUMMARY


1.	 The mercury burden found in water columns of Lake Erie's western basin is


particle associated; whether organic or inorganic in nature the load


carried by individual particles is directly related to -their density.


2.	 Through the use of a model lake, it has been theorized that mercury


translocation within underlying bed sediments is cyclical in nature and


the result of microbial action.


3.	 Mercury translocation mediated via organic particulates in the model was


a surface related phenomenon.


4.. Mercury concentration as it moved from lower to higher trophic levels of


the food chain were studied.


5.	 Observations were made on the fate of mercury entering Lake Erie via the


Detroit River from Lake St. Clair and its distribution by currents.
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