

Generating Disambiguating Paraphrases for Use in Crowdsourced

Judgments of Meaning

RESEARCH THESIS

Presented in Partial Fulfillment of the Requirements for graduation with “Honors

Research Distinction in Computer & Information Science” in the undergraduate colleges

of The Ohio State University

By

Ethan A. Hill

The Ohio State University

May 2015

Committee:

Michael White, Advisor

Eric Fosler-Lussier

Jeremy Morris

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KnowledgeBank at OSU

https://core.ac.uk/display/159572835?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright by

Ethan A. Hill

2015

ii

Abstract

Adapting statistical parsers to new domains requires annotated data, which is

expensive and time consuming to collect. Using crowdsourced annotation data as a

“silver standard” is a step towards a more viable solution and so in order to facilitate the

collection of this data, we have developed a system for creating semantic disambiguation

tasks for use in crowdsourced judgements of meaning. In our system here described,

these tasks are generated automatically using surface realizations of structurally

ambiguous parse trees, along with minimal use of forced parse structure changes.

iii

Dedication

This document is dedicated to my friends and family who always forgave my time spent

away working so many nights in the lab.

iv

Acknowledgments

I would like to thank Dr. Michael White and Manjuan Duan for their instrumental

role in guiding me through this work.

A warm thank you also to Dr. Eric Fosler-Lussier for patiently providing

assistance throughout the thesis application process, along with Dr. Jeremy Morris, who

despite short notice and a busy schedule, was honored to take part in the committee for

the defense of this work.

A formal thank you as well to the National Science Foundation for providing

funding for this project under grant IIS-1319318.

v

Table of Contents

Abstract ... ii

Dedication .. iii

Acknowledgments.. iv

Table of Contents .. v

List of Tables and Figures... vii

List of Charts... ii

1 Introduction .. 3

2 Background .. 6

3 Initial Study .. 8

4 Methodology and System Design .. 9

4.1 Wikipedia Data Extraction .. 9

4.2 Parsing and Ambiguity Analysis ... 10

4.3 Reverse Realization and Verification .. 11

4.3.1 Breaking up the Ambiguity .. 11

4.3.2 Verifying a Realization ... 18

4.4 Parse Structure Rewrites ... 19

4.4.1 Passivization and Clefting .. 19

4.4.2 Verbosity for Coordination Ambiguities .. 29

vi

5 Results .. 32

6 Discussion and Suggestions for Future Work .. 42

7 Conclusions .. 44

8 References .. 45

Appendix ... 46

vii

List of Tables and Figures

Table 1…………………………………………………………………………………...15

Table 2…………………………………………………………………………………...15

Table 3…………………………………………………………………………………...17

Table 4…………………………………………………………………………………...17

Table 5…………………………………………………………………………………...22

Table 6…………………………………………………………………………………...22

Figure 1 ………………………………………………………………………….............13

Figure 2 ………………………………………………………………………….............14

Figure 3 ………………………………………………………………………….............16

Figure 4 ………………………………………………………………………….............19

Figure 5…………………………………………………………………………..............21

Figure 6…………………………………………………………………………..............25

Figure 7…………………………………………………………………………..............26

Figure 8…………………………………………………………………………..............27

Figure 9…………………………………………………………………………..............28

Figure 10…………………………………………………………………………............30

Figure 11…………………………………………………………………………............31

ii

List of Charts

Chart 1 ... 33

Chart 2 ... 34

Chart 3 ... 35

Chart 4 ... 36

Chart 5 ... 37

Chart 6 ... 38

Chart 7 ... 39

Chart 8 ... 40

Chart 9 ... 41

file:///C:/Users/Home/Desktop/Thesis%20Template.docx%23_Toc417479910
file:///C:/Users/Home/Desktop/Thesis%20Template.docx%23_Toc417479911
file:///C:/Users/Home/Desktop/Thesis%20Template.docx%23_Toc417479912
file:///C:/Users/Home/Desktop/Thesis%20Template.docx%23_Toc417479913
file:///C:/Users/Home/Desktop/Thesis%20Template.docx%23_Toc417479914
file:///C:/Users/Home/Desktop/Thesis%20Template.docx%23_Toc417479915
file:///C:/Users/Home/Desktop/Thesis%20Template.docx%23_Toc417479916
file:///C:/Users/Home/Desktop/Thesis%20Template.docx%23_Toc417479917
file:///C:/Users/Home/Desktop/Thesis%20Template.docx%23_Toc417479918

3

1 Introduction

In parsing natural language, a good statistical parser requires training data which

has been traditionally hand annotated by trained linguists as a gold standard. Hand

annotation is an expensive and time consuming process and one that must be repeated if

training data is adapted to new subject domains. This project aims to provide an

alternative means for producing training data in new domains by automatically

generating disambiguating paraphrases of syntactically ambiguous sentences which will

later be used in experiments on crowdsourced judgments of meaning similarity. As part

of the bigger picture, these judgments can then be used in retraining parsers to improve

parsing accuracy in a new subject domain as well as language generation in broad

coverage settings.

Previous work in the area of using crowdsourced annotations for corpus creation

shows promise. A study by Jha et al. (2010) showed that annotators from the

crowdsource platform Amazon Mechanical Turk (AMT) were able to make highly

accurate judgements of prepositional phrase (PP) attachment ambiguity resolution when

presented with the competing attachments. In this study AMT annotators were presented

with possible attachments for prepositional phrases and were asked which attachment

was correct (five annotations were collected for each attachment ambiguity). Jha et al.

(2010) reported that annotators were capable of attachment choice accuracies of 97% in

the best case (all five annotators of an ambiguity were in agreement) and 64% to 67% in

4

the worst case (a plurality of two and three annotators respectively for the attachment

choices of an ambiguity). Our own initial study, as discussed in section 3 Initial Study,

also shows some promise.

Our work involves collecting naturally occurring sentences from several domains

from Wikipedia and analyzing them across an n-best list of parses for syntactically

ambiguous structures. These ambiguous parses are then generated back into new

sentences by OpenCCG’s surface realizer and automatically analyzed for breakup in the

original ambiguity. Finally, these new sentences are re-parsed in order to verify the

original syntactic analysis.

Since not all ambiguous sentences are able to generate disambiguating

paraphrases automatically, forced structural changes are applied to the parses of these

sentences in order to increase coverage. These changes do not alter the original meaning

of the sentence but are designed to force a generated sentence to demonstrate the intended

meaning hidden by the ambiguity of the original sentence. These modifications involve

forcing passive and/or cleft structures in the presence of some attachment ambiguities, or

forcing verbosity in the presence of ambiguities occurring across coordinating

conjunctions.

We describe first in section 2 some background of the tools and concepts

referenced throughout this paper so the reader may have a firm understanding of the

processes used within our system. In section 3, we briefly discuss some initial findings

from an evaluation of this system using judgements from AMT annotators. Section 4

describes in depth the methodology and design of our system, along with several

5

illustrations and examples. We then share the results of our system on a corpus of data

drawn from Wikipedia in section 5, followed by a discussion of these results and the

peculiarities worth examining. A conclusion follows in section 7 which suggests further

work and experimentation using this system.

6

2 Background

We use OpenCCG1, an open source natural language processing library written in

Java for Combinatory Categorial Grammar (Steedman 2000), as an integral part of our

system and so it is beneficial to give a brief overview of this technology as requisite

knowledge.

Combinatory Categorial Grammar (CCG) is a categorial grammar formalism

capable of modeling a wide range of linguistic phenomena, and is defined by a lexicon of

items associated with syntactic categories, which correspond to a semantic interpretation

(Steedman and Baldridge 2005). Categories in CCG can act as functions, and because

CCG is unification-based, structures can be formed from the combination of categories

using an explicit set of CCG combinatory rules.

OpenCCG provides a CCG parser which can probabilistically produce the most

likely dependency graph given some sentence and a CCG lexicon. OpenCCG uses a

lexicon extracted from CCGBank (Hockenmaier and Steedman 2007), a corpus of CCG

derivations derived from the Penn Treebank corpus. Boxwell and White (2008) have

enhanced the version of CCGBank in use by OpenCCG by including PropBank’s (Palmer

et al. 2005) Penn Treebank verb argument and modifier semantic roles. This work was

1 http://openccg.sourceforge.net

7

intended to facilitate broad coverage generation with CCG and improve the OpenCCG

parser.

In addition to a CCG parser, OpenCCG also includes a CCG surface realizer.

Surface realization is a language generation task that, when given an input logical form

(semantic graph), produces a sequence of words constrained by a lexicon and grammar

(in our case, the Propbank enhanced CCGBank). Because the number of probable

realizations of a logical form can become explosive if the grammar permits a relatively

free word ordering, a chart-based and statistical hybrid algorithm is used for more

efficient realization (White 2006). Realizations from OpenCCG are ranked using a 5-

gram model from the Gigaword corpus and/or a perceptron scoring model as described

by White and Rajkumar (2009).

The system described hereafter in section 4 was built entirely using the Python

v2.72 standard library (with the exception of a Wikipedia text extraction script described

in section 4 below) and is intended to be an extension package for the OpenCCG library

already mentioned.

2 https://www.python.org

8

3 Initial Study

Our current iteration of this system has recently undergone a small test using

Amazon’s Mechanical Turk (AMT) in order to gauge the effectiveness of the paraphrases

generated. AMT users are shown the original ambiguous sentences and one or two

generated paraphrases from the top competing parses for these sentences. The task is to

simply select the paraphrase which is closer in meaning to the original sentence from the

competing parses. Alongside the judgments collected from AMT, we have also provided

our own judgments of which parses are correct for sentences as a gold standard to

measure the accuracy of the AMT similarity judgments. For each similarity judgement

task, we also noted if none of the parses were correct so that the parses in that task are not

considered in the AMT judgement accuracies.

In an initial trial of 92 sentences, we have observed encouraging results. For each

similarity judgement task, we collected five judgments from AMT users and observed

that for majority agreement cases (three or more users agree on a task), accuracy is much

higher than chance level. For agreement of three or more AMT users on a sentence, we

observe 67% accuracy over 69 sentences and for agreement of four or more users, we

observe 71% accuracy over 51 sentences. In cases of total user agreement, we observe

77% accuracy over 26 sentences. This shows that our method of paraphrase generation is

effective for creating crowd-sourced annotation tasks. In our gold standard annotations,

9

we found 23 sentences of the 92 to have incorrect parses and so were not considered in

these reports of accuracy. For continued study, we are extending these trials to include

judgments on 1000 total sentences to establish a better and deeper analysis.

4 Methodology and System Design
4.1 Wikipedia Data Extraction

For open domain data, text was collected from two article categories on

Wikipedia, Prehistoric Reptiles and Big 10 Conference Football. The text from the

articles in these categories (and related sub-categories) was extracted using the Python

package Wikipedia3 and then tokenized into sentences using another Python package,

NLTK4. Of all downloaded Wikipedia sentences, only sentences with word counts

ranging between five and twenty were selected. This word count limitation is in place in

order to favor more simple parse trees in the hope that, when adapting a parser to the new

domain, simple structures will generalize more easily. There is also a limitation on

Unicode characters present in the sentences for convenience in handling the text later in

Python (Python v2.7 has a different interface5 for Unicode strings than other encodings

like ASCII). Downloaded sentences are stored in files corresponding to the name of the

article from which they came for convenience in later examining the sentence’s context

on the original Wikipedia source article. For our collection analysis, we will examine the

3 https://wikipedia.readthedocs.org
4 Natural Language Toolkit, http://www.nltk.org/
5 https://docs.python.org/2/howto/unicode.html

10

amount of paraphrases available for ambiguous sentences and the distribution of

paraphrase types based on the strategies which are described in this section.

4.2 Parsing and Ambiguity Analysis

To begin the process of generating disambiguating paraphrases, each downloaded

sentence is parsed using the OpenCCG parser into an n-best parse list (with n = 25). All

parses with more than one tree root are filtered out as these are considered to be broken

parses. Next, a set of unlabeled dependency relationships is generated for each parse tree

in order to detect structural ambiguities existing between competing parses of a sentence.

This examination of unlabeled dependencies allows for minor labeling differences, such

as part of speech tags, to be ignored between otherwise structurally equivalent parses.

Any unlabeled dependency set of a parse containing a dependency whose dependent is

the same as its head, i.e. (head = John, dependent = John), is ignored, as this is also

indicative of a malformed parse.

After applying these filters to the list of parses, sentences are examined for

structural ambiguities existing between its top parses. Ambiguities are identified by

selecting the top parse of a sentence and its next best parse which is distinct from the top

parse and therefore amenable to disambiguation via paraphrasing. Distinct parses, in the

case of this system, have a non-empty symmetric difference between the unlabeled

dependency sets of the parses, and this difference then passes through a number of other

filters. These filters are designed to allow the system to ignore other minor differences

between parses which don’t contribute to interesting ambiguities.

11

 The first of these filters simply checks if the symmetric difference of the parse’s

unlabeled dependency sets has only one head-dependent pair (i.e. the symmetric

difference consists of only one element). It is not clear that this kind of ambiguity

contributes any kind of meaningful difference in interpretations because the parses are

identical with the exception of just one additional dependency relationship.

The next filter for the competing parses examines part-of-speech tags for the

dependencies in the symmetric difference in order to identify possible auxiliary

attachments. We define auxiliary attachments in the same way that de Marneffe and

Manning (2008) define them in their Stanford dependencies manual. The symmetric

difference is not considered sufficiently interesting as an ambiguity if a dependency in

the difference is headed by a modal (PTB tag = MD) or forms of “be”, “do”, or “have”,

and the dependent has one of the following part-of-speech tags (PTB): RB, JJ, and IN. A

sentence’s top parses whose differences pass through these filters are considered to be

distinct and structurally ambiguous enough that their interpretations may possibly be

disambiguated by our system.

4.3 Reverse Realization and Verification

4.3.1 Breaking up the Ambiguity

In order to automatically generate disambiguating paraphrases for ambiguous

sentences and verify these paraphrases have the same interpretation structurally as the

parses from which they were generated, we have devised a process of reverse realization

(parse a sentence and realize sentence back from its parse) with a verification step. This

12

process begins where the previous section had left off; once a top parse and next best

parse are identified as ambiguous for a sentence, these parses are then realized using the

OpenCCG surface realizer. This produces an n-best list of realizations for each parse (for

the current system, n=25 realizations). Here, the goal in generating a list of new

sentences from a parse is to find a disambiguating paraphrase of the original parsed

sentence. In realizing a parse, it is possible that words in the original ambiguous sentence

can be expressed in different orders in the realization, and this new ordering can lead to

an unambiguous interpretation of the sentence. By moving down the n-best list of

realizations and comparing each realization to the original sentence, we can select a

realization for each parse which appears to accomplish disambiguation. To illustrate this

further, consider Sentence 1 drawn from the Prehistoric Reptiles corpus (specifically

from an article about the 1997 movie The Lost World: Jurassic Park) and its competing

parse trees (Figure 1 and Figure 2) pictured on the next pages.

The two adult T-Rex and their baby are shown to have been returned safely.

Sentence 1 as sample input to our system

13

Figure 1: The top parse for Sentence 1 as produced by the OpenCCG parser

14

Figure 1: The next best parse for Sentence 1 as produced by the OpenCCG parser and

selected by the filters described in section 3.2

15

As can be seen in Figure 1 and Figure 2, the ambiguity of the original sentence

involves the adverb “safely” attaching to either of the verbs “shown” or “return”. Table 1

and Table 2 show the resulting realizations which are produced given those parse trees.

1) The two adult T-Rex and their baby are shown to have been returned safely.

2) The adult two T-Rex and their baby are shown to have been returned safely.

3) The two adult T-Rex and their baby are shown to have been safely returned.

4) The two adult T-Rex, and their baby are shown to have been returned safely.

….

24) The two adult T-Rex, and their baby are shown to have been safely returned.

25) The two adult T-Rex and their baby am shown to have been returned safely.

Table 1: The output realizations resulting from the parse tree in Figure 1 as input to the

OpenCCG realizer, with the selected realization in bold.

1) The two adult T-Rex and their baby are shown to have been returned safely.

2) The two adult T-Rex and their baby are shown safely to have been returned.
3) The two adult T-Rex and their baby are safely shown to have been returned.

…

24) The two adult T-Rex and their baby are shown safely na have been returned.

25) The adult two T-Rex, and their baby are shown to have been returned safely.

Table 2: The output realizations resulting from the parse tree in Figure 2 with the selected

realization in bold.

16

Of note are the following realizations from Table 1 and Table 2.

From Realization 1 and Realization 2 one can clearly see the differences in

interpretation for the two parses, but this intuition needs to be automated somehow. In

this system, realizations of parses are examined for any breakup of the ambiguity in the

original sentence. The words from the unlabeled dependencies which make up the

ambiguity between the two parses are used to form what we call an ambiguous span in

the original sentence.

For example, in Figure 3 above, the ambiguous span is {safely, shown, returned} for

Sentence 1. We then establish a one-to-one correspondence for the words in the span

between the original sentence and the realization being examined. To ensure an exact

correspondence of words for this system, we store the paths in the sentence’s parse trees

The two adult T-Rex and their baby are shown to have been safely returned.

The two adult T-Rex and their baby are shown safely to have been returned.

Realization 1: A selected realization which breaks up the structural ambiguity appearing

in Sentence 1 and corresponds to the parse tree from Figure 1

Realization 2: A selected realization which breaks up the structural ambiguity appearing

in Sentence 1 and corresponds to the parse tree from Figure 2

(shown, safely)

(returned, safely)

Figure 3: The unlabeled dependencies that form the

ambiguity between the parses in Figure 1 and Figure 2

17

from the root to the nodes of the words in the ambiguous span. The OpenCCG realizer

maintains as its output, the same parse tree of the generated sentence as the original parse

with updated word index (sentence offset) values, so we can use these stored paths to

retrieve the new offset positions of the words from the ambiguous span as they appear in

the generated sentence. This approach removes any possibility of incorrectly examining

words which are the same as those appearing in the ambiguous span, but are not

contributing to the ambiguity.

 After establishing a correspondence between the original sentence and a generated

sentence, we measure the relative word distances between each word in the ambiguous

span. These distances are bidirectional and are measured for both the original sentence

and the generated sentence.

Word Other Word Relative Distance

shown safely 5

safely shown -5

returned safely 1

safely returned -1

Table 3: The relative distances between the words in the ambiguous span for Sentence 1

Word Other Word Relative Distance

shown safely 4

safely shown -4

returned safely -1

safely returned 1

Table 4: The relative distances between the words in the ambiguous span as they appear

in Realization 1

With these measurements, one can observe movement of the words in the

ambiguous span from the original sentence to the generated sentence and ignore

inconsequential movement of the other words not contributing to the ambiguity. Any

change in this relative distance between the words in the ambiguous span is considered a

18

breakup of the ambiguity, and the realization providing this breakup is then selected for

verification. This process is repeated for both of the competing parses of an ambiguous

sentence and subsequently for all ambiguous sentences in the corpora.

4.3.2 Verifying a Realization

 Selected realizations which breakup ambiguities (as described in the previous

section) go through a process of verification intended to determine whether a realization

is structurally representative of the parse from which it was generated (and subsequently

its interpretation). This process is inspired by work in self-monitoring for avoiding

structural ambiguities in realizations by examining their parses as described by Duan and

White (2014). In order to achieve this, the realizations themselves are parsed like their

original counterparts using the OpenCCG parser. The new set of unlabeled dependencies

from the top parses of the realizations are then compared to the dependencies of the

original parses from which the realizations were generated. If the realizations’

dependency set contains the subset of dependencies from the original parse which

contributed to the ambiguity, this is indicative of a realization which structurally shares

the original interpretation of the parse from which it was generated. We consider these

realizations to be verified paraphrases and are called reversals in this system.

19

4.4 Parse Structure Rewrites

4.4.1 Passivization and Clefting

Taking a step back in the control flow of this system for a moment, there are a

few more processes which are applied to the parses of ambiguous sentences before

reverse realization and verification, as described in the previous section. There are cases

of ambiguous sentences in which it is not possible to have reversals that disambiguate the

interpretations for both parses. As a simple example, one can look at Sentence 2 and its

parses in Figure 4 and Figure 5

He stopped Godzilla with the laser.

Sentence 2: Sample input for passive and cleft rewrites

20

Figure 4: Top parse tree for Sentence 2 as output from the OpenCCG parser

21

Figure 5: The next best parse for Sentence 2 as selected by our system

22

When selecting reversals for these two parses, we observe the following:

It is clear that no amount of word reordering is going to produce a sentence which

is structurally representative of the interpretation for the second parse. To overcome this,

we force structure changes in the parse trees which, when realized, more sufficiently

demonstrate the parse’s interpretation without changing the original meaning of the

sentence. The realizations resulting from these structure changes are referred to as

rewrites in this system.

Specifically, the changes applied to parse trees involve altering the voice of the

sentences to passive and/or cleft structures. As of now, these changes are applied in the

presence of prepositional phrase (PP) attachment ambiguities but could be extended to

cover cases of adverbial attachment ambiguities as well.

1) He stopped with the laser Godzilla.

2) He stopped Godzilla with the laser.

…

25) He stopped with the laser Godzilla

1) He stopped Godzilla with the laser.

2) He stopped Godzilla with the laser.

3) He stopped with the laser Godzilla.

…

25) He stopped Godzilla with the laser.

Table 6: Realizations corresponding to the parse

tree in Figure 5

Table 5: Realizations corresponding to the parse

tree in Figure 4

23

To detect the presence of a PP attachment ambiguity, we simply look to the part

of speech tags of the words in the ambiguous span for any prepositions (PTB tag = IN).

Next, we verify that the sentence has a voicing which can be passivized/clefted by

iteratively moving up the nodes of the parse trees, starting from the PP’s root node, to

find the verb of the sentence. Once a verb above the PP is found in a parse, we repeat this

process for the other parse and compare the verbs found above the PP. If the verbs are not

the same, we consider the verb which has the other verb as a descendant. We do this in

order to capture the whole verb phrase, which might be modified by the PP, in a

passive/cleft structure. Then, we find the subject and object(s) just below the verb (in our

system they are Arg0 and Arg1 of the verb).

For a passive rewrite, we create a passive (PASS) node with the same tense as the

original sentence in the dependency graph above the verb. We then make the object into

the subject (Arg0) and the verb itself into Arg1 under the PASS node. The original

subject of the verb is replaced with “by SUBJECT” sequence. If the subject was a

pronoun, we replace it with the object pronoun (she-> her).

For a cleft rewrite, we create a “be” verb node, again with the same tense as the

original sentence, above the verb we are considering and make the object into the Arg0

subject. Where the cleft rewrite differs is in the treatment of the original subject and verb.

We move the verb (and consequently the subject) under a “what” reference node (x1),

and in the place of the object under the original verb, we create a second reference (x2).

This encodes the “what SUBJECT VERB” sequence of a cleft structure.

24

An example of the parses from Figure 4 and Figure 5 with their passive and cleft

rewrites are shown in Figure 6, Figure 7, Figure 8, and Figure 9 on the next pages. For

further illustration of the effect of a rewrite on a parse tree, the rewrite realizations are

also included in these figures.

25

Figure 6: Pictured left is the parse tree from Figure 4 and pictured right is the same parse tree after a passive rewrite was applied

to it. The parse tree on the right has the realization, Godzilla was stopped by him with the laser.

26

Figure 7: Pictured left is the parse tree from Figure 5 and pictured right is the same parse tree

after a passive rewrite was applied to it. The parse tree on the right has the realization,

Godzilla with the laser was stopped by him.

27

Figure 8: Pictured left is the parse tree from Figure 4 and pictured right is the same parse

tree after a cleft rewrite was applied to it. The parse tree on the right has the realization,

Godzilla was what he stopped with the laser.

28

After all changes have been applied to the parse trees, they are realized and

checked for breakup of the ambiguous span just as in the reversals, with one small

difference in the procedure. Because large changes were made to the parse trees, a record

of these changes must be kept in order to establish a one-to-one correspondence between

the original sentence and the rewrites. With these changes, we do not apply the

verification to the rewrites as we do for reversals because we assume that the changes

Figure 9: Pictured left is the parse tree from Figure 5 and pictured right is the same parse tree

after a cleft rewrite was applied to it. The parse tree on the right has the realization, Godzilla

with the laser was what he stopped.

29

made to the parse structure in a rewrite will properly demonstrate the intended

interpretation of the parse.

4.4.2 Verbosity for Coordination Ambiguities

 In order to increase our coverage of other ambiguities, we have also extended our

rewrite process to include changes for coordination ambiguities. Just like the

passivization and cleft rewrites, coordination rewrites look to the part of speech tags of

the words appearing in the ambiguous span for a coordinating conjunction (PTB tag =

CC) in order to determine if a rewrite may be applied. Once a coordination ambiguity is

identified, the rewrite involves forcing verbosity in the parse tree wherein any modifiers

and determiners applied across the conjunction are moved to its individual arguments on

both sides of the conjunction, as in Figure 11. The order of the arguments for the

conjunction are then reversed, so as to ensure that any modifiers of the first position

argument now appear after the conjunction, as in Figure 10. Following these changes, the

exact same process of checking for ambiguity breakup in passive and cleft rewrites is

applied to coordination rewrites.

He was also selected to play in East/West Shrine game and Hula bowl.

Sentence 3: Sample input for a coordination rewrites depicted in Figure 10

and Figure 11

30

Figure 10: Pictured left is the top parse tree of Sentence 3 and pictured right is the same

parse tree after a coordination rewrite was applied to it. Note the order of the arguments

for the coordinating conjunction. The parse tree on the right has the realization, He also

was selected to play in Hula bowl and East/West Shrine game.

31

Figure 11: Pictured left is the next best parse tree of Sentence 3 and pictured right is the same parse tree after a

coordination rewrite was applied to it. Note the order of the arguments for the coordinating conjunction as well as the

modifier East/West having shifted. The parse tree on the right has the realization, He also was selected to play in

East/West Hula bowl and East/West Shrine game.

32

5 Results

In this section, several charts have been included which give various breakdowns

of the data extracted from Wikipedia and processed by our system. For real valued

illustrations of the data shown in these charts, please refer to appendix items B through J.

A total of 4769 articles were downloaded from Wikipedia using the text

extraction script described in section 3.1: 1965 articles from Prehistoric Reptiles and

2804 from Big 10 Conference Football. From those articles, a total of 17,097 sentences

were extracted: 6525 from articles related to Prehistoric Reptiles and 10,572 from articles

related to Big 10 Conference Football. Many of these sentences were actually repeated

several times across articles from the Big 10 Conference Football corpus (and to a much

lesser extent, the Prehistoric Reptiles corpus as well) and so the actual number of unique

sentences extracted from these Wikipedia articles were much lower: 6,335 sentences

from Prehistoric Reptiles (2.9% reduction in total), 7,779 from Big 10 Conference

Football (26.4% reduction in total), and a combined total of 14,114 sentences (17.45%

reduction). The remaining numbers shown here will be in relation to this corpus of

unique sentences.

After these sentences were processed in our system by the methods described in

Section 3, a great deal of the sentences were found to be unambiguous: 3,877 sentences

from the Prehistoric Reptiles articles (61.2% of total sentences), 5,174 sentences from

Big 10 Conference Football (66.5% of total sentences), with a combined total of 9,051

unambiguous sentences (64.1% of total sentences).

33

 It is now pertinent to introduce a term we will use throughout this section

concerning the nature of the paraphrases generated by this system. Ideally, every

ambiguous sentence processed by our system will generate two disambiguating

paraphrases, one for each competing parse tree. However, because these paraphrases

must pass through a verification phase, not all ambiguous sentences will have two

paraphrases. We call a paraphrase that corresponds only to one of the competing parse

trees of an ambiguous sentence a one sided paraphrase, and similarly we call paraphrases

that correspond to both competing parse trees a two sided paraphrase.

 Of the 5,063 ambiguous sentences processed by our system, 1,458 sentences have

Chart 1: The number of sentences which are ambiguous vs. unambiguous across two

corpora, including the same comparison for the subsets of unique sentences from the

same corpora.

34

no paraphrases generated for them (28.8% of the total ambiguous sentences), 2,399

sentences have one sided paraphrases (47.4% of the total ambiguous sentences), and

1,206 sentences (23.8% of the total ambiguous sentences) have two sided paraphrases.

Focusing for a moment on the paraphrases themselves, it is important to examine

the distribution of the available paraphrase generated by the strategies described in

section 3. A total of 1,399 two sided paraphrases were generated (649 Prehistoric

Reptiles, 750 Big 10 Conference Football) and 2,520 one sided paraphrases were

generated (1,262 Prehistoric Reptiles, 1,258 Big 10 Conference Football). Of the 1,399

two sided paraphrases: 657 are reversals, 260 are cleft rewrites, 135 are passive rewrites,

Chart 2: A breakdown of the number of sentences per corpus which have one sided

paraphrases, two sided paraphrases, or no paraphrases at all generated for them.

35

and 347 are coordination rewrites. Of the 2,520 one sided paraphrases: 2,184 are

reversals, 62 are cleft rewrites, 39 are passive rewrites, and 235 are coordination rewrites.

Chart 3: A depiction of the overall number paraphrases generated for each corpus

36

Chart 4: A distribution of the available paraphrases by paraphrase type for two sided

paraphrases

37

 Returning to the focus on sentences, we observed the following with regard to

reversal and rewrite paraphrases: 650 sentences (277 Prehistoric Reptiles, 124 Big 10

Conference Football) have a two sided reversal, 2,554 sentences (1,276 Prehistoric

Reptiles, 1278 Big 10 Conference Football) have a one sided reversal, and 1,852

sentences (905 Prehistoric Reptiles, 947 Big 10 Conference Football) have no reversals

at all.

Chart 5: A distribution of the available paraphrases by paraphrase type for one sided

paraphrases

38

Of those sentences which either had no reversal generated, or a one sided reversal

generated, 549 sentences (294 Prehistoric Reptiles, 255 Big 10 Conference Football) had

a two sided rewrite. Of the 1,852 sentences with no reversals generated, 243 sentences

(128 Prehistoric Reptiles, 115 Big 10 Conference Football) had a two sided rewrite

generated and 215 sentences (107 Prehistoric Reptiles, 108 Big 10 Conference Football)

had a one sided rewrite generated. Of the 2,554 sentences with one sided reversals

generated, 306 sentences (166 Prehistoric Reptiles, 140 Big 10 Conference Football) had

a two-sided rewrite generated.

Chart 6: The coverage of reversals for sentences in the corpora

39

Chart 7: Rewrite coverage increases for sentences with either no prior reversals

generated, or at most, one sided reversals generated

40

Chart 8: A distribution of the rewrite strategy types in the cases of Prehistoric Reptiles

sentences with at most a one sided reversal

41

Chart 9: A distribution of the rewrite strategy types in the cases of Big 10 Conference

Football sentences with at most a one sided reversal

42

6 Discussion and Suggestions for Future Work

 The data that we have gathered is encouraging for our system for a number of

reasons. The large number of sentences which were deemed to be unambiguous by our

system, as seen in Chart 1 from the previous section, is an indication that there were not

meaningful differences between the parses of these sentences and that, despite not being

trained on open domain data, the OpenCCG parser may perform well on these sentences

(or at least is reasonably confident about its incorrect parses, if it does not perform well).

It is also encouraging that a reasonably high percentage of the ambiguous

sentences have paraphrases generated for them, as seen in Chart 2 from the previous

section, though a huge majority of the paraphrases generated are one sided paraphrases.

This is not necessarily a bad result however, as it is possible to still use a one sided

paraphrase in a meaning similarity judgement task. Rather than presenting a user with

two paraphrases for an ambiguous sentence, a single paraphrase is presented and a user

may be prompted to decide whether or not this paraphrase has the same interpretation as

the original sentence. An affirmative choice in this case this may still present an

opportunity to learn the parse tree which generated that paraphrase in parser retraining.

So why are there so many one sided paraphrases? It is worth noting that because

our methods involve moving down an n-best list of realizations for paraphrases, the

paraphrases can become awkward and less fluent for a reader, human or otherwise. For a

parser, less fluency may mangle the interpretation which, in the verification phrase for

reversals, will cause the paraphrase to get filtered. It is also possible that many of the

paraphrases simply were not capable of breaking up the ambiguous span of the sentence

43

and so also fail the verification phase.

Another encouraging aspect of this data is the significant number of rewrites

which increased our coverage of paraphrases for ambiguous sentences.

Something to note, based on the information in Chart 8 and Chart 9, is the higher

frequency of coordination rewrites compared to the other rewrite strategies. This does not

necessarily suggest that the OpenCCG realizer is weak in terms of its ability to generate

disambiguating realizations in the presence of coordination ambiguities. Rather, this

simply shows that the realizer prefers fluency over verbosity, which is something that we

must force if an unambiguous paraphrase is to be generated. It is also somewhat

surprising that the cleft strategy tends to generate more paraphrases than the passivization

strategy, given that they are built to disambiguate the same type of ambiguity, PP

attachment. It would be worthwhile to explore other rewrite strategies that would further

increase our coverage paraphrases for ambiguous sentences

It is not yet clear what the intersection of the words appearing in the unambiguous

sentences and the words appearing in the Penn Treebank would be like, but this should be

investigated in later studies.

44

7 Conclusions

We have successfully built a system for generating disambiguating paraphrases

which we hope proves useful, as our initial study discussed in section 3 suggests, in

collecting large numbers of similarity judgement annotations through crowdsourcing. Our

system, while not able to find ambiguities for every sentence in open domain corpora, is

able to successfully generate a significant number of disambiguating paraphrases for the

ambiguities it does identify.

45

8 References

Mukund Jha, Jacob Andreas, Kapil Thadani, Sara Rosenthal, and Kathleen McKeown,

(2010). Corpus creation for new genres: A crowdsourced approach to pp attachment,

In: Workshop on Creating Speech and Text Language Data with Amazon's Mechanical

Turk at NAACL-HLT, Los Angeles, California

Mark Steedman, (2000). The Syntactic Process. The MIT Press, Cambridge, MA

Mark Steedman and Jason Baldridge, (2011). Combinatory Categorial Grammer, In:

Non‐Transformational Syntax: Formal and Explicit Models of Grammar, Robert Borsley

and Kersti Börjars, Wiley-Blackwell, pp. 181-224.

Julia Hockenmaier and Mark Steedman, (2007). CCGbank: a corpus of CCG derivations

and dependency structures extracted from the Penn Treebank, In: Computational

Linguistics, 33:3, pp. 355-396.

Stephen A. Boxwell and Michael White, (2008). Projecting Propbank Roles onto the

CCGbank, In: Proceedings of the Sixth International Conference on Language Resources

and Evaluation (LREC-08).

Martha Palmer, Dan Gildea, Paul Kingsbury, (2005). The Proposition Bank: An

Annotated Corpus of Semantic Roles, In: Computational Linguistics, 31:1, pp. 71-105.

Michael White, (2006). Efficient Realization of Coordinate Structures in Combinatory

Categorial Grammar, In: Research on Language and Computation, 4:1, pp. 39–75.

Michael White and Rajakrishnan Rajkumar, (2009). Perceptron Reranking for CCG

Realization, In: Proc. of the Conference on Empirical Methods in Natural Language

Processing (EMNLP 2009). Singapore. pp. 410-419.

Marie-Catherine de Marneffe and Christopher D. Manning, (2008). Stanford typed

dependencies manual, Technical report, Stanford University.

Manjuan Duan and Michael White, (2014). That’s Not What I Meant! Using Parsers to

Avoid Structural Ambiguities in Generated Text, In: Proceedings of the 52nd Annual

Meeting of the Association for Computational Linguistics. Baltimore, Maryland. pp. 413-

423

46

Appendix

47

Item A

Corpus Articles Downloaded

Prehistoric Reptiles 1965

Big 10 Conference Football 2804

Item B: Chart 1: The number of sentences which are ambiguous vs. unambiguous across

two corpora, including the same comparison for the subsets of unique sentences from the

same corpora.)

 Prehistoric

Reptiles

Unique

Prehistoric

Reptiles

Big 10

Conference

Football

Unique Big 10

Conference

Football

Ambiguous 2534 2458 3593 2605

Unambiguous 3991 3877 6979 5174

Item C: Chart 2: A breakdown of the number of sentences per corpus which have one

sided paraphrases, two sided paraphrases, or no paraphrases at all generated for them.

Paraphrases Prehistoric Reptiles: # of

Sentences

Big 10 Conference

Football: # of Sentences

One Sided 1191 1208

Two Sided 571 635

None 696 762

Item D: Chart 3: A depiction of the overall number paraphrases generated for each corpus

Paraphrases Prehistoric Reptiles: # of

Paraphrases

Big 10 Conference

Football: # of Paraphrases

One Sided 1262 1258

Two Sided 649 750

48

Item E: Chart 5: A distribution of the available paraphrases by paraphrase type for one

sided paraphrases

Paraphrase Type Prehistoric Reptiles: # of

One Sided

Big 10 Conference

Football: # of One Sided

Reversal 1084 1100

Cleft 35 27

Passive 21 18

Coordination 122 113

Item F: Chart 4: A distribution of the available paraphrases by paraphrase type for two

sided paraphrases

Paraphrase Type Prehistoric Reptiles: # of

Two Sided

Big 10 Conference

Football: # of Two Sided

Reversal 277 380

Cleft 92 168

Passive 57 78

Coordination 223 124

Item G: Chart 6: The coverage of reversals for sentences in the corpora

 Prehistoric Reptiles: # of

Sentences

Big 10 Conference

Football: # of Sentences

No Reversals 905 947

One Sided Reversals 1276 1278

Two Sided Reversals 277 380

49

Item H: Chart 7: Rewrite coverage increases for sentences with either no prior reversals

generated, or at most, one sided reversals generated

Coverage Increase Label Prehistoric Reptiles: # of

Sentences

Big 10 Conference

Football: # of Sentences

One Sided Increase, No

Prior Reversals

107 108

Two Sided Increase, No

Prior Reversals

128 115

Two Sided Increase, One

Sided Prior Reversals

166 140

Item I: Chart 8: A distribution of the rewrite strategy types in the cases of Prehistoric

Reptiles sentences with at most a one sided reversal

Rewrite Type Prehistoric Reptiles: # of Paraphrases

Cleft 74

Passive 43

Coordination 216

Item J: Chart 9: A distribution of the rewrite strategy types in the cases of Big 10

Conference Football sentences with at most a one sided reversal

Rewrite Type Big 10 Conference Football: # of

Paraphrases

Cleft 130

Passive 61

Coordination 118

