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Abstract 
 

Adapting statistical parsers to new domains requires annotated data, which is 

expensive and time consuming to collect. Using crowdsourced annotation data as a 

“silver standard” is a step towards a more viable solution and so in order to facilitate the 

collection of this data, we have developed a system for creating semantic disambiguation 

tasks for use in crowdsourced judgements of meaning.  In our system here described, 

these tasks are generated automatically using surface realizations of structurally 

ambiguous parse trees, along with minimal use of forced parse structure changes. 
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1 Introduction 
 

In parsing natural language, a good statistical parser requires training data which 

has been traditionally hand annotated by trained linguists as a gold standard. Hand 

annotation is an expensive and time consuming process and one that must be repeated if 

training data is adapted to new subject domains. This project aims to provide an 

alternative means for producing training data in new domains by automatically 

generating disambiguating paraphrases of syntactically ambiguous sentences which will 

later be used in experiments on crowdsourced judgments of meaning similarity. As part 

of the bigger picture, these judgments can then be used in retraining parsers to improve 

parsing accuracy in a new subject domain as well as language generation in broad 

coverage settings. 

Previous work in the area of using crowdsourced annotations for corpus creation 

shows promise. A study by Jha et al. (2010) showed that annotators from the 

crowdsource platform Amazon Mechanical Turk (AMT) were able to make highly 

accurate judgements of prepositional phrase (PP) attachment ambiguity resolution when 

presented with the competing attachments. In this study AMT annotators were presented 

with possible attachments for prepositional phrases and were asked which attachment 

was correct (five annotations were collected for each attachment ambiguity). Jha et al. 

(2010) reported that annotators were capable of attachment choice accuracies of 97% in 

the best case (all five annotators of an ambiguity were in agreement) and 64% to 67% in 
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the worst case (a plurality of two and three annotators respectively for the attachment 

choices of an ambiguity). Our own initial study, as discussed in section 3 Initial Study, 

also shows some promise. 

Our work involves collecting naturally occurring sentences from several domains 

from Wikipedia and analyzing them across an n-best list of parses for syntactically 

ambiguous structures. These ambiguous parses are then generated back into new 

sentences by OpenCCG’s surface realizer and automatically analyzed for breakup in the 

original ambiguity. Finally, these new sentences are re-parsed in order to verify the 

original syntactic analysis. 

Since not all ambiguous sentences are able to generate disambiguating 

paraphrases automatically, forced structural changes are applied to the parses of these 

sentences in order to increase coverage. These changes do not alter the original meaning 

of the sentence but are designed to force a generated sentence to demonstrate the intended 

meaning hidden by the ambiguity of the original sentence. These modifications involve 

forcing passive and/or cleft structures in the presence of some attachment ambiguities, or 

forcing verbosity in the presence of ambiguities occurring across coordinating 

conjunctions. 

We describe first in section 2 some background of the tools and concepts 

referenced throughout this paper so the reader may have a firm understanding of the 

processes used within our system. In section 3, we briefly discuss some initial findings 

from an evaluation of this system using judgements from AMT annotators. Section 4 

describes in depth the methodology and design of our system, along with several 
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illustrations and examples. We then share the results of our system on a corpus of data 

drawn from Wikipedia in section 5, followed by a discussion of these results and the 

peculiarities worth examining. A conclusion follows in section 7 which suggests further 

work and experimentation using this system. 
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2 Background 
 

We use OpenCCG1, an open source natural language processing library written in 

Java for Combinatory Categorial Grammar (Steedman 2000), as an integral part of our 

system and so it is beneficial to give a brief overview of this technology as requisite 

knowledge.  

Combinatory Categorial Grammar (CCG) is a categorial grammar formalism 

capable of modeling a wide range of linguistic phenomena, and is defined by a lexicon of 

items associated with syntactic categories, which correspond to a semantic interpretation 

(Steedman and Baldridge 2005). Categories in CCG can act as functions, and because 

CCG is unification-based, structures can be formed from the combination of categories 

using an explicit set of CCG combinatory rules. 

OpenCCG provides a CCG parser which can probabilistically produce the most 

likely dependency graph given some sentence and a CCG lexicon. OpenCCG uses a 

lexicon extracted from CCGBank (Hockenmaier and Steedman 2007), a corpus of CCG 

derivations derived from the Penn Treebank corpus. Boxwell and White (2008) have 

enhanced the version of CCGBank in use by OpenCCG by including PropBank’s (Palmer 

et al. 2005) Penn Treebank verb argument and modifier semantic roles. This work was 

                                                 
1 http://openccg.sourceforge.net 
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intended to facilitate broad coverage generation with CCG and improve the OpenCCG 

parser. 

In addition to a CCG parser, OpenCCG also includes a CCG surface realizer. 

Surface realization is a language generation task that, when given an input logical form 

(semantic graph), produces a sequence of words constrained by a lexicon and grammar 

(in our case, the Propbank enhanced CCGBank). Because the number of probable 

realizations of a logical form can become explosive if the grammar permits a relatively 

free word ordering, a chart-based and statistical hybrid algorithm is used for more 

efficient realization (White 2006). Realizations from OpenCCG are ranked using a 5-

gram model from the Gigaword corpus and/or a perceptron scoring model as described 

by White and Rajkumar (2009). 

The system described hereafter in section 4 was built entirely using the Python 

v2.72 standard library (with the exception of a Wikipedia text extraction script described 

in section 4 below) and is intended to be an extension package for the OpenCCG library 

already mentioned. 

  

                                                 
2 https://www.python.org 
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3 Initial Study 
 

Our current iteration of this system has recently undergone a small test using 

Amazon’s Mechanical Turk (AMT) in order to gauge the effectiveness of the paraphrases 

generated. AMT users are shown the original ambiguous sentences and one or two 

generated paraphrases from the top competing parses for these sentences. The task is to 

simply select the paraphrase which is closer in meaning to the original sentence from the 

competing parses. Alongside the judgments collected from AMT, we have also provided 

our own judgments of which parses are correct for sentences as a gold standard to 

measure the accuracy of the AMT similarity judgments. For each similarity judgement 

task, we also noted if none of the parses were correct so that the parses in that task are not 

considered in the AMT judgement accuracies.  

In an initial trial of 92 sentences, we have observed encouraging results. For each 

similarity judgement task, we collected five judgments from AMT users and observed 

that for majority agreement cases (three or more users agree on a task), accuracy is much 

higher than chance level. For agreement of three or more AMT users on a sentence, we 

observe 67% accuracy over 69 sentences and for agreement of four or more users, we 

observe 71% accuracy over 51 sentences. In cases of total user agreement, we observe 

77% accuracy over 26 sentences. This shows that our method of paraphrase generation is 

effective for creating crowd-sourced annotation tasks. In our gold standard annotations, 
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we found 23 sentences of the 92 to have incorrect parses and so were not considered in 

these reports of accuracy. For continued study, we are extending these trials to include 

judgments on 1000 total sentences to establish a better and deeper analysis. 

 

4 Methodology and System Design 
4.1 Wikipedia Data Extraction 

For open domain data, text was collected from two article categories on 

Wikipedia, Prehistoric Reptiles and Big 10 Conference Football. The text from the 

articles in these categories (and related sub-categories) was extracted using the Python 

package Wikipedia3 and then tokenized into sentences using another Python package, 

NLTK4. Of all downloaded Wikipedia sentences, only sentences with word counts 

ranging between five and twenty were selected. This word count limitation is in place in 

order to favor more simple parse trees in the hope that, when adapting a parser to the new 

domain, simple structures will generalize more easily. There is also a limitation on 

Unicode characters present in the sentences for convenience in handling the text later in 

Python (Python v2.7 has a different interface5 for Unicode strings than other encodings 

like ASCII). Downloaded sentences are stored in files corresponding to the name of the 

article from which they came for convenience in later examining the sentence’s context 

on the original Wikipedia source article. For our collection analysis, we will examine the 

                                                 
3 https://wikipedia.readthedocs.org 
4 Natural Language Toolkit, http://www.nltk.org/ 
5 https://docs.python.org/2/howto/unicode.html 
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amount of paraphrases available for ambiguous sentences and the distribution of 

paraphrase types based on the strategies which are described in this section. 

 

4.2 Parsing and Ambiguity Analysis 

To begin the process of generating disambiguating paraphrases, each downloaded 

sentence is parsed using the OpenCCG parser into an n-best parse list (with n = 25). All 

parses with more than one tree root are filtered out as these are considered to be broken 

parses. Next, a set of unlabeled dependency relationships is generated for each parse tree 

in order to detect structural ambiguities existing between competing parses of a sentence. 

This examination of unlabeled dependencies allows for minor labeling differences, such 

as part of speech tags, to be ignored between otherwise structurally equivalent parses. 

Any unlabeled dependency set of a parse containing a dependency whose dependent is 

the same as its head, i.e. (head = John, dependent = John), is ignored, as this is also 

indicative of a malformed parse. 

After applying these filters to the list of parses, sentences are examined for 

structural ambiguities existing between its top parses. Ambiguities are identified by 

selecting the top parse of a sentence and its next best parse which is distinct from the top 

parse and therefore amenable to disambiguation via paraphrasing. Distinct parses, in the 

case of this system, have a non-empty symmetric difference between the unlabeled 

dependency sets of the parses, and this difference then passes through a number of other 

filters. These filters are designed to allow the system to ignore other minor differences 

between parses which don’t contribute to interesting ambiguities.  
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 The first of these filters simply checks if the symmetric difference of the parse’s 

unlabeled dependency sets has only one head-dependent pair (i.e. the symmetric 

difference consists of only one element). It is not clear that this kind of ambiguity 

contributes any kind of meaningful difference in interpretations because the parses are 

identical with the exception of just one additional dependency relationship. 

The next filter for the competing parses examines part-of-speech tags for the 

dependencies in the symmetric difference in order to identify possible auxiliary 

attachments. We define auxiliary attachments in the same way that de Marneffe and 

Manning (2008) define them in their Stanford dependencies manual. The symmetric 

difference is not considered sufficiently interesting as an ambiguity if a dependency in 

the difference is headed by a modal (PTB tag = MD) or forms of “be”, “do”, or “have”, 

and the dependent has one of the following part-of-speech tags (PTB): RB, JJ, and IN. A 

sentence’s top parses whose differences pass through these filters are considered to be 

distinct and structurally ambiguous enough that their interpretations may possibly be 

disambiguated by our system.  

 

4.3 Reverse Realization and Verification 

4.3.1 Breaking up the Ambiguity 

In order to automatically generate disambiguating paraphrases for ambiguous 

sentences and verify these paraphrases have the same interpretation structurally as the 

parses from which they were generated, we have devised a process of reverse realization 

(parse a sentence and realize sentence back from its parse) with a verification step. This 
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process begins where the previous section had left off; once a top parse and next best 

parse are identified as ambiguous for a sentence, these parses are then realized using the 

OpenCCG surface realizer. This produces an n-best list of realizations for each parse (for 

the current system, n=25 realizations). Here, the goal in generating a list of new 

sentences from a parse is to find a disambiguating paraphrase of the original parsed 

sentence. In realizing a parse, it is possible that words in the original ambiguous sentence 

can be expressed in different orders in the realization, and this new ordering can lead to 

an unambiguous interpretation of the sentence. By moving down the n-best list of 

realizations and comparing each realization to the original sentence, we can select a 

realization for each parse which appears to accomplish disambiguation. To illustrate this 

further, consider Sentence 1 drawn from the Prehistoric Reptiles corpus (specifically 

from an article about the 1997 movie The Lost World: Jurassic Park) and its competing 

parse trees (Figure 1 and Figure 2) pictured on the next pages. 

 

The two adult T-Rex and their baby are shown to have been returned safely. 

Sentence 1 as sample input to our system 
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Figure 1: The top parse for Sentence 1 as produced by the OpenCCG parser 
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Figure 1: The next best parse for Sentence 1 as produced by the OpenCCG parser and 

selected by the filters described in section 3.2 
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As can be seen in Figure 1 and Figure 2, the ambiguity of the original sentence 

involves the adverb “safely” attaching to either of the verbs “shown” or “return”. Table 1 

and Table 2 show the resulting realizations which are produced given those parse trees. 

 

 

  

1) The two adult T-Rex and their baby are shown to have been returned safely. 

2) The adult two T-Rex and their baby are shown to have been returned safely. 

3) The two adult T-Rex and their baby are shown to have been safely returned. 

4) The two adult T-Rex, and their baby are shown to have been returned safely. 

…. 

24) The two adult T-Rex, and their baby are shown to have been safely returned. 

25) The two adult T-Rex and their baby am shown to have been returned safely. 

Table 1: The output realizations resulting from the parse tree in Figure 1 as input to the 

OpenCCG realizer, with the selected realization in bold. 

1) The two adult T-Rex and their baby are shown to have been returned safely. 

2) The two adult T-Rex and their baby are shown safely to have been returned. 
3) The two adult T-Rex and their baby are safely shown to have been returned. 

… 

24) The two adult T-Rex and their baby are shown safely na have been returned. 

25) The adult two T-Rex, and their baby are shown to have been returned safely. 

Table 2: The output realizations resulting from the parse tree in Figure 2 with the selected 

realization in bold. 
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Of note are the following realizations from Table 1 and Table 2. 

 

 

From Realization 1 and Realization 2 one can clearly see the differences in 

interpretation for the two parses, but this intuition needs to be automated somehow. In 

this system, realizations of parses are examined for any breakup of the ambiguity in the 

original sentence. The words from the unlabeled dependencies which make up the 

ambiguity between the two parses are used to form what we call an ambiguous span in 

the original sentence. 

 

For example, in Figure 3 above, the ambiguous span is {safely, shown, returned} for 

Sentence 1. We then establish a one-to-one correspondence for the words in the span 

between the original sentence and the realization being examined. To ensure an exact 

correspondence of words for this system, we store the paths in the sentence’s parse trees 

The two adult T-Rex and their baby are shown to have been safely returned. 

The two adult T-Rex and their baby are shown safely to have been returned. 

Realization 1: A selected realization which breaks up the structural ambiguity appearing 

in Sentence 1 and corresponds to the parse tree from Figure 1 

Realization 2: A selected realization which breaks up the structural ambiguity appearing 

in Sentence 1 and corresponds to the parse tree from Figure 2 

(shown, safely) 

(returned, safely) 

Figure 3: The unlabeled dependencies that form the 

ambiguity between the parses in Figure 1 and Figure 2 
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from the root to the nodes of the words in the ambiguous span. The OpenCCG realizer 

maintains as its output, the same parse tree of the generated sentence as the original parse 

with updated word index (sentence offset) values, so we can use these stored paths to 

retrieve the new offset positions of the words from the ambiguous span as they appear in 

the generated sentence. This approach removes any possibility of incorrectly examining 

words which are the same as those appearing in the ambiguous span, but are not 

contributing to the ambiguity. 

 After establishing a correspondence between the original sentence and a generated 

sentence, we measure the relative word distances between each word in the ambiguous 

span. These distances are bidirectional and are measured for both the original sentence 

and the generated sentence.  

Word Other Word Relative Distance 

shown safely 5 

safely shown -5 

returned safely 1 

safely returned -1 

Table 3: The relative distances between the words in the ambiguous span for Sentence 1 

Word Other Word Relative Distance 

shown safely 4 

safely shown -4 

returned safely -1 

safely returned 1 

Table 4: The relative distances between the words in the ambiguous span as they appear 

in Realization 1 

With these measurements, one can observe movement of the words in the 

ambiguous span from the original sentence to the generated sentence and ignore 

inconsequential movement of the other words not contributing to the ambiguity. Any 

change in this relative distance between the words in the ambiguous span is considered a 



18 

 

breakup of the ambiguity, and the realization providing this breakup is then selected for 

verification. This process is repeated for both of the competing parses of an ambiguous 

sentence and subsequently for all ambiguous sentences in the corpora. 

 

4.3.2 Verifying a Realization 

 Selected realizations which breakup ambiguities (as described in the previous 

section) go through a process of verification intended to determine whether a realization 

is structurally representative of the parse from which it was generated (and subsequently 

its interpretation). This process is inspired by work in self-monitoring for avoiding 

structural ambiguities in realizations by examining their parses as described by Duan and 

White (2014). In order to achieve this, the realizations themselves are parsed like their 

original counterparts using the OpenCCG parser. The new set of unlabeled dependencies 

from the top parses of the realizations are then compared to the dependencies of the 

original parses from which the realizations were generated. If the realizations’ 

dependency set contains the subset of dependencies from the original parse which 

contributed to the ambiguity, this is indicative of a realization which structurally shares 

the original interpretation of the parse from which it was generated. We consider these 

realizations to be verified paraphrases and are called reversals in this system. 
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4.4 Parse Structure Rewrites 

4.4.1 Passivization and Clefting 

Taking a step back in the control flow of this system for a moment, there are a 

few more processes which are applied to the parses of ambiguous sentences before 

reverse realization and verification, as described in the previous section. There are cases 

of ambiguous sentences in which it is not possible to have reversals that disambiguate the 

interpretations for both parses. As a simple example, one can look at Sentence 2 and its 

parses in Figure 4 and Figure 5 

 

  

He stopped Godzilla with the laser. 

Sentence 2: Sample input for passive and cleft rewrites 
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Figure 4: Top parse tree for Sentence 2 as output from the OpenCCG parser 
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Figure 5: The next best parse for Sentence 2 as selected by our system 
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When selecting reversals for these two parses, we observe the following: 

 

 

 

It is clear that no amount of word reordering is going to produce a sentence which 

is structurally representative of the interpretation for the second parse. To overcome this, 

we force structure changes in the parse trees which, when realized, more sufficiently 

demonstrate the parse’s interpretation without changing the original meaning of the 

sentence. The realizations resulting from these structure changes are referred to as 

rewrites in this system.  

Specifically, the changes applied to parse trees involve altering the voice of the 

sentences to passive and/or cleft structures. As of now, these changes are applied in the 

presence of prepositional phrase (PP) attachment ambiguities but could be extended to 

cover cases of adverbial attachment ambiguities as well.  

1) He stopped with the laser Godzilla. 

2) He stopped Godzilla with the laser. 

… 

25) He stopped with the laser Godzilla 

1) He stopped Godzilla with the laser. 

2) He stopped Godzilla with the laser. 

3) He stopped with the laser Godzilla. 

… 

25) He stopped Godzilla with the laser.  

Table 6: Realizations corresponding to the parse 

tree in Figure 5 

Table 5: Realizations corresponding to the parse 

tree in Figure 4 
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To detect the presence of a PP attachment ambiguity, we simply look to the part 

of speech tags of the words in the ambiguous span for any prepositions (PTB tag = IN). 

Next, we verify that the sentence has a voicing which can be passivized/clefted by 

iteratively moving up the nodes of the parse trees, starting from the PP’s root node, to 

find the verb of the sentence. Once a verb above the PP is found in a parse, we repeat this 

process for the other parse and compare the verbs found above the PP. If the verbs are not 

the same, we consider the verb which has the other verb as a descendant. We do this in 

order to capture the whole verb phrase, which might be modified by the PP, in a 

passive/cleft structure. Then, we find the subject and object(s) just below the verb (in our 

system they are Arg0 and Arg1 of the verb).  

For a passive rewrite, we create a passive (PASS) node with the same tense as the 

original sentence in the dependency graph above the verb. We then make the object into 

the subject (Arg0) and the verb itself into Arg1 under the PASS node. The original 

subject of the verb is replaced with “by SUBJECT” sequence. If the subject was a 

pronoun, we replace it with the object pronoun (she-> her).  

For a cleft rewrite, we create a “be” verb node, again with the same tense as the 

original sentence, above the verb we are considering and make the object into the Arg0 

subject. Where the cleft rewrite differs is in the treatment of the original subject and verb. 

We move the verb (and consequently the subject) under a “what” reference node (x1), 

and in the place of the object under the original verb, we create a second reference (x2). 

This encodes the “what SUBJECT VERB” sequence of a cleft structure.  
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An example of the parses from Figure 4 and Figure 5 with their passive and cleft 

rewrites are shown in Figure 6, Figure 7, Figure 8, and Figure 9 on the next pages. For 

further illustration of the effect of a rewrite on a parse tree, the rewrite realizations are 

also included in these figures. 
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Figure 6: Pictured left is the parse tree from Figure 4 and pictured right is the same parse tree after a passive rewrite was applied 

to it. The parse tree on the right has the realization, Godzilla was stopped by him with the laser.  
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Figure 7: Pictured left is the parse tree from Figure 5 and pictured right is the same parse tree 

after a passive rewrite was applied to it. The parse tree on the right has the realization, 

Godzilla with the laser was stopped by him. 
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Figure 8: Pictured left is the parse tree from Figure 4 and pictured right is the same parse 

tree after a cleft rewrite was applied to it. The parse tree on the right has the realization, 

Godzilla was what he stopped with the laser. 
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After all changes have been applied to the parse trees, they are realized and 

checked for breakup of the ambiguous span just as in the reversals, with one small 

difference in the procedure. Because large changes were made to the parse trees, a record 

of these changes must be kept in order to establish a one-to-one correspondence between 

the original sentence and the rewrites. With these changes, we do not apply the 

verification to the rewrites as we do for reversals because we assume that the changes 

Figure 9: Pictured left is the parse tree from Figure 5 and pictured right is the same parse tree 

after a cleft rewrite was applied to it. The parse tree on the right has the realization, Godzilla 

with the laser was what he stopped. 
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made to the parse structure in a rewrite will properly demonstrate the intended 

interpretation of the parse. 

 

4.4.2 Verbosity for Coordination Ambiguities 

 In order to increase our coverage of other ambiguities, we have also extended our 

rewrite process to include changes for coordination ambiguities. Just like the 

passivization and cleft rewrites, coordination rewrites look to the part of speech tags of 

the words appearing in the ambiguous span for a coordinating conjunction (PTB tag = 

CC) in order to determine if a rewrite may be applied. Once a coordination ambiguity is 

identified, the rewrite involves forcing verbosity in the parse tree wherein any modifiers 

and determiners applied across the conjunction are moved to its individual arguments on 

both sides of the conjunction, as in Figure 11. The order of the arguments for the 

conjunction are then reversed, so as to ensure that any modifiers of the first position 

argument now appear after the conjunction, as in Figure 10. Following these changes, the 

exact same process of checking for ambiguity breakup in passive and cleft rewrites is 

applied to coordination rewrites.  

 

  

He was also selected to play in East/West Shrine game and Hula bowl. 

Sentence 3: Sample input for a coordination rewrites depicted in Figure 10 

and Figure 11 
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Figure 10: Pictured left is the top parse tree of Sentence 3 and pictured right is the same 

parse tree after a coordination rewrite was applied to it. Note the order of the arguments 

for the coordinating conjunction. The parse tree on the right has the realization, He also 

was selected to play in Hula bowl and East/West Shrine game. 
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Figure 11: Pictured left is the next best parse tree of Sentence 3 and pictured right is the same parse tree after a 

coordination rewrite was applied to it. Note the order of the arguments for the coordinating conjunction as well as the 

modifier East/West having shifted. The parse tree on the right has the realization, He also was selected to play in 

East/West Hula bowl and East/West Shrine game. 
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5 Results 
 

In this section, several charts have been included which give various breakdowns 

of the data extracted from Wikipedia and processed by our system. For real valued 

illustrations of the data shown in these charts, please refer to appendix items B through J. 

A total of 4769 articles were downloaded from Wikipedia using the text 

extraction script described in section 3.1: 1965 articles from Prehistoric Reptiles and 

2804 from Big 10 Conference Football. From those articles, a total of 17,097 sentences 

were extracted: 6525 from articles related to Prehistoric Reptiles and 10,572 from articles 

related to Big 10 Conference Football. Many of these sentences were actually repeated 

several times across articles from the Big 10 Conference Football corpus (and to a much 

lesser extent, the Prehistoric Reptiles corpus as well) and so the actual number of unique 

sentences extracted from these Wikipedia articles were much lower: 6,335 sentences 

from Prehistoric Reptiles (2.9% reduction in total), 7,779 from Big 10 Conference 

Football (26.4% reduction in total), and a combined total of 14,114 sentences (17.45% 

reduction). The remaining numbers shown here will be in relation to this corpus of 

unique sentences.  

After these sentences were processed in our system by the methods described in 

Section 3, a great deal of the sentences were found to be unambiguous: 3,877 sentences 

from the Prehistoric Reptiles articles (61.2% of total sentences), 5,174 sentences from 

Big 10 Conference Football (66.5% of total sentences), with a combined total of 9,051 

unambiguous sentences (64.1% of total sentences). 
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 It is now pertinent to introduce a term we will use throughout this section 

concerning the nature of the paraphrases generated by this system. Ideally, every 

ambiguous sentence processed by our system will generate two disambiguating 

paraphrases, one for each competing parse tree. However, because these paraphrases 

must pass through a verification phase, not all ambiguous sentences will have two 

paraphrases. We call a paraphrase that corresponds only to one of the competing parse 

trees of an ambiguous sentence a one sided paraphrase, and similarly we call paraphrases 

that correspond to both competing parse trees a two sided paraphrase. 

 Of the 5,063 ambiguous sentences processed by our system, 1,458 sentences have 

Chart 1: The number of sentences which are ambiguous vs. unambiguous across two 

corpora, including the same comparison for the subsets of unique sentences from the 

same corpora. 
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no paraphrases generated for them (28.8% of the total ambiguous sentences), 2,399 

sentences have one sided paraphrases (47.4% of the total ambiguous sentences), and 

1,206 sentences (23.8% of the total ambiguous sentences) have two sided paraphrases. 

 

 

Focusing for a moment on the paraphrases themselves, it is important to examine 

the distribution of the available paraphrase generated by the strategies described in 

section 3. A total of 1,399 two sided paraphrases were generated (649 Prehistoric 

Reptiles, 750 Big 10 Conference Football) and 2,520 one sided paraphrases were 

generated (1,262 Prehistoric Reptiles, 1,258 Big 10 Conference Football). Of the 1,399 

two sided paraphrases: 657 are reversals, 260 are cleft rewrites, 135 are passive rewrites, 

Chart 2: A breakdown of the number of sentences per corpus which have one sided 

paraphrases, two sided paraphrases, or no paraphrases at all generated for them.   
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and 347 are coordination rewrites. Of the 2,520 one sided paraphrases: 2,184 are 

reversals, 62 are cleft rewrites, 39 are passive rewrites, and 235 are coordination rewrites. 

 

 

 

  

Chart 3: A depiction of the overall number paraphrases generated for each corpus 
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Chart 4: A distribution of the available paraphrases by paraphrase type for two sided 

paraphrases 
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 Returning to the focus on sentences, we observed the following with regard to 

reversal and rewrite paraphrases: 650 sentences (277 Prehistoric Reptiles, 124 Big 10 

Conference Football) have a two sided reversal, 2,554 sentences (1,276 Prehistoric 

Reptiles, 1278 Big 10 Conference Football) have a one sided reversal, and 1,852 

sentences (905 Prehistoric Reptiles, 947 Big 10 Conference Football) have no reversals 

at all.  

  

Chart 5: A distribution of the available paraphrases by paraphrase type for one sided 

paraphrases 
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Of those sentences which either had no reversal generated, or a one sided reversal 

generated, 549 sentences (294 Prehistoric Reptiles, 255 Big 10 Conference Football) had 

a two sided rewrite. Of the 1,852 sentences with no reversals generated, 243 sentences 

(128 Prehistoric Reptiles, 115 Big 10 Conference Football) had a two sided rewrite 

generated and 215 sentences (107 Prehistoric Reptiles, 108 Big 10 Conference Football) 

had a one sided rewrite generated. Of the 2,554 sentences with one sided reversals 

generated, 306 sentences (166 Prehistoric Reptiles, 140 Big 10 Conference Football) had 

a two-sided rewrite generated. 

  

Chart 6: The coverage of reversals for sentences in the corpora 
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Chart 7: Rewrite coverage increases for sentences with either no prior reversals 

generated, or at most, one sided reversals generated 
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Chart 8: A distribution of the rewrite strategy types in the cases of Prehistoric Reptiles 

sentences with at most a one sided reversal 
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Chart 9: A distribution of the rewrite strategy types in the cases of Big 10 Conference 

Football sentences with at most a one sided reversal 
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6 Discussion and Suggestions for Future Work 
 

 The data that we have gathered is encouraging for our system for a number of 

reasons. The large number of sentences which were deemed to be unambiguous by our 

system, as seen in Chart 1 from the previous section, is an indication that there were not 

meaningful differences between the parses of these sentences and that, despite not being 

trained on open domain data, the OpenCCG parser may perform well on these sentences 

(or at least is reasonably confident about its incorrect parses, if it does not perform well).  

It is also encouraging that a reasonably high percentage of the ambiguous 

sentences have paraphrases generated for them, as seen in Chart 2 from the previous 

section, though a huge majority of the paraphrases generated are one sided paraphrases. 

This is not necessarily a bad result however, as it is possible to still use a one sided 

paraphrase in a meaning similarity judgement task. Rather than presenting a user with 

two paraphrases for an ambiguous sentence, a single paraphrase is presented and a user 

may be prompted to decide whether or not this paraphrase has the same interpretation as 

the original sentence. An affirmative choice in this case this may still present an 

opportunity to learn the parse tree which generated that paraphrase in parser retraining.  

So why are there so many one sided paraphrases? It is worth noting that because 

our methods involve moving down an n-best list of realizations for paraphrases, the 

paraphrases can become awkward and less fluent for a reader, human or otherwise. For a 

parser, less fluency may mangle the interpretation which, in the verification phrase for 

reversals, will cause the paraphrase to get filtered. It is also possible that many of the 

paraphrases simply were not capable of breaking up the ambiguous span of the sentence 
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and so also fail the verification phase.  

Another encouraging aspect of this data is the significant number of rewrites 

which increased our coverage of paraphrases for ambiguous sentences.  

Something to note, based on the information in Chart 8 and Chart 9, is the higher 

frequency of coordination rewrites compared to the other rewrite strategies. This does not 

necessarily suggest that the OpenCCG realizer is weak in terms of its ability to generate 

disambiguating realizations in the presence of coordination ambiguities. Rather, this 

simply shows that the realizer prefers fluency over verbosity, which is something that we 

must force if an unambiguous paraphrase is to be generated. It is also somewhat 

surprising that the cleft strategy tends to generate more paraphrases than the passivization 

strategy, given that they are built to disambiguate the same type of ambiguity, PP 

attachment. It would be worthwhile to explore other rewrite strategies that would further 

increase our coverage paraphrases for ambiguous sentences  

It is not yet clear what the intersection of the words appearing in the unambiguous 

sentences and the words appearing in the Penn Treebank would be like, but this should be 

investigated in later studies.  
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7 Conclusions 
 

We have successfully built a system for generating disambiguating paraphrases 

which we hope proves useful, as our initial study discussed in section 3 suggests, in 

collecting large numbers of similarity judgement annotations through crowdsourcing. Our 

system, while not able to find ambiguities for every sentence in open domain corpora, is 

able to successfully generate a significant number of disambiguating paraphrases for the 

ambiguities it does identify. 
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Item A  

Corpus Articles Downloaded 

Prehistoric Reptiles 1965 

Big 10 Conference Football 2804 

 

Item B: Chart 1: The number of sentences which are ambiguous vs. unambiguous across 

two corpora, including the same comparison for the subsets of unique sentences from the 

same corpora.) 

 Prehistoric 

Reptiles 

Unique 

Prehistoric 

Reptiles 

Big 10 

Conference 

Football 

Unique Big 10 

Conference 

Football 

Ambiguous 2534 2458 3593 2605 

Unambiguous 3991 3877 6979 5174 

 

Item C: Chart 2: A breakdown of the number of sentences per corpus which have one 

sided paraphrases, two sided paraphrases, or no paraphrases at all generated for them.  

Paraphrases Prehistoric Reptiles: # of 

Sentences 

Big 10 Conference 

Football: # of Sentences 

One Sided 1191 1208 

Two Sided 571 635 

None 696 762 

 

Item D: Chart 3: A depiction of the overall number paraphrases generated for each corpus 

Paraphrases Prehistoric Reptiles: # of 

Paraphrases 

Big 10 Conference 

Football: # of Paraphrases 

One Sided 1262 1258 

Two Sided 649 750 
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Item E: Chart 5: A distribution of the available paraphrases by paraphrase type for one 

sided paraphrases 

Paraphrase Type Prehistoric Reptiles: # of 

One Sided 

Big 10 Conference 

Football: # of One Sided 

Reversal 1084 1100 

Cleft 35 27 

Passive 21 18 

Coordination 122 113 

 

Item F: Chart 4: A distribution of the available paraphrases by paraphrase type for two 

sided paraphrases 

Paraphrase Type Prehistoric Reptiles: # of 

Two Sided 

Big 10 Conference 

Football: # of Two Sided 

Reversal 277 380 

Cleft 92 168 

Passive 57 78 

Coordination 223 124 

 

Item G: Chart 6: The coverage of reversals for sentences in the corpora 

 Prehistoric Reptiles: # of 

Sentences 

Big 10 Conference 

Football: # of Sentences 

No Reversals 905 947 

One Sided Reversals 1276 1278 

Two Sided Reversals 277 380 
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Item H: Chart 7: Rewrite coverage increases for sentences with either no prior reversals 

generated, or at most, one sided reversals generated 

Coverage Increase Label Prehistoric Reptiles: # of 

Sentences 

Big 10 Conference 

Football: # of Sentences 

One Sided Increase, No 

Prior Reversals 

107 108 

Two Sided Increase, No 

Prior Reversals 

128 115 

Two Sided Increase, One 

Sided Prior Reversals 

166 140 

 

Item I: Chart 8: A distribution of the rewrite strategy types in the cases of Prehistoric 

Reptiles sentences with at most a one sided reversal 

Rewrite Type Prehistoric Reptiles: # of Paraphrases 

Cleft 74 

Passive 43 

Coordination 216 

 

Item J: Chart 9: A distribution of the rewrite strategy types in the cases of Big 10 

Conference Football sentences with at most a one sided reversal 

Rewrite Type Big 10 Conference Football: # of 

Paraphrases 

Cleft 130 

Passive 61 

Coordination 118 

 


