WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER

Project Completion Report No. 549X

Mathematical Model of Heavy Metal Transfer and Transport in Lake Erie

> Lester J. Walters, Jr. Associate Professor Department of Geology

and

David C. Drain Graduate Student Department of Mathematics Bowling Green State University

United States Department of the Interior

> Contract No. A-045-Ohio

State of Ohio Water Resources Center The Ohio State University

MATHEMATICAL MODEL OF HEAVY METAL TRANSFER AND TRANSPORT IN LAKE ERIE

by

Lester J. Walters, Jr. Associate Professor Department of Geology Bowling Green State University

and

David C. Drain Graduate Student Department of Mathematics Bowling Green State University

WATER RESOURCES CENTER Engineering Experiment Station THE OHIO STATE UNIVERSITY Columbus, Ohio 43210

August 10, 1979

This study was supported in part by the Office of Water Resources Technology, U.S. Department of Interior under project A-045-OHIO

ABSTRACT

Numerical integration of mathematical functions representing the concentration of mercury, chromium and nickel in Lake Erie sediments indicate that 3.3×10^5 kg Hg, 1.8×10^7 kg Cr, and 1.2×10^7 kg Ni have been added to the sediments through man's activities. Most of the mercury, chromium and nickel are contained in the sediments of western Lake Erie.

A mathematical model of sediment transport in Lake Erie shows that most of the heavy metals in western Lake Erie sediments probably originated from the Detroit metropolitan area and was input via the Detroit River. The sediment dispersal patterns are as follows: 1) the Detroit River sediment spreads southeastward over most of the western basin, 2) the Maumee River sediment is held within 15 miles of the Ohio shore, and 3) the Cuyahoga River sediment travels northeastward along the south shore of the lake.

Attempts to model the transfer and transport of mercury within the ecosystem resulted in partial success. Very little transfer results between the sediments and other phases within the system. In contrast the exchange of mercury between the benthic organisms and other trophic and abiotic levels is very rapid.

KEY WORDS

Heavy metals, mercury, chromium, nickel, Lake Erie sediments, sediment transport.

ii

PROJECT PERSONNEL

Name	Project	Position	Department
	Faculty	and Staff	
Lester J. Walters, Jr.	Principa	l Investigator	Geology
Cynthia Cherol	Laborato	ry Assistant	Geology
	Graduate	Students	
Dale Borowiak	Research	Assistant	Mathematics
David Drain	Research	Assistant	Mathematics
David Johnson	Research	Assistant	Geology
Andrea Levinson	Research	Assistant	Geology
Mary Marsh	Research	Assistant	Geology
Linus Nwankwo	Research	Assistant	Geology
Leo Schifferli	Research	Assistant	Geology
John Turmelle	Research	Assistant	Geology
Gordon Yahney	Research	Assistant	Geology
Unde	rgraduate	Students	
Mary Dahl	Research	Assistant	Geology
Linda Glass	Research	Assistant	Geology
Bruce May	Research	Assistant	Geology
Rolf Pestel	Research	Assistant	Geology
David Potter	Research	Assistant	Geology

TABLE OF CONTENTS

Page

ABSTRACT	ii
KEY WORDS	ii
PROJECT PERSONNEL	iii
INTRODUCTION	1
Purpose	3
MERCURY, CHROMIUM AND NICKEL IN LAKE ERIE SEDIMENTS	4
Sediment Samples	4
Methods of Chemical Analysis	7
Results and Discussion	7
Frequency Distribution Functions	8
Depth Variation of Mercury, Chromium and Nickel	11
Active Reservoir of Mercury, Chromium and Nickel	15
Total Reservoir of Mercury, Chromium and Nickel	18
Total Pollution Loading	20
Mass of Mercury, Chromium and Nickel in Lake Erie Sedim e nt	26
SEDIMENT TRANSPORT MODEL	29
Derivation of the Transport Model	29
Sedimentation and Suspended Sediment Concentration	36
Sediment Transport from Shore Erosion and River Sources	39
MODEL OF MERCURY TRANSFER AND TRANSPORT IN LAKE ERIE	49

TABLE OF CONTENTS (Cont.)

Page

APPENDICES

Appendix (1:	Station locations of sediment samples used in this study	65
Appendix 3	2:	Hg, Cr, and Ni concentrations in Lake Erie sediment samples	75
Appendix :	3:	Computer Programs in the mathematical models of sediment transport and mercury transfer and transport	97
		Program ACOMP	97
		Subroutine AMODEL	102
		Program ZBMD	105
		Subroutine PROB	108
		Program ZCON	114
		Subroutine XAT	118
		Subroutine TALFA	122
		Subroutine CHANGE	124
		Program TRANX	126
		Program HGMODL	129

LIST OF FIGURES

Figur	e	Page
1.	Sediment areas used for mercury model	2
2.	Sample locations map of sediment cores used for this study	6
3.	Mercury content in the active layer (top 4 cm) of the bottom sediment	17
4.	Total mercury content in the top 60 cm of Lake Erie bottom sediments	19
5.	Relation between background and pollution mercury	22
6.	Pollution mercury in Lake Erie sediments	23
7.	Pollution chromium in Lake Erie sediments	24
8.	Pollution nickel in Lake Erie sediments	25
9.	Total sediment accumulation in Lake Erie 1939-1970 (kg/m ² x 10 ⁶)	37
10.	Suspended sediment concentration in Lake Erie (kg/m ² x 10 ⁶)	38
11.	Sediment accumulation in Lake Erie 1939-1970 from the Detroit River (kg/m ² x 10 ⁶)	40
12.	Suspended sediment concentration derived from the Detroit River (kg/m ² x 10 ⁶)	41
13.	Sediment accumulation in Lake Erie 1939-1970 from the Maumee River (kg/m ² x 10 ⁶)	43
14.	Suspended sediment concentration in Lake Erie derived from the Maumee River (kg/m ² x 10 ⁶)	44
15.	Suspended sediment concentration in Lake Erie input by the Cuyahoga River (kg/m ² x 10 ⁶)	46
16.	Sediment accumulation in Lake Erie 1939-1970 from the Cuyahoga River (kg/m ² x 10 ⁶)	47
17.	Sediment accumulation in Lake Erie 1939-1970 from shore erosion (kg/m ² x 10 ⁶)	48
18.	Flow diagram of mercury in Lake Erie sediments, water, and biota	51

LIST OF TABLES

<u>Table</u>		Page
1.	Sampling cruises	5
2.	Parameters for unimodal log-normal distribution functions from mercury, chromium and nickel	10
3.	Sediment enrichment factors	12
4.	Mercury, chromium, and nickel loadings in Lake Erie	28
5.	Average wind velocities and directions over Lake Erie	32
6.	Average sedimentation rates for the 34 sediment areas in Lake Erie	35
7.	Longshore sediment transport	50

INTRODUCTION

The major sources of mercury pollution in western Lake Erie and Lake St. Clair have been the chloralkali facilities at Wyandotte, Michigan and Sarnia, Ontario (Federal Water Quality Administration, 1970; Ontario Water Resources Commission, 1970). Mercury-rich sediments from Lake St. Clair are now being transported down the Detroit River into western Lake Erie (L. J. Walters, unpublished data; R. L. Thomas, personal communication, 1975). Thus, the Detroit River should act as a major source of mercury input into Lake Erie for many years. Small amounts of mercury are also being input from Maumee River and Bay (Walters <u>et al</u>., 1974a), Sandusky River and Bay (Walters et al., 1974b).

The fate of the 228 tons of mercury in western Lake Erie sediments reported by Walters <u>et al</u>. (1974a) was approximated by a set of simultaneous differential equations that described the movement of mercury in a multi-level and multi-area reservoir. The mercury reservoir in Lake Erie consists of 5 levels: water, fish, bottom fauna, active sediment and inactive sediment. The water, fish, and bottom fauna was divided into 3 areas corresponding to the western, central, and eastern basins. We assumed that each of these basins were well mixed with respect to water and fish. The active sediment levels were divided into 34 areas (Figure 1) ranging in size from 100 km² to 2000 km². The benthic organisms were assumed to be uniformly distributed in these 34 areas. The smaller sized areas are

- 1 -

Figure 1. Sediment areas used for mercury model.

located along the western shore of Lake Erie while the larger areas are used for the central and eastern basins where sample control was more sparse.

PURPOSE

The objective of this project was to develop a mathematical model of mercury transfer between sediment, water, and biota and transport from western Lake Erie to the central and eastern basins and out of the Lake Erie system. This model based on the interactions between mercury in sediment, water, and biota, was needed to predict the fate of the large mercury reservoir in western Lake Erie sediments, and can be used to evaluate the effect of proposals for inactivating the mercury or dredging polluted sediments.

The research plan divided this objective into three parts. First, a model of theloading of mercury, chromium, and nickel in Lake Erie sediments was developed. This model provided an accurate estimate of the reservoir of mercury, chromium and nickel. Secondly, a model of sediment transport in Lake Erie was developed. Sediment transport was modeled as a stochastic process, which is dependent on wind direction and intensity, and water currents. Water currents were calculated using the model of Gedney and Lick (1972) as described in Durham and Butler (1976). Finally, a mathematical model of mercury transfer was developed based on the work of Jernelov and Asell (1975).

- 3 -

MERCURY, CHROMIUM AND NICKEL

IN LAKE ERIE SEDIMENTS

Sediment Samples

The main data base for our heavy metal transfer model consists of sediment cores that have been analyzed for mercury, chromium and nickel. Table 1 shows the source, time of collection and general location of these sediment cores. The latitude and longitude coordinates of these cores are listed in Appendix 1. Mercury, chromium, and nickel have been measured in 3761 depth intervals from 345 sediment cores from the St. Clair River, Lake St. Clair, Detroit River, Maumee River and Bay, Sandusky Bay, and Lake Erie. These cores represent 316 different sampling locations, because some stations were occupied at more than one time. Figure 2 shows the locations of the sediment cores from Lake Erie which were used for this study. The highest density of samples was along the west shore of western Lake Erie.

Sediment cores from cruises 1, 4, A, and D (Table 1) were collected using a hand-driven coring device with a 3.81 cm (1.5 in) plastic (cellulose-acetate-butyrate) liner as described by Walters <u>et al</u>. (1972). A gravity coring device with 5.08 cm (2 in) plastic (cellulose-acetate-butyrate) liner was used to collect the cores from cruises 2, 3, 7, B, and C (Table 1). These cores were kept refrigerated or frozen prior to sectioning into 2 cm intervals 0-16 cm, 4 cm intervals 16-40 cm and 10 cm intervals 40 cm to total depth. The individual sample intervals were kept frozen until chemical analysis.

- 4 -

TABLE 1

SAMPLING CRUISES

	Cruise		Stations Cored								
Cruise	Location &	Location & St. Clair		Detroit	Maumee oit River	Sandusky	Lake Erie		Total Stations	Sample Intervals	
Number	Date	River	St. Clair	River	& Bay	Вау	Western Basin	Central Basin	Eastern Basin		Analyzed
1	1971 RV GS-1 July 20-31, 1971			4	1	1	44	13		69	401
2	1972 RV INLAND SEAS Sept. 6-13, 1972						12	14	7	37	644
3	1972 RV GS-1 Sept. 29-30, 1972					35				37	338
4	1972 RV GS-1 October 8-14, 1972			13	13		54			86	860
7	1973 RV MAPLE October 8-14, 1973						13	38		74	800
A	1976 RV SEA RAY June 11-14, 1976	6	9	3						8	26
в	1976 RV DAMBACH July 12-17, 1976								20	26	246
с	1976 RV HYDRA Aug. 21 - Sept. 14, 1976						7	28		53	394
D	1976 RV SANDBAGGER November 14, 1976		_	4				<u>—</u> 93		4	52
		6	9	24	14	06	130	23	<i>L</i> 1	577	5701

Figure 2. Sample locations map of sediment cores used for this study.

Methods of Chemical Analysis

Determination of mercury in the sediment samples was done using the cold-vapor FAAS method of Hatch and Ott (1968) as modified by Kovacik (1972) and Iskander <u>et al</u>. (1972). Two one-gram portions of the homogenized wet sediment were taken, one for water determination and nickel-chromium analyses, the other for mercury analysis.

The dried sediment samples used in the water determinations were extracted (Wolery, 1973; Walters et al., 1974b) to remove all of the chromium, nickel and other metals except that bound in silicates and anhydrous oxides, using a procedure based in part on that of Presley et al. (1972). The sediments were contacted successively with H_20_2 , HCl, and $NH_2OH \cdot HCl.$ The solutions were analyzed for chromium and nickel as described by Walters et al. (1974b) by atomic absorption spectrophotometry. A Perkin-Elmer model 303 spectrophotometer was used with the instrument settings and conditions of Perkin-Elmer (1964) for all analyses of mercury, chromium and nickel prior to October, 1976. At that time a Perkin-Elmer model 603 atomic absorption spectrophotometer was obtained and the settings and conditions of Perkin-Elmer (1976) were utilized.

Results and Discussion

The results of the heavy metal analyses have been reported in part by Walters <u>et al</u>. (1972), Kovacik and Walters (1974), Walters <u>et al</u>. (1974a), Walters <u>et al</u>. (1974b), Walters and Wolery (1974) and Walters and Herdendorf (1975).

- 7 -

A complete tabulation of our results is contained in Appendix 2. These results of heavy metal analyses are similar to those obtained in some previous studies (Kennedy <u>et al.</u>, 1971; Shimp <u>et al.</u>, 1971; Kovacik, 1972; Wolery, 1973; and Allan, 1974). All metals showed some enrichment in the uppermost section of the sediment column with fairly constant and lower background levels underlying the enriched section (Walters et al., 1974b).

Walters <u>et al</u>. (1974a) defined the term background as the metal concentration in sediments which is supported by natural processes of weathering of the source rock, transportation of the weathering products, and deposition as lake sediments. Walters <u>et al</u>. (1974a) reported that most sediment cores in western Lake Erie show background concentration levels of metals at depth and higher concentrations which are due to anthropogenic loading (Kemp <u>et al</u>., 1976) near the surface.

Frequency Distribution Functions

The analytical results for mercury, chromium and nickel (Appendix 2) can be modeled by log-normal frequency distribution functions. These distribution functions are described by the following equation

$$f(x) = [(2\pi\sigma^2)^{-\frac{1}{2}} \exp\{(x-\mu)^2/2\sigma^2\}]$$
(1)
where x = the logarithm to the base 10 of the analytical
concentration of mercury, chromium or nickel
on a dry weight basis
$$\mu = \text{the mean of all log } 10 \text{ values}$$
$$\sigma = \text{the standard deviation of all values}$$

Walters et al. (1974a) proposed that mercury concentrations less than 0.0675 ppm, which were usually encountered in the deeper sections of the sediment cores from the western basin of Lake Erie, represented the background component which originates from natural sources. Therefore all values of mercury, chromium and nickel corresponding to intervals within this deeper background portion of the cores were modeled with a unimodal lognormal distribution function (Equation 1) to determine the nature of the background component. These results are shown in Table 2. The background means for each element were very nearly equal among the 4 areas. Therefore a Student-t test was performed for the mercury, chromium and nickel means. No significant difference (P<.01) was found between the central and eastern basin for mercury and the western and central basin with respect to nickel. The background values of mercury were slightly greater in Sandusky Bay and the western basin than central and eastern Lake Erie. The higher values observed in Sandusky Bay and western Lake Erie may be due to the combination of high rates of bioturbation of the bottom sediments in these areas by an abundance of benthic organisms (Skoch and Sikes, 1973; Herdendorf and Lindsey, 1975; and Pliodzinskos, personal communication, 1977), and input of sediment moderately to highly polluted with mercury. Upon taking the antilog of the background means we obtain 0.0298 ppm Hg, 15.77 ppm Cr, and 29.72 ppm Ni for the average background levels.

The sediment intervals above the background zone are enriched in mercury, chromium and nickel compared to the

- 9 -

Table 2	
---------	--

Parameters for unimodal log-normal distribution functions for mercury, chromium and nickel

Aros	Mercury		Chroi	nium	Nic	Nickel	
Area	μ	σ	μ	σ	μ	σ	
	log ₁₀						
		Bac	kground Zo	one			
Eastern Basin	-1.6390	.3309	1.2598	.1643	1.5188	.1664	
Central Basin	-1.6057	.2472	1.2007	.2305	1.4607	.2616	
Western Basin	-1.4027	.2732	1.1614	.1901	1.4663	.2635	
Sandusky Bay	-1.3202	.1547	1.2325	.1639	1.5037	.1451	
Total	-1.5252	.2858	1.1978	.2084	1.4731	.2460	
		Surfac	e Enriched	d Zone			
Eastern Basin	-1.0240	.4034	1.4844	.1560	1.6614	.1265	
Central Basin	-0.8499	3744	1.4679	.2452	1.6274	.2402	

Central Basin	-0.8499	.3/44	1.46/9	.2452	1.62/4	.2402
Western Basin	-0.3471	.4911	1.6233	.3779	1.6545	.2819
Sandusky Bay	-0.7041	.2575	1.3412	.1146	1.5755	.1111
Total	-0.5394	.5049	1.5479	.3351	1.6399	.2517

background levels. The means of mercury, chromium, and nickel in the surface enriched zone are given in Table 2. No significant difference (P>.01) was observed between the means of chromium and nickel for central and eastern basins. The greatest levels of enrichment for mercury and chromium were observed for the western basin cores. Sediment enrichment factors (Table 3) defined as surface mean/background mean were all significantly greater than 1.0 at the 0.01 level. The enrichment factors ranged from 4.1 to 11.4 for mercury, 1.3 to 2.9 for chromium, and 1.2 to 1.5 for nickel. The order of sediment enrichment factors observed in all areas was Hg>Cr>Ni. This order is the same, but the values were lower than those reported by Walters et al. (1974b) (Hq=47, Cr=6.9, and Ni=3.5) for sediment enrichment factors which were calculated as the ratio of maximum metal concentration to the background metal concentration. The values reported in Table 2 are not the maximum metal concentrations, but rather the average metal concentration in the surface enriched zone. Therefore they should be much nearer to 1.0 as shown in Table 3.

Depth Variation of Mercury, Chromium and Nickel

Since our objective is to model the movements of masses of heavy metals and not concentrations, the depth variation of these metals will be discussed in terms of mass of metal/unit area and not concentration. Walters <u>et al</u>. (1974a) proposed that the mercury concentration as a function of depth was of the form of a decreasing exponential term plus a constant,

- 11 -

Table 3

Sediment Enrichment Factors

Area	Mercury	Chromium	Nickel		
Eastern Basin	4.1	1.7	1.4		
Central Basin	5.7	1.9	1.5		
Western Basin	11.4	2.9	1.5		
Sandusky Bay	4.1	1.3	1.2		
Total	9.7	2.2	1.5		

which represented the contribution from the input of nonpolluted sediments. This was modified by the sediment porosity (also an exponential term plus constant) and integrated to give the pollution component in μ gHg/cm². Since there is some debate on the appropriateness of this psuedo-exponential model (Walters <u>et al</u>. 1974b), the variation of heavy metal content with depth will be modeled as a power series.

Given the concentration of metal on a dry weight basis and the water content, the depth variation is calculated as follows. The porosity of a sediment core interval is determined according to the equation of Berner (1971).

$$\phi(I) = W(I)\rho s / (\rho s + (1 - W(I))\rho w)$$
(2)

where $\phi(I)$ = sediment porosity of interval I

- ps = average density of sediment particles (assumed to be 2.6)

The mass of mercury, chromium, or nickel in the sediment core interval I was calculated according to

$$MX(I) = \int_{ZT}^{ZB} \overline{CX}(I) (1-\phi(I)) dZ$$
(3)

where MX = the mass of Hg, Cr, or Ni in interval I

- 13 -

Z = the depth in the sediment core below the sedimentwater interface

ZT = the top of the interval

ZB = the bottom of the interval

All of the variables on the right side of Equation 3 are determined by analysis. However since the sediment intervals range from 2 to 10 cm in length and were homogenized before analysis, the coefficients for a power series that will represent the observed data cannot be determined in the normal fashion. The integrated form of a function CX(Z) which is a power series can be calculated for each sediment core using standard least squares methods. If the unknown function has the form

$$CX(Z) = A_1 + A_2 Z + A_3 Z^2 + A_4 Z^3 + A_5 Z^4 + A_6 Z^5$$
(4)

Where CX(Z) = the metal concentration in µg metal/cm³ as a function of depth.

Although $\overline{CX}(I)$ is determined by analysis, the values of Z are indeterminate because of the nature of the sample. However upon integrating Equation 4 for each core we find that

$$MX(I) = \int_{ZT}^{ZB} CX(Z) dZ$$
(5)

or

$$MX(I) = A_{1}(ZB-ZT) + A_{2}(ZB^{2}-ZT^{2})/2 + A_{3}(ZB^{3}-ZT^{3})/3 + A_{4}(ZB^{4}-ZT^{4})/4 + A_{5}(ZB^{5}-ZT^{5})/5 + A_{6}(ZB^{6}-ZT^{6})/6$$
(6)

where ZT = the top of the sediment interval

ZB = the bottom of the sediment interval

- 14 -

The mass of metal in the sediment interval I is calculated from Equation 3. Thus our problem is reduced to one of multiple linear regression of MX(I) on the new variables (ZB-ZT) to $(ZB^{6}-ZT^{6})/6$. The linear regression was performed using the Biomed program BMD02R (Dixon, 1970).

Active Reservoir of Mercury, Chromium and Nickel

Jernelov (1970), Jernelov and Asell (1973), and Wolery and Walters (1974) have proposed that mercury in sediments 3-5 cm below the sediment-water interface is inactive and not normally transferred to the water and biota above. The results of Bongers and Khattak (1972), Jernelov (1970) and Wolery and Walters (1974) lead to the conclusion that the top 4 cm of the sediment column in Lake Erie can be considered active. Therefore instead of reporting surface metal concentration, the total loading of mercury, chromium and nickel in this active layer should be determined.

The loading of metal in the active layer is calculated by integrating Equation 4 between the limits of 0 and 4 cm. The coefficients A_1 to A_6 for Equation 4 were calculated in Equation 6. Therefore the loading in the active metal reservoir is given by

Mass Active X =
$$\int_{0}^{4} CX(Z) dZ$$
 (7)

or

Mass Active X =
$$4 A_1 + 8 A_2 + 21.33 A_3 + 64 A_4$$

+ 204.80 $A_5 + 682.66 A_6$ (8)

- 15 -

Figure 3 shows the results of our analyses of mercury for Lake Erie surface (active layer) sediments. This picture of heavy metal loading has been developed over the last seven years. Starting with the work of Kovacik (1972), which was reported in Walters et al. (1972), Walters et al. (1974a) and Walters and Herdendorf (1973); continuing with that of Wolery (1973) reported in Walters and Wolery (1974); and Walters and Herdendorf (1975a, 1975b), Walters (1977), and Przywara et al. (1977), we have developed a picture of mercury distribution in western Lake Erie surface sediments which consists of 1) a high concentration south of the mouth of the Detroit River, 2) a lobe of sediment with elevated levels extending from south of the Detroit River mouth toward the Bass Islands, and 3) elevated levels in Pigeon Bay sediments. Figure 3 is consistent with this picture as well as that reported by Thomas and Jaquet (1975). The loading of chromium and nickel in the active sediment layer follow the general pattern of mercury. The differences between our current data and that reported in Wolery (1973), Walters and Wolery (1974), and Walters et al. (1974b) reflect the great increase in data now available (Table 1). The data of McGuire and Walters (1978) on Maumee Bay is included in our current picture.

The areal distribution of mercury, and chromium and nickel (not shown in figures) clearly show increasing gradients back to the following source areas: 1) the Detroit River, 2) the Cleveland area, and 3) the Buffalo area. Fifteen miles south of the mouth of the Detroit River the

- 16 -

Figure 3. Mercury content in the active layer (top 4 cm) of the bottom sediment.

metal distribution patterns trifurcate into three distinct lobes: 1) a minor eastward lobe which follows a narrow path until it spreads out in Pigeon Bay north of Pelee Island; 2) a southern lobe toward the Bass Islands which fans out in the south-central part of the western basin; and 3) a southwest lobe which diminishes as it approaches Toledo. The better control now available for the central basin reveals that these metals are being transported out of the western basin and into the central basin. This same general pattern was shown for mercury by Thomas and Jaquet (1975). Cleveland and Buffalo are major sources of chromium and nickel in the central and eastern basins. Walters et al. (1974b) reported that both the Cleveland and Buffalo harbors had elevated levels of heavy metals. A plume of metal enriched sediments extending from Cleveland toward the western basin is shown in Figure 3. The metals in the Buffalo harbor sediments are dispersed to the west in the central basin and to the northeast through the Niagara River to be deposited in a plume in Lake Ontario around the river's mouth. These dispersal patterns around Cleveland and Buffalo follow the clockwise rotating bottom currents reported by FWPCA (1968).

Total Reservoir of Mercury, Chromium, and Nickel

The loading of mercury, chromium, and nickel in Lake Erie sediments was calculated by integrating Equation 4 for each sediment core between the limits of 0 and 60 cm or the total length of the core if it was less than 60 cm. Figure 4 shows the distribution of total mercury in Lake Erie

- 18 -

Figure 4. Total mercury content in the top 60 cm of Lake Erie bottom sediment.

sediments. The major deposition centers for mercury, chromium, and nickel are 1) south of the mouth of the Detroit River, and 2) west, north, and east of Cleveland. The eastern basin of Lake Erie is not a major deposition center for metals because very little metal is input along the Canadian shore of central Lake Erie. Kemp et al. (1977) have established that the greatest site of sediment deposition is in the eastern basin due to longshore drift of sediment derived from erosion of the till bluffs on the north shore. Kemp et al. (1976) found that these bluffs contain very low levels of mercury (.045 ppm). Some polluted sediment from the central basin is carried to the eastern basin by bottom currents (FWPCA, 1968), but this still is secondary to the metals deposited in the western and central basins (Fig. 4).

Total Pollution Loading

The estimation of total pollution loading of a metal is similar to the calculation performed in Equation 8 except that the mass of metal X must be corrected for that due to the natural loading of metal in the sediments, which is determined by the nature of the material in the source areas. In Table 2 we established that the average levels of metal in Lake Erie sediments as 0.0298 ppm Hg, 15.77 ppm Cr, and 29.72 ppm Ni (dry weight basis). In order to make an estimate of background level biased toward conservatism, we considered levels below 0.0717 ppm Hg, 25.84 ppm Cr, and 54.67 ppm Ni to be of a background nature from natural causes.

- 20 -

These levels were established after about one-half of the analytical work was complete. They are approximately equal to the background mean plus one standard deviation, which according to the complete results of Table 2, are 0.0576 ppm Hg, 25.48 ppm Cr, and 52.37 ppm Ni.

Equations 3 to 6 were used to calculate the coefficients (B_1-B_6) of the functions CBX(Z) predicting the background levels with depth. These functions are not constant with changing depth because of variations in water content of the sediments with increasing depth of burial. Figure 5 shows the relation between the observed data, CX(Z), CBX(Z) and the pollution load.

Equations 3 to 6 were used to calculate the coefficients of the concentration CX(Z) functions (A_1-A_6) . The total pollution load was calculated by summing all positive differences between total concentration CX(Z) and background CBX(Z) as follows

Pollution Load =
$$\sum_{z} [(A_1 z + A_2 z^2/2 + A_3 z^3/3 + A_4 z^4/4 + A_5 z^5/5 + A_6 z^6/6) - (B_1 z + B_2 z^2/2 + B_3 z^3/3 + B_4 z^4/4 + B_5 z^5/5 + B_6 z^6/6)]$$

for 0 < z < 60 cm

and CX(Z) > CBX(Z) (9)

Figures 6, 7, and 8 show the distribution of mercury, chromium and nickel calculated by equation 9 which have been added to Lake Erie sediments by man's activities.

- 21 -

Figure 5. Relation between background and pollution mercury. Chromium and nickel pollution were calculated in a similar fashion.

Figure 6. Pollution mercury in Lake Erie sediments.

Figure 7. Pollution chromium in Lake Erie sediments.

Figure 8. Pollution nickel in Lake Erie sediments.

The general patterns of these distributions are similar to those in Figure 3. However the mass of metal in the polluted area south of the Detroit River mouth is much greater. Figure 6 is similar to the pollution loading map reported by Walters <u>et al</u>. (1974a) for the western basin. The differences represent the added control of data since the 1971 RV GS-1 cruise. Very low levels of metal pollution were observed in the central and eastern basins, especially for nickel (fig. 8). In many cases, the pollution nickel loading of sediment cores in the eastern basin was 0.0. This was because of the conservatively biased estimate of background nickel that was used.

Mass of Mercury, Chromium, and Nickel in Lake Erie Sediments

In order to calculate the size of the active, pollution or total metal reservoirs for mercury, chromium or nickel in Lake Erie, one must either graphically integrate the maps such as Figures 3, 4, 6, 7, and 8 or integrate mathematical functions which approximate these surfaces. The latter technique was used in this study. The latitude and longitude coordinates for each of the sediment cores (Appendix 1) were converted to meters north and east of an arbitrary zero point. Then the values for active, pollution, and total metal were grided using program 6.1 of Davies (1973). These grided values, including zero values for the shoreline were sorted into 34 overlaping areas. The grid values in each overlaping area were used to calculate 34 functions W(X,Y) in μ g metal/cm² for each active, pollution, and total mercury,

- 26 -

chromium and nickel using program 6.3 of Davies (1973). These 306 functions were of the form

$$W(X,Y) = A_1 + A_2X + A_3Y + \dots + A_nY'$$

for
$$n = 1, 2, \dots 36$$
 (10)

which is a general 7th order equation in the space directions X and Y. The loadings of mercury, chromium, and nickel in Table 4 were calculated by integrating each of these 306 functions over the 34 contiguous areas as appropriate until the whole lake had been covered.

We estimate that 230 metric tons of mercury have been input to western Lake Erie by man's activities. This value is remarkably close to the 228 metric tons reported by Walters <u>et al</u>. (1974a) and was calculated independently and using a different procedure than they used. Comparison of the metal loadings in each of the basins should include the respective areas of the three basins. The western basin of Lake Erie contains 70% of the pollution mercury, 56% of the pollution chromium and 53% of the pollution nickel unevenly spread over 13% of the bottom surface. Major amounts of total chromium and nickel are found in the central and eastern basin, but due to the greater areas of these basins, the concentration levels are much lower and the pollution is more diffuse.

Table 4

Mercury, Chromium and Nickel Loadings in Lake Erie

Metal Reservoir	Western Basin 10 ³ Kg	Central Basin 10 ³ Kg	Eastern Basin 10 ³ Kg	Total 10 ³ Kg	
Nativo Ug	60	52		120	
Active Hy	220	JZ 75	2.2	230	
Pollution Hg	230	75	22	330	
Total Hg	300	230	73	600	
Active Cr	5100	8800	3600	18000	
Pollution Cr	10000	5200	2500	18000	
Total Cr	33000	93000	25000	150000	
Active Ni	5300	12000	5400	22000	
Pollution Ni	6400	4800	780	12000	
Total Ni	55000	160000	46000	260000	
Surface (area km ²)	3280	16250	6220	25750	
SEDIMENT TRANSPORT MODEL

Derivation of the Transport Model

Sediment transport accounts for a substantial portion of mercury transfer in Lake Erie, so it was necessary to find the rates of transfer between the thirty-four sediment regions (fig. 1) in the mercury model. A stochastic model for time averaged sediment transport was devised to determine these rates. We present below a description of the sediment transport model and the programs used to implement it.

The lake was divided into 2529 regions based on the two-mile grid of Durham and Butler (1976). For each region i, transition from model step k to k+l is defined by the following three substeps:

1. Compute a new suspended sediment load for region i including sediment transported to region i during this time step and the sediment remaining suspended in region i:

 $A_{i}(k+1) = \sum_{j=j}^{n} j_{i} S_{j}(k) R_{j}.$

2. Compute fallen sediment in region i at the end of time step k+1: B_i(k+1)= B_i(k)+S_i(k)(1-R_i).

3. Compute the new suspended sediment in region i:
S_i (k+1)=A_i (k+1)+N_i.

The symbols in the above equations are to be interpreted as follows:

To substantiate the validity of the sediment transport model, we here offer a proof that it conserves mass. Without loss of generality we may assume that $N_i=0$ and $B_i(n)=0$ for i=1 to 2529. We show that the total mass in the model remains constant.

Total mass in the model at the end of step n+1 = $\sum_{i} (S_{i}(n+1)+B_{i}(n+1)) =$ $\sum_{i} (\sum_{j}P_{ji}A_{j}(n+1) + B_{i}(n+1)) =$ $\sum_{i} \sum_{j} P_{ji}S_{j}(n)R_{j} + \sum_{i} S_{i}(n)(1-R_{i}) =$ $\sum_{j} S_{j}(n)R_{j}\sum_{i}P_{ji} + \sum_{i} S_{i}(n)(1-R_{i}) =$ $\sum_{j} (S_{j}(n)R_{j} + S_{j}(n)(1-R_{j})) =$

- 30 -

 $\sum_{j} S_{j}(n) = \text{total mass in the model after step n.}$

Subroutine AMODEL implements the sediment transport model. A listing of AMODEL and its calling program ACOMP is given in Appendix 3.

The initial conditions necessary to start the sediment transport model are the probabilities of water transfer (P_{ji}) , the fraction of suspended sediment remaining suspended after any time step (R_i) , the suspended sediment input from outside the model (N_i) , and the initial suspended sediment distribution. We assumed the initial suspended sediment was identically zero, and proceeded to find P_{ij} , N_i , and R_i as outlined below.

To find an initial approximation for R_i for a region i, we calculated the total suspended sediment in region i from turbidity data of the FWPCA (1968) and the amount of sediment falling during a model time unit. The latter was determined from observed time averaged sedimentation rates. Dividing the fallen sediment by the total suspended sediment yields $1-R_i$. R_i was usually in the range of 10^{-4} to 10^{-2} . Note that this R_i accounts for both sedimentation and resuspension because it is based on time-averaged sediment accumulation.

P_{ij} depends on the horizontal velocities of water in region i, and these velocities in turn depend on the wind speed and direction. Dale Borowiak (personal communication) found that the wind velocity and direction over Lake Erie throughout could be represented by five significantly different velocities and directions as shown in Table 5.

- 31 -

Table 5

Average Wind Velocities and Directions over Lake Erie

Time Period	Direction*	Velocity miles/hour
February	13.75	5.147
March	13.75	3.460
April-September	38.75	2.484
October	38.75	5.147
November-January	38.75	6.123

*in degrees measured counterclockwise from the negative
 x-axis (west).

Programs written by Y. P. Sheng of Case Western Reserve University, and the Water Experiment Station of the Army Corps of Engineers (Durham and Butler, 1976) were used to find the horizontal water velocities produced by the above wind conditions at depth of 0, 5, 10, 20, 40, and 60 feet at each grid point in the lake. Since the lake is ice covered during part of the year it was necessary to modify some of the velocities calculated by these programs by substituting the river-only velocities in the regions covered by ice. For this purpose, an ice cover model was derived from the maps of Rondy (1969). This model tells approximately which of the sediment regions used in the mercury model are covered by ice during a given month. Ice cover was assumed for regions 1-14 during January, regions 1-29 during February and regions 30-34 during March.

The velocities altered by ice cover were stored on tape and used to compute P_{ij} by first linearly interpolating the velocities over depth, and then integrating these velocities over depth for a model time unit. The subprogram PROB was used to do this integration, and is included with its calling program ZBMD in Appendix 3. Since six different wind directions were used to simulate a typical year, six sets of P_{ij} were computed.

Sediment input from outside the lake (N_i) was estimated from the sediment budget of Kemp <u>et al</u>. (1977) and Carter (1977). Sediment input to the model was assumed to be uniform with respect to time. We ran the sediment transport model for 3000 iterations (for each of the six wind conditions) which, at 2.5 hours per iteration, is about 312 days. At the

- 33 -

end of this time, the total difference in suspended sediment between 60 iterations was less than 0.0006 percent. Correlation coefficients between sedimentation rates predicted by the model and average observed rates (Table 6) calculated by the method of Wolery and Walters (1974) or reported by Kemp et al. (1977) were 0.472 for the entire lake, 0.475 for the Western Basin, and 0.427 for the Central Basin. Maps of suspended sediment indicated that the model had not yet arrived at a realistic suspended sediment distribution. Because of this, we used the program ZCON, which altered both the suspended sediment distribution and the R_i , to obtain a better suspended sediment distribution; a listing of ZCON is included in Appendix 3. After this adjustment, correlations between observed and predicted sedimentation rates were 0.751 for the entire lake, 0.645 for the Western Basin; and 0.960 for the Central Basin. Seven sediment areas showed significant differences between the observed sedimentation rate and the calculated sedimentation rate (Table 6). The calculated sedimentation rates for areas 6, 7, 11, 12, and 13 in the Western Basin were up to an order of magnitude low. This suggests that greater sedimentation is occurring in this region because either the bottom currents at the sediment water interface are not as high as predicted or more likely, a significant bed load is being transported by the bottom currents and is deposited in this region. This bed load or traction load is not necessarily being transported in the same direction as the suspended load upon which the model calculations are based. Calculations of the

- 34 -

Table 6

Average sedimentation rates for the 34 sediment areas in Lake Erie

	Western Basin		Central Basin				Eastern Basin	
Area	Observed g/cm ² /yr	Calculated g/cm ² /yr	Area	Observed g/cm ² /yr	Calculated g/cm ² /yr	Area	Observed g/cm ² /yr	Calculated g/cm ² /yr
1	0.945	0.952	22	0.756	0.835	34	0.289	0.289
2	0.457	0.439	23	0.245	0.453			
3	0.573	0.570	24	0.164	0.174			
4	0.756	0.749	25	0.074	0.072			
5	0.150	0.150	26	0.287	0.268			
6	0.543	0.271	27	0.139	0.130			
7	0.404	0.060	28	0.087	0.177			
8	0.625	0.621	29	0.051	0.061			
9	0.923	0.943	30	0.023	0.022			
10	0.527	0.525	31	0.179	0.183			
11	0.773	0.094	32	0.235	0.240			
12	0.666	0.048	33	0.151	0.163			
13	0.390	0.044						
14	0.349	0.350						
15	0.549	0.552						
16	0.430	0.427						
17	0.393	0.391						
18	0.522	0.520						
19	0.407	0.407						
20	0.464	0.463						
21	0.075	0.076						

sedimentation rates in areas 23 and 28 (Table 6) are high by about a factor of 2. These areas are both in the center of the basin and are isolated from the shore by other sediment areas. Thus these two differences may suggest that too much sediment transport from the shore to the center of the Central Basin is being predicted. We used the resulting suspended sediment distribution and water transfer probabilities to determine the time-averaged transfer rate of sediment from any of the mercury model regions to those adjacent to it. Program TRANX performed this calculation; a listing of TRANX is included in Appendix 3.

Sedimentation and Suspended Sediment Concentration

Two areas of high sediment accumulation were observed in Lake Erie. Figure 9 shows that very high sedimentation occurs along the west shore of Lake Erie (areas 1, 2, 3, 8, 9, and 10). This sediment is derived from both the Detroit River and the Maumee River. In addition high sedimentation occurs along the south shore of Lake Erie and in the Eastern Basin (areas 22, 26, 27, 31, 32, and 34). Most of this sediment is derived from shore erosion. The material eroded along the Canadian shore is transported to the Eastern Basin to be deposited off Long Point. The material eroded along the United States shore tends to be swept further off shore and deposited near the point of erosion as well as being transported in a general north-easterly direction to be deposited in the Eastern Basin.

Figure 10 shows the suspended sediment concentration calculated by our model. The general levels of suspended

- 36 -

Figure 9. Total sediment accumulation in Lake Erie 1939-1970 (kg/m 2 x 10 6).

Figure 10. Suspended sediment concentration in Lake Erie (kg/m² x 10^6).

I.

sediment are similar to those reported by FWPCA (1968) for western and central Lake Erie. The concentration contours also correlate well with the numerous Landstat photos that are available. Przywara (1977, p.152) noted a correlation between the observed sedimentation and the suspended sediment distribution shown in the Satellite photos of western Lake Erie.

Sediment Transport from Shore Erosion and River Sources

After establishing a reasonable estimate of the fallout ratio R_i for the sediment transport model (AMODEL), the input conditions were altered to isolate each sediment source that makes a significant input to Lake Erie. This isolation was possible because the sediment input is separate from the water input to the hydrodynamic model of Durham and Butler (1976). All water inputs were maintained at their normal levels. The sediment inputs were set to zero except for the source under investigation. Thus we have used AMODEL to calculate the sedimentation and suspended sediment transport from the Detroit, Maumee, and Cuyahoga Rivers and due to shore In addition the model was used to measure the erosion. velocity of sediment transport from three point sources of shore erosion.

Figures 11 and 12 show the total sediment accumulation (1939-1970) due to input from the Detroit River and the suspended sediment derived from that source. Most of the sedimentation (fig. 11) and suspended sediment (fig. 12) is concentrated about the mouth of the Detroit River. However,

- 39 -

Figure 11. Sediment accumulation in Lake Erie 1939-1970 from the Detroit River $(kg/m^2 \times 10^6)$.

Figure 12. Suspended sediment concentration derived from the Detroit River $(kg/m^2 \times 10^6)$.

- 41 -

two important features of the sediment distribution are predicted by the model. First, the polluted Detroit River sediment does not enter Maumee Bay as long as the conditions of the steady state hydrodynamic model of Durham and Butler (1976) are maintained, namely that we have a constant wind direction and velocity and a positive flow out of the Maumee River. In actuality these assumptions may not always be valid. In any case, the influence of the Detroit River water and sediment in Maumee Bay and along the Ohio shore of the Western Basin is minimal. Secondly, some suspended sediment (fig. 12) from the Detroit River does enter the Central Basin primarily via the Pelee Passage to be deposited east of Pelee Point along the Canadian shore. This prediction agrees with the mercury distribution in "quartz free" Lake Erie sediments measured by Thomas et al. (1976) who concluded that mercury polluted sediments are being transported through the Pelee Passage into the Central Basin of Lake Erie.

We predict that the sediment input by the Maumee River (figs. 13 and 14) does not encroach on the area just south of the mouth of the Detroit River, which contains highly polluted sediments (Kovacik and Walters, 1973; Wilson, 1978 and Thomas, 1976). The strong water flow of the Detroit River keeps the Maumee River water mass south of this area. In addition, very little sediment input by the Maumee River is transported (fig. 14) to the Central Basin.

The Cuyahoga River has a major influence on the sediment quality of the Central Basin. Walters et al. (1974)

- 42 -

Figure 13. Sediment accumulation in Lake Erie 1939-1970 from the Maumee River $(kg/m^2 \times 10^6)$.

Figure 14. Suspended sediment concentration in Lake Erie derived from the Maumee River $(kg/m^2 \times 10^6)$

found highly polluted sediments in Cleveland Harbor. These sediments are also carried into central Lake Erie by the Cuyahoga River. Once they are in the lake proper, they are affected by the strong longshore currents in the Central Basin. These currents move the suspended sediment (fig. 15) in a fan shaped plume northeastward along the Ohio and Pennsylvania shore. The deposition of these polluted sediments (fig. 16) is essentially all in the United States side of the lake and extends past Ashtabula, Ohio to a point 24 miles southwest of Erie, Pennsylvania.

Kemp <u>et al</u>. (1977) estimated that 53% of the sediment input to Lake Erie was from shore erosion. Figure 17 shows that the sediment accumulation from shore erosion is comparable to that supplied by the Detroit and Maumee Rivers in the Western Basin and far exceeds the river sources in the Central and Eastern Basins. Sediment accumulation from shore erosion is uniformly heavy in the Western Basin, but decreases in amount going away from shore in the Central and Eastern Basins. The sediment supplied from shore erosion acts as a diluent for the polluted sediment from the river sources. Walters and Herdendorf (1975) and Kemp <u>et al</u>. (1975) observed background levels of 0.045 ppm Hg, 17.1 ppm Cr, and 31.9 ppm Ni for the non polluted sediment supplied to Sandusky Bay and the north shore of Lake Erie.

The rate of longshore transport was investigated using four point sources of shoreline and calculating the suspended and fallen sediment distributions after 10 days and averaging for the six wind conditions. These point sources are indicated

- 45 -

Figure 15. Suspended sediment concentration in Lake Erie input by the Cuyahoga River $(kg/m^2 \times 10^6)$.

Figure 16. Sediment accumulation in Lake Erie 1939-1970 from the Cuyahoga River $(kg/m^2 \times 10^6)$

Figure 17. Sediment accumulation in Lake Erie 1939-1970 from shore erosion $(kg/m^2 \times 10^6)$.

1

by numbered arrows in Figure 17. The location of center of gravity of fallen sediment about the four sediment distributions were used as a measure of the longshore sediment transport rate. These results are shown in Table 7. The greatest longshore current velocity (1.9 cm/sec) was observed at point three along the south shore of Lake Erie. All of the longshore currents for these four point sources in the central basin were in a northeasterly direction.

MODEL OF MERCURY TRANSFER AND TRANSPORT IN LAKE ERIE

Jernelov and Asell (1975) developed a model for mercury transfer in a 6 km² lake with a mean depth of 5m. Their expressions for the transfer rates between sediment, water, and biomass will serve as the basis for this study. The flow pathways of mercury in the Lake Erie model are shown in Figure 18. The following crucial factors were not included in the Jernelov and Asell (1975) model: 1) active sedimentation and the resulting effect of burial, and 2) transport of mercury loaded sediment by bottom currents (e.g. resuspension of bottom sediment due to storm action). Due to the effects of bio-turbation, methylation, resuspension, and sedimentation, the active sediment offers the greatest potential for variability in mercury concentration. This sediment also contains the largest fraction of mercury in the total system (Walters et al., 1974a).

The mathematical model of mercury transfer and transport (Program HGTRANS, Appendix 3) is defined by the following

- 49 -

Ta	b	1	e	7	7
~~~	~	-	-		,

# Longshore Sediment Transport

Point Source	Coord X	linates Y	Model Index	Center of X	E Gravity Y	Velocity cm/sec
1	32	6	2205	32.2996	5.97286	0.56
2	50	30	241	50.2376	30.3687	0.82
3	63	4	2411	64.0211	3.97841	1.90
4	69	29	324	69.3697	28.7646	0.81



Figure 18. Flow diagram of mercury in Lake Erie sediments, water, and biota.

74 simultaneous differential equations. These equations are linear algebraic functions of the transfer rates TR(I,J,K) of mercury from level I to level J for sediment area K and the transport rates TP(I,K,M) or TP(I,L,M) for mercury in level I from area K or L to area M which must be contiguous. These transfer and transport rates are identified in Figure 18, and the sediment areas are identified in Figure 1.

$$\frac{dHg(1,L)}{dt} = TR(5,1,L) + TR(2,1,L) - \sum_{k} TR(1,3,K)$$
for L = 1,2,3 and  
all K = 1,2,...,34 within  
water area L (11)

 $\frac{dHg(2,L)}{dt} = TR(5,2,L) + \sum_{k} TR(3,2,K) - TR(2,1,L) - k$   $\sum_{k} TR(2,3,K)$ for L = 1,2,3 and all K = 1,2,...,34 withinwater area L
(12)

 $\frac{dHg(3,K)}{dt} = TR(2,3,K) - TR(3,4,K) - TR(3,5,K) - TR(3,2,K)$  $+ TR(1,3,K) + \sum_{M} TP(3,M,K) - \sum_{M} TP(3,K,M)$ M for K = 1,2,...,34 andareas M contiguous toarea K (13)

$$\frac{dHg(4,K)}{dt} = TR(3,4,K)$$
for  $K = 1,2,\ldots,34$  (14)
$$\frac{dHg(5,L)}{dt} = 0 \text{ (assumed)}$$

The transfer rates in equations (11-14) are defined where possible by using the relationships proposed by Jernelov and Asell (1975). These transfer rates are functions of the following variables and constants:

A(K) = Area of segment K in m².

DOB(L) = f(x,y) = Dissolved oxygen concentration in the bottom waters (Beeton, 1969) in  $g0_2/gH_20$ .

DOSM(L) = f(x,y) = Dissolved oxygen concentration in surface and mid waters in  $g0_2/gH_20$ .

ZC = 0.04 m = the critical depth of active sediment.

 $CHG(K) = C4 \ X \ QSED =$  the dimensionless concentration of  $Hg^{+2}$  in the active layer of sediment in region K.

QF(L) = the standing crop of fish in Kilocalories. Fishing records in FWPCA (1968) were used to estimate QF as follows: QF(1) = 1.8030E13 Kcal, QF(2) = 8.2472E13 Kcal, and QF(3) = 2.6296E13 Kcal.

- 53 -

- QB(L) = the standing crop of benthos in the lake in Kilocalories. QB was estimated using the data of Alley and Powers (1970), and the specific energy content of benthos as follows: QB(1) = 1.2111E10, QB(2) = 5.5398E10, and QB(3) = 1.7664E10. All of these numbers are based on the estimates of 4.63 g/m² of benthos and the specific energy content of 700 Kcal/Kg (Alley and Powers, 1970).
- W(L) = the volume of water in lake region L. Although a time dependent model of lake levels was developed using Fourier Series, this was simplified to a constant in order to shorten the computations.
- RAEEF = .15 = the ratio between assimilation efficiency
   of methylmercury and energy for fish.
- RAEEB = .6 = the ratio between assimilation efficiency
   of methylmercury and energy for benthos.
- AEWF = .75 = assimilation efficiency of methylmercury from water for fish.
- AEWB = .5 = assimilation efficiency of methylmercury from water for benthos.
- FMEHG = l = fraction of methylmercury produced as monomethylmercury.

- 54 -

- AEOWF = .75 = assimilation efficiency of oxygen from water for fish.
- AEOWB = .5 = assimilation efficiency of oxygen from water for benthos.
- F(K) = fraction of sediment in area L treated as area K.
- COX = .2 gO₂/Kcal = specific oxygen consumption of fish and benthos.
- QMETH = .3 to 1 = order of methylation reaction in sediments.
- QEF = 1000 Kcal/Kg = specific energy content of fish.
- QEB = 700 Kcal/Kg = specific energy content of benthos.
- QESED = 100 Kcal/Kg = specific energy content of sediment.
- BAHG = .3 to 1 = biochemical availability of inorganic mercury.
- GAMMA = 63 x  $10^{-9}$  (gHg/gsed) ^{-KMETH} year ⁻¹ = constant relating methylation rate to microbial activity.
- RMBF = .346 year⁻¹ = rate constant for metabolic breakdown of methylmercury in fish.
- RMBB = 1.15 year⁻¹ = rate constant for metabolic breakdown of methylmercury in benthos.

RRSED = 11.5 year⁻¹ = rate constant for release of methylmercury from sediment.

DENS = 1100 Kg/m³ = density of sediment.

- QRESF(L) =  $(936+19700) \times 10^5 \times \frac{\text{Area}}{6}$  Kcal/yr = energy lost by fish in respiration.
- QRESB(L) =  $113 \times 10^8 \times \frac{\text{Area}}{6}$  Kcal/yr = energy lost by benthos in respiration.
- QASSF(L) = (125+2370)x10⁶xArea/6 Kcal/yr = energy assimilated by fish.
- QASSB(L) = 203x10⁸xArea/6 Kcal/yr = energy assimilated by benthos.
- $QDF(L) = (312+2810) \times 10^5 \times Area/6 \text{ Kcal/yr} = energy lost$ by natural death of fish.
- $QDB(L) = 657 \times 10^7 \times Area/6 \text{ Kcal/yr} = energy lost by natural death of benthos.$

The following values were determined for QRESF(L), QRESB(L), QASSF(L), QASSB(L), QDF(L), and QDB(L).

(All are in Kcal/year)

REGION	1	2	3	
QRESF	1.28518E12	5.87988E11	1.87444E12	
QRESB	7.03745E12	3.21918E13	1.02642E13	
QASSF	1.55384E12	7.10784E13	2.26629E12	
QASSB	1.26425E13	5.78313E13	1.84392E13	
QDF	1.94433E11	8.89406E11	2.83582E11	
QDB	4.09169E12	1.87168E13	5.96775E12	

SIGMA(K) = the sedimentation rate in meter/yr in region K. Sediment density was used to convert the values in Table 6 to m/year.

CDMETH was assumed to be zero in this model since it is known to be very small, but no accurate estimate of it could be found.

DOSM and DOB, dissolved oxygen in surface and mid-waters, and dissolved oxygen in bottom waters respectively, were calculated from a model provided by Dale Borowiak, and the numbers derived from it are given below:

MONTH	DOSM	DOB
73 31773 037	1 420047 05	1 220067 05
JANUARI	1.42984E-05	1.32896E-05
FEBRUARY	<b>1.48671E-05</b>	1.38583E-05
MARCH	1.45760E-05	1.35672E-05
APRIL	1.34758E-05	l.24670E-05
MAY	1.18542E-05	1.08454E-05
JUNE	1.01628E-05	9.15398E-06
JULY	8.33269E-06	7.86246E-06
AUGUST	8.33269E-06	7.32386E-06
SEPTEMBER	8.71189E-06	7.70306E-06
OCTOBER	9.89445E-06	8.88562E-06
NOVEMBER	1.15469E-05	1.05381E-05
DECEMBER	1.31934E-05	1.21846E-05

DOSM and DOB were found to be independent of lake region. The following expressions define the transfer rates between levels which are used in equations (11-15). These expressions are either taken from Jernelov and Asell (1975) or are formulated to be consistent with the criterion listed previously.

- 57 -

WTRSU(L,M,IM) = the amount of water transferred from region L to region M in month IM.

- Cl(L) = the concentration of mercury in fish.
- C2(L) = the concentration of mercury in benthos.
- C3(K) = the concentration of mercury in the active sediment.

Variables used for the transfer rates

- Cl(L) = HG(1,L)/QF(L) for L = 1,2,3 (15)
- C2(L) = HG(2,L)/QB(L) for L = 1,2,3 (16)

C3(K) = HG(3,K) / (A(K) * Zc DENS QESED)

for 
$$K = 1, 2, \dots, 34$$
 (17)

 $TR(1,3,K) = (QDF(L)+QASSF(L)*(1.-RAEEF)) \times Cl(L) \times F(K)$ for K = 1,2,...,34 and L = 1,2,3 corresponding to K (18)

 $TR(2,1,L) = QASSB(L) \times C2(L) \times RAEEF$ 

for 
$$L = 1, 2, 3$$
 (19)

TR(2,3,K) = (QDB(L)+QASSB(L)*(1.-RAEEB))*C2(L)*F(K)

for K = 1, 2, ..., 34and L = 1, 2, 3, corresponding to K (20)

 $TR(3,2,K) = QASSB(L) \times C3(K) \times RAEEB \times F(K)$ for K = 1,2,...,34 and L = 1,2,3 corresponding to K (21)  $TR(3,4,K) = HG(3,K) \times SIGMA(K)/Zc$ 

```
for K = 1, 2, \dots, 34 (22)
```

TP(3,M,K) = HG(3,K) * TRANSV(M,K,IM) (Zc x A(K) x DENS)for K = 1,2,...,34 and M contiguous to K

(23)

It was assumed that at the beginning of the model, all sediment regions contained the usual background level of mercury (0.03 ppm).

Mercury input to the lake was taken from Walters and Wolery (1974), and a report by the Federal Water Quality Administration (1970). On the basis of the information from these sources, the following model for mercury input was chosen: Input to sediment region 9 is taken to be 102.1 Kg per month from January 1938 to January 1958, and 204.1 Kg per month for the rest of the model. This accounts for the input from Wyandott, Michigan. Input to the sediment of region 32 (from Detrex, Ashtabula) was taken to be 344.7 Kg per month from January 1963 to May 1970. Input to region 21 (the Sandusky Bay) is assumed to be 1.0057E-02 from January 1941 to the end of the model run. The concentration of mercury in the water was assumed to be constant, which is justified by the work of Chau and Saitoh (1973) and our own data that show that essentially all mercury in the water is associated with particulate material. Therefore, the mercury input was in terms of the sediment of areas 1-34.

The model was greatly simplified by eliminating the water as a variable and eliminating distinction between methylmercury and Hg²⁺ in the sediments. Thus the original

- 59 -

111 differential equations were decreased to 74.

Three model runs were attempted. In the first, the model time unit was chosen to correspond to 0.02 days in the hope that mass gain could be prevented. (Mass gain occurs in the model when a large negative derivative for one of the 74 variables causes a negative mass. The FCT subroutine used in the model is programmed to set to zero any negative mass so that the model virtually gains mass in this case.) Equal error weights were used, and the total error bound was chosen to be 100 Kg--about 2.8% of the total mass in the model when it starts. When the model was run with these parameters, RKGS changed the time step to about 2.60403E-06, which at .103985 seconds per step would require 11.09 hours of CPU time to run through one model month. At this rate, it would take 449 days for the total model to run.

For the second model run, a time step of 2.8571E-03 was tried with a total error bound of 3E+03. It was hoped that with these parameters the total model could be completed within ten hours of CPU time. This run used 4000 seconds of computer time without completing a single month of the model. Loss of mass for this run was probably high, but was not output.

Before the third run, it was determined that most of the change in Y occured in Y(41) to Y(74). Because of this, the error weighting was changed to allot these variables only one tenth of the weight of the rest of the model variables. The total error bound was fixed at 1E05 (which is very high), and the time interval was the same as the

- 60 -

last run-- 2.8571E-03. When the model was run this last time, RKGS changed the model time step to about 2.79E-06, and even at this step size mass gain was of the order of  $10^4$  for each step. At this rate, it would take 419 days of CPU time for the model to run, and the result would not make sense because of mass gained.

In summary, the machine at BGSU is too slow to run the mercury model without sacrificing a great degree of accuracy.

- Berner, R. A. (1971) Principles of chemical sedimentology. New York: McGraw-Hill.
- Bongers, L. H. and M. N. Khattak (1972) Sand and gravel overlay for control of mercury in sediments. Water Pollution Control Research Series. Washington: U.S. Environmental Protection Agency.
- Carter, C. H. (1977) Sediment load measurements along the United States shore of Lake Erie. Rept. of Invest. No. 102, Ohio Dept. Nat. Res., Div. Geol. Surv., 24 p.
- Chao, Y. K., and H. Saitoh (1973) Mercury in the International Great Lakes, Proc. 16th Conf. Great Lakes Res., Internat. Assoc. Great Lakes Res., p. 221-232.
- Davis, J. C. (1973) Statistics and data analysis in geology. John Wiley and Sons, Inc., New York, 550 p.
- Dixon, W. J., ed. (1970) BMD Biomedical computer programs. Berkeley: Univ. Calif. Press.
- Durham, D. L. and H. L. Butler (1976) Lake Erie international jetport model feasibility investigation: Results of numerical steady-state, wind-driven circulation analysis. Misc. paper H-76-3, Report 17-7, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Miss.
- Gedney, R. T. and W. Lick (1972) Wind-driven currents in Lake Erie. J. Geophys. Res. 77:2714-2723.
- Hatch, W. R. and W. L. Ott (1968) Determination of submicrogram quantities of mercury by atomic absorption spectrophotometry. Anal. Chem., 40:2085-2087.
- Herdendorf, C. E. and W. K. Lindsay (1975) Benthic macroinvertebrate populations of Sandusky Bay. Proc. Sandusky River Basin Symp. Internat. Joint Comm., International Reference Group on Great Lakes Pollution from Land Use Activities, p. 359-377.
- Iskander, I. K., J. K. Syers, L. W. Jacobs, D. R. Keeney, and J. T. Gilmour (1972) Determination of total mercury in sediments and soils. Analyst, 97:383-393.
- Jernelov, A. and B. Asell (1975) The feasibility of restoring mercury-contaminated waters. in Heavy metals in the aquatic environments. ed. P. A. Krenkel. Pergamon Press, New York, p. 299-309.
- Kemp, A. L. W., R. L. Thomas, C. I. Dell, and J. M. Jaquet (1976) Cultural impact on the geochemistry of sediments in Lake Erie. Jour. Fisheries Res. Board Canada, 33:440-462.

- Kemp, A. L. W., G. A. MacInnis, and N. S. Harper (1977) Sedimentation rates and a revised sedimentation budget for Lake Erie. J. Great Lakes Res. 3:221-233.
- Kennedy, E. J., R. R. Ruch, and N. F. Shimp (1971) Distribution of mercury in unconsolidated sediments from southern Lake Michigan. Illinois State Geol. Surv. Environ. Geol. Notes, No. 44, Urbana, Illinois, 18 p.
- Kovacik, T. L. (1972) Distribution of mercury in western Lake Erie waters and bottom sediments. Unpublished M.A. thesis, Bowling Green State University, Bowling Green, Ohio.
- Ontario Water Resources Commission (1970) Report on the mercury pollution of the St. Clair River system. Open file report, 57 p.
- Presley, B. J., Y. Kolodny, A. Nessenbaum, and I. R. Kaplan (1972) Early diagenesis in a reducing fjord, Saanich Inlet, British Columbia-II. Trace element distribution in interstitial water and sediment. Geochim. Cosmochim. Acta, 36:1073-1090.
- Perkin-Elmer (1964) Analytical methods for atomic absorption spectrophotometry. Norwalk, Connecticut, Perkin-Elmer.
- Perkin-Elmer (1976) Analytical methods for atomic absorption spectrophotometry. Norwalk, Connecticut, Perkin-Elmer.
- Rondy, D. R. (1969) Great Lakes ice atlas. U. S. Lake Survey, Res. Rept. 5-6.
- Shimp, N. F., J. A. Schleicher, R. R. Ruch, D. B. Heck, and H. W. Leland (1971) Trace element and organic carbon accumulation in the most recent sediments of southern Lake Michigan. Illinois State Geol. Surv. Environ. Geol. Notes, No. 41, Urbana, Illinois, 25 p.
- Skoch, E. J. and C. S. Sikes (1973) Mercury concentrations in chronomid larvae and sediments from Sandusky Bay of Lake Erie: Evidence of seasonal cycling of mercury. Proc. 16th Conf. Great Lakes Res. Internat. Assoc. Great Lakes Res. Ann Arbor, p. 183-189.
- Walters, L. J. Jr., C. E. Herdendorf, L. J. Charlesworth, Jr., H. K. Anders, W. B. Jackson, E. J. Skoch, D. K. Webb, T. L. Kovacik, and C. S. Sikes (1972) Mercury contamination and its relation to other physico-chemical parameters in the western basin of Lake Erie. Proc. 15th Conf. Great Lakes Res., Internat. Assoc. Great Lakes Res., p. 306-316.
- Walters, L. J. Jr., and C. E. Herdendorf (1973) Mercury concentration in surface sediments as related to water masses in western Lake Erie. Compass 50(4):5-10.

- Walters, L. J. Jr., and T. L. Kovacik, and C. E. Herdendorf (1974a) Mercury occurrence in sediment cores from western Lake Erie, Ohio J. Sci. 74:1-19.
- Walters, L. J. Jr., and T. J. Wolery (1974) Transfer of heavy metal pollutants from Lake Erie bottom sediments to the overlying water. Project Completion Report No. 421X. State of Ohio, Water Resources Center, Ohio State University, 84 p.
- Walters, L. J. Jr., and C. E. Herdendorf (1975a) Use of mercury pollution in Sandusky Bay sediments to determine sedimentation rates. Proc. Sandusky River Basin Symp. Internat. Joint Comm., Internat. Reference Group on Great Lakes Pollution from Land Use Activities, p. 425-453.
- Walters, L. J. Jr. (1977) Man's input of mercury, chromium and nickel to Lake Erie sediments. Abs. 20th Conf. Great Lakes Res., Internat. Assoc. Great Lakes Res.
- Wolery, T. J. (1973) Vertical distribution of mercury, nickel and chromium in Lake Erie sediments, M.S. Thesis, Bowling Green State University, Bowling Green, Ohio 194 p.
- Wolery, T. J., and L. J. Walters, Jr. (1974) Pollutant mercury and sedimentation in the western Lake Erie, Proc. 17th Conf. Great Lakes Res., Ann Arbor: Internat. Assoc. Great Lakes Res., p. 235-249.
## APPENDIX 1

## SAMPLE LOCATIONS

CRUISE	STATION	LATIT	UDE	LOI	NGI	ru de	LOCI	NCITA		DATE
1	1	41 00	00	83	10	00	WESTERN	LAKE	EFIE	7/23/71
1	1 A	41 00	00	83	08	00	WESTERN	L AK E	ERIE	7/23/71
1	2	41 00	00	83	05	C 0	WESTERN	IAKE	ERIE	7/22/71
1	2 A	41 00	<b>C</b> O	83	ი 2	30	WESTERN	LAKE	ERIE	7/22/71
1	3	41 00	0.0	83	00	00	WESTEPN	LAKE	ERIE	7/22/71
1	4	41 00	00	82	45	00	WESTERN	L AK E	ERIE	7/27/71
1	5	41 00	00	82	40	00	WESTERN	LAKE	EFIE	7/27/71
1	6	41 00	00	82	35	60	WFSTERN	l ak e	ERIF	7/27/71
1	7	41 56	00	82	30	00	CENTRAL	LAKE	ERIE	7/28/71
1	8	41 55	00	82	35	00	WESTERN	l ak e	EPIE	7/27/71
1	9	41 55	00	82	40	00	WESTERN	LAKE	ERIE	7/27/71
1	10	41 55	30	82	45	24	WESTERN	LAKE	ERIE	7/27/71
1	11	4 <b>1</b> 55	00	82	50	0 Û	WESTERN	LAKE	ERTE	7/19/71
1	12	41 55	C 0	82	55	00	WFSTERN	LAKE	EPIE	7/19/71
1	13	41 55	00	83	00	00	WESTERN	LAKE	ERIE	7/22/71
1	14	41 55	00	83	25	00	WESTERN	LAKE	ERIE	7/22/71
1	15	41 55	<b>C</b> O	83	10	00	WESTERN	LAKE	ERIE	7/22/71
1	16	41 55	<b>6</b> 0	83	15	00	WESTERN	LAKE	ERIE	7/23/71
1	17	41 55	18	83	18	54	WESTERN	LAKE	ERIE	7/23/71
1	18	41 50	00	83	20	00	WESTERN	LAKE	ERIE	7/23/71
1	19	41 50	00	83	15	00	WESTERN	LAKE	EFIE	7/23/71
1	20	41 50	12	83	10	06	WESTERN	LAK E	ERIE	7/22/71
1	21	41 50	00	83	05	00	WESTERN	LAKE	EFIE	7/22/71
1	22	41 50	00	83	00	0 C	WESTERN	L AK E	ERIE	7/22/71
1	23	41 50	00	82	55	00	WESTERN	LAKE	ERIE	7/22/71
1	24	41 50	00	82	50	00	WESTERN	L AK E	ERIE	7/19/71
1	25	41 50	18	82	45	00	WESTERN	LAKE	ERIE	7/27/71
1	26	41 50	CO	82	40	00	WESTERN	L AK E	ERIE	7/27/71
1	27	41 49	48	82	35	00	CENTRAL	LAKE	ERIE	7/28/71
1	28	41 50	00	82	30	00	CENTRAL	L AK E	ERIE	7/28/71
1	29	41 45	00	82	30	0.0	CENTRAL	LAKE	ERIE	7/28/71
1	30	41 44	48	82	35	24	CENTRAL	LAKE	ERIF	7/28/71
1	31	41 45	00	82	45	00	WESTERN	LAKE	EFIE	7/27/71
1	32	41 45	00	82	5C	42	WESTERN	LAKE	ERIE	7/19/71
1	33	41 45	00	82	55	0.0	WESTERN	LAKE	EPIE	7/22/71
1	34	41 45	00	83	00	00	WESTERN	LAKE	ERIE	7/26/71
1	35	41 45	00	83	05	00	WESTEFN	LAKE	EFIE	7/26/71
1	36	41 45	00	83	10	0.0	WESTERN	LAKE	EPIE	7/26/71
1	37	41 45	00	83	13	36	WESTERN	LAKE	ERIE	7/26/71
1	38	41 45	00	83	20	0.0	WESTERN	LAKE	ERIE	7/26/71

					<b></b>					1		
CRUISE	STATION	LAT	ITI	JDE	LON	IGI	CUDE	LOCI	NOITI		DI	<b>TE</b>
1	39	41	45	12	83	24	36	WESTERN	LAKE	ERTE	7/2	23/71
1	40	41	40	00	83	15	00	WESTERN	LAKE	ERIE	7/	26/71
1	41	41	40	18	83	10	0C	WESTEPN	LAKE	EFIE	7/2	26/71
1	42	41	40	18	83	05	00	WESTERN	LAKE	ERIF	7/	26/71
1	43	41	40	36	83	00	00	WESTERN	LAKE	ERIE	7/2	26/71
1	44	41	40	00	82	55	00	WESTERN	LAKE	ERIE	7/2	29/71
1	45	41	40	00	82	50	00	WESTERN	LAKE	ERIE	71	19/71
1	46	41	40	00	82	45	00	WESTERN	LAKE	ERIE	7/:	20/71
1	47	41	40	00	82	4C	00	WESTERN	LAKE	ERIE	7/2	20/71
1	48	41	40	00	82	35	00	CENTRAL	LAKE	ERIE	7/:	20/71
1	49	41	40	42	82	30	00	CENTRAL	LAKE	ERIE	7/2	28/71
1	50	41	35	06	82	30	00	CENTRAL	LAKE	ERIF	7/2	28/71
1	51	41	35	00	82	35	00	CENTRAL	LAKE	ERIE	7/2	20/71
1	52	41	34	30	82	40	00	CENTRAL	LAKE	ERIE	7/2	21/71
1	53	41	34	54	82	45	0.0	WESTEPN	LAKE	ERIE	7/2	21/71
1	54	41	35	06	82	49	42	WESTERN	LAKE	ERIE	7/2	21/71
1	55	41	35	18	82	55	00	WESTERN	LAKE	ERTE	7/2	29/71
1	56	41	35	18	83	00	12	WESTEPN	LAKE	ERIE	7/	29/71
1	57	41	29	12	82	45	00	SANDUSKY	BAY		7/2	29/71
1	58	41	30	00	82	40	00	CENTRAL	LAKE	ERIE	7/	21/71
1	59	41	30	00	82	35	00	CFNTRAL	LAKE	ERIE	7/2	20 /7 1
1	60	41	30	00	82	30	00	CENTRAL	LAKE	ERIE	7/2	28/71
1	61	11	25	42	82	30	00	CENTRAL	LAKE	ERIE	7/2	28/71
1	62	41	25	30	82	35	42	CENTRAL	LAKE	ERIE	7/2	28/71
1	D-1	42	04	00	83	10	36	DETROTT	RIVEI	R	7/2	23/71
1	D-2	42	04	00	83	09	24	DETROIT	RIVE	3	7/	23/71
1	D-3	42	04	0Ū	83	08	00	DETROIT	RIVE	R	7/2	23/71
1	D-4	42 (	04	00	83	07	18	DETROIT	RIVER	3	7/2	23/71
1	M - 1	41	40	00	83	30	00	MAUMEE	RTVEI	R	7/2	26/71
ż	1	41	50	00	83	15	õõ	WESTERN	LAKE	ERIE	9/	6/72
2	2	41	57	30	83	12	00	WESTERN	LAKE	ERIE	91	6/72
2	3	41	57	30	83	02	30	WESTERN	LAKE	ERIE	9/	6/72
2	4	41	57	30	83	00	Č0	WESTERN	LAKE	ERTE	91	6/72
2	5	41	57	30	82	52	30	WESTERN	LAKE	ERTE	97	6/72
2	6	41	52	00	83	õõ	õõ	WESTERN	LAKE	ERTE	9/	6/72
2	7	41	50	00	83	05	00	WESTERN	LAKE	ERTE	9/	6/72
5	ģ	<u>11</u>	ũ2	00	83	00	ññ	WESTERN	T. AK E	ERTE	91	6/72
2	10	<u>1</u> 1	<u>ио</u>	18	82	51	ññ	WESTERN	TAKE	ERTE	91	6/72
2	11	41	<b>u</b> 1	00	82	45	õõ	WESTERN	LAKE	ERTE	91	7/72
2	12	41	38	30	82	42	00	WESTERN	LAKE	ERTE	9/	7/72
2	17	41	40	00	82	29	00	CENTRAL.	LAKE	ERTF	91	7/72
5	1 <u>µ</u>	42	ก้ก	00	82	10	00	CENTRAL	LAKE	ERTE	91	8/72
2	141	41	30	00	82	30	00	CENTRAL.	LAKE	ERTE	91	כדיר
2	15	<u>ц</u> 1	шñ	00	82	10	ññ	CENTRAL	LAKE	ERTE	91	7/72
<b>4</b> 0	.5	- <b>- - 1</b>	<b>T V</b>	<b>V V</b>			~ ~		ليزانه مدعيد	لنديد مدعد	-,	.,.2

CRUISE	STATION	LATITUDE	LONGITUDE	LOCATION	DATE
2	16	41 30 00	82 15 00	CENTRAL LAKE ERTE	9/ 7/72
$\tilde{2}$	17	41 45 00	81 55 00	CENTRAL LAKE ERIE	9/ 8/72
2	18	42 00 00	81 40 00	CENTRAL LAKE ERIE	9/ 8/72
2	19	41 40 00	81 40 00	CENTRAL LAKE ERIE	9/ 8/72
2	20	41 37 42	81 40 00	CLEVELAND HARBOR	9/ 8/72
2	21	41 50 00	81 20 00	CENTRAL LAKE ERIE	9/10/72
2	22	42 00 00	81 10 00	CENTRAL LAKE ERIE	9/10/72
2	24	42 05 00	80 40 00	CENTRAL LAKE ERIE	9/10/72
2	25	42 00 00	80 40 00	CENTRAL LAKE ERIE	9/12/72
2	26	42 20 00	80 40 00	CENTRAL LAKE EPIE	9/10/72
2	27	42 20 00	80 20 00	CENTRAL LAKE ERIE	9/10/72
2	28	42 15 00	80 00 00	EASTERN LAKE ERIE	9/10/72
2	284	42 08 18	80 05 30	ERIE HARBOR	9/10/72
2	29	42 30 06	79 53 30	EASTERN LAKE ERIE	9/11/12
4	30	42 40 00	79 03 30	EASTERN LAKE ERIE	9/11/12
2	31	42 40 00	79 40 00	EASTERN LARS ERLE	9/11/12
2	32	42 32 42	70 05 00	DUFFALO HARDOR DROWFDN TREE DDTD	9/11/12
<u>د</u>	311	42 43 00	79 00 00	EASTERN LARE BRIE	9/11/72
2	24	42 40 00	79 20 00	EASIERN LARE ERIE	9/11/12
2	36	42 30 00	79 50 00	ENCLEDN INKE BOLE	9/12/72
2	37	42 20 00	82 112 30	WESTERN LAKE FRIF	9/13/72
3	11	L1 27 36	82 50 42	SANDUSKY BAY	9/29/72
3	13	41 28 30	82 50 42	SANDUSKY BAY	9/29/72
3	14	41 28 48	82 50 42	SANDUSKY BAY	9/29/72
3	15	41 29 18	82 50 42	SANDUSKY BAY	9/29/72
3	27	41 27 12	82 51 54	SANDUSKY BAY	9/29/72
3	29	41 28 00	82 51 54	SANDUSKY BAY	9/29/72
3	31	41 28 48	82 51 54	SANDUSKY BAY	9/29/72
3	43	41 27 12	82 53 00	SANDUSKY BAY	9/29/72
3	45	41 28 00	82 53 00	SANDUSKY BAY	9/29/72
3	47	41 28 48	82 53 00	SANDUSKY BAY	9/29/72
3	59	41 26 24	82 54 06	SANDUSKY BAY	<b>9/29/</b> 72
3	61	41 27 12	82 54 06	SANDUSKY BAY	9/29/72
3	63	41 28 00	82 54 06	SANDUSKY BAY	9/29/72
3	65	41 28 48	82 54 06	SANDUSKY BAY	9/29/72
3	78	41 25 48	82 55 18	SANDUSKY BAY	9/29/72
3	83	41 28 00	82 55 18	SANDUSKY BAY	9/29/72
3	85	41 28 48	82 55 18	SANDUSKY BAY	9/29/72
3	100	41 25 48	82 56 24	SANDUSKY BAY	9/29/72
ا <del>د</del>	101	41 26 24	82 56 24	SANDUSKY BAY	9/29/72
3	103	41 27 18	82 56 24	SANDUSKI BAY	9/29/12
3	105	41 28 00	82 56 24	SANDUSKI BAY	9/29/12
3	122	41 27 12	82 57 36	SANDUSKY BAY	9/29/12

	******					~		-					
CRUISE	STATION	LA	TIT	UDE	LO	NGI	TUDE		LOC	ATION		DAT E	<u>.</u>
								-					
3	125	41	28	24	82	57	36	5	SANDUSK	Y BAY		9/29/	'72
3	137	41	29	12	82	48	54	:	SANDUSK	Y BAY		9/29/	72
3	138	41	29	42	82	47	24		SANDUSK	Y BAY		9/29/	72
3	139	41	28	30	82	47	24		SANDUSK	Y BAY		9/29/	72
3	140	41	29	42	82	45	42	5	SANDUSK	Y BAY		9/29/	72
3	141	41	28	48	82	45	42	9	SANDUSK	Y BAY		9/29/	72
3	142	.41	28	CO	82	45	42	5	SANDUSK	Y BAY		9/29/	72
3	743	47	21	12	82	45	42		SANDUSK	Y BAY		9/29/	12
3	144	41	29	18	82	44	00		SANDUSK	Y BAY		9/29/	72
3	145	41	28	30	82	44	00		SANDUSK	Y BAY		9/29/	72
5	146	41	27	48	82	44	00	5	ANDUSK	Y BAY		9/29/	72
3	147	41	29	18	82	42	54		SANDUSK	Y BAY		9/29/	72
Ŀ	148	41	28	30	82	42	54	5	SANDUSK	Y BAY		9/29/	72
5	149	41	27	36	82	42	54		SANDUSK	Y BAY		9/29/	72
3	150	41	28	00	82	41	06	2	ANDUSK	Y BAY	_	9/29/	72
4	1	42	04	00	83	07	12	I	DETROIT	RIVE	R	10/19/	72
4	2	42	03	00	83	07	12	I	DETROIT	RIVE	R	10/19/	72
4	3	42	03	00	83	80	00	I	DETROIT	RIVE	R	10/19/	72
4	4	42	03	CC	83	09	00	I	DETROIT	RIVE	R	10/19/	72
4	5	42	03	00	83	10	00	I	DETROIT	RIVE	R	10/19/	72
4	6	42	03	00	83	10	54	I	DETROIT	RIVE	R	10/19/	72
4	7	42	05	<b>C</b> O	83	11	00	I	DETROIT	RIVE	R	10/19/	72
4	8	42	06	00	83	11	00	I	DETROIT	RIVE	R	10/19/	72
4	9	42	07	00	83	10	36	I	DETROIT	RIVE	R	10/19/	72
4	10	42	08	00	83	10	24	I	DETROIT	RIVE	R	10/19/	72
4	11	42	09	00	83	10	30	E	DETROIT	RIVE	R	10/19/	72
4	12	42	10	00	83	09	42	I	DETROIT	RIVE	R	10/19/	72
4	13	42	11	00	83	09	12	I	DETROIT	RIVE	R	10/19/	72
4	14	42	12	00	83	80	54	I	DETROIT	RIVE	R	10/19/	72
4	15	42	09	00	83	07	12	I	ETROIT	RIVE	R	10/19/	72
4	16	42	06	00	83	06	48	Ι	DETROIT	RIVE	R	10/19/	72
4	17	42	01	00	83	10	00	Ţ	WESTERN	LAKE	ERIE	10/20/	72
4	18	42	01	00	83	08	00	1	IESTERN	L AK E	ERIE	10/20/	72
4	19	42	01	00	83	06	00	V	<b>IESTERN</b>	LAKE	ERIE	10/20/	72
4	20	42	61	00	83	04	00	Ĩ	ESTERN	LAKE	ERIE	10/20/	72
4	21	42	01	00	83	02	00	ĩ	<b>VESTERN</b>	LAKE	ERIE	10/20/	72
4	22	42	01	00	83	00	00	5	IESTERN	L AK E	ERIE	10/20/	72
4	23	41	59	00	83	00	00	V	NESTER N	LAKE	ERIE	10/20/	72
4	24	41	59	00	83	02	00	ĥ	ESTERN	L AK E	ERIE	10/20/	72
4	25	41	59	00	83	04	00	ş	<b>VESTERN</b>	LAKE	ERIE	10/20/	72
4	26	41	59	00	83	06	00	F	ESTERN	LAKE	ERIE	10/20/	72
4	27	41	59	00	83	08	00	ş	ESTERN	LAKE	ERIE	10/20/	72
4	28	41	59	00	83	10	00	Ģ	ESTERN	LAKE	ERIE	10/20/	72
4	29	41	59	00	83	12	00	, V	IESTERN	LAKE	ERIE	10/20/	72

CRUISE	ST AT ION	LATITUDE	LONGITUDE	LOCATION	DAT E
*****		******		***********	100 mm - 100, 100 - 100 - 200, 220, 100 - 286
4	30	41 59 00	83 14 00	WESTERN LAKE ERIE	10/20/72
4	31	41 57 00	83 14 00	WESTERN LAKE ERIE	10/20/72
4	32	41 57 00	83 12 00	WESTERN LAKE ERIE	10/20/72
4	33	41 57 00	83 10 00	WESTERN LAKE ERIE	10/20/72
4	34	41 57 00	83 08 0 <b>0</b>	WESTERN LAKE ERIE	10/20/72
4	35	41 57 00	83 06 00	WESTERN LAKE ERIE	10/20/72
4	36	41 57 00	83 04 00	WESTERN LAKE ERIE	10/20/72
4	37	41 57 00	83 02 00	WESTERN LAKE ERIE	10/20/72
4	38	41 57 00	83 00 00	WESTERN LAKE ERIE	10/20/72
4	39	41 55 00	83 02 00	WESTERN LAKE ERIE	10/20/72
4	40	41 55 00	83 04 00	WESTERN LAKE ERIE	10/20/12
44 5	41	41 55 00	83 06 00	WESTERN LAKE ENLE	10/20/12
4	42	41 55 00	83 08 00	WEDIERN LAKE ERLE	10/20/12
4 /1	43	41 53 00	83 22 00	MANNEE BAV	10/20/72
ii.	44	<u>41 43 00</u>	83 22 00	MAGHER BAY	10/21/72
<u> </u>	45 46	<b>41 42 00</b>	83 24 00	MATIMEE BAY	10/21/72
н Ц	40 117	<u>41 42 00</u>	83 24 00	MAGNEE BAY	10/21/72
<u>u</u>	41	<b>u1 u3</b> 00	83 20 00	MANMEE BAY	10/21/72
ц	49	41 45 00	83 20 00	MANMEE BAY	10/21/72
ů.	50	41 45 00	83 22 00	MAIMEE BAY	10/21/72
4	51	41 45 00	83 24 00	MAUMEE BAY	10/21/72
4	52	41 44 00	83 25 00	MAUNEE BAY	10/21/72
4	53	41 44 00	83 26 00	MAUMEE BAY	10/21/72
4	54	41 42 00	83 27 00	MAUMEE RIVER	10/21/72
4	55	41 40 30	83 29 48	MAUMEE RIVER	10/21/72
4	5 <b>6</b>	41 37 30	83 32 30	MAUMEE RIVER	10/21/72
4	5 <b>7</b>	41 45 00	83 18 00	WESTERN LAKE ERIE	10/22/72
4	58	41 47 42	83 18 00	WESTERN LAKE ERIE	10/22/72
4	59	41 47 CO	83 16 00	WESTERN LAKE ERIE	10/22/72
4	60	41 49 00	83 16 00	WESTERN LAKE ERIE	10/22/72
4	61	41 49 00	83 14 00	WESTERN LAKE ERIE	10/22/72
4	62	41 49 30	83 12 00	WESTERN LAKE ERIE	10/22/72
4	63	41 51 OC	83 12 00	WESTERN LAKE ERIE	10/22/72
4	64	41 53 00	83 12 00	WESTERN LAKE ERIE	10/22/72
4	65	41 55 00	83 12 00	WESTERN LAKE ERIE	10/22/72
4	66	41 55 42	83 14 00	WESTERN LAKE ERIE	10/22/12
4	6 <i>1</i>	41 55 00	03 10 VV	WESTERN LAKE EFLE	10/22/12
4	60	41 55 00	03 10 00	WESTERN LAKE ERLE	10/22/12
4	57 70	41 53 00	03 10 UU 03 70 00	WESTERN LARE ERLE	10/22/12
4	70	41 53 00	03 20 00	WESTERN LAKE ERIE	10/22/12
4 <u>.</u> 11	71	41 53 00	03 10 UU 03 1/ 00	NESTERN LARE ERLE	10/22/12
4	12	41 33 44		NIGTERN LARE ERLE	10/22/12
4	13	41 51 00	03 14 VV	WEDIERN LARS ERLE	10/22/12

CRUISE	STATION	LATITUDE	LONGITUDE	LOCATION	DAT E
				8 ann ann ann ann ann ann ann ann ann an	
4	74	41 51 00	83 16 00	WESTERN LAKE ERIE	10/22/72
4	75	41 51 00	83 18 00	WESTERN LAKE ERIE	10/22/72
4	76	41 51 00	83 20 00	WESTERN LAKE ERIE	10/22/72
4	77	41 51 00	83 22 00	WESTERN LAKE ERIE	10/22/72
4	78	41 49 00	83 24 00	WESTERN LAKE ERIE	10/22/72
4	79	41 47 00	83 26 00	WESTERN LAKE EPIE	10/22/72
4	8 <b>0</b>	41 47 00	83 24 00	WESTERN LAKE ERIE	10/22/72
4	81	41 47 00	83 22 00	WESTERN LAKE ERIE	10/22/72
4	82	41 49 00	83 22 00	WESTERN LAKE ERIE	10/22/72
4	83	41 49 00	83 20 00	WESTERN LAKE ERIE	10/22/72
4	84	41 49 00	83 18 00	WESTERN LAKE ERIE	10/22/72
4	85	41 47 00	83 20 00	WESTERN LAKE ERIE	10/22/72
4	86	41 43 00	83 26 00	MAUMEE BAY	10/22/72
7	23	42 02 48	80 27 06	CENTRAL LAKE ERIE	10/22/73
7	24	42 05 54	80 29 00	CENTRAL LAKE ERIE	10/22/73
7	25	42 14 54	80 33 36	CENTRAL LAKE ERIE	10/22/73
7	26	42 24 00	80 38 12	CENTRAL LAKE ERIE	10/23/73
7	27	42 32 54	80 45 30	CENTRAL LAKE ERIE	10/23/73
7	28	42 35 30	81 01 OC	CENTRAL LAKE ERIE	10/23/73
7	29	42 36 18	81 17 54	CENTRAL LAKE ERIE	10/23/73
7	30	42 25 36	81 12 18	CENTRAL LAKE ERIE	10/23/73
7	31	42 15 12	81 06 24	CENTRAL LAKE ERIE	10/21/73
7	32	42 04 54	81 00 42	CENTRAL LAKE ERIE	10/21/73
7	33	41 55 54	80 55 00	CENTRAL LAKE ERIE	10/21/73
7	34	41 50 00	81 08 54	CENTRAL LAKE ERIE	10/21/73
7	35	41 45 48	81 23 00	CENTRAL LAKE ERIE	10/21/73
7	36	41 56 06	81 28 42	CENTRAL LAKE EPIE	10/21/73
7	37	42 06 36	81 34 30	CENTRAL LAKE ERIE	10/21/73
7	38	42 16 54	81 40 18	CENTRAL LAKE ERIE	10/24/73
7	39	42 21 30	81 42 24	CENTRAL LAKE ERIE	10/24/73
7	40	42 11 30	81 55 18	CENTRAL LAKE ERIE	10/24/73
7	41	42 08 06	82 08 24	CENTRAL LAKE ERIE	10/24/73
7	42	41 57 54	82 02 30	CENTRAL LAKE ERIE	10/24/73
7	43	41 47 18	81 56 42	CENTRAL LAKE ERIE	10/19/73
7	44	41 31 48	81 42 30	CENTRAL LAKE ERIE	10/19/73
7	45	41 36 24	81 53 48	CENTRAL LAKE ERIE	10/19/73
7	46	41 40 54	82 05 12	CENTRAL LAKE ERIE	10/19/73
7	48	42 02 48	82 21 54	CENTRAL LAKE EPIE	10/24/73
7	49	41 55 54	82 24 30	CENTRAL LAKE ERIE	10/24/73
7	50	41 48 48	82 30 06	CENTRAL LAKE ERIE	10/16/73
7	51	41 38 30	82 24 12	CENTRAL LAKE ERIE	10/14/73
7	52	41 31 54	82 27 12	CENTRAL LAKE EPIE	10/14/73
7	53	41 25 12	82 30 <b>12</b>	CENTRAL LAKE ERIE	10/14/73
7	54	41 34 00	82 38 <b>06</b>	CENTRAL LAKE ERIE	10/14/73

CRUISE	STATION	LATITUDE	LONGITUDE	LOCATION	DATE
7	55	41 44 18	82 44 00	WESTERN LAKE ERIE	10/14/73
7	56	41 54 42	82 50 24	WESTERN LAKE ERIE	10/16/73
7	57	41 49 54	83 01 06	WESTERN LAKE EPIE	10/15/73
7	58	41 41 06	82 56 00	WESTERN LAKE EPIE	10/15/73
7	59	41 43 36	83 09 00	WESTERN LAKE ERIE	10/15/73
7	60	41 53 30	83 11 48	WESTERN LAKE ERIE	10/15/73
7	61	41 56 48	83 02 42	WESTERN LAKE ERIE	10/15/73
7	65	41 39 00	82 44 00	WESTERN LAKE ERIE	10/14/73
7	66	41 58 00	82 40 00	WESTERN LAKE ERIE	10/16/73
7	67	41 40 00	82 52 00	WESTERN LAKE ERIE	10/14/73
7	68	41 45 CO	82 51 00	WESTERN LAKE EPIE	10/14/73
7	70	41 46 00	83 20 00	WESTERN LAKE EFIE	10/15/73
7	71	42 18 00	81 22 18	CENTRAL LAKE ERIE	10/23/73
7	72	41 57 48	81 11 00	CENTRAL LAKE ERIE	10/21/73
7	74	41 40 00	82 35 00	CENTRAL LAKE ERIE	10/14/73
7	75	41 54 00	83 18 00	WESTERN LAKE EPTE	10/15/73
7	78	41 53 36	82 37 00	WESTERN LAKE ERIE	10/12/73
7	79	41 45 42	82 32 30	CENTRAL LAKE ERIE	10/12/73
7	80	41 42 30	82 32 30	CENTRAL LAKE FRIE	10/12/73
7	81	41 37 30	82 32 30	CENTRAL LAKE ERTE	10/12/73
7	82	41 32 30	82 32 30	CENTRAL LAKE ERTE	10/13/73
7	83	41 27 30	82 27 30	CENTRAL LAKE ERTE	10/13/73
.7	84	41 45 00	82 25 00	CENTRAL LAKE ERTE	10/12/73
7	85	41 35 00	82 20 00	CENTRAL LAKE ERTE	10/12/73
7	86	41 30 00	82 20 00	CENTRAL LAKE ERTE	10/13/73
7	87	41 35 00	82 15 00	CENTRAL LAKE ERTE	10/12/73
7	93	<b>u1 u2 30</b>	81 31 12	CENTRAL LAKE ERTE	10/20/73
7	94	41 42 50	81 34 00	CENTRAL LAKE ERTE	10/20/73
7	95	41 36 24	81 33 30	CENTRAL LAKE ERTE	10/20/73
7	96	41 30 24 41 39 12	81 36 30	CENTRAL LAKE ERTE	10/20/73
7	97	41 32 LB	81 38 30	CENTRAL LARD DELL	10/20/73
7	99	H1 35 30	81 11 36	CENTRAL LAKE EATE	10/20/73
7	90	41 33 30 11 37 30	81 44 30	CENTRAL LARE ERLE	10/20/73
7	100	41 37 30 111 36 06	91 44 50	CENTRAL LARP POTE	10/20/73
7	101	41 30 00	01 47 30	CENTRAL LARE DELL	10/20/13
7	101	41 34 30	0 1 43 30 91 h2 12	CENTRAL LARE ERLE	10/20/73
7	102	41 33 18	91 42 12	CENTRAL LARE ERLE	10/20/13
7	105	41 42 30 11 31 DC	01 45 00 01 $hh$ 10	CENTRAL LARE ERLE	10/20/73
7	104	41 31 00	01 44 10	CENTRAL LARE ERLE	10/20/13
7	105	41 32 40	01 47 30	CONTRAL LARE BRIE	10/20/13
7	100	41 30 30 11 35 AM	01 4/ 30	CENTRAL LAKE SKIE	10/20/13
/	107	41 33 00	02 10 00	DENTRAL LAKE ERIE	10/12/13
A	2	42 04 48		DETRULT KLYEK	6/11/10
A	3	42 V4 48	03 00 30	DETRUIT RIVER	6/11/10
A	D	42 00 34	03 10 42	DELKOLT RIARK	0/11/0

CRUISE	ST AT ION	LATITUDE	LONGITUDE	LOCATION	DATE
A	31	42 27 18	82 34 00	LAKE ST. CLAIR	6/12/76
A	32	42 27 18	82 30 30	LAKE ST. CLAIR	6/12/76
A	36	42 29 19	82 40 12	LAKE ST. CLAIR	6/12/76
A	37	42 29 21	82 45 48	LAKE ST. CLAIR	6/12/76
A	38	42 29 20	82 51 45	LAKE ST. CLAIR	6/12/76
A	38	42 29 20	82 51 45	LAKE ST. CLAIR	6/12/76
A N	40	42 33 00	82 40 00	LAKE ST. CLAIR	6/12/16
A	41	42 33 37	02 42 37 03 110 11 <b>7</b>	LARE ST. CLAIR	6/12/10
Α. λ	42	42 33 40	02 40 47 90 110 51	LARE ST. CLAIR	6/12/76
А Л	44 15	42 40 10	82 25 18	CO CINTO CININ	6/12/76
λ	45	43 00 42	82 25 18	ST. CLAIR RIVER	6/12/76
Δ	40 117	42 53 42	82 27 48	ST. CLAIR RIVER	6/12/76
Δ	47	42 99 42	82 28 45	ST. CLAIR RIVER	6/12/76
A	49	42 43 06	82 28 45	ST. CLATE RIVER	6/12/76
Δ	50	42 36 54	82 35 06	ST. CLAIR RIVER	6/12/76
B	5	42 38 30	79 16 18	EASTERN LAKE ERIE	7/17/76
B	6	42 37 54	79 24 00	EASTERN LAKE ERIE	7/17/76
В	7	42 30 48	79 28 42	EASTERN LAKE ERIE	7/16/76
B	9	42 32 18	79 37 00	EASTERN LAKE ERIE	7/16/76
В	10	42 40 48	79 41 30	EASTERN LAKE ERIE	7/16/76
В	11	42 48 12	79 33 30	EASTERN LAKE ERIE	7/16/76
В	12	42 46 12	79 47 30	EASTERN LAKE ERIE	7/16/76
В	13	42 <b>4</b> 5 <b>1</b> 2	80 00 48	EASTERN LAKE ERIE	7/16/76
В	14	42 38 30	79 56 00	EASTERN LAKE ERIE	7/15/76
В	15	42 <b>31 0</b> 0	79 53 36	EASTERN LAKE ERIE	7/15/76
В	16	42 20 00	<b>79 45 30</b>	EASTERN LAKE ERIE	7/15/76
В	17	42 19 48	80 00 00	EASTERN LAKE ERIE	7/14/76
В	18	42 25 18	80 04 48	EASTERN LAKE ERIE	7/14/76
В	19	42 30 54	80 09 12	EASTERN LAKE ERIE	7/14/76
В	20	42 29 05	80 18 18	EASTERN LAKE ERIE	7/14/76
В	21	42 20 18	80 12 48	EASTERN LAKE ERIE	7/14/76
В	22	42 12 48	80 07 42	EASTERN LAKE FRIE	1/14/16
B	63	42 25 00	79 48 00	EASTERN LAKE ERIE	//15//6
B	64	42 12 00	80 03 00	EASTERN LAKE ER LE	//14//6
В	80	42 41 30	80 08 00	EASTERN LAKE ERIE	1/15/16
	23	42 UZ 48	80 27 06	CENTRAL LAKE ERIE	9/12/16
	24	42 VD D4	00 27 00 00 22 34	CENTRAL LAKE ERLE	3/12/10
	20	42 14 04 10 01 00	00 JJ J0 80 38 10	CENTRAL LAKE EKLE	3/12/10
	20	42 24 UU 10 30 5h	80 J6 12	CENTRAL LARD DALL	9/12/10
	28	12 35 30	81 01 00	CENTRAL LAND DALL	10/26/76
	20	42 33 30	81 17 Sh	CENTRAL LARD ERIE	9/10/76
	30	42 25 48	81 12 18	CENTRAL LARE ERIE	9/12/76
	50	72 23 40		ADDINAD PAND DLTD	1 13/10

CRUISE	STAILON	LATITUDE	LONGITUDE	LOCATION	DATE
			****		
С	31	42 15 12	81 06 24	CENTRAL LAKE EFIE	9/13/76
С	32	42 04 54	81 CO 42	CENTRAL LAKE ERIE	9/ 9/76
С	33	41 55 54	80 55 00	CENTRAL LAKE ERIE	9/ 9/76
С	34	41 50 00	81 08 54	CENTRAL LAKE ERIE	9/ 9/76
С	35	41 45 48	81 23 00	CENTRAL LAKE ERIE	9/ 8/76
С	36	41 56 06	81 28 42	CENTRAL LAKE ERIE	9/ 8/76
С	37	42 06 36	81 34 30	CENTRAL LAKE ERIE	9/13/76
С	38	42 16 54	81 40 18	CENTRAL LAKE ERIE	9/13/76
С	39	42 21 30	81 42 24	CENTRAL LAKE ERIE	9/13/76
С	40	42 11 30	81 55 18	CENTRAL LAKE ERIE	9/13/76
С	40	42 11 30	81 55 18	CENTRAL LAKE ERIE	10/24/76
С	41	42 <b>08 C</b> 6	82 08 24	CENTRAL LAKE ERIE	9/14/76
С	41	42 08 06	82 08 24	CENTRAL LAKE FRIE	10/24/76
С	42	41 57 54	82 02 <b>30</b>	CENTRAL LAKE ERIE	8/21/76
С	42	41 57 54	82 02 30	CENTRAL LAKE ERIE	9/ 8/76
С	43	41 47 18	81 56 42	CENTRAL LAKE ERIE	9/14/76
С	44	41 31 48	81 42 30	CENTRAL LAKE ERIE	9/15/76
С	45	41 36 24	81 53 48	CENTRAL LAKE ERIE	10/23/76
С	46	41 40 54	82 05 12	CENTRAL LAKE EPIE	9/14/76
c	47	41 50 18	82 12 48	CENTRAL LAKE ERIE	8/21/76
C	47	41 50 18	82 12 48	CENTRAL LAKE ERIE	9/ 8/76
č	48	42 02 48	82 21 54	CENTRAL LAKE EPIE	9/14/76
č	48	42 02 48	82 21 54	CENTRAL LAKE ERIE	10/24/76
Ċ	49	41 55 54	82 24 30	CENTRAL LAKE ERIE	9/14/76
Č	49	41 55 54	82 24 30	CENTRAL LAKE ERIE	10/24/76
С	50	41 48 48	82 30 06	CENTRAL LAKE ERIE	10/24/76
Ċ	51	41 38 30	82 24 12	CENTRAL LAKE ERIE	10/23/76
Ĉ	52	41 31 54	82 27 12	CENTRAL LAKE ERIE	10/23/76
C	53	41 25 12	82 30 12	CENTRAL LAKE ERIE	10/23/76
c	54	41 34 00	82 38 06	CENTRAL LAKE ERIE	10/23/76
Ċ	55	41 44 18	82 44 00	WESTERN LAKE ERIE	10/19/76
č	56	41 54 42	82 50 24	WESTERN LAKE ERIE	10/19/76
c	57	41 49 54	83 01 06	WESTERN LAKE ERIE	10/18/76
č	58	41 41 06	82 56 00	WESTERN LAKE EPIE	10/18/76
Č	59	41 43 36	83 09 00	WESTERN LAKE ERTE	10/18/76
č	60	41 53 30	83 11 48	WESTERN LAKE ERTE	10/18/76
c	65	41 39 00	82 44 00	WESTERN LAKE ERTE	10/23/76
c	66	41 58 00	82 40 00	WESTERN LAKE ERTE	10/19/76
Č	67	41 40 00	82 52 00	WESTERN LAKE ERTE	10/19/76
č	68	L1 L5 00	82 51 00	WESTERN LAKE PRIF	10/19/76
c	69	<u>41 33 00</u>	82 55 00	WESTERN LAKE ERTE	10/18/76
č	70	<u>41 46 00</u>	83 20 00	WESTERN TAKE FRIE	10/18/76
Č	73 77	<u><u>41 58 40</u></u>	81 45 25	CENTRAL LAKE FRIE	9/ 8/7F
Č	74	<u>41 40 00</u>	82 35 00	CENTRAL LAKE FRIE	10/29/76
<u> </u>	, <b></b> T	<b>TI TV VV</b>		ערייניה היאטאי איטאיייניאי	

CRUISE	STATION	LATI	TUDE	LOI	NGI	CUDE	LOC	ATION		DA	TE
	75 76 78 79 81 82 CLH	41 5 41 3 42 0 42 1 41 3 41 3 41 3	4 00 6 30 7 00 5 00 6 36 4 30 1 47	83 83 81 80 82 82 81	18 04 15 48 50 10	00 00 00 00 40 00	WESTERN WESTERN CENTRAL CENTRAL CENTRAL CENTRAL CLEVELA	LAKE LAKE LAKE LAKE LAKE LAKE	ERIE ERIE ERIE ERIE ERIE ERIE ERIE	10/1 10/1 9/ 9/ 10/1 10/2	8/76 8/76 8/76 9/76 8/76 3/76
D D D D	1 2 3 4	42 2 42 2 42 2 42 2	) 42.6 0 43.8 ) 40.8 ) 38.4	82 82 82 82	55 55 55 55	42 45 43.8 45	DETROIT DETROIT DETROIT DETROIT	RIVE RIVE RIVE RIVE	R R R R	11/1 11/1 11/1 11/1	4/76 4/76 4/76 4/76

#### APPENDIX 2

## ANALYTICAL RESULTS

CRUISE	STATION	INTI Tof Ch	EFVAL EOTTOM CH	WATER %	H G PP M	CR PPN	NI Ppm
1 1 1 1 1	1 1 1 1 1	0.0 3.0 9.0 15.0 25.0	1.0 4.0 10.0 16.0 26.5	57 51 48 42 31	3.800 5.800 4.900 2.800 0.600	280.0 210.0 160.0 130.0 40.0	140.0 110.0 100.0 65.0 22.0
1 1 1 1	7 - A 1 - Z 7 - A 1 - A 1 - A	0.0 5.0 10.0 19.0 35.0	2.0 6.0 11.0 20.0 36.5	43 44 45 46 48	0.970 0.870 0.980 1.600 0.680	57.0 59.0 63.0 110.0 83.0	78.0 87.0 86.0 110.0 81.0
1 1 1 1	2222	0.0 1.0 3.0 5.0 8.5	1.0 2.0 4.0 5.0 9.5	52 50 42 33 40	2.300 3.400 3.000 2.200 2.100	140.0 140.0 95.0 100.0 200.0	65.0 64.0 56.0 42.0 89.0
1 1 1 1 1	2 - X 2 - X 2 - X 2 - X 2 - X	0.0 1.0 2.0 3.0 5.0	1.0 2.0 3.0 4.0 6.5	28 21 21 22 24	0.520 0.300 0.170 0.350 0.329	11.0 8.2 6.0 12.0 14.0	30.0 C.0 24.0 25.0 40.0
1 1 1 1	11 A 11 A 12	0-0 1.6 3.0 5.0 8.0	1.0 2.0 4.0 6.0 9.0	24 23 17 21 25	0.240 0.240 0.280 0.210 0.590	55.0 38.0 43.0 50.0 64.0	25.0 18.0 18.0 21.0 30.0
1 1 1 1 1	4 4 4 4	C.0 5.0 10.0 19.0 39.0 57.0	2.0 6.0 11.0 20.0 40.0 58.0	52 48 42 30 25 22	1.600 1.100 0.720 0.090 0.054 0.048	38.0 33.0 27.0 14.0 12.0 18.0	88.0 76.0 61.0 48.0 46.0 51.0
1 1 1 1 1	5 v) 10 u) 5 v)	0.0 5.0 10.0 19.0 39.0 56.0	2.0 6.0 11.0 20.0 40.0 57.0	57 56 42 32 26 23	1.300 1.400 1.000 0.081 0.039 0.047	42.0 40.0 39.0 18.0 9.5 10.0	79.0 73.0 74.0 51.0 45.0 46.0
1 1 1 1	E 6 6 6	0.0 5.0 9.0 15.0 32.0	2.0 6.0 10.0 16.0 33.6	47 34 33 20 27	1.000 0.690 0.330 0.066 0.037	30.0 23.0 24.0 8.9 12.0	48.0 36.0 38.0 17.0 38.C
1 1	7 7	0.0	1.0	22 18	0.130 0.160	66.0 46.0	61.0 48.0
1 1 1 1 1	e 8 8 8	0.0 5.0 15.0 22.5 45.0	2.0 6.0 16.0 23.5 46.0	44 34 29 30 30	0.480 0.120 0.083 0.044 0.044	40.0 17.0 13.0 15.0 19.0	61.0 59.0 45.0 28.0 37.0
1 1 1 1	ç 9 9 9	0.0 5.0 10.0 19.0 42.0	2.0 6.0 11.0 20.0 43.7	59 55 56 41 32	1.300 0.870 0.750 0.068 0.120	60.0 44.0 49.0 24.0 17.0	71.0 58.0 67.0 39.0 36.0
1 1 1 1	1 C 1 C 1 C 1 C 1 C 1 C	0.0 2.0 9.0 22.0 48.0	2.0 4.0 10.0 23.0 49.5	57 59 50 34 36	1.600 1.800 1.100 0.170 0.340	80.0 100.0 60.0 21.0 22.0	83.0 100.0 88.0 61.0 63.0
1 1 1 1	11 11 11 11	0.0 5.0 15.0 26.0 55.0	2.0 6.0 16.0 27.2 56.5	41 39 33 31 32	0.052 0.073 0.053 0.058 0.058	17.0 17.0 19.0 16.0 16.0	32.0 34.C 40.C 33.0 34.0
1 1 1 1	12 12 12 12 12	0.0 5.0 10.0 19.0 59.0	2.0 6.0 11.0 20.0 60.0	36 38 35 28 33	0.088 0.089 0.069 0.140 0.079	15.0 17.0 13.0 17.0 15.0	0.0 0.0 0.0 63.0
1 1 1 1 1	13 13 13 13 13 13	0.0 5.0 9.0 15.0 19.0 39.0 57.0	2.0 6.0 10.0 16.0 20.0 40.0 58.0	43 31 28 29 26 26	1.900 0.120 0.044 0.067 0.044 0.045 0.045 0.034	130.0 16.0 11.0 15.0 17.0 17.0 7.2	110.0 47.0 44.0 53.0 48.0 62.0 42.0
1 7 1 1	14 14 14 14	0.0 2.0 4.0 6.0 8.0	2.0 4.0 6.0 8.0 10.0	51 37 23 64 23	2.000 0.870 0.170 0.560 0.210	160.0 150.0 50.0 32.0 30.0	76.0 54.0 28.0 37.0 37.0

CRUISE	STATION	INTE TOF	RVAL BOTTOM	WATER %	H G PPM	CR PPM	NI Ppm			CRUISE	STATION	TNT TOP	ERVAL BOTTOM	WATER S	HG PPN	CR PPM	N I PPM
1 7 1 7	14 14 74 14	10.0 12.0 14.0 16.0	12.0 14.0 16.0 19.0	17 22 21 21	0.130 0.190 0.130 0.140	57.0 39.0 25.0 95.0	15.0 33.0 36.0 37.0			1 1 1	33 33 33	19.0 39.0 56.0	20.0 40.0 57.0	44 4 1 35	0.099 0.091 0.063	25.0 18.0 20.0	39.0 39.0 40.0
1 1 1 1	15 15 15 15	0.0 1.0 4.C 6.0 5.8	1.0 2.0 5.0 7.0 10.8	59 53 51 71 36	4.100 2.700 0.0 4.500 0.810	300.0 0.0 170.0 460.0 110.0	120.0 0.0 100.0 160.0 57.0			1 1 1 1 1	34 34 34 34 34	0-0 5.0 17.0 29.0 37.0	2.0 6.0 18.5 30.9 38.5	58 54 47 37 39	1.800 0.380 0.065 0.04r 0.027	97.0 60.0 18.0 23.0 20.0	100.0 72.0 38.0 46.0 46.0
1 1 1 1	16 16 16 16	0.0 3.0 9.0 15.0 27.0	1.0 4.C 10.0 16.0 28.4	59 54 43 32 34	3.000 3.600 1.100 0.530 0.250	130.0 210.0 150.0 130.0 83.0	110.0 93.0 77.0 48.0 26.0			1 1 1 1	35 35 35 35 35	0.0 5.0 10.0 19.0 52.0	2.0 6.C 11.0 20.0 53.0	58 52 47 44 38	1.800 0.920 0.480 0.260 0.052	110.0 64.0 29.0 18.0 21.0	110.0 74.0 53.0 36.0 37.0
1 1 1 1	18 18 18 18 18 18	0.0 1.0 2.0 3.0 7.0	1.0 2.C 3.0 4.0 8.0	54 27 43 33 28	1.300 0.600 0.640 0.350 0.054	92.0 49.0 60.0 31.0 23.0	110.0 58.0 67.0 46.0 80.0			1 1 1 1	36 36 36 36 36	0.0 1.0 5.0 9.0 12.0	1.0 2.0 6.0 10.1 13.0	48 37 21 20 34	1.000 0.570 0.280 0.150 0.150	28.0 26.0 8.3 31.0 180.0	42.0 26.0 12.0 64.0 30.0
1 1 1 1	19 19 19 19	0.0 1.C 3.0 5.C 8.5	1.0 2.0 4.0 6.0 9.8	45 34 24 24 28	1.300 0.700 0.180 0.110 0.067	55.0 38.0 20.0 0.0 31.0	54.0 48.0 79.0 23.0 18.0			1 1 1 1	37 37 37 37 37 37	0.0 5.0 15.0 28.0 52.0	2.0 6.0 16.0 29.0 53.0	33 32 37 31 34	1.400 0.450 0.250 0.110 0.073	67.0 46.0 32.0 22.0 33.0	69.0 59.0 62.0 46.0 64.0
1 1 1	20 20 20 20	0.0 1.0 2.0 3.0	1.0 2.0 3.0 4.5	36 32 27 21	0.510 0.500 0.140 0.140	170.0 15r.0 12c.0 130.0	53.0 47.0 24.0 20.0			1 1 1 1	38 38 38 38 38 38	C.0 5.0 10.0 15.0 29.0	2.0 6.0 11.0 16.0 30.7	42 31 36 34 27	0.200 C.150 0.240 0.230 0.036	21-0 23.0 19.0 28.0 7.5	37.0 58.0 30.0 40.0 19.0
1 1 1 1	21 21 21 21 21	0.0 3.0 9.0 28.0 60.0	1.0 4.0 10.0 29.0 61.4	43 28 36 38 33	0.340 C.210 0.200 0.130 0.239	23.0 18.0 22.0 24.0 17.0	39.0 63.0 68.0 65.0 59.0			1 1 1 1	38 38 38 38	0.0 1.0 5.0 9.0 17.0	1.0 2.0 6.0 10.0 18.5	37 35 26 25 23	0.320 7.290 0.220 0.220 0.160	180.0 0.0 9.8 150.0 50.0	41.0 31.0 32.0 23.0 22.0
1 1 1 1	22 22 22 22 22 22 22	C.C 5.C 9.0 15.0 19.0 59.0	2.0 6.0 10.0 16.0 20.0 60.0	46 47 44 47 37 33	0.430 0.420 0.390 0.200 0.110 0.055	36.0 25.0 29.0 25.0 20.0 22.0	70.0 64.0 73.0 64.0 57.0 64.0			1 1 1 1	40 40 40 40	0.0 1.0 2.0 3.0 6.0	1.0 2.0 3.0 4.0 7.5	29 29 25 24 32	C.035 C.028 C.022 O.CO6 0.029	15.0 0.0 190.0 25.0 27.0	46.C 49.0 52.3 48.0 62.0
1 1 1 1	23 23 23 23 23 23	0.0 5.0 9.0 15.0 19.0	2.0 6.0 10.0 16.0 20.0	62 42 39 36 42	0.120 0.065 0.069 0.052 0.049	17.0 20.0 15.C 16.0 19.0	0.0 62.0 0.0 59.0 71.0			1 1 1 1	43 43 43 42	0.0 5.0 10.0 15.0 30.0	2.0 6.0 11.0 16.0 31.5	62 50 52 41 36	1.800 C.500 0.330 0.140 0.032	100.0 67.0 31.0 18.0 13.0	11C.0 85.0 54.0 36.0 34.0
1 1 1 1	23 23 24 24	39.0 58.0 0.0 5.0	40.0 59.0 2.0 6.0	31 33 26 29	0.049 0.053 0.057 0.068	19.0 16.0 18.0 19.0	60.0 64.0 69.0 39.0			1 1 1 1 1	4 U 4 U 4 U 7 U 7 U	0.0 5.0 10.0 19.0 37.0	2.0 6.0 11.0 20.0 38.0	62 52 50 38 40	1.100 0.420 0.350 0.120 0.088	72.0 46.0 39.0 14.0 18.0	75.0 60.0 56.0 0.0 34.0
1 1 1 1 1	24 24 25 25	27.0 57.0 5.0	28.0 58.5 2.0 6.0	24 34 50	0.034 0.047 1.100 7.660	15.0 19.0 64.0 43.0	88.0 78.0 83.0 68.0			1 1 1 1 7	455 455 455	0.0 5.0 9.0 15.0 19.0	2.0 6.0 10.0 16.0 20.0	34 30 32 26 29	0.080 0.053 0.075 0.062 0.070	12.0 14.0 8.0 11.0 16.0	24.C 27.0 22.0 22.0 34.0
1 1 1 7 1	25 25 25 26 26	19.0 54.0 9.0 3.0	11.0 20.0 55.0 1.0 4.0	40 40 29 23	0.170 0.082 0.094 0.310 0.170	21.0 20.0 21.0 75.0 22.0	40.0 60.0 87.0 32.0 61.0			1 1 1 1	45 46 46 46 46	57.0 0.0 3.0 9.0 2 ⁿ .0	58.0 1.0 4.0 10.0 21.0	66 49 27 29 30	0.200 0.430 0.230 0.260 0.100	18.0 22.0 13.0 18.0 0.0	39.0 28.0 24.0 35.0 32.0
1 1 1 1	26 26 26 28 28	9.0 15.0 20.0 0.0	10.0 16.0 21.3 1.0 2.0	19 20 18 48 41	0.160 0.180 0.150 0.270 0.210	22.0 25.0 36.0 18.0	73.0 61.0 69.0 38.0 43.0			1 1 1 1	46 47 47 47	47.0 0.0 5.0 15.0 25.0	48.8 2.0 6.0 16.0 26.0	42 40 23	C.160 0.530 0.320 0.021	19.0 39.0 20.0 11.0	42.C 40.0 32.0 23.0
1 1 1 1	2E 29 29 29 29	2.0 0.0 1.0 5.0 9.0	3.0 1.0 2.0 6.0 10.0	26 27 25 23	0.090	14.0 18.0 89.0 21.0 7.9	41.0 38.C 25.0 27.0 33.0			1 1 1 1	47 48 48 48	46.0 .0 5.0 9.0 15.0	47.0 2.0 6.0 10.0 16.0	21 36 29 31 29	0.005 0.170 0.083 0.055 0.032	5.9 16.0 9.8 9.5 11.0	20.0 30.0 20.0 24.0 26.0
1 1 1 1	25 31 31 31 31	0.0 1.0 2.0 3.0	1.C 2.C 3.0 4.0	27 44 37 41	0.150 0.130 0.081 0.082	14.0 23.0 16.0 20.0	47.0 62.0 93.0 74.0			1	48 48 49	2.C 59.0	20.0 60.0 5.0 6.0	28 27 39 30	0.037	11.0 13.0 14.0 13.0	22.0 29.0 25.0
1 1 1 1 1	32 32 32 32 32 32	0.C 5.0 9.0 15.0 19.0	2.0 6.0 10.0 16.0 20.0	50 36 34 35 34	0.052 0.072 0.079 0.078 0.051	20.0 24.0 22.0 25.0 20.0	40.0 46.0 43.0 44.0 79.0			1 1 1 7 7	49 49 49 49 49 49 49	19.0 24.6 33.0 36.0 40.0 48.0	20.0 33.0 36.0 40.0 48.0 57.0	29 28 20 22 21 20	0.052 0.110 0.064 0.061 0.0 0.034 0.066	13.0 14.0 15.C 13.0 13.0 13.0 11.0	24.0 25.0 25.0 22.0 23.0 22.0
1 1 1 1 1	32 32 33 33 33 33	39.0 54.C 0.0 5.0 10.0	40.0 55.0 2.0 6.0 11.0	32 40 62 50 50	0.047 0.080 1.700 0.670 0.160	18.0 23.0 78.0 24.0 14.0	39.0 54.0 93.0 38.0 25.0	_ `	76 ·	- 1	50 50 50 50	0.0 1.0 5.0 9.0 20.0	1.0 2.0 6.0 10.0 21.0	52 44 41 37 32	C.440 0.320 C.230 0.170 C.160	120.0 15.0 13.0 48.0 69.0	53.0 48.0 34.0 32.0 34.0

CRUISE	STATION	INTI TOP CM	BOTTON CH	WATER T	HG PPM	CR PPM	NI PPH		CRUISE	ST AT ION	INT TOP CM	ERVAL BOTTON CM	WATER %	h g PP M	CR PPH	NI PPM	
1 1 1 1 1	51 51 51 51 51	0.0 2.0 4.0 6.0 8.0 10.0	2.0 4.0 6.0 8.0 10.0 12.0	44 47 34 30 29	0.520 0.500 0.200 0.070 0.053 0.074	45.0 38.0 21.0 11.0 12.0 13.0	56.0 40.0 29.0 20.0 21.0 19.0		1 1 1 1	D-2 D-2 D-2 D-2 D-2	0.0 1.0 8.0 12.0 17.0	1.0 2.0 9.0 13.0 18.0	37 28 33 21 18	0.970 0.720 0.660 0.310 0.130	100.0 39.0 16.0 8.7 72.0	56.0 55.0 50.0 33.0 13.0	
1 1 1 1 1 1	51 51 51 51 51 51 51	12.0 14.0 16.0 20.0 28.0 32.0 40.0	14.0 16.0 20.0 24.0 32.0 36.0 47.0	28 29 29 24 25 25 24 25	0.064 0.032 0.070 0.035 0.100 0.075 0.048 0.055	12.0 12.0 14.0 13.0 14.0 14.0 13.0	18.0 20.0 21.0 22.0 21.0 22.0 22.0		1 1 1 1 1 1	D-2 D-2 C-2 D-2 D-2 D-2 D-2 D-2	r.C 2.0 4.r 6.0 8.0 10.0 12.0	2.0 4.0 6.0 10.0 12.0 14.0	62 28 21 26 18 17 18	0.910 0.670 0.340 0.250 0.099 0.043 0.031	70.0 46.0 31.0 16.0 7.2 6.3 7.3	49.0 35.0 27.0 17.0 8.2 7.5 7.5	
1 1 1 1 1	52 52 52 52	0.0 5.0 9.0 15.0 19.0	2.0 6.0 10.0 16.0 20.0	47 42 36 33 30	0.610 0.510 0.160 0.270 0.051	50.0 49.0 35.0 23.0 15.0	99.0 98.0 87.0 65.0 52.0		1 1 1 1	D-3 D-3 D-3 D-3 D-3	0.0 1.0 7.0 3.0 6.0	1.0 2.0 3.0 4.0 7.0	35 27 26 24 26	0.007 0.005 0.007 0.003 0.006	32.0 21.0 30.0 94.0 48.0	43.0 38.0 48.0 36.0 55.0	
1 1 1	52 53 53 53	60.0 0.0 1.0 5.0	61.0 1.0 2.0 5.0	23 34 27 20	0.029 0.340 0.230 0.140	9.2 18.0 12.0 63.0	0.0 29.0 26.0 13.0		1 1 1 1	D-4 D-4 D-4 D-4	0.C 1.0 2.0 3.0	1.0 2.0 3.0 4.0	48 34 27 22	2.000 0.810 0.660 0.540	57.0 23.0 18.0 87.0	58.0 29.0 27.0 31-0	
1 1 1	53 53 55	9.0 12.0	10.0 13.0 2.0	19 25 61 45	0.120	28.0 12.0 64.0	29.0 41.0 77.0 83.0		1	C-4 D-4 C-4 D-4	C.0 2.0 4.0 6.0	2.0 4.0 6.0 8.0	87 57 42 37 37	0.820 0.410 0.350 0.490	26.0 21.0 32.0 29.0	33.0 30.0 37.0 40.0	
1 1 1	55 55 55	15.0 23.6 50.0	16.0 25.C 51.3	21 29 60	0.160 0.077 0.073	12.0 21.0 30.0	25.0 62.0 64.0		1 1 1 1 1	D-4 D-4 D-4 D-4	10.0 12.0 14.0 16.0	12.0 14.0 16.0 20.0	40 39 36 37	0.480 0.280 0.380 0.320	18.0 17.0 14.0 15.0	35.0 31.0 28.0 26.0	
1 1 1	56 56 56 56	3.0 9.0 15.0 26.0	4.0 15.0 16.0 27.5	43 28 35 22	0.550 0.019 0.390 0.200	0.0 100.0 29.0 15.0	54.0 44.0 45.0 41.0		1 1 1 1	D-4 D-4 D-4 D-4	28.0 32.0 40.0 50.0	32.0 36.0 50.0 61.0	40 40 31 29	0.280 0.230 0.290 0.190	18.0 19.0 14.0 12.0	33.0 32.0 21.0 20.0	
1 1 1 1	57 57 57 57 57	0.0 5.0 10.0 19.0 34.0	2.0 6.0 11.0 20.0 35.0	52 53 47 47 39	0.340 0.45C 0.390 0.310 0.120	28.0 27.0 23.0 25.0 17.0	59.0 55.0 83.0 53.0 43.0		1 1 1 1 1	8 - 1 M - 1 M - 1 M - 1 M - 1	0.0 5.0 19.0 29.0 56.0	2.0 6.0 20.0 30.0 57.5	50 42 38 41 36	0.66C 0.720 1.500 0.500 0.870	42.0 39.0 46.0 47.0 40.0	54.0 52.0 51.0 55.0 46.0	
1 1 1 1	5 8 5 8 5 8	(.0 1.0 2.0 3.0	1.0 2.0 3.0 4.0	48 20 19 19	0.076 0.019 0.018 0.024	17-0 4.3 4.2 2.2	53.C 14.0 15.0 17.0		2 2 2	G S 1 1 G S 2	0.0 0.0 0.0	10.0 6.0 10.0	30 25 21	2.100 0.130 0.140	100.0 0.0 24.0	72.0 0.0 16.0	
1 1 1 1 1	58 58 58 58 58 58 58 58	6.0 2.0 4.0 6.0 8.0	7.3 2.0 4.0 6.0 8.0 10.5	27 50 23 18 16 18	0.069 0.140 0.100 0.047 0.038 0.067	9.6 13.0 7.9 5.1 4.9 6.5	27.0 21.0 14.0 6.8 5.7 9.5		222222222222222222222222222222222222222	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.0 2.0 4.0 6.0 8.0 10.0 12.0	2.0 4.0 6.0 8.7 10.0 12.0 14.0	23 21 16 24 14 14	0.410 0.120 0.120 0.210 0.030 0.031 0.025	66.0 23.0 29.0 31.0 19.0 12.0 8.2	36.0 19.0 20.0 23.0 11.0 17.0 26.0	
1 1 1 1 1	559 599 599	0.0 5.0 10.0 19.0 39.0 59.0	2.0 6.0 11.C 20.0 47.0 60.0	46 36 34 34 28 33	0.300 0.068 0.049 0.045 0.045 0.045	16.0 10.0 9.5 14.0 15.0 18.0	0.0 43.0 41.0 48.0 53.0 100.0		2222	2 2 2 2 653	14.0 15.0 18.0 20.0 21.5	16.0 18.0 20.0 21.5 25.0	18 20 17 17 20 51	0.059 0.017 0.032 0.013 0.029 2.700	21.0 26.0 20.0 31.0 130.0	42.0 51.0 38.0 40.0 71.0 75.0	
1 1 1 1	60 60 60 60 60	5.0 10.0 19.0 32.0	2.0 6.0 11.0 20.0 33.0	65 56 41 37 31	0.670 0.250 0.083 0.130 0.032	61.0 36.0 21.0 15.0 10.0	120.0 110.0 57.0 60.0 80.C		222222222222222222222222222222222222222	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.0 2.0 4.0 6.0 8.0 10.0	2.0 4.0 6.0 8.0 10.0 12.0	56 52 54 54 59 53	2.100 2.600 1.400 1.700 2.100 2.100	140.0 160.0 150.0 140.0 170.0 160.0	110.0 120.0 110.0 110.0 120.0 110.0	
1 1 1 1	61 61 61 61 61	0.0 5.0 10.0 19.0 53.0	2.0 6.0 11.0 20.0 54.5	65 60 56 44 36	0.570 0.560 0.490 0.210 0.085	35.0 32.0 31.0 17.0 15.0	.83.0 73.0 97.0 66.0 48.0		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		14.0 16.0 20.0 24.0 28.0	16.0 20.0 24.0 28.0 32.0	50 55 51 46 48	1.000 1.000 0.730 0.530 0.750	110.0 110.0 84.0 47.0 46.0	97.C 85.D 79.0 78.0 79.0	
1 1 1 1 1	62 62 62 62	0.0 1.0 5.0 11.0 18.0	1.0 2.0 6.0 12.0 19.2	38 42 34 43 22	0.210 0.260 0.240 0.160 0.056	10.0 14.0 140-0 78.0 8.2	41.0 43.0 21.0 32.0 32.0		2 2 2 2	4 3 3 3 3 3 3	36.0 40.0 50.0 56.0	40.0 50.0 56.0 62.0	45 40 23 22	0.120 0.230 0.160 0.C30 0.011	23.0 0.0 9.8	61.C 52.0 C.0 0.0	
1 1 1 1 1	D-1 E-1 E-1 D-1 E-1	6.0 1.0 5.0 9.0 16.0	1.0 2.0 6.0 10.0 17.6	34 34 20 26 25	1.900 2.000 1.300 1.300 0.740	140.0 87.0 46.0 83.0 44.0	80.0 110.0 52.0 67.0 67.0		2 2 2 2 2 2	4 4 4 4 4	0.0 2.0 4.0 6.0 8.0	2.0 4.0 6.0 8.0 10.0 12.0	54 56 55 54 55 54	2.000 1.700 1.800 1.700 1.700 1.700 1.200	87.0 100.0 130.0 110.0 110.0 0.0	67.0 79.0 82.0 72.0 70.0 61.0	
1 1 1 1 1 1 1 1	D-1 D-1 D-1 C-1 D-1 C-1 D-1 D-1 D-1	0.0 2.0 4.0 8.0 10.0 14.0 14.0 14.0	2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 20.0 24.0	30 28 16 22 18 20 23 18 18 25	1.400 2.000 0.480 0.420 0.310 0.250 0.430 0.220 0.140 0.150	71-0 56.0 24.0 26.0 21.0 26.0 15.0 7.1 7.4	76.0 73.0 24.0 20.0 24.0 20.0 28.0 14.0 9.1 9.5	- 77	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	****	12.0 14.0 20.0 24.0 28.0 32.0 16.0 40.0 50.0 54.0	14.0 16.0 20.0 24.0 28.0 32.0 36.0 40.0 50.0 54.0 60.0	53 51 54 46 47 35 29	0.940 0.740 0.710 0.450 0.540 0.540 0.250 0.160 0.063 0.055 0.054	81.0 63.0 51.C 29.0 14.0 17.0 15.0 11.0 13.0	56.0 49.0 48.0 35.0 29.0 34.0 25.0 23.0 24.0 24.0 24.0	

CRUISE	STATIO	N INTERVAL TOP BOTTO	WAT FF	HG PPM	CR PPN	N I PPM			CR OL SE	STATIC	N INT	ERVAL BOTTOM	W AT ER %	H G PP M	C R P P M	N I P PM
2	4	60.0 66.0	23	0.045	12.0	26,.0			2	9	90.0	94.0	42	0.055	19.0	76.C
2	GSE	0.0 10.0	28	1.000	32.0	35.0			2	ç	94.0	98.0	43	0.066	19.0	97.0
2	5	C.0 2.0	52	1.400	88.0	79.C			2	ģ	120.0	124.0	50	0.066	23.0	R2.0
2		2.0 4.0	45	0.460	36.0	58.0			2	9	124.0	128.0	44	0.073	19.0	84.0
2	Ē	6.0 8.0	39	0.180	15.0	47.0			2	ç	129.0	132.0	53	0.100	18.0	65.0
2	5	8.0 10-0	31	0.086	13.0	42.0			4	Ś	136.0	140.0	31	0.033	15.0	96.0
2	5	10.0 12.0	31	0.079	16.0	46.0			2	9	140.0	144.0	27	0.045	9.9	80.0
2	5	14.0 16.0	32	0.100	14.0	48.0			2	s 5	147.0	148.0	47	0.024	10.0	89.0
2	5	16.0 20.0	31	0.051	14.0	47.0			2	9	148.0	152.0	65	0.110	12.0	94.0
2	5	20.0 24.0	31 29	0.048	15.0	47.0			2	9	152.0	156.0	54	0.045	15.0	59.0
2	5	28.0 32.0	26	0.040	14.0	48.0			2	ģ	161.0	167.0	24	0.029	19.0	71.0
2	5	32.0 36.0	24	0.040	11.0	48.0			'n			10 0		A 945	6 1 A	( ) (
2	5	40.0 50.0	25	0.038	13.0	45.0			2	10	0.0	2.0	55	0.710	75.0	84.0
2	5	50.0 59.0	22	0.041	14.0	51.0			2	10	2.0	4.0	54	0.870	72.0	84.0
2	Ē	67.0 76.0	43	0.100	17.0	54.0			2	10	6.0	B.0	43	0.450	49.0	53.0
2	5	76.0 87.0	46	0.084	19.0	54.0			2	10	8.0	10.0	41	0.330	43.0	58.0
2	•	07.0 99.0	2.5	0.0.00	13.0	72.00			2	10	12.0	14.0	31	0.140	27.0	46.0
2	GSE	0.0 10.0	55	2.000	110.0	74.0			2	10	14.0	16 . 0	35	0.052	21.0	37.0
4	h E	2.0 4.0	51	2.200	120.0	80.0			2	10	16.0	20.0	40 #1	0.030	18.0	37.0
2	E	4.0 6.0	67	1.200	110.0	74.0			2	10	24.C	28.0	37	0.042	19.0	39.0
2	6	6.0 8.0	66 64	1.200	110.0	70.0			2	10	28.0	30.5	48	r.032	21.0	44.0
2	ě	10.0 12.0	56	0.360	54.0	49.0			2	10	36.0	40.0	38	0.029	16.0	40.0
2	6	12.0 14.0	56	9.170	44.0	48.0			2	10	46.0	50.0	39	0.025	0.0	47.0
2	6	16.0 27.0	54	0.029	22.0	32.0			2	10	80.0	87.0	40	0.034	21.0	50.0
2	e	20.0 24.0	45	0.015	17.0	24.0			2	10	87.0	01.0	38	0.019	15.0	36.0
2	ь €	28.0 32.0	42	0.011	15.0	21.0			2	10	91.0	95.0	. 11 63	0.033	9.8	40.0
2	6	32.0 36.0	43	0.004	18.0	27.0			2	10	99.0	105.0	54	0.032	16,0	44.0
2	6	36.0 40.0	40 41	0.005	19.0	27.0			2	10	105-0	109.0	46 43	0.050	15.0	41.0
2	é	50.0 60.0	38	0.003	14.0	22.0			2	10	116.5	114.5	54	0.045	12.0	45.0
2	6 £	76.0 80.0	33	0.011	14.0	19.0			2	10	114.5	122.5	38	0.025	9.8	31.0
2	6	108.0 112.0	32	0.012	11.0	20.0			4		12215	(27.5			1740	
2	6	136.0 140.0	20	0.0	6.1	10-0 14-0			2	GS11	0.0	10_0	48	0.301	0.0	0.0
-	0	-0.0 151.0	14	04.05	/.0				4	11	2.0	4.0	40	0.570	38.0	54.0
2	GS7	0.0 10.0	51	1.400	110.0	74.0			2	11	4.0	6.0	36	0.170	29.0	41-0
2	, 7	2.6 4.0	61	2.500	140.0	160.0			2	11	8.0	10.0	34	0.076	24.0	42.0
2	7	4.0 6.0	61	2.100	140.0	150.0			2	11	10.0	12.0	37	0.050	22.0	49.0
2	7	8.0 10.0	56	1.600	110.0	130.0			2	11	12.0	14.0	34	0.043	21.0	52.0 48.0
2	7	10.0 12.0	57	1.600	120.0	140.0			2	11	16.0	20.C	47	0.032	21.0	49.0
2	÷	12.0 14.0	51 49	0.360	71.0	120.0			2	11	20.0	24.0	51 44	0.038	25.0	55.0
2	7	16.0 20.0	50	0.260	28.0	82.0			2	11	28.0	31.0	47	0.624	18.0	44.0
2	7	20.0 24.0	45	0.220	28.0	83.0			2	11	31.0	36.0	38 37	0.023	13.0	41.0
2	2	27.0 31.0	46	0.098	23.0	72.0			2	11	37.C	41.0	42	0.023	15.0	51.0
2	7	31.0 36.0	42	0.070	20.0	59.0 72.0			2	11	41.0	45.0	44	0.015	21.0	59.0
2	7	40.0 50.0	40	0.051	18.0	67.0			-2	11	80.0	96.0	48	0.027	18.0	53.0
2	7	50.0 55.0	19 77	0.090	20.0	67.0			2	11	100.0	110.0	51	0.026	16.0	52.0
ž	7	65.C 74.0	35	0.056	14.0	62.0			2	11	118.0	120.0	ε2	0.057	11.0	26.0
2	7	74.0 78.0	27	0.037	14.0	57.0			2	11	120.0	122.0	41	0.032	12.0	21.0
2	ŕ	91.0 98.0	37	0.088	15.0	62.0			2	11	124.0	127.0	26	0.023	9.3	23.0
2	7	98.0 100.0	34	0.081	14.0	63.0			2	11	127.0	128.5	21	0.014	9.5	27-0
2	ź	103.0 105.0	25	0.120	9.5	42.0			ź	11	135.0	140.0	18	0.014	12.0	31.0
2	7	105.0 115.0	17	0.028	11.0	.72.0			2	11	140.0	145.0	18	0.017	13.0	31.0
2	7	115.0 119.0	14	0.038	8.8	70.0			2	11	155.0	158.5	23	0.019	12.0	35.0
2	ŕ	123.0 127.0	18	0.031	0.0	76.0			2	11	161.0	163.0	44	0.033	13.0	51.0
2 7	7	127.0 131.0	19 15	0.030	10.0	73.0			,	0 6 5 3	~ ^	10 0	34	0 5 70	116 Ó	<b>5</b> # 0
2	•	(31.0 133.0		•••	1207				2	12	č.c	2.0	55	0.490	47.0	63.0
2	GSS	0.0 10.0	37	1.200	69.0	70.0			4	12	2.0	4.0	52	0.620	53.0	63.0
2	9	2.0 4.0	57	1.400	90.0	160.0			2	12	6.0	8.0	48	0.220	33.0	45.0
2	ç	4.0 5.0	57	1.300	91.0	160.0			2	12	9.0	10.0	38	0.120	31.0	38.0
2	ç	8-0 10-0	52 52	0.990	57.0	110.0			2	12	12.0	12.0	32	0.021	22.0	30.0
2	9	10.0 12.0	49	0.460	36.0	100.0			2	12	14.0	16.0	21	0.021	17.0	35.0
2	ç	12.0 14.0	Ц7 ЦР	0.430	29.0	0.00T 98.0			2	12	16.0	20.0	21	0.020	14.0	31.0
2	Ś	16.0 20.0	51	0.087	19.0	82.0			ž	12	20.0	22.0	18	0.C	8.1	24.0
2	9	20.0 24.0	52 49	0.047	19.0	82.0 78.0			2	12	22.0	24.0	30 # 1	0.012	21.0	33.0
2	9	28.0 32.0	45	0.056	19.0	71.0			2	12	26.0	29.0	40	0.012	25.0	35.0
2	ç, q	32.0 36.0	46 48	0.100	19.0	66.0 77.0			,	6513	0.0	10.0	56	0.200	20 0	30 0
2	ģ	40.0 50.0	45	0.066	20.0	76.0			2	13	0.0	2.0	54	0.440	37.0	65.0
2	9	70.0 80.0	42 38	0.097	19.0	98.0 87.0			2	13	2.0	4.0	45	0.130	23.0	49.0
2	9	84.0 86.0	37	0.049	16.0	8A.C			2	13	6.0	8.0	43	0.110	18.0	39.0
2	ç	86.0 88.0	36 37	0.073	15.0	72.0	-	78	- 2	13	8.0	10.0	43	0.05	15.0	36.0
-	2			- • • · · · ·					4	1.2		144 V	20	v e V 34	13.0	34 a V

CRUISE	statiq	N INT TOP	BOTTON	WAT EL	R HG PPM	CP PPM	N I PPM	CRUIS	STATIO	N JNT TOP	ERVAL BOTTOM	WATER \$	fig PPM	C8 PPM	N I Mqq
2	13 13	12.C	14.0 16.0	34 33	0.054	13.0 14.0	31.0 34.0	2	16 16	CH 43.5 47.0	СМ 47.0 50.9	42 40	0.054	20.0	22.0 10.0
2	13	20.0	24.0	38	0.018	11.0	36.0	2	16	50.0	52.5 54.5	37	0.041	17.0	9.6 19.0
2	13	24.0	28.0	32	0.055	12.0	33.0	2	16	54.5	56.5	40	0.039	19.0	24.0
ž	13	30.0	32.0	26	0.027	14.0	38.0	2	16 16	56.5	60.0 80.1	38 32	0.027	18.0	30.0
2	13	32.0	36.0	28	0.028	13.0	40.0	4	16	90.0	100.0	28	0.021	18.0	32.0
2	13	40.0	50.0	33	0.032	15.0	41-0	2	16	130.0	140.0	31	0.027	21.0	34.0
2	13	50.0 54.0	54.0 56.0	30 31	0.036	16.0	41.C	2	16	150.0	160.0 180.0	32 32	0.020	22.0	33.0 24.0
2	13	56.0	60.0	32	0.040	15.0	44.0	2	1€	180.0	185.5	28	0.024	25.0	30.0
2	13	66.0	76.5	38	0.041	15.0	50.0	2	16 16	185.5	187-5	20 19	0.025	16.0	16.0
2	13	76.5	80.0 90.0	37	0.033	19.0	49.0	2	16	189.5	191.5	20	0.026	18.0	22.0
ž	13	110.0	120.0	41	0-024	19.0	63.0	2	16	193.5	195.5	22	9.033	13.0	24.0
2	13	170.0	180.0	40	0.024	20.0	65.0 68.0	2	16	195.5	197.5	19 23	0.026	18.0 19.0	26.0
2	13	200.0	203.5	715. 115	0.030	21.0	67.0	2	0017		10.0	<b>C</b> 11	0 1 30	24 A	<b>h6</b> 0
-							,,,,,,	2	17	0.0	2.0	79	0.100	34.0	50.0
2	6514 14	0.0	2.0	78 63	0.180 C.120	35.0	47.0 39.0	2	17	2.0	4.C 6.D	85 77	0.033	33.0	51.0 48.0
4	14	2.0	4.0	57	0.064	22.0	42.0	ž	17	6.0	8.0	71	0.031	29.0	50.0
2	14	6.0	R.D	53	0.034	16.0	56.0	2	17	10.0	12.0	68	0.022	27.0	46.0
2	14	10.0	10.0	51 53	0.025	21.0 18.0	51.0	2	17	12.0	14.0	78 73	0.041	32.0	53.0
2	14	12.0	14.0	47	0.024	24.0	55.0	-							
2	14	16.0	20.0	50	0.062	34.0	42.0	2	GS18 18	0.0	2.0	62 56	0.160	47.0	35.0
2 2	14	20.0	24.0 28.0	47 44	0.022	24.0	43.0 49.0	2	18	2.0	4.0	57 54	0.110	34.0 35.0	20.0
2	14	28.0	32.9	50	0.031	21.0	47.0	2	18	6.0	8.0	60	0.073	31.0	5.7
2	14	36.0	40.0	46	0.021	23.0	42.0	2	18	10.0	10.0	56 55	0.047	27.0 36.0	17.0
2	14	40.0	50.0	47	0.037	30.0	54.0	2	18	12.0	14.0	52	0.013	37.0	28.0
2	14	60.0	70.0	41	0.039	27.0	51.0	2	18	14.0	16.0 20.0	47	0.034	32.0	32.0
2	14	70.0	80.0	46 48	0.025	28.0	44.0	2	18	20.0	24.0	55	0.028	31.0	32.0
2	14	110.0	114.0	49	0.029	24.0	49.0	2	18	28.0	32.0	50	0.033	29.0	50.0
2	14	140.0	150.0	45	0.030	30.0	46.0	2	16	32.0	36.0 40.0	55	0.018	30.C 32.C	40.0
2	14	170.0	180.0	45 #5	0.017	18.0	45.0	2	18	40-0	50.0	44	0.014	28.0	53.0
2	14	230.0	240.0	40	0.016	22.0	49.0	2	18	8.3.0	90.0	40	0.023	27.0	47.0
2	14	240.0	270.0	44	0.017	23.0 18.0	45.0	2	18 16	110.0	120.0	45	0.027	26.0	38.0
2	14	278.0	286.0	36	0.030	26.0	75.0	2	18	170.0	180.0	47	0.024	31.0	56.0
								2	18	210.0	220.0	44	0.018	28.0	52.0
2	14 A 14 A	0.0	2.0	59 52	0.560	60.0 53.C	65.0 57.0	2	18 18	240.0	250.0 280.0	44	0.011	26.0	57.0
2	14 1	4.0	6.0	47	0.270	35.0	52.0	2	18	300.0	310.0	42	0.024	24.0	50.0
2	14 <u>A</u>	8.0	10.0	38	0.120	20.0	41.0	2	18	320.0	327.5	38 42	0.017	30.0	51.0
2	14A 14A	10.0	12.0	3C 32	0.071	17.0	31.0	c	6 8 1 9	0.0	10 0	68	0.350	59.0	60.0
2	148	14.0	16.0	31	0.052	17.0	28.0	2	19	0.0	2.0	63	0.460	53.0	95.0
2	14A 14A	24.0	20.0	41 39	0.039	18.0	29.0	2	19	2.C 4.0	4.0	60 57	0.360	58.0 47.0	80.0
2	14 A.	32.0	36.0	36	0.041	16.0	24.0	2	19	6.0	8.0	56	0.360	48.0	71.0
-			4			12.0	23.0	2	19	10.0	12.0	52	0.210	24.0	60.0
2	GE 15 15	0.0	10.0	69 51	0.190	41.0	48.0	2	19	12.0	14.0 16.0	49 55	0.110	16.0	47.0
2	15	2.0	4.0	36	0.052	21.0	36.0	2	15	16.0	20.C	51	0.053	16.0	35.0
2	15	6.0	8.0	37	0.035	19.0	36.0	2	19	24.0	24.0	46 50	0.050	16.0	44.0
2	15	8.0	10.0	38 33	0.034	19.0 18.0	39.0 36.0	2	19	28.0	32.0	49 45	0.047	16.0	38.0
2	15	12.0	14.0	30	0.028	20.0	40.0	2	15	36.0	40.0	41	6.028	13.0	47.0
2	15	16.0	20.0	31	0.035	20.0	35.0	2	19	40.0	43.5 47.0	40 44	0.041	13.0	41.0
2	15	20.0	24.0	31 30	0.010	18.0	32.0	2	19	47.0	51.0	39	0.045	12.0	30.0
2	15	28.0	32.0	29	0.010	18.0	31.0	2	19	53.0	59.0	35	0.049	10.0	39.0
2	15 -	32.0	40.0	33	0.009	16.0	30.0	2	19	58.0	60.0 70.0	30 26	0.022	9.3 12.0	38.0
2	15	40.0	48.0	30 38	0.080	17-0	33.0 34 0	2	15	70.0	73.0	25	0.036	14.0	47.0
2	15	100.0	1 10 . 0	41	0.017	16.0	33.0	2	19	75.5	78.0	21	0.031	14.0	53.0
2	GS16	c.c	10 - C	74	0.270	50.0	57.0	2	G 5 2 C	0.0	10.C	45	0.670	140.0	75.0
2	16 16	0.0	2.0	56 54	0.330	60.0	56.0	2	20	0.0	1.0	45	0.930	150.0	90.0
2	16	4.0	6.0	50	0.200	32.0	17.0	2	20	3.0	5.0	43	0.550	150.0	110.0
2	16 76	ь.U 8.O	8.0 10.C	50 47	0.190	35.0	33.Q 43.D	2	2C 2C	5.0 7.0	7.0 9.0	50 51	0.500	170.0 190.0	99.0 110.0
2	16 16	10.0	12.0	41 40	0.190	39.0	17.0	2	20	9.0	11.0	53	0.610	190.0	130.0
2	16	14.0	16.0	45	0.160	35.0	20.0	2	20	13.0	15.0	57 54	0.910	210.0	120.0
2	16 16	16.C 21.0	21.0 31.5	39 44	0.093 0.130	34.0	32.0	2	20	15.0 17.0	17.0 21.0	5C 52	0.830	150.0 150.0	98.0 100.0
2	16	31.5	35.5	53 84	0.063	34.0	0.0	$-79-\overline{3}$	20	21.0	25.0	50	0.820	160.0	120.0
ž	16	39.5	43.5	39	0.047	14.0	18.0	2	20	29.0	33.0	55 55	0.660	210.0	130.0

<pre>1</pre>	CRUISE	5"110	N INT TOF	BOTTON	WATER %	HG PPM	CR PPM	NI PPM		CRUISE	STATI	CN INT TOP	BRVAL BOTT ON	WATER %	H G PP M	CP PPM	NI PPM
1         2         1         2         1         2         1         2         1         2         1         2         1         2         1         2         1         2         1         2         1         2         1         2         1         2         1         2         1         2         1         2         1         2         1         2         1         2         1         2         1         2         1         2         1         2         1         2         1         2         1         2         1         2         1         1         2         1         1         2         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	2 2 2 2 2 2 2 2 2 2 2	20 20 20 20 20 20 20	33.0 37.0 41.0 45.0 49.0 59.0 69.0 79.0	37.0 41.0 45.0 49.0 59.0 69.0 79.0 89.0	49 54 54 54 54 58 58	0.630 0.780 0.650 0.740 0.700 0.720 0.960 0.900	19C.0 200.0 170.0 200.0 170.0 170.0 83.0 67.0	140.0 120.0 110.0 110.0 120.0 98.0 77.0 73.0		2 2 2 2 2 2 2 2 2 2 2 2	29 25 29 29 29 29	110.0 140.0 170.0 200.0 230.0 260.0 290.0 320.0	120.0 150.0 180.0 210.0 240.0 270.0 300.0 330.0	46 48 45 44 41 46 49 46	0.037 0.022 0.043 0.032 0.019 0.018 0.027 0.022	22.0 25.0 19.0 22.0 24.0 20.0 23.0 23.0	52.0 56.0 54.0 54.0 56.0 51.0 58.0 54.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2222	20 20 20 20 20	99.0 103.0 108.0 113.0	103.0 108.0 113.0 121.0	49 44 45 37	0.930 0.830 1.100 0.960	33.0 30.0 31.0 28.0	61.0 63.0 57.0 70.0 51.0		2 2 2	29 29 29 GSJC	350.0 380.0 391.0 0.0	391.0 397.0 10.0	45 44 38 54	0.014 0.017 0.014	28.0 23.0 22.0 30.0	52.0 53.0 45.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	GS21 21 21 21 21 21 21 21 21	0.0 0.0 2.0 4.0 6.0 8.0	10.0 2.0 4.0 6.0 8.0 10-0 12.0	61 56 51 48 46 42	0.240 0.680 0.650 0.095 0.055 0.061 0.037	34.0 0.0 27-0 24.0 19.0 22.0	43.0 0.0 37.0 38.0 31.0 33.0		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	30 30 30 30 30 30 30 30 30	2.0 4.0 6.0 10.0 12.0 14.0 16.0	2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 20.0	47 43 42 43 41 43 40 48	0.120 0.075 0.077 0.069 0.024 0.042 0.041 0.028 0.024	26.0 26.0 23.0 23.0 22.0 22.0 21.0	47.0 37.0 31.0 28.0 28.0 29.0 28.0 33.0
1       22       4.6       0.0       27       0.6       22.0       36       0.7       0.70       0.6       48       0.6       1         1       22       12.0       14.0       36       0.6       1       36       0.7       0.7       0.6       48       0.6       1       0.6       1       0.6       1       0.6       1       0.6       1       0.6       1       0.6       1       0.6       1       0.6       1       0.6       0.6       1       0.6       0.6       1       0.6       0.6       1       0.6       0.6       0.6       1       0.6       0.6       1       0.6       0.6       0.6       1       0.6       0.6       0.6       1       0.6       0.6       0.6       1       0.6       0.6       0.6       1       0.6       0.6       0.6       0.6       1       0.6       0.6       0.6       0.6       0.6       0.6       0.6       0.6       1       0.6       0.6       0.6       0.6       0.6       0.6       0.6       0.6       0.6       0.6       0.6       0.6       0.6       0.6       0.6       0.6       0.6       0.6	2 2 2 2 2	21 21 GS22 22 22 22 22	12.0 14.0 0.0 2.0 4.0	14.0 16.0 2.0 4.0 6.0 8.0	41 37 62 25 48 41 42	0.017 0.011 0.250 0.370 0.530 0.013 0.023	23.0 18.0 45.0 0.0 0.0 24.0	35.0 29.0 48.0 0.0 29.0 41.0		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	30 30 30 30 30 30 30 30	20.0 24.0 28.0 32.0 36.0 40.0 50.0	24.0 28.0 32.0 36.0 40.0 50.0 60.0	49 44 49 49 49 49	0.024 0.021 0.008 0.054 0.018 0.027 0.019	19.0 22.0 20.0 22.0 20.0 21.0 21.0 21.0	28.0 33.0 22.0 28.0 25.0 30.0 0.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	22 22 22 22 22 6 5 2 4	8.0 10.0 12.0 14.0	10.0 12.0 14.0 16.0	27 38 38 43 33	0.012 0.021 0.013 0.022 0.050	20.0 22.0 24.0 20.0	20.0 36.0 40.0 43.0 20.0		2 2 2 2 2 2	30 30 30 30 30 30 30	91.0 91.0 120.0 150.0 180.0 210.0 240.0	100.0 130.0 160.0 190.0 220.0 250.0	45 40 45 42 40 36	0.021 0.011 0.031 0.025 0.013 0.022 0.019	21.0 18.0 19.0 23.0 18.0 19.0	16.0 17.0 23.0 21.0 21.0 14.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 2 2 2 2	24 24 24 24 24 24	0.0 2.0 4.0 6.0 8.0 10.0	2.0 4.0 6.0 8.0 19.0 12.0	35 30 31 30 31 30	0.190 0.240 0.018 0.022 0.015 0.019	C.0 0.0 14.0 14.0 15.0 15.0	0.0 0.0 21.0 25.0 26.0 26.0		2 2 2 2	3 C 3 C 3 0 G S 3 1 3 1	250.0 260.0 265.0 0.0	260.0 265.0 270.0 10.0 2.0	35 37 33 53 47	0.022 9.013 0.019 0.120 0.093	20.0 16.0 17.0 34.0 29.0	21.0 23.0 27.0 46.0 38.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 2 2 2 2 2	24 24 GS25 25 25 25	12.0 14.0 0.0 0.0 0.0 2.0 4.0	10.0 10.0 2.0 4.0 6.0	27 25 51 36 29 36	0.022 0.250 0.230 0.120 0.180	13.0 11.0 40.0 24.0 15.0 19.0	22.0 21.0 41.0 0.0 0.0 0.0		2 2 2 2 2 2 2 2 2	31 31 31 31 31 31 31	2.C 4.0 6.0 10.0 12.0 14.0	4.C 6.0 8.0 10.0 12.0 14.0 16.0	48 49 50 49 49 50 50	0.029 0.058 0.061 0.047 0.050 0.028 0.036	23.0 23.0 22.0 21.0 21.0 23.0	32.0 34.0 33.0 31.0 34.0 34.0 34.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	25 G526 26 26 26	6.0 0.0 2.0 4.0	12.0 10.0 2.0 4.0	29 41 15 5	0.069 0.046 0.014 0.015 0.012	14.0 13.0 5.0 4.5 4.7	0.0 17.0 0.0 0.0 0.0		2 2 2 2 2	G532 32 32 32	0.0	10.0 2.0 4.0 6.0	35 26 28 27	2.100 2.300 4.800 4.900	88.0 100.0 130.0 140.0	34.0 58.0 59.0 52.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	26 26 26 26 26 26 26 26	5.0 8.0 10.0 12.0 14.0 16.0 18.0	8.0 10.0 12.0 14.0 16.0 18.0 21.0	14 17 27 25 28 25 26	0.010 0.026 0.037 0.029 0.017 0.017 0.017	14.0 13.0 22.0 23.0 18.0 20.0 24.0	0.0 0.0 0.0 0.0 0.0 0.0		222222222222222222222222222222222222222	32 32 32 32 32 32 32 32	8.0 10.0 12.0 14.0 17.0 20.0 23.0	10 - 0 12 - 0 14 - 0 17 - 0 20 - 0 23 - 0 27 - 0	30 30 31 30 29 27 15	4.800 5.400 3.100 0.970 0.520 0.026	160.0 210.0 250.0 93.0 67.0 41.0 16.0	48.0 58.0 48.0 57.0 47.0 59.0 46.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	222222222222222222222222222222222222222	25 26 26 26 26 26 26 26	21.0 23.0 25.0 28.0 30.0 32.0 34.0	23.0 25.0 28.0 30.0 32.0 34.0 39.0	25 23 25 26 28 28 31	0,014 0.018 0.024 0.011 0.012 0.027 0.032	22.0 18.0 22.0 24.0 22.0 22.0 23.0			222222222222222222222222222222222222222	32 32 32 32 32 32 32 32 32	27.0 31.0 33.0 38.0 41.0 44.0 46.0	31.0 33.0 38.0 41.0 44.0 46.0 48.0	16 15 20 17 21 11 15	0.025 0.064 0.120 0.058 0.051 0.015 0.015 0.032	18.0 15.0 21.0 17.0 23.0 0.0	52.0 54.0 63.0 63.0 0.0 0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 2 2	2€ 26 2€	39.0 42.0 45.0	42.0 45.0 50.0	30 29 30	0.023 0.022 0.030	19.0 24.0 20.0	0.0		2 2	32 GS33	48.0 0.0	55.0 10.0	19 27	0.031 0.093	0.0 31.0	0-C 29+0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 2	26 GS27	50.0 0.0	54.0 10.0	28 16	0.016	18.0	0.C 7.8		2	GS34 34	0.0	10.0	39 37	0.065	18.0 12.0	27.0 32.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	G52 E	c.0	10-0	37	0.094	20.0	25.0		2	34 34	2.0	4.0 6.C	30 26	0.025	9.0 11.0	31.0 37.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	281	0.0	10 . C	50	0,810	56.0	52.0		2	34 34 34	6.0 9.8	8.0 10.0	26 25 26	0.022	11.0	30.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	GS 2 5 2 5	0.0 0.0	10.0	61 56	0.190	46.0 44.0	48.0 63.0		22	34 34	12.0	14.0	24 28	0.015	9.6 9.1	35.0 31.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	29 29	2.0	4.0 6.0	53 52	0.110	38.0 35.0	69.0 65.0		2 2	34 34	16.0	20.0	25 25	0.023	10.0	35.0 35.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 2	29 29	6.0 8.0	9.C 10.C	51 47	0.120	33.0 30.0	64.0 6(.0		2 2	34 34	24.0 28.0	28.0 32.0	26 25	0.037	8.1 10.0	39.0 32.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	29	10.0	12.0	51 49	0.076	25.C 24.0	58.0		2	34	32.0	36.0 40.0	25 25	0.035	8.5	29.0 43.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	29	14.0	20.0	51 46 50	0.069	23.0	51.0 51.0		2	34 34 7"	40.0 70.0	50.0	26 21	0.049	5.4 8.2	0.0 52.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	29	24.0	28.0 32.0	50 51 51	0.030	24.0	51.0 50.0		∠ 2 2	34 34 71	100.0	110.0	21	0.018	9-0 8.6 11.0	54.0 66.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	29 29	32.C 36.0	36.0	51 53	0.048	25.0	50.0 55.0		2	34 34	160.0	170.0	23	0.037	C.O 11.0	63.0 69.0
2 29 60.0 70.0 44 0.023 23.0 49.0 2 34 254.0 260.0 24 0.019 13.0 76. 2 29 70.0 80.0 45 0.032 22.0 51.0 $-$ 80 $-$ 2 555 0.0 10.0 55 0.550 #0.0 550	2	29	41.C 50.0	50.0 60.0	44 45	0.044	23.0	52.0 50.0		2	34 34	220.0	230.0	29	0.025	15.0	65.0 68.0
	2 2 2	29 29 29	60.0 70.0 80.0	70.0 80.0 90.0	44 45 43	0.023	23.0 22.0 24.0	49.0 51.0 52.0	- 80	- 2 - 2	34	254.0	260.0	24	0.019	13.0	76.0 54.0

CRUISE	STATION	INT TOP	BOTTON	WAT EI R	R HG PPM	CP PPM	N T Ppm		CRUISE	STATION	INT) TOF	BOTTOM	WATER %	HG PPM	C P PPN	NI PPM
2	35	0.0	2.0	55	0.170	41.C	46.0		3	14	Сл 20.0	24.0	52	0.110	28.0	47.0
2	35	2.0	4.0	61	0.088	0.0 20 0	0-0		3	14	28.0	32.0	53	0.058	25.0	41.0
2	35	5.0	9.0	62	0.057	24.0	37.0		3	14	40.0	50.0	55	0.048	24.0	39.0
2	35	8.0	10.0	61	0.041	24.0	37.0		Ĵ	14	50.0	60.C	45	0.046	19.0	38.0
2	35	10.0	12.0	61 61	0.046	23.0	35.0		3	14	68.0	75.0	36	0.039	13.0	26.0
2	35	14.0	16.0	61	0.019	22.0	34.0		J	15	0.0	2.0	67	0.360	28.0	47.0
,	cc24		10 0	50			<b>C</b> 12 <b>O</b>		3	15	4.0	6.0	78	0.390	28.0	45.0
2	36	0.0	2.0	50	0.160	43.0	54.U 48.D		t ۲	15	12.0	10.0	63	0.450	27.0	44.0
2	36	2.0	4.0	50	0.084	26.0	38.0		3	15	16.0	20.0	74	0.520	28.0	47.0
2	36	4.0	6.0	53	0.064	20.0	27.0		F	15	20.0	24.0	60	0.170	25.0	41.0
2	36	8.0	10.0	45	0.037	23.0	37.0		3 1	15	32.0	36.0	45	0.084	22.0	39.0
2	36	10.0	12.0	46	0.033	24.0	38.0		3	15	36.0	40.0	62	0.054	24.0	40.0
2	36	12.0	13.0	47	0.029	26.0	36.0		3	15	40.0	50.0	53 #2	0.059	20.0	43.0
-			2	-0	0.010	2160	3010		2	1.5	50.0	00.00	-1	4.030	2110	42.00
2	GS37	0.0	10.0	47	0.560	39.0	43.0		3	27	0.0	2.0	69	0.310	27.0	47-0
2	37	2.0	4.0	40	0.780	40.0	70.0		3	27	8.0	10.0	62	0.290	25.0	43.0
2	37	4.0	6.0	37	0.210	21-0	40.0		3	27	12.0	14.0	53	0.220	21.0	37-0
2	37	6.C 8.0	8.0 10.0	39	0.120	16.0	39.0		3	27	16.0	20.0	51	0.084	19.0	32.0
2	37	10.0	12.0	37	0.080	12.0	34.0		L L	27	24.0	28.0	45	0.035	14.0	29.0
2	37	12.0	14.0	39	0.072	16.0	36.0		3	27	35.0	38.0	41	0.043	28.0	43.0
2	37	16.0	18.0	39	0.082	18.0	34.0		3	29	0.0	2.0	57	0.340	25.0	42.0
2	37	18.0	27.0	31	0.048	13.0	34.0		ž	29	4.0	6.0	56	0.350	28.0	42.0
2	37	20.0	22.0	32	0.031	12.0	33.0		د د	29	8.0	10.0	57	0.400	26.0	46.0
2	27	24.0	26.0	34	0.040	12.0	37.0		د	29	16.0	23.0	59	0.260	26.0	45.0
2	37	26.0	28.0	32	0.047	12.0	37.0		3	29	24.0	28.0	54	0.094	23.0	42.0
2	37	30.0	30.0	33 34	0.052	13.0	37.0		i. F	29	32.0	36.0	51	0.067	23.0	45.0
2	37	32.0	34.0	30	0.040	13.0	32.0		3	29	40.0	50.0	52	0.054	21.0	40.0
2	37	34.0	36.0	27	0.038	14.0	35.0		3	25	50.0	60.0	54	0.039	24-0	40.0
2	37	38.0	40.0	20 29	0.037	10.0	35.0		٤	29	76.0	//.0	38	0.040	10.0	29.0
2	37	40.0	42.0	21	0.042	15.0	33.0		3	31	0.0	2.0	53	0.360	25.0	40.C
2	37	42.0	44.0	14	0.019	12.0	25.0		3	31	4.0	6.0	53	0.390	23-0	38.0
2	37	46.0	48.0	19	0.015	14.0	36.0		t.	31	12.0	14.0	52	0.420	26.0	50.0
2	37	48.C	51.0	21	0.046	13.0	32.0		3	31	16.0	20.0	57	0.290	25.0	44.0
2	37	54.0	54.0	17	0.040	13.0	31-0		i. r	31	24.0	28.0	55	0.200	22-0	44.0
2	37	57.0	59.0	20	0.043	14.0	35.0		د. ز	31	40.0	50.0	53	0.071	22.0	45.0
2	37	59.0	63.0	17	0.030	10.0	29.0		3	31	50.0	60.0	57	0.056	27.0	45.0
2	37	63.0	66.0 68.0	18	0.025	8.6	27.0		3	31	66.0	71.0	44	0.052	19.0	42.0
ž	37	68.0	70.0	26	0.024	11.0	27.0		3	43	0.0	2.0	60	0.360	26.0	47.0
2	37	70.0	73.0	21	0.041	10.0	27.0		3	43	4.0	6.0	68	0.350	28.0	48.0
2	37	76.0	78.0	30	0.046	17.0	33.0		3	43	12.0	16.0	61 55	0.370	24.0	43.0
2	37	78.0	80.0	30	0.059	18.0	36.0		ž	43	16.0	20.0	56	0.170	24.0	44.0
2	37	80.0	82.0 84 0	30	0.057	18.0	37.0		£	43	20.0	24.0	40	0.037	26.0	39.0
2	37	84.0	86.0	29	0.046	20.0	34.0		3	43	28.0	32.0	39	0.032	0.0	0.0
2	37	86.0	88.0	30	0.250	22.0	37.0		3	43	32.0	35.0	37	0.046	32.0	47.0
2	37	90.0	90.0	28	0.051	20.0	48.0		3	μr	0.0	2.0	59	0.410	28.0	44.0
2	37	92.0	94.0	26	0.045	0.0	36.0		3	45	4.0	5.0	57	0.400	24.0	45.0
2	37	94.0	96.0	27	0.051	27-0	40.0		3	45	8.0	10.0	57	0.420	25.0	44.0
2	37	98.0	100.0	38	0.090	23.0	42.0		<b>د</b>	45	16.0	20.0	59	0.250	27.0	45.0
2	37 1	100.0	102.0	44	0.052	22.0	34.0		3	45	24.0	28.0	58	0.150	27.0	45.0
2	3/1	104.0	104.0	45	0.055	23.0	44.0		3	45	32.0	36.0	6C 50	0.094	27.0	43.0
2	37 1	06.C	108.0	43	0.045	25.0	4C.0		3	45	50.0	60.0	61	0.048	0.8	37.0
2	37 1	108.0	1 10.0	45	0.066	32.0	39.0		3	45	60.0	68.0	40	0.054	16.0	29.0
3	11	0.0	2.0	64	0.280	28.0	40.0		Ł	47	0.0	2.0	69	0.380	27-0	41.0
3	11	4.0	6.0	66	0.310	28.0	44.0		ž	47	4.0	6.0	48	0.340	25.0	38.0
3	11	8.0	10.0	62	0.310	26.0	43.0		J,	47	8.0	10.0	44	0.340	25.0	39.0
3	11	12.0	14.0	49	0.140	22.0	37.0		E.	47	12.0	20.0	41 51	0.120	25.0	43.0
3	11	16.0	23.0	49	0.076	23.0	40.0		Ē	47	24.0	28.0	53	0.097	26.0	43.0
3	11	20.0	24.0	54	0.032	24.0	37.0		3	47	32.0	36.0	52	0.072	23.0	42.0
3	11	28.0	32.0	50	0.038	19.0	35.0		2	47	40.0	40.0	45	0.003	2	- / • •
,		• •	<b>~</b> ^	60	A 334	75.0			3	59	0.0	2.0	46	0.270	25.0	44.0
د ۲	12	4.0	2.0	50	0.230	25.0	41.0		3	59	4.0	6.0 10.0	52 #1	0.220	25.0	44.0
5	13	8.0	10.0	48	0.230	25.0	38.0		3	59	10.0	12.0	34	0.069	25.0	42.0
3	13	10.0	12.0	50	0.130	23.0	39.0		3	59	12.0	14.0	32	0.032	24.0	42.0
د ز	13	16.0	20.0	51	0.110	25.0	41.0		4	61	0.0	2.0	52	0.140	29.0	46.0
3	13	20.0	24.0	52	0.075	24.0	38.0		3	61	4:0	6.0	43	0.100	29.0	46.0
3	13	24.0	28.0	53 44	0.078	26.0	40.0		5	61	6.0	8.0	38	0.310	28.0	45.0
ž	13	40.0	50.0	52	0.055	27.0	46.0		د لا	61	10.0	12.0	38	0.140	23.0	43.0
3	13	50.0	60.0	45	0.048	20.0	35.0		3	61	12.0	14.0	44	0.045	24.0	42.0
2	د،	115 <b>.</b> U	12.	57	0.043	1/.	21. V		د ز	61	16.0	20.0	49 45	0.091	24.0	45.0
3	14	0.0	2.0	43	0.180	19.0	32.0		3	61	24.0	28.0	46	0.079	26.0	46.0
3	14	4.0 8.0	10.0	4.1 45	0.200	20.0 23.0	39.0		3	61	36.0	40.0	58	0.065	25.0	46.0
3	14	12.0	14. C	46	0.240	29.0	46.0	- 81	~ `	51			14 X 1			
3	14	16.0	20.0	50	0.140	27.0	43.0		3	63	0.0	2.0	59	0.390	26.0	43.0

Cauise	STATION	TNT: TOP	BOTTOM	W AT E R X	H G PP M	CR PPM	N I N PP M		CRUISE	STATION	INT: TOP	ER VAL BOTTO M	WATER K	HG PP N	CR PPM	N I PPM
3	63	4.0	6.0	60	0.350	25.0	43.0		3	122	CH 4.0	CH 6.0	30	0.230	9.3	15.0
3	63	8.0	10.0	57	0.360	25.0	41.0		3	122	6.0	8.0	29	0.160	8.2	16.0
د ۲	63	12.0	20.0	55	0.340	79.0	42.0		3	122	8.0	10.0	26	0.110	7.3	13.0
3	63	24.0	28.0	61	0.210	25.0	42.0		د	122	10.0	12.0	27	0.049	7.9	14.0
3	63	28.0	32.0	59	0.110	22.0	41.0		ś	122	14.0	16.0	27	0.064	7.6	16.0
3 L	63	32.0	36.0	58	0.078	24.0	45.0		3	122	16.0	20.0	33	0.052	7.0	15.0
3	63	36.0	40.0	65 50	0.064	22.0	40.0		3	122	20.0	24.0	31	0.065	7.8	18.0
£	63	58.0	66.0	57	0.071	25.0	43.0		3	122	28.0	30.5	25	0.058	8.8 9.9	18.0
3	65	0.0	2.0	83	0.310	27.0	41.0		J	125	c.0	2.0	62	0.300	22.0	32.0
3	65	8.0	10.0	61	0.380	27-0	41.0		د د	125	4_U 9_0	6.0 10.0	30	0.290	15.0	22.0
3	65	12.0	14.0	59	0.310	25.0	40.0		د ا	125	12.0	14.0	29	0.180	11.0	19.0
3	65	16.0	20.0	59	0.210	26.0	41.0		3	125	14.0	16.0	28	0.100	10.0	19.0
3	63	24.0	20.5	52	0.110	27.0	42.0		E	125	16.0	20.0	27	0.035	8.3	14.0
									3 3	125	28.0	31.0	26	0.037	23.0	33.0
3	78	0.0	2.0	F6	0.330	24.0	41.0									
3	76	4.0	6.0	63	0.350	25.0	37.6		3	138	0.0	2.0	45	0.190	24.0	44.0
š	78	6.0	8.0	63	0.420	24.0	39.0		3	138	8.0	10.0	58	0.085	25.0	44.0
3	78	8.0	10.0	59	C.320	22.0	39.0		3	138	12.0	14.0	48	0.082	28.0	42.0
3	78	10.0	12.0	55	0.290	20.0	36.0		3	138	16.0	20.0	53	0.080	28.0	45.0
3	78	14.0	15.0	53	0.130	22.0	37.0		3	138	24.0	28.0	43	0.055	20.0	36.0
3	78	16.0	20.0	56	0.160	23.0	41.0		3	138	40.0	50.0	50	0.046	21.0	35.0
3	78	20.0	24.C	55	0.092	25.0	41.0		3	138	60.0	70.0	42	0.035	27.0	33.0
3	78	24.0	28.0	>6 49	0.079	22.0	44.0		3	138	80.0	88.0	36	0.032	25.0	32.0
Ĵ	78	32.0	37.0	52	0.066	21.0	43.0		4	14 C	0.0	2.0	56	0.260	25.0	40.0
									3	140	4.0	6.0	55	0.290	23.0	39.0
3	83	0.0	2.0	57	0.370	26.0	41.0		3	140	8.0	10.0	56	0.260	27.0	39.0
3	81	4.0	10.0	51	0.390	25.0	41.0		3	140	12.0	14.0	56	0.240	26.0	39.0
ذ	83	12.0	14.0	51	0.370	26.0	42.0		3	140	16.0	20.0	58	0.120	22-0	39.0
3	РЭ	16.0	20.ባ	٤٦	0.370	25.0	40.0		3	14 C	24.0	28.0	60	0.067	24.0	42.0
3	<del>ت</del> کا	20.0	24.0	58	0.240	24.0	41.0		3	14 C	32.0	36.0	59	0.064	23.0	39.0
3	8 : 8 7	24.0	28.0	57	0.140	24.0	41.0		3	140	36.0	40.C	55	0.048	19.0	36.0
J.	83	36.0	40.0	56	0.067	23.0	44.0		j.	140	70.0	77.0	39	0.049	15.0	28.0
3	83	40.0	50.0	61	0.065	26.0	43.0									
J	8:	57.0	64.0	47	0.060	21.0	35.0		3	141	0.0	2.0	54	0.260	23.0	39.0
ذ	85	0.0	2.0	49	0.460	25.0	41.C		4	141	8.0	10.0	52	0.290	40-0	40.0
3	85	2.0	4.0	48	0.460	23.0	39.0		3	141	12.0	14.0	55	0.250	26.0	47.0
3	85	4.0	6.0	45	0.370	22.0	38.0		3	141	16.0	20.0	61	0.160	24.0	41.C
3	45	8.0	10.0	41	0.430	23.0	38.0		3	141	20.0	24.0	59	0,100	21.0	18.0
3	85	10.0	12.0	49	0.310	20.0	41.0		د ا	141	37.0	36.0	47	0.065	16.0	36.0
3	85	12.0	14.0	51	0.320	24.0	35.0		3	141	40-0	50.0	49	0.037	17-0	36.0
3	85	14.0	16.0	53	0.230	21.0	38.0		3	141	50.0	60.0	41	0.036	16.0	29.0
3	85	20.0	24.0	56	0.130	19.0	35.0		3	141	6€.U	12.0	31	0.024	8.2	17.0
3	85	24.0	28.0	57	0.120	20.0	37.0		3	142	0.0	2.0	55	0,210	22.0	40.0
3	85	28.0	32.0	63	0.150	21.0	37.0		3	142	4.0	6.0	50	0.210	23.0	39.0
3	85	32.0	40.0	57 57	0.073	22-0	41.0		3	142	8.0	10-0	50	0.220	22.0	38.0
Ē	85	40.C	44.0	51	0.100	0.0	38.0		3	142	16.0	20.0	48	0.062	19.0	38.0
									٤	142	24.0	28.0	55	0.049	21.0	38.0
3	100	2.0	2.0	49	0.380	23.0	42.0		3	142	28.0	32.0	56	0.049	17.0	36.0
3	100	4.0	0.0	48	0.400	22.0	36.0		3	142	40.0	50.0	42	0.041	15.0	29.0
3	100	6.0	9.C	43	0.400	23.0	37.0		ŝ	142	50.0	59.0	47	0.042	20.0	34.0
3	100	8.0	10.0	41	0.270	16.0 77 0	27.0		3	142	59.0	67.0	51	0.041	18.0	40.0
3	100	12.0	14.0	43	0.210	22.0	35.0		1	103	<b>C</b> 0	2.0	63	0 200	27.0	46 0
3	100	14.0	16.0	44	0.190	22.0	38.0		3	142	2.0	4.0	61	0.210	23.0	45.0
3	100	16.0	20.0	45	0.110	26.0	42.0		3	143	4.0	6.0	59	0.210	21.0	38.0
3	100	20.0	24.0	46	0.150	24.0	40.0		3	142	6.0	10 0	58	0.210	25.0	45.0
3 3	100	28.0	32.0	43	0.043	22.0	33.0		2	6 <b>4</b> (1	6 • V	10.0	50	0.140	23.0	43.0
£	100	32.0	35.0	46	0.130	20.0	40.0		£	144	C.O	2.0	56	0.210	24.0	44.0
,	10:	0.0	2.0	64	0 4 6 0	21 0	28.0		£	144	4.C	6.0	56	0.290	24.0	41.0
3	103	2.0	4.0	56 56	0.390	21.0	39.0		3	144	12.0	14.0	F3	0.280	22.0	37.0
3	103	4.0	6.0	58	0.450	22.0	31.0		3	144	16.0	20-0	46	0.180	18.0	34.0
3	103	6.0	8.0	57	0.520	24.0	37.0		3	144	20.0	24.0	41	0.110	16.0	30.0
3	103	10.0	12.6	51	0.380	19.0	30.0		3	144	24.0	28.0	42	0.071	16.0	31.0
3	103	12.0	14.0	52	0.400	17.0	30.0		3	144	32.0	36.0	37	0.045	14.0	28.0
3	103	14.0	16.0	51	0.390	22.0	38.0		3	144	40.0	50.0	38	0.037	15.0	32.0
3	103	16.C	20.0	49	0.290	15.0	28.0		3	144	60.0	71.0	44	0.035	15.0	33.0
3	103	24.0	28.0	48	0.160	17.0	33.0		3	145	0-0	2.0	51	0.220	22. r	41.0
3	103	28.0	32.0	46	0.081	18.0	32.0		3	145	4.0	6.0	46	0.190	21.0	41.0
3	103	32.0	36.0	45	0.030	16.0	31.0		3	145	8.0	10.0	46	0.110	18.0	36.0
د د	103 102	36.0 40.0	40.0	34 49	0.011	9.2	24.0		3	145	12.0	14.0	48	0.064	18.0	36.0
3	103	50.0	60.0	57	0.160	9.3	31.0		с 6	145	28.0	32.0	53	0.050	16 0	35.0
		• •	• •						3	145	32.0	36.0	49	0.044	16.0	35.0
۲ ۲	105	0.0	2.0	59 58	0.340	25.0	36.0		<del>اد</del> د	145	40.0	50.0	44	0.038	15.0	34.0
3	105	8.0	10.0	51	0.330	20.0	31.0		J	140	00 <b>↓</b> U	12.0	47	V+U 40	10.0	37.0
3	105	12.0	14.0	42	0.360	19.0	31.0		3	146	0.0	2.0	56	0.074	19.0	39.0
3	105	16.0	20.0	39	U. 180	23.0	37.0		3	146	4.C	6.0	34	0.069	18.0	40.0
3	122	0.0	2.0	38	0.220	11.0	19.0	- 82	 د ٤	146	12.0	14.0	36	0.054	21.C 19.0	42.0 40.0
3	122	2.0	4.0	34	0.240	10.0	18.0	02	3	146	16.0	20.0	45	0.052	20.0	40.0

CAULSE	STATION	INTE TOP	ERVAL EOTTON	WATER X	H G PPM	C P P P M	NI PPM		CRUISE	STAT ION	INT. TOP	ERVAL BOTTOM	WATES S	a G PPM	CR PPM	N I PPM
J	146	26.0	28.0	41	0.047	16.0	37.0		4	6	ся 4.0	CM 6.0	15	P.510	26.0	32.0
۲. ۲	146	40.0	36.0 46.0	48	0.048	19.0	40.0		4	۲	6.0	1.5	22	0.630	30.0	47.0
3	147	0.0	2.0	32	0.110	10.0	19.0		4	a	0.0	2.0	31	0.890	55.C	95.0
3	147 147	4.0 8.0	6.0 10.0	27 27	0.110	8.2 8.5	15.0 15.0		4	8	2.0	4.0	26	0.850	53.0	82.0
3 3	147 147	12.0	14.0 20.0	32 34	0.149 C.150	12.0 13.0	22.0 21.0		4	11	0.0	2.0	75	2.300	90.0 45.0	98.0 55.0
3	147 147	24.0	28.0 37.0	29	0.110	11.0	18.0 17.0		4	11	4.0	6.0	6	2.100	48.0	66.0
3	147	32.0	36.0	30	0.071	12.0	20.0		4	11	8.0	10.0	11	2.100	56.0	58.0
3	147	39.0	39.0 42.0	26 25	0.055	9.9 7.7	17.0 14.C		4	11	10.0	12.0 14.0	10 13	2.700	49.0 51.0	51.C 47.0
3	148	0.0	2.0	47	0.220	23.0	38.0		4	11	14.0	16.0	17 18	0.950	44.C	44.0 64.0
j R	148 148	4.C	6.0	44 45	0.190	24.0	38.0		4	11	20.0	24.0	13	0.062	5.8	12.0
3	148	12.0	14.0	47	0.170	21.0	37.0		4	ij	32.0	36.0	18	C.038	7.0	10.0
3	148	20.0	24.0	49	0.071	21.0	36.0		4	11	50.0	60.0	21	0.046	11.0	14.0
3	148	32.0	36.0	38	0.046	12.0	22.0		4	11	70.0	75.0	21	0.048	11.0	15.0
3 3	148 148	36.0 4(·.0	40.0 50.0	34 38	0.043	11.0	22.0 26.0		4	12	c.0	2.0	18	0.400	97.0	83.0
e E	148 148	50.0	60.0 79.0	31 40	0.027	11.0	21.C 31.0		4 L	12	2.0	4.0	12	0.310	54.0	49.0
	1 # 6	6.0	2 1	50	0 3 20	30 0	u7 C		4	12	6.0	8.0	15	0.049	9.6	12.0
3	149	4.0	6.0	48	0.320	30.0	45.0		4	12	10.0	12.0	22	0.059	11.0	12.0
3	149	10.71	12.0	43	0.120	17.0	31.0		4	12	14.0	16.0	24	0.060	13.0	18-0
3	149	12.0	20.0	40	0.045	12.0	27.0		4	12	16.0	20.0 24.0	27 31	0.110	22.0 15.0	32.0 21.0
3 3	149 149	20.0	24.0 27.0	33 25	0.021	14.0 16.0	23.0 34.0		4	12 12	24.0	28.0 36.0	24 26	0.046	8.4 12.0	17.0
ł	150	٢.0	2.0	37	0.130	19.0	26.0		4 21	12	40.0	50.0 60.0	29 33	0.048	13.0	20.0
3	150	2.0	4.0	36	0.130	18.0	28.0		4	12	60.0	73.0	32	0.060	17.0	26.0
3	15G	4.0	6-0	33	0.100	12.0	19.0		4	13	0.0	2.0	51	0.730	150.0	140.0
3	15C 15C	8.0 10.0	10.0	29 26	0.084	7.9 8.9	15.0		4	13	2.0	4.0 6.C	41 38	0.770	150.0 110.0	120.0 120.0
4	1	0.0	2.0	30	0.710	20.0	37.0		4.	13 13	€.0 8.0	8.C 10.0	37 41	0.630	110.0	110.0
4 4	1	2.0	4.0	39 51	0.570	24.0 22-0	34.C		4	13	10.0	12.0	47	1.200	150.0	130.0
4	1	6.0	8.0	57	0.440	20.0	36.0		4	13	14.0	16.0	38	0.660	100.0	110.0
4	1	10.0	12.0	37	0.410	25.0	35.0		4	13	20.0	24.0	27	0.180	27.0	30.0
4 4	1	17.0	14.0	34	0.370	36.0	31.0		4	13	24.0 28.0	28.0 32.0	26 27	0.070	16.0 15.0	34.0 33.0
4	1	16.0	20.0 24.0	38 40	2.600	31.0 19.0	52.0 37.0		4	13 13	32.0 36.C	36.0 40.0	2 € 25	0.045	16.0 15.0	43.0 35.0
4	1	24.0	29.0 32.0	47 47	0.360	20.0 27.0	35.0 59.0		4	13	40.0	46.0	22	0.041	13.0	18.0
4 4	1	32.0	37-0	47 48	0.260	19.0 28.0	32.0		4	14 14	0.0	2.0	21	0.290	39.0	43.0
	, ว	0.0	2.0	15	0 3 3 0	10.0	17 0		4	14	4.0	6.0	35	0.110	20.0	39.0
4	2	2.0	4.0	13	0.140	12.0	16.0		4	14	8.0	10.0	30	0.180	16-0	28.0
4	2	6.0	6.0 8.0	9	0.180	11.0	18.0		4	14 14	10.0	12.0 14.0	25	0.040	15.0 120.0	23.0
4 4	2	8.0 10.0	10.0 12.0	10 12	0.150	9.9 11.0	8.8 9.8		4	14 14	14.0 16.0	16.0 20.0	19 27	0.170	12.0 15.0	17-0 33.0
<del>п</del> П	2	12.0	14.C	17 17	0.078	5.5	17.0		4	14	20.0	24.0	27 74	0.037	15.0	30.0
"	3	0.0	2 n	21	0.400	20.0	24 0		4	14	28.0	32.0	25	0.0	12.0	25.0
4	1	2.0	4.0	18	0.110	12.0	14.0		4	14	40.0	45.5	34	0.083	17.0	24.0
4	3	6.0	8.0	27	0.270	26.0	21.0		4	14	28.0	32.0	33 24	0.076	0.0	29.0
4	3	8.0 10.0	10.0 12.0	30 35	0.660	35.0 40.0	39.0 76.0		4	15	0.0	2.0	15	1.600	5.7	19.0
4 4	3	12.0	14.0 16.0	4C 25	1.500	44.0 37.0	52.0 27.0		4	15 15	2.0	4.0	17 20	0.150	6.5 12.0	9.7 24.0
11	ц	0.0	2.0	30	0.950	<u>ин</u> . 0	0.0		4	15	6.0	8.0	21	0.055	9.5	17.0
4	4	2.0	4.0	21	0.120	15.0	21.0		4	15	10.0	12.0	25	0.052	6.2	11.0
4	4	6.0	8.0	14	0.270	15.0	12.0		4	15	14.0	16.0	18	0.068	4.3	0.0
4	4	8.0	10.0	16	0.093	13.0	14.0		4	15 15	16.0 20.0	20.0 24.0	20 26	0.029	5.0 9.0	8.7 18.0
4	5	0.0	2.0	28 24	2.200 1.300	140.0 120.0	120.0		4	15 15	24.0 28.0	28.0	28 25	0.043	8.9 10.0	15.0 30.0
4	5	4.0	5.0 8.0	18 7	C.550 0.220	31.0	22.0		4	15	32.0	35.5	24	0,046	11.0	17.0
4		8.0	10.0	9 16	0.130	12.0	16.0		4	16 16	0.0	2.0	38	2.000	48.0	57.0
4	5	12.0	14.0	18	0.079	13.0	24.0		4	16	4.0	6.0	40	2.100	46.0	45.0
4	5 51	16.0	20.0	20	0.042	13.0	25.0		4	16	8.0	10.0	39	2.200	47.0	53.0
4	5	20.0 24.0	24.0	18 21	0.071	12.0	19.0		4	16 16	10.0 12.0	12.0 14.0	41 42	1.800- 2.900	30°0	42.0 56.0
4 4	5	28.0 36.0	32.0 40.0	21 24	0.060	17.0 14.0	26₊0 20₊C		4	16 16	14.0 16.0	16.0	42 50	2.400 2.800	38.0 41.0	70.0 57.0
4	5	40.0	52.0	17	0.087	10.0	17.0	-	4	16 16	20.0	24.0	53 50	2,200	44.0	53.0
4 4	6 6	0.0 2.0	2.0	16 12	0.670	28.0	20.0 30.0	- 83	- 4	16 16	28.0	32.0	47	1.700	37.0	55.0
	-			-					-	• •			· • ·			

SBUISE	STATION	INTI TOF CH	ERVAL EOTTON CM	WAT EP	HG PPM	C R PPN	NT PPN			CRUISE	STATION	TOF	ERVAL BOTTON	WAT ER K	H G PPM	C R PPM	NI PPM
4	16	36.0	40.0	49	2.200	37.0	51.0			4	25	32.0	36.0	43	0.360	41.0	44.(
4	16	40.0	50-0	47	2.400	38.0	66.0			4	25	36.0	40.0	27	0.150	13.0	20.0
4	16	60.0	70.0	40	0.890	29.0	46.0			4	25	40.0	44.0	17	C.046	7.5	12.0
4	16	70.0	80.0	40	0.830	29.0	51.0			4	26	0.0	2.0	43	1.900	69.0	63.0
4	16	80.0	87.0	41	0.940	30.0	54.0			4	ŽĚ	2.0	4.0	50	1.200	96.0	81.0
										4	26	4.0	6.0	46	1.000	82.0	68.0
4	17	0.0	2.0	42	2.600	110.0	110.0			4	26	6.0	10 0	45	0.820	77.0	52.0
4	17	2.0	4.0	38	2.100	83.0	89.0			4	26	10.0	12.0	43	2.000	110.0	70.0
4	17	4.0	6.0	36	2.800	79.0	80.0			4	26	12.0	14.0	47	1.700	100.0	72.0
4	17	6.0	9.0	31	2.000	69.C	66.U 66 A			4	26	14.0	16.0	41	1.500	81.0	57.0
4	17	10.0	12.0	53	4.000	120.0	140.0			4	26	16.0	20.0	49	1,400	110.0	63.0
4	17	12.0	14.0	38	1,900	61.0	64.0			4	26	28.0	32.0	51	1.300	87.0	69.0
4	17	14.0	16.0	23	0.630	27.0	28.0			4	26	32.0	36.0	50	0.480	70.0	56.0
4	17	16.0	20.0	20	0.560	23.0	27.0			4	26	40.0	50.0	38	0.260	30.0	40.0
4	17	24.0	28.0	24	0.110	6.5	18.0			4	26	50.0	25.0	16	0.013	¢.8	11.0
4	17	28.0	31.0	20	0.150	7.9	24.C			4	27	0.0	2.0	37	2.400	170.C	120.0
4	19	c 0	2 0	• •	0 #50	26.0	36.0			4	27	2.0	4.0	40	2,300	140.0	97.0
4	18	2.0	4.0	12	0.500	33.0	38.0			4	27	6.0	8.0	42 46	2.300	200.0	120.0
4	18	4.0	6.0	29	0.750	85.0	58.0			4	27	8.0	10.0	47	2.100	210.0	97.0
4	18	6.0	8.0	32	0.560	86.0	54.0			4	27	10.0	12.0	46	2.200	160.0	83.0
4	18	10.0	12.0	32	0.120	56.0	47.0			4	27	12.0	14.0	44	2.000	140.0	79.0
4	18	12.0	14.0	31	0.530	75.0	47.0			4	27	16.0	20.0	45	1.100	100.0	56.0
4	18	14.0	16.0	30	0.600	75.C	53.0			4	27	20.0	24.0	43	0.850	70.0	52.0
4	18	16.0	27.0	34	0,490	96.0	58.0			4	27	24.0	28.0	45	0.590	37.0	41.0
4	18	28.0	32.0	33	0.580	71.0	52.0			4	27	32.0	32.0	22	0.460	6.3	35.0
4	16	32.0	36.0	34	0.490	60.0	43.0			4	27	36.0	40.0	15	0.016	5.0	7.1
4	18	40.0	50.0	30	0.280	23.0	31.0			4	27	40.0	42.5	16	0.024	5.2	9.4
4	15	50.0	50.5	30	0.120	17.0	29.0				26		2 0	20	0 110	10.0	14 0
4	19	C.0	2.0	36	2.000	60.0	62.0			4	28	2.0	4.5	18	0.180	14.0	21.0
4	19	2.0	4.0	34	0.750	42.0	51.0			•					••••••		
4	19	4.0	6.0	36	0.820	45.0	64.0			4	29	0.0	1.5	18	0.027	16.0	55.0
4	10	6.0	10.0	35	1,200	49.0	52.0			4	29	1.5	3.0	17	0.007	19.0	46.0
4	19	10.0	12.0	35	0.730	37.0	44.C			4	30	0.0	2-0	22	6.170	16.0	17.0
4	19	12.0	14.0	35	0.650	38.0	51.0			4	20	2.0	4.0	15	0.075	8.6	20.0
4	19	14.0	16.0	37	0.710	43.C	55.0										
4	19	20.0	24.0	35	0.780	40.0	42.0			4	31	0.0	2.0	46	2.500	160.0	130.0
ų.	i c	28.0	32.0	40	1.700	47.0	61.0			4	31	<b>L</b> .0	6.0	47	2.600	140.0	93.0
4	19	32.0	36.0	39	1.400	30.0	39.0			4	31	6.0	8.0	49	1.400	110.0	65.0
4	15	30.0	4C.0	42	1.600	36.0	48.0			4	31	2.3	10.0	46	1.100	59.0	52.0
•		40.00		2.	V. 300	3441				4	31	12.0	14.0	27	0.310	15.0	18.0
4	2 Ĉ	C.0	2.0	9	0.130	11.0	11.0			4	31	14.0	16.0	22	0.130	11.0	20.0
4	20	2.0	4.5	12	0.048	20-0	26.0			4	31	16.0	20.C	22	0-017	8.1	15.0
ш	21	0.0	2.0	11	0-075	8.3	13.0			4	31	20.0	24.0	20	0.012	12.0	24.0
4	21	2.0	4.9	13	0.083	8.6	14.C			4	31	28.0	32.0	19	0.032	0.0	100.0
4	21	4.0	6.0	19	0.083	0.4	16.0										
4	21	9.0 10 0	13.0	15	0.100	11.0	14.0			4	33	0.0	2.0	58	2.500	180.0	110.0
•	~ '		12.0		0.1.50		1			4	33	4.C	6.0	50	2.400	160.0	94.0
4	22	0.0	2.0	13	0.027	15.0	38.0			4	33	ε.0	8.0	58	1.100	130.0	78.0
		~ ~	~ ^		-		01 0			4	33	8.0	10.0	39	0.410	50.0	44.0
4 11	23	2.0	4.0	49 hh	2.100	82.0	73.0			4	33	10.0	12.0	32	0.190	22.0	25.0
4	23	4.0	6.0	43	0.950	99.0	66.0			4	33	14.0	16.0	ŝĈ	0.230	14.0	18.0
4	23	6-0	8.10	45	C.590	44.0	48.0			4	33	16.0	19.0	31	0.170	9.2	16.0
4	23	8.0	10.0	45	0.590	41.0	50.0			4	33	19.0	21.0	23	0.130	8.9	15.0
4	23	10.0	12.0	39	0.510	32.0	40.0			u.	34	0.0	2.0	36	2.400	170.0	110.0
4	23	14.0	16.0	34	0.380	20.0	29.0			4	34	2.0	4.0	30	1.400	110.0	78.0
4	23	16-0	20.0	27	0.100	12.0	21.0			4	34	4.0	6.0	33	2.100	150.0	97.0
4	23	2(-0	24.0	28	0.054	9.6	18 0			4	34	f.0	8.0	26	1.000	97.0	63.0
4	23	28.0	33.0	23	0.068	14.0	27.0			4	34	10.0	12.0	20	0.960	61.0	53.0
		•								4	34	12.0	14.0	25	0.990	51.0	47.0
4	24	r.o	2.0	65	1.500	72.0	76.0			4	34	14.0	16.0	28	1-900	99.0	77.0
4	24	2.0	4.0	61 5#	4.500	92.0	87.0			4	34	16.0	20.0	30	1.700	97-0	76.0
4	24	£.0	8.0	59	2.100	80.0	80.0			4	34	20.0	24.0	30	1.500	130.0	86.0
4	24	8.0	10.0	58	1.500	88.0	90.00			4	34	28.0	72.0	36	1.600	110.0	75.0
4	24	10.0	12.0	59	1.400	95.C	68.0			4	34	32-0	36.0	34	0.680	39.0	53.0
4	24	14.0	14.0	56	0.690	69.0	56.0			4	34	36.0	40.0	3.3	0.840	160.0 B 1	160.0
4	24	16.0	20.0	53	0.490	51.0	46.0			ų,	34	50.0	56.0	14	0.009	7,7	13.0
4	24	20-0	24.0	35	0.190	15.0	22.0										
4	24	24.0	27.0	26	0.110	10.0	17.0 20 C			4	35	0.0	2.0	37	3,300	140.0	100.0
-	24	2 . V	22	.0			21.06			4 L	32	∠.0 4.0	4.C 6.0	38	2.200	25.0	35.0
4	25	0.0	2.0	53	3.200	86.0	83.0			ų	35	6.0	8.0	36	1.500	12.0	20.0
4	25	2.0	4.0	54	3.500	110.0	91.0			4	35	8.0	10.0	37	1.800	21.0	95.0
4 11	25	4.0	0.0 8.0	55 55	1.900	80-0	84.0 70.0			4	35	10.0	12.0	37	1.200	19.0	37.0
4	25	8.0	10.0	57	1.200	80.0	78.0			4	35	14.0	16.0	34	1.400	780.0	78.0
4	25	10.C	12.0	56	0-750	64.0	59.C			4	3 5	16.0	20.0	36	1.900	140.0	84.0
4	25	12.0	14.0	56	0.660	73.0	55.0			4	35	20.0	24.0	35	1.300	8.9	13.0
4	25	16.0	20-0	29	0.290	21.0	29.0			4	35	28.0	3∠.0 140.0	27 40	1.900	38.0 26 A	31.0 38 0
4	2.5	20.0	24.0	21	0.065	9.3	15.0			4	35	40.0	50.0	39	1.800	120.0	85.0
4	25	24.0	28.0	48	0.400	50.0	45.0	-	84	- 4	35	50.0	60.0	35	1.100	70.0	52.0
4	20	∠n.0	32.0	⇒ ł	0.030	12.0	34.U		-	4	35	ot.0	10.0	11	u.200	15.0	27.0

CRUISE	STAT ION	INT TOP	BOTTON	WATER X	HG PPN	CR PPM	N I PPM		CRUISE	STAT ION	INT TOP	BOTTOM	W AT EP K	H G PP M	CR PPM	N I Ppm
4	35	76.0	83.0	20	0.048	8.9	18.0		4	43	6.0	8.0	19	0.029	5.9	13.0
	36	~ ~	2 0	112	2 3 66		o		4	43	8.0	10.0	19	0.054	6.9	13.0
4	36	2.0	2.0 4.0	36	0.320	140.0	100.0		4	43	10.0	12.0	29	0.260	26.0	32.U 55.0
4	36	4.0	6.0	31	0.110	13.0	25.0		4	43	14.0	16.0	41	0.880	61.0	64.0
4	36	6.0	8.0	28	0.069	120.0	79.0		4	43	16.0	20.0	26	0.110	1F.0	21.0
4	36	10.0	12.0	24	0.067	34.0	37.0		4	43	20.0	24.0	18	0.065	9.2	14.0
4	3 €	12.0	14.0	25	0.048	13.0	22.0		4	43	28.0	31.0	45	1.100	78.0	76.0
4	36	14.0	16.0	27	0.051	11.0	33.0						20			<b>5</b> 2 6
4	36	20.0	51.0	21	0.046	10.0	10.0		4	44 14 14	2.0	4.0	38	0.140	17.0	30.0
4	37	C - O	2.0	49	2.600	140.0	100.0		4	44	4.0	6.C	37	0.130	13.0	46.0
4	37	2.0	4.0	48	1.800	120.0	96.0		4	44	f.0	A.0	31	0.110	12.0	36.0
4	37	6.0	8.0	48	0.950	84.0	64.0		4	44	10.0	10.0	28	0.089	14.0	34.0
4	37	8.0	10.0	50	0.780	73.0	66.0		4	44	12.0	14.0	29	0.096	12.0	31.0
4	37	10.0	12.0	48 114	0.450	130.0	59.0 110 C		4	44	14.0	16.0	33	0.100	16.0	39.0
4	37	14.0	16 - 0	44	0.590	23.0	43.0		4	44	20.0	24.0	31	0,110	12.0	32.0
4	37	16.0	20.0	44	0.500	22.0	42.0		4	44	24.0	28.0	28	0.067	14.0	31.0
4	37	24.0	28.0	28	0.053	12.0	24.0		4 4	44	32.0	36.0	25	0.077	9.4	27.0
4	37	28.0	32.0	25	C.077	12.0	24.C		4	44	40.0	47.0	28	0.021	10.0	28.0
4	37	36.0	40.0	21	0.037	11.0	22.0			n E			20	0 1 40	10.0	47 C
-	57	40.0	43.5	10	0.031	10.0	22.0		4	45	2.0	4.0	21	0.042	7.0	12.0
4	38	0.0	2.0	54	2.300	99.0	99.0		4	45	4.0	6.0	26	0.077	13.0	28.0
4	ג בי אר	2.0	4.0	50	1.500	99.0	83.0		4	45	6.0	8.n 10.0	25	0.084	12.0	23.0
4	38	6.0	8.0	52	1.900	110.0	80.0		4	45	10.0	12.0	20	0.062	9.9	23.0
ц ,	38	8.0	10.0	52	1.900	120.0	89.0		4	45	12.0	14.0	13	0.024	7.0	17.0
4	38	12.0	14-0	52	1.300	130.0	88.0		4	45	14.0	20.0	1H 21	0.030	12.0	16.0
4	38	14.0	16.0	53	1.900	130.0	100.0		4	45	24.0	26.0	20	0.034	20.0	54.0
4	38	16.0	20.0	55	1.200	110.0	78.0		4	45	26.0	29.0	20	0.035	16.C	43.0
4	38	24.0	28.0	51	0.370	50.0	51.0		4	46	0.0	2.0	17	0.066	10.0	29.0
4	38	28.0	32.0	27	2-140	13.0	39.0		4	46	2.0	4.0	15	0.053	8,9	32.0
4	38	32.0	36.0	24	0.024	11.0	27.0		4	46	4.0	5.0	17	0.065	7.8	29.0
4	38	40.0	46.5	19	0.023	8.3	20.0		4	46	8.0	10.0	21	0.047	9.9	30.0
									4	4 E	10.0	12.0	62	0.061	12.0	33.0
4	39	0.0	2.0	59	3.200	140.0	120.0		4	46	12.0	14.0	20	0.031	13.0	34.0
4	39	4.C	6.0	55	2.500	110.0	110.0		4	46	16.0	20.0	28	0.049	22.0	52.0
4	39	5.0	8.0	36	0.260	24.0	44.0		4	4 E	20.0	24.0	29	0.051	25.0	69.0
4	36	10.0	10.0	30	0.120	20.0	30.0		ц	<u>и</u> 7	0.0	2.0	30	0.160	28.0	54.0
4	39	12.0	14.0	34	0.056	12.0	30.0		4	47	2.0	4.0	34	0.160	30.0	48.0
4	39	14.0	16.0	34	0.080	14.0	33.0		4	47	4.0	6.0	34	0.180	32.0	48.0
4	3 G	20.0	23.0	31	0.036	20.0	25.0		4 4	47	6.C 8.0	8.9	35	0.210	35.0	46.0
4	39	28.0	32.0	32	0.089	13.0	26.0		4	47	10.0	12.0	31	0.160	24.0	45.0
4	39	36.0	40.0	26	0.032	10.0	26.0			47	12.0	14.0	30	0.200	22.0	50.0
4	39	50.0	61.0	29	0.025	2.5	13.0		4	47	16.0	20.0	30 29	0.150	17.0	36.0
									4	47	20.0	24.0	37	0.260	17.0	41.0
4	40	0.0	2.0	57	2.600	160.0	130.0		4	47	24.0	28.0	38	0.240	18.0	44.0
4	40	4.0	6.0	63	4.100	160.0	130.0		4	47	32.0	37.0	31	0.071	13.0	31.0
4	40	6.0	8.0	59	2.600	130.0	110.0									
4	4C #0	10.0	10.0	54 63	5,500	170.0	140.0		и	4.9	0.0	2.0	31	0.088	12.0	27.0
4	40	12.0	14.0	63	3.800	160.0	140.0		4	48	4.0	6.0	28	0.100	14.0	30.0
4	40	14.0	16.0	61	3.500	166.0	146.0		4	4 E	6.0	8.0	27	0.093	14.C	31.0
4	40	24.0	20.0	42	0.460	35.0	46.0		4	48	10.0	12.0	24	0.091	22.0	60.0
4	4Č	28.0	32.0	51	2.200	94.0	95.0		4	48	12.0	14.0	18	0.033	20.0	57.0
4	н С н С	36.0	40-0	55	1.800	140.0	120.0			4.0		2.0	<i>n</i> <b>o</b>	0 250		50 O
4	40	70.0	80.0	52	0.073	18.0	50.0		4	49	2.0	2.U 4.C	51	0.340	36.0	59.0
		<b>.</b> -					<b>.</b>		4	40	4.0	6.0	44	0.270	41.0	53.0
ц 4	41 41	0.0 2.0	2.0	25	0.032	6.9 7.0	22.0		4 4	49 110	5.0 8.0	8.0	41 30	0.250	41.0 42 A	29.0 30 r
4	<b>u</b> 1	4.0	6.0	25	0.075	6.7	19.0		4	49	10.0	12.0	41	0.260	41.0	38.0
4	41	6.0	8.0	24	0.044	7.4	20.0		4	49	12.0	14.0	36	0.210	30.0	47.0
4	41	8.0	10.0	24	0.042	7.5	25.0		4	49	14.0	16.0 20 0	79 10	0.200	39.0	50.0
-				50	····		6.78L		4	49	20.0	24.0	38	0.160	38.0	50.0
4	42	0.0	2.0	47	3.000	160.0	140.0		4	49	24.0	28.0	37	0.250	45.0	0.0
4	42	∡.0 4.0	6.0	28	0.330	29-0	48.0		4	45	20.0 32.0	32.U 36.0	38	0.270	43.0	53.U 42_r
4	42	6.0	8.0	35	0.490	54.0	61.0		4	49	36.C	40.0	38	0.270	39.0	45.0
4	42	8.0	10.0	28	0.190	24.0	45.0		4	49	40.0	57.0	38	0.280	42.0	51.0
4	42	12.0	14.0	27	0.200	23.0	36.0		4	45	50.0	00.70	31	0.210	37.0	40.0
4	42	14.0	16.C	27	0.240	25.0	35.C		4	50	c.c	2.0	18	0.050	8.3	30.0
4	42	16.0	20.0	27	0.220	23.0	41-0		4	50	2.0	4.0	14	0.034	13.0	24 C
4	42	24.0	28.0	40	1,400	25.0	30.0		4	20	4.0	0.0	(5	0.029	M. 1	20.0
4	42	28.0	32.0	24	0.064	15.0	28.0		4	51	(.0	2.0	30	0.140	31.0	35.0
4 .1	42	32.0	36.0	23	0.034	12.0	26.0		4 4	51	2.0	4.0	28 27	0.130	24.0	30.0
4	42	40.0	48.0	19	0.018	6.7	11.c		4	51	6.0	8.0	26	C. 130	24.0	33.C
									4	51	8.0	16.0	14	0.037	200.0	34.0
4	43	0.3	2-0	29	0.09A	10.0	16-0	0 5	4	51	10.0	14.0	21	0.041	120.0	24.0
4	43	2.C	4.C	18	0.024	3.8	11-0	 00	 4	51	14.0	16.0	22	0.048	84.0	26.0
4	43	4.0	6.0	17	0.031	6.6	14.0		4	51	16.0	21.0	21	0.037	220.0	19.0

CRUISE	STATION	INT) TOP CH	ERVAL BOTTOM	WATER %	HG PPM	CR PPM	N I PPM		CRUISE	STATICS	INT: TOP	BOTTOM	WATER S	HG PP M	CR PPN	NI PPM
		0.0	Сп						4	59	24.0	28.0	63	1.000	130.0	72.0
17 17 14	52 52 52	0.0 2.0 4.0	2.0 4.0 6.0	29 23 22	0.100 0.069 0.047	21.0 14.0 93.0	32.0 20.0 21.0		4 4 4	55 59 55	32.0 40.0 50.0	36.0 50.0 60.0	54 40 40	0.760 0.062 0.077	100.0 19.0 14.0	72.0 44.0 34.0
4	53	0.0	2.0	35	0.220	46.0	45.0		4	6 C	c.e	4.0	79	2.400	170.0	120.0
4	53	2.0	4.0	40	0.200	44.0	48.0		4	60	4.0	6.0	70	1.600	190.0	140.0
4	53	6.0	8.0	42	0.210	36.0	47.0		4	60	8.0	10.0	54	0.370	50.0	53.0
4	53	8.0	10.0	40	0.200	38.0	50.0		4	60	10.0	12.0	40	0.190	24.0	28.0
4	53	12.0	14.0	40	0.240	34.0	35.0		4	60	14.0	16.0	26	0.073	14.0	20.0
4	53	14.0	16.0	45	0.230	33.0	41.0		4	60	16.0	20.0	69	0.800	170.0	110.0
4	53	20.0	24.0	30	0.094	15.0	20.0		4	60 60	20.0	24.0	47	0.250	36.0	33.0
4 4	53 53	24.0 28.0	28.0 31.5	26 27	0.028	7.4 10.0	19.0 20.0		4	60	28.0	32.0	32	0.100	19.0	22.0
4	54	¢.0	2.0	39	0.510	320.0	60.0		4	61	2.0	4.0	29	0,190	26.0	20.0
4	54 54	2.0	4.0	36	0.410	180.0	54.0		4	61	4.0	6.0	27	0.190	20.0	14.0
4	54	6.0	8.0	30	0.340	130.0	66.0		4	61	8.0	10.0	18	0.067	12.0	16.0
4	54 54	8.0	10.0	36 39	0.370	200.0	61.0 57.0		4	61 61	10.0	12.0	16 16	0.042	11.0	15.0
4	54	12.0	14.0	37	0.220	92.0	58.0		4	61	14.0	17.0	18	0.018	14.0	19.0
4	54	14.0	16.0 20.0	38 38	0.200	99,0 190,0	59.0 61.0		4	63	0.0	2.0	20	0.560	56.0	35.0
4	54	20.0	24.0	42	0.380	100.0	60.0		4	63	2.0	4.0	37	0,430	38.0	26.0
4	54 54	24.0	28.0	48 49	0.370	110.0	58.0		4 L	63 63	4.0	6.0 8.0	32	0.330	35.0	23.0
4	54	32.C	36.0	48	0.430	120.0	55.0		4	63	8.0	9.5	27	0.095	33.0	20.0
4	54	36.0	40.0 50.0	48 52	0.410	130.0	61.0 63.0		4	63	9.5	12.0	27	C.270	29.0	20.0
4	54	50.0	61.0	49	0.510	150.0	65.0		4	64	6.0	2.0	54	2.200	170.0	120.0
4	55	c.o	2.0	23	0.140	26.0	34.C		4	64	4.0	4.0	58 54	1.300	120.0	63.0
4	55	2.0	4.0	22	0.170	28.0	30.0		4	64	6.0	8.0	29	0.160	26.0	21.0
4	55	6.0	8.0	16	0.150	16.0	19.0		4	64	10.0	12.0	21	0.040	4,8	11.0
4	55	8.0	10.0	18	0.110	18.0	28.0		4	64	12.0	14.0	36	0.400	50.0	27.0
4	55	12.0	14.0	19	0.180	31.0	29.0		4	64	14.0	16.0	49	0.580	100.0	53.0
4	55	14.0	16.0	15	0.160	21.0	33.0		4	65	0.0	2.0	64	3.100	270.0	130.0
4	55	20.0	24.0	19	0.120	14.0	9.6		4	65	4.0	6.0	69	3.600	250.0	110.0
4	55	24.0	29.0	20	0.220	17.0	27.0		4	65	6.0	8.0	70	3.500	250.0	98.0
4	÷-	51.00	30.V	22	V. ( 8.)	10.0	1/.0		4	65	10-0	12.0	70	2.700	210.0	82.0
4	5€ 56	0.0	2.0	51 48	0.200	58.0	63.0		4	65	12.0	14.0	65	1.300	160.0	59.0
4	56	4.0	6.0	40	0.140	50.0	58.0		4	65	16.0	20.0	45	0.720	40.0	28.0
<b>4</b> Ц	56 54	6.0	8.0	41 45	0.110	47.0	27.0		4	65	20.0	24.0	49	0.750	33.0	30.0
4	56	10.0	12.0	33	0.096	33.0	47.0		4	65	28.0	32.0	27	0.071	13.0	14.0
14 14	56	12.0	14.0	41	0.190	46.0	50.0		4	65	32.0	36.0	22	0.051	13.0	17.0
4	56	16.0	20.0	23	0.130	14.0	43.0		•		30.0	4140	4.	0.075		50.0
4	56	20.0	24.0 28.0	28 34	0.088	10.0	32.0		4	66 66	0.0	2.0	36	0.390	27.0	19.0
4	56	26.0	32.0	31	0.084	31.0	32.0		4	66	4.0	6.0	33	0.280	25.0	21.0
u.	57	c.o	2.0	44	0.750	84.0	74.0		4	66 66	6.0	6.0 10.0	58 40	2.000	14.0	61.0
4	57	2.0	4.C	45	0.850	78.0	66.0		4	66	10.0	12.0	34	0.110	13.0	15.0
4 4	57 57	4.0	6.0 8.0	44 46	0.810	81.0 80.0	58.0 67.0		4	6E	12.0	14_0 16_0	28 62	0.110	14.0	13.0 83.0
4	57	8.0	10.0	43	0.590	65.0	53.0		4	66	16.0	20.0	64	2.900	210.0	140.0
4	57	12.0	12.0	45	0.640	81.0 78.0	69.0 60.0		4	66 66	20.0	24.C 28.0	61 57	1.900	120.0	87.0 39.0
4	57	14.0	16.0	49	0.740	91.0	77.0		4	66	28.0	32.0	43	0.610	22.0	21.0
4	57	20.0	24.0	52	0.690	85.0	84.G		4	00	32.0	30.5	30	0.140	13.0	12.0
4	57	24.0	28.0	52	0.580	71.0	53.0		4	67	0.0	2.0	72	0.0	150.0	91.0
4	57	40.0	50.0	55	0.000	75.0	68.0		4	67	4.0	4.0 6.0	60 60	2.000	130.0	80.0
4	57	50.0	58.0	55	0.410	42.0	38.C		4	67	6.0	8.0	62	2.200	130.0	97.0
4	58	0.0	2.0	76	1.100	110.0	82.0		4	67	8.0	10.0	61 59	2.100	130.0	87.0
4	58	2.0	4.0	71	1.000	130.0	82.0		4	67	12.0	14.0	56	1.500	80.0	73.0
4	58	6.0	8.0	64	0.990	98.0	72.0		4	67	16.0	20.0	52 46	0.460	0.0	29.0
4	58	8.0	10.0	63	0.810	87.0	65.0		4	67	20.0	24.0	36	0.250	17.0	17.0
4	58	17.0	14.0	38	0.210	27.0	21.0		4	67	27.0	30.0	24	0.080 0.077	10.0	10.0
4	58	14.0	16.0	32	0.120	17.0	16.0			~~						• <b>-</b> •
4	58	20.0	20.0	63	0.720	85.0	62.0		4	68	3.0	7.5	16	0.092	14.0	17.0
<b>4</b> 11	58	24.0	28.0	47	0.350	38.0	37.0		h	60				A A70	10.0	10 0
4	58	4(.0	51.0	16	0.020	5,4	13.0		4	69	2.0	4.0	15	0.071	8.7	7.7
u	59	<u>c.</u> n	2₋∩	75	0.0	110.0	85.0		4 1	69 60	4.0	6.0	15 15	0.069	8.1	9.2
4	59	2.0	4.0	71	1.100	110.0	83.0		4	65	8.0	10.0	16	0.068	11.0	13.0
4	59 59	E.0	6.0 8.0	70 68	1,400	110.0	78.0		4 4	69 69	10.0	12.0	15 16	0.072	9.4	8.7 9.1
4	59	8.0	10.0	64	0.810	95.0	87.0		4	69	14.0	16.0	15	0.044	9.3	9.0
4	59	10.0	12.0	65 62	0.970	100.0	78.0 71.0		4	65	16.0	21.0	21	0.029	16.0	33.0
4	59	14.0	16.0	61	0.780	77.0	72.0	 86	_ 4	70	0.0	2.0	79	0.110	11.0	30.0
4	59	20.0	24.0	62	0.860	130.0	79.0	0	4	70	4.0	6.0	84	0.160	20.0	12.0

CRUISE	STATION	INT: TOP	BOTTOM	WATER W	HG PP M	CR PPM	N I PPM			CRUISE	STATION	INT: TOP	BOTTON	WAT ER X	HG PPM	CR PPR	NI PPN
4 4 4	70 70 70 70 70	6.C 8.C 10.0 12.0 14.0	8.0 10.0 12.0 14.0 16.0	85 84 79 78 79	0.200 0.130 0.082 0.170 0.160	12.0 9.9 10.0 16.0 15.0	7.4 6.3 5.4 16.0 20.0			4 4 4 4	80 80 80 80 80	8.0 10.0 12.0 14.0 16.0	10.0 12.0 14.0 16.0 20.0	56 52 47 42 35	0.190 0.200 0.110 0.130 0.140	41.0 31.0 26.0 22.0 16.0	36.0 31.0 32.0 24.0 19.0
4 4 1	70 71 71 71 71	0.0 2.0 4.0 6.0	22.0 2.0 4.0 6.0 8.0	83 65 67 68 69	2.200 2.300 2.200 2.100	13.0 190.0 170.0 170.0 190.0	6.4 100.0 94.0 79.0 91.0			4 4 4 4	80 80 80 80 80 80	20.0 28.0 32.0 40.0 48.0	24.0 32.0 36.0 48.0 56.0	27 54 49 26 84	0.064 0.340 0.160 0.029 0.170	9.9 46.0 30.0 9.4 12.0	13.0 41.0 33.0 13.0 3.9
4 4 4	71 71 71 71 71	8.0 10.0 12.0 14.0 16.0	10.0 12.0 14.0 16.0 20.0	63 46 32 29 50	1.600 0.370 0.120 0.097 0.650	120.0 40.0 15.0 12.0 57.0	58.C 24.0 13.C 11.0 29.C			4 4 4 4	81 81 81 81 81	n.0 2.0 4.0 6.C 8.0	2.0 4.0 6.0 8.0 31.0	13 13 13 13 13 14	0.018 0.015 0.020 0.019 0.015	10.0 11.0 12.0 13.0 11.0	25.0 24.0 30.0 29.0 30.0
4 4 4	71 71 71 71 71	24.0 28.0 32.0 36.0	28.0 32.0 36.0 41.5	69 59 45 30	2.100 C-930 0.450 0.074	160.0 95.0 45.0 9.1	74.0 47.0 32.0 11.0			# # #	82 82 82 82	0.0 2.0 4.0 6.0	2.0 4.0 6.0 8.0	67 23 18 27	0.640 0.073 0.052 0.130	61.0 13.0 8.3 22.0	70.0 11.0 7.9 16.0
4 4 4	72 72 72 72 72	0.0 2.0 4.0 6.0	2.0 4.0 6.0 8.0	70 34 21 18	2.100 0.370 0.180 0.061	190.0 48.0 17.0 7.2	110.0 27.0 12.0 5.8			4 4 4	83 83 83 83	0.0 2.0 4.0 6.0	2.0 4.0 6.0 8.0	28 34 31 38 28	0.220 0.330 0.240 0.440	29.0 34.0 28.0 46.0 26.0	22.0 24.0 21.0 29.0 21.0
4 4 4	73 73 73 74	0.0 2.0 4.0	2.0 4.0 6.0 2.0	26 19 25 40	0.180 0.140 0.230 0.430	15.0 13.0 20.0 36.0	12.0 11.0 14.0 21.0			4 4 4	83 83 83 83 83	10.0 12.0 14.0 16.0 20.0	12.0 14.0 16.0 20.0 24.0	30 37 39 24 19	0.220 0.400 0.330 0.095 0.034	26.0 38.0 36.0 15.0	20.0 29.0 28.0 13.0 19.0
4 4 4 4	74 74 74 74 74	2.0 4.0 6.0 8.0	4.0 6.0 8.0 10.0 12.0	31 29 30 41 40	0.320 0.250 0.380 0.630 0.680	32.0 25.0 29.0 52.0 58.0	25.0 16.0 19.0 31.0 33.0			4	83 83 84 84	24.0 28.0 0.0	28.0 31.0 2.0	24 23 62	0.052 0.055	24.0 18.0 90.0 90.0	40.0 36.0 53.0
4 4 4	74 74 74 75	12.0 14.0 16.0	14.0 16.0 18.0	21 19 17	0.190	15.0 9.1 6.3	11.0 6.1 4.8			4 4 4 4	84 84 84 84	4.0 6.0 8.0	6.0 8.C 10.0 12.0	63 44 30 53	0.970 0.470 0.220 0.590	85.0 49.0 30.0 62.0	57.0 35.0 22.0 41.0
4 4 4 4	75 75 75 75 75	2.0 4.0 8.0 6.0	4.0 6.0 10.0 8.0 12.0	22 39 37 38 40	n.410 1.100 1.200 C.940 1.300	23.0 66.0 67.0 71.0 70.0	19.0 38.0 33.0 47.0 52.0			4 4 4	84 84 84 84 84	14.0 16.0 20.0 24.0 28.0	16.0 20.0 24.0 28.0 31.5	40 24 22 24 26	0.470 0.140 0.034 0.042 0.056	42.0 17.0 10.0 17.0 20.0	28.0 14.0 13.0 32.0 26.0
4 4 4 4 4	75 75 75 75 75 75 75	12.0 14.0 16.0 20.0 24.0 28.0	14.0 16.0 20.0 24.0 28.0 32.0	39 36 39 40 40 38	1.100 0.650 C.730 0.830 0.970 1.000	66.0 54.0 61.0 62.0 70.0 63.0	46.C 47.0 51.0 53.0 51.C 48.C			4 4 4	85 85 85 85	0.0 2.0 4.0 6.0 8.0	2.0 4.0 5.0 8.0 10.0	68 69 66 63 59	1.100 0.800 0.820 0.740 0.480	82.0 77.0 73.0 70.0 53.0	53.0 55.0 59.0 61.0 47.0
4 4 4	75 76 76 76	40.C 0.0 2.0 4.0	51.C 2.0 4.0 6.0	21 18 17	1.300 0.140 0.096 0.120	69.0 14.0 15.0 13.0	48.0 12.0 12.0 9.0			4 4 4	85 85 85 85	12.0 14.0 16.0 20.0 24.0	14.0 16.0 20.0 24.0 28.0	39 42 52 47 37	0.190 0.230 0.30C 0.220 0.120	24.0 24.0 29.0 25.0 16.0	25.0 24.0 32.0 29.0 19.0
4 4 4 4 4 4 4 4 4 4 4	77 77 77 77 77 77 77 77 77 77	0.0 2.0 4.0 6.0 10.6 12.0 14.0 16.0	2.0 4.0 8.0 10.0 12.0 14.0 16.0 21.0	34 29 26 26 36 34 37 19	0.320 0.210 0.260 0.280 0.300 0.380 0.350 0.350 0.350 0.55	35.0 20.0 26.0 23.0 25.0 33.0 33.0 38.0 15.0	24.0 16.0 20.0 23.0 24.0 27.0 25.0 27.0 32.0			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	86 86 86 86 86 86 86 86 86	0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0	0.2 4.0 6.0 10.0 12.0 14.0 16.0 20.0	28 26 27 29 30 38 35 35 35	0.160 0.150 0.200 0.200 0.260 0.260 0.330 0.240 0.130	23.0 16.0 21.0 15.0 20.0 12.0 15.0 20.0	24.C 15.0 19.C 21.0 18.0 20.0 17.0 18.D 25.0
4 4 4	78 78 78 78	0.0 2.0 4.0 6.0	2.0 4.0 6.0 8.0	33 32 22 21	0.290 0.270 0.110 0.049	34.0 26.0 13.0 10.0	25.0 27.0 14.0 12.0			4 4 4	86 86 86 86	20.0 28.0 24.0 32.0	24.0 32.0 28.0 36.0	38 28 33 28	0.180 0.074 0.100 0.100	20.0 15.0 17.0 16.0	27.0 17.0 23.0 20.0
4 4 4 4	78 78 78 78 78 78 78 78	10.0 12.0 14.0 16.0 20.0 24.0	12.0 14.0 16.0 20.0 24.0 27.0	20 21 21 23 25 26	0.041 0.050 0.029 0.0 0.062 0.063 0.055	9.0 9.7 9.9 8.8 9.5 11.0 10.0	12.0 13.0 13.0 14.0 14.0			7 7 7 7 7 7	2365 2465 24 24 24 24	0.0 0.0 2.0 4.0	10.0 2.0 4.0 6.0	20 32 22 22 23 27	0.049 0.016 0.016 0.015 0.017	13.0 10.0 12.0 14.0	10.0 19.0 4.8 5.2 5.0
년 19 19 19 19 19 19 19 19 19 19 19 19 19	75 79 79 79 79 79 79 79	C.0 2.0 4.0 6.0 8.0 10.0 12.0	2.0 4.0 6.0 8.0 10.0 12.0 14.0	37 39 46 34 14 15 9	C.150 0.140 0.130 0.070 0.032 0.034 0.030	21.0 19.0 29.0 16.0 9.6 8.8 7.2	32.0 27.0 32.0 31.0 28.0 31.0 28.0			, 7 7 7 7 7 7 7 7	24 24 24 24 24 24 24 24 24 24	8.0 10.0 12.0 14.0 20.0 28.0 36.0 50.0	10.0 12.0 14.0 16.0 24.0 32.0 40.0 60.0	25 24 29 34 36 38 28 32	0.017 0.013 0.021 0.019 0.020 0.021 0.019 0.019	12.0 9.5 11-0 14.0 15.C 16-0 12.0 13.0	5.1 5.4 6.4 7.3 7.0 5.7 6.3
4 4 4 4	79 79 79 79 79 79 79	14.0 16.0 20.0 24.0 28.0 31.0	16.0 20.0 24.0 28.0 31.0 34.0	15 23 18 24 22 26	C.035 0.054 0.042 0.033 0.048 0.023	13.0 16.0 16.0 13.0 6.7 16.0	29.0 26.0 26.0 26.C 8.3 18.0			7 7 7 7 7 7	25 25 25 25 25 25	0.0 2.0 4.0 6.0 8.0	2.0 4.0 5.0 8.0 10.0	92 40 460 - 32 27 27	0.098 0.019 0.003 0.019 0.019 0.017	25.0 18.0 0.0 4.5 3.4 3.1	33.0 25.0 9.9 7.9 7.9
4 4 4	80 80 80 80	C.0 2.0 4.0 6.C	2.0 4.0 6.0 8.0	43 43 62 61	0.210 0.170 0.420 0.400	26.0 21.0 50.0 54.0	30.0 24.0 40.0 46.0	-	87	, , , , , , , , , , , , , , , , , , ,	25 25 25 25	12.0 14.0 20.0 28.0	14.0 16.0 24.0 32.0	28 23 29 27	0.021 0.016 0.020 0.017	0.5 3.0 15.0 6.4	10.0 7.4 22.0 13.0

7       22       36.0       0.0       7.2       11.6       7       38       12.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0 <th>CRUISE</th> <th>STATION</th> <th>INT TOP</th> <th>BOTTON</th> <th>WATER X</th> <th>H G PPM</th> <th>CR PPM</th> <th>N I Pph</th> <th></th> <th>CRUISE</th> <th>STATION</th> <th>INTE TOF</th> <th>BOTTON</th> <th>WATER K</th> <th>HG PPM</th> <th>CR PPH</th> <th>NI PPH</th>	CRUISE	STATION	INT TOP	BOTTON	WATER X	H G PPM	CR PPM	N I Pph		CRUISE	STATION	INTE TOF	BOTTON	WATER K	HG PPM	CR PPH	NI PPH
1         1         1         1         0         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	7	25	36.0	40.0	28	0.018	7.2	13.0		7	38	12.0	14.0	83	0.083	15.0	35.0
1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	,	23	30.0	80.0	21	0.018	14.0	21.0		777	38 38	14.0 20.C	16.0 24.0	45 84	0.046	23.0 21.9	49.0
1         1000         0.0         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         10000         1000         1000         10	/	2765	6.0	10.0	24	0.013	15.0	12.0		7	38 38	28.C 36.0	32.0 40.0	54 82	0.019	21.0 20.0	44.0 40.0
1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	77	30G5 30	0.0	10.0	34 74	0.033	20.0	28.C 30.0		7	38	50.0	60.0	62	0.180	19.0	40.0
1         10         1.2         10         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2 <th1.2< th=""> <th1.2< th=""> <th1.2< th=""></th1.2<></th1.2<></th1.2<>	7	30	2.0	4.0	66	0.022	14.0	29.0		7	396 S	0.0	10.0	50	0.044	23.0	39.0
1         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	7	30	6.0	8.0	61	0.016	16.0	34.0		7	39	2.0	4.0	57	0.000	23.0	13.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	30	10.0	10.0	58 61	0.024	15.0 14.0	32.0 29.0		777	39 35	4.0	6.0 8.0	54 57	0.025	20.0 21.0	12.0
1         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2	7	30 30	12.0	14.0	53 54	0.016	17.0	32.0		7	30	8.0	10.0	54	0.024	22.0	12.0
1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	7	30	20.0	24.0	41	0.010	4.2	16.C		7	39	12.0	14.0	72	0.041	30.0	20.0
1         36         50         86.0         41         6.0.01         1.0.         7         35         27.0         31.0.         90         0.0.01         21.0.         31.0.         90         0.0.01         21.0.         31.0.         90         0.0.01         20.0.01         21.0.         31.0.         71         31.0.         71         31.0.         71.0.         31.0.         71.0.         31.0.         71.0.         31.0.         71.0.         31.0.         71.0.         31.0.         71.0.         31.0.         71.0.         31.0.         71.0.         31.0.         71.0.         31.0.         71.0.         31.0.         71.0.         31.0.         71.0.         31.0.         71.0.         31.0.         71.0.         31.0.         71.0.         31.0.         71.0.         31.0.         71.0.         31.0.         71.0.         31.0.         71.0.         31.0.         71.0.         31.0.         71.0.         31.0.         71.0.         31.0.         71.0.         31.0.         71.0.         31.0.         71.0.         31.0.         71.0.         31.0.         71.0.         31.0.         71.0.         31.0.         71.0.         31.0.         71.0.         31.0.         31.0.         31.0. <td>7</td> <td>30</td> <td>37.0</td> <td>40.0</td> <td>35</td> <td>0.017</td> <td>5.3</td> <td>21.0</td> <td></td> <td>7</td> <td>39</td> <td>14.0</td> <td>16.0 24.0</td> <td>43 55</td> <td>0.008</td> <td>14.0</td> <td>8.4</td>	7	30	37.0	40.0	35	0.017	5.3	21.0		7	39	14.0	16.0 24.0	43 55	0.008	14.0	8.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	30	50-0	60.0	43	0.016	1.3	14.0		7	39	28.0	32.0	56 57	0.020	23.0	11.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	31GS 31	0.0	10.0	34 48	0.033	16.0	25.0		ż	39	50.0	60.0	53	0.013	20.0	10.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	31	2.0	4.0	35	0.012	11.0	25.0		7	4 1G S	0.0	10.0	44	0.028	c.0	C.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	31	6.0	R.0	40	0.010	14.0	28.0		7	41	2.0	4.0	91 79	0.060	7.6	43.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	31	8.0 10.C	10.0	40 36	0.016	13.0 14.0	30.0 31.0		7	41	4.0	6.0 8.0	דק 72	0.034	19.0 14.0	36.0 34.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	31	12.0	14.0	41 79	0.014	14.0	29.0		7	41	8.0	10.0	61	0.025	17.0	36.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	31	20.0	24.0	39	0.013	14.0	30.0		7	41	12.0	14.0	61	0.030	14.0	34.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	31	36.0	40.0	35	0.011	11.0	24.0		777	41 41	14.0 20.0	16.0	66 64	0.029	20.0	38.0 36.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	31	5C.0	60.0	35	0.013	12.0	28.0		7	41 41	28.0	32.0	68 63	0.027	17.0	37.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	32GS	0.0	10.0	39 20	0.049	16.0	22.0		7	41	50.0	60.0	66	0.024	15.0	36.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ź	32	2.0	4.0	36	0.018	13.0	6.7		,	41	81.0	86.0	34	0.015	0.1	9.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	32	4.0	6.0 8.C	35 36	0.017	14.0 15.0	6-9 6.6		777	42	0.0	2.0	89 83	0.064	23.0 18.0	41.0 38.C
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	32	8.0	10.0	42	0.024	16.0	7.6		ż	42	4.0	6.0	84	0.040	17.0	41.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ź	32	12.0	14.0	34	0.017	9.0	8.2		7	4 2	6.0	10.0	82 79	0.046	22.0	41.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	32 32	14.0	16.0 24.0	30 31	0.014	10.0	6.8 5.4		7	42	10.0	12.0	82 79	0.041	17.0	35.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	32	28.0	32.0	52	0-023	12.0	9.5		ż	42	14.0	16.0	77	0.031	20.0	44.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	32	5C.N	60.0	30	0.013	10.0	6.5		7	42	28.0	32.0	68	0.019	22.0	41.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	33GS	0.0	10.0	59	0.300	49.0	45.C		77	42 42	36.0	40.0 60.0	69 68	0.023	18.0 25.0	40.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	777	33 33	0.0 2.0	2.0	57 50	0.419	78.0 40.0	47.0		7	4305	0.0	10.0	52	0.044	25.0	45.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	33	4.0	6.0	46	0.089	16.0	23.0		ź	4362	0.0	2.0	75	0.210	48.0	22.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	33	8.0	10.0	32	0.032	10.0	17.0		777	43	2.0	4.0	77	0.140	25.0	19.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	77	33 33	10.0	12.C 14.0	30 28	0.030	11.0	17.0 16.0		7	43	6.0	8.0	75 85	0.067	25.0	15.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	33	14.0	16.0	30	0.023	13.0	19.0		ż	43	10.0	12.0	8C	0.040	23.0	15.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ź	33	28.0	32.0	32	0.024	11.0	20.0		÷	43	14.0	16.0	74	0.037	24.0	16.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	33	50.0	40.0 60.0	32 34	0.140	8.8 3.7	17.0		7	43	20.0	24.0 32.0	76 76	0.032	23.0 24.0	15.0
7       3565       6.0       10.0       21       0.042       13.0       37.6       7       4565       0.0       10.0       0.012       11.0       37.0         7       3565       0.0       0.0       2.0       68       0.110       23.0       37.0       37.0         7       455       0.0       2.0       40       0.0       60.0       2.0       46       0.010       64       0.010       20.0       68       0.010       23.0       37.0       37.0       7       455       0.0       2.0       46       0.010       23.0       37.0       37.0       37.0       7       45       4.0       6.0       57       0.044       13.0       22.0       23.0         7       36       4.0       6.0       62       0.100       24.0       14.0       7       45       6.0       10.0       10.039       12.0       22.0       22.0       12.0       7       45       12.0       14.0       16.0       10.039       13.0       22.0       22.0       12.0       13.0       22.0       12.0       13.0       22.0       12.0       13.0       22.0       12.0       13.0       22.0       12.0	7	3465	0.0	10.0	41	0.360	62.0	43.0		777	43	36.0	40.0	68 67	0.021	22.0	14.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	35GS	c.0	10.0	21	0.042	13.0	37.0		7	45G S	0.0	10.0	46	0.076	23-0	37.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	36GS	0.0	10.0	66	0.320	60.0	60.0		2	45	2.0	4.0	68 64	0.056	18.0	31.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 7	36 36	0.0 2.0	2.0 4.0	82 32	0.260	40.0 32.0	22.0 13.0		777	45	4.0	6.0 8.0	57 52	0.044	13.0	24.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	36 36	4.0	6.0 8.0	62	0.100	24.0	14.0		7	45	8.0	10.0	51	0.039	12.0	22.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ź	36	8.0	10.0	63	0.057	22.0	12.0		7	45	12.0	14.0	49	0.039	13.0	23.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	36 36	10.0	12.0	62 59	0.032	24.0	15.0 17.0		7	45 45	14.0	16.C 24.0	50 49	0.031	13.0 13.0	25.0 25.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	36	14.0	16.0 24.0	58 62	0-032	23.0	13.0		7	45	28.0	32.0	45	0.026	15.0	25.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	36	28.0	32.0	59	0.039	24.0	15.0		7	45	50.C	60.0	41	0.024	12.0	23.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	36	50.0	40.0	67 63	0.035	23.0	13.0 14.0		7	46G S	0.0	10.0	63	0.120	27.0	39.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	37	c.o	2.0	66	0.110	24.0	30.0		7	46 46	0.0	2.0	70 67	0.200	41.0	60.0 50.0
7       37       6.0       8.0       69       0.00       23.0       33.0       7       46       6.0       8.0       64       0.04       23.0       23.0       23.0       7       46       8.0       64       0.04       23.0       23.0       23.0       7       46       8.0       0.0       67       0.0       27.0       43.0         7       37       8.0       10.0       67       0.035       22.0       32.0       7       46       10.0       57       0.0       27.0       43.0         7       37       10.0       12.0       68       0.032       21.0       33.0       7       46       12.0       14.0       59       0.031       22.0       44.0       46.0         7       37       14.0       16.0       64       0.025       20.0       33.0       7       46       21.0       20.0       20.0       51.0       7       46       26.0       24.0       60       0.038       24.0       46.0       40.0       28.0       20.0       33.0       7       46       26.0       28.0       32.0       50       0.038       24.0       40.0       48.0       46.0       40.	7	37	2.0	4.0	64	0.090	22.0	31.0		Ż	46	4.0	6.0	69	0.063	27.0	47.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	37	6.0	8.0	68	0.046	24.0	33.0		7	4 E 4 G	8.0	10.0	57	0.042	27.0	43.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	777	37 37	8.0	10.0	67 68	0.035	22.0	32.0 33.0		7	46 46	10.0	12.0	58 59	0.032	23.0	47.0
7       37       20.0 $35.0$ 7       46       21.0       20.0 $31.0$ $21.0$ $21.0$ $21.0$ $21.0$ $21.0$ $21.0$ $21.0$ $21.0$ $21.0$ $21.0$ $21.0$ $21.0$ $21.0$ $21.0$ $21.0$ $21.0$ $21.0$ $21.0$ $31.0$ 7 $46$ $22.0$ $56$ $0.044$ $19.0$ $38.0$ 7       37 $36.0$ $40.0$ $68$ $0.025$ $21.0$ $33.0$ 7 $46$ $50.0$ $60.0$ $52$ $0.023$ $24.0$ $48.6$ 7 $37$ $36.0$ $68$ $0.025$ $21.0$ $33.0$ 7 $46$ $50.0$ $60.0$ $52$ $0.023$ $16.0$ $30.6$ 7 $37$ $326.5$ $331.5$ $48$ $0.013$ $25.0$ $35.0$ 7 $4865$ $0.0$ $10.0$ $13$ $0.022$ $5.3$ $30.6$ 7 $38$ $0.0$ $10.0$ $47$ $0.035$ $22.0$ $35.0$ 7 $4965$ $0.0$ <td>777</td> <td>37</td> <td>12.0</td> <td>14.0</td> <td>64 64</td> <td>0.028</td> <td>23.0</td> <td>34.0</td> <td></td> <td>ż</td> <td>46</td> <td>14.0</td> <td>16.0</td> <td>58</td> <td>0.038</td> <td>24.0</td> <td>46.0</td>	777	37	12.0	14.0	64 64	0.028	23.0	34.0		ż	46	14.0	16.0	58	0.038	24.0	46.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	37	20.0	24.0	67	0.024	23.0	35.0		7	40 46	28.0	32.0	58	0.044	19.0	38.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	37	28.0 36.0	32.0 40.0	67 68	0.022 0.025	22.0	34.C 33.D		7 7	46 46	36.0 50.0	40.C 60.0	56 52	0.028 0.023	26.0 16.0	48.0 30.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 7	37 37 3	50.0 26.5 3	60.0 331.5	68 48	0.022	18.0 25.0	29.C 35.C		7	48G S	0.0	10.0	13	0.022	5.3	30.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	3865	0.0	10.0	47	0.035	22.0	36.0		7	49G 5	0.0	10.0	44	0.110	23.0	31.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	.18 38	2.0	2.0 4.0	65 60	0.046 0.018	27.0	51.0 45.0		7 7	49 49	0.0	2.0 4.0	62 59	0.089	24.0	47.C 39.0
7 38 8.0 10.0 76 0.042 21.0 44.0 88 7 49 8.0 10.0 55 0.036 19.0 35.0 7 38 10.0 12.0 64 0.027 20.0 45.0 7 46 10.0 10.0 10.0 10.0 11 16.0 27.0	7 7	3E 38	4.0 6.C	6.0 8.9	57 74	0.030	20.0	43.C 45.G	0.0	7	49 49	4.0	6.0 8-0	53 53	0.050	18.0 18.0	32.0 36-6
The second	7 7	38 38	8.C	10.0	76 64	0.042	21.0	44.0	88.	- i	49	8.0	10.0	55	0.036	19.0	35.0

CAUISE	STAT ION	INT TOP	ERVAL BOTTON	WATER K	H G PP N	CR PPM	N I N I			CRUISE	STATION	INT TOF	ERVAL BOTTOM	SATER S	HG PPM	C R P P M	NI. PPN
7	49	12.0	14.0	44	0.027	14.0	28.0			7	58	28.0	сн 32.0	49	C-041	20.0	38.0
7	49	14.0	16.0	50	0.029	16.0	32.0			'n	58	35.0	40.0	41	0.055	21.0	39.0
ź	49	28.0	32.0	23	0.022	5.4	12.0			7	58	50.0	60.0	42	0.050	9.2	23.0
7	49	36.0	40.0	20	0.026	1.8	11.0			7	5965	0.0	10.0	49	0.980	95.0	75.0
7	51	C - 0	2.0	74	0.120	26.0	41.0			7	59	0.0	2.0	94	0.710	91.0	88.0
7	51	2.0	4.0	65	0.100	21.0	33.0			4	59	4.0	6.0	74	0.680	77.0	86.0
7	51	4.0	6.0	59 50	0.077	18.0	31.0			2	59	6.0	8.0	68	0.500	66.0	79.0
7	51	8.0	10.0	47	0.058	15.0	29.0			7	59	10.0	10.0	65	0.490	46.0	62.0
1	51	10.0	12.0	43	0.047	14.0	25.0			7	59	12.0	14.0	62	0.330	39.0	57.0
<i>'</i>	51	14.0	16.0	40	0.034	13.0	25.U 28.C			7	59	14.0	16.0	56	0.190	30.0	48.0
7	51	20.0	24.0	29	0.019	10.0	19.0			'					•••		
7	51	28.0	32.0 40.0	30 37	0.018	11.0	22.0			7	60G E	c.o	10.0	57	1.800	180.0	100.0
7	51	50.0	60.0	43	0.023	17.0	34.0			7	6C	2.0	4.0	54	0.720	73.0	53.0
7	51	60.0	70.0	30	0.015	11.0	21.0			7	60	4.0	6.0	2 30	-0,193	0.0	0.0
7	52G S	0-0	10.0	53	0.180	32.0	40.6			7	60	8.0	10.5	44	0.330	29.0	32.0
7	52	0.0	2.0	72	0.290	52.0	66.0			7	60	10.5	15.5	17	0.010	6.1	11.0
7	52	4.0	6.0	63	0.220	36.0	53.0			7	6 1G S	0.0	10.0	57	3.500	190.0	100.0
7	52	6.0	8.0	59	0.170	25.0	37.0			7	61	0.0	2.0	90	3.500	140.0	69.0
2	52	10.0	10.0	49	0.079	28.0	45.0			7	61	2.0	4,0 5.0	73	9.100	140.0	93.0
7	52	12.0	14.0	43	0.033	16.0	29.0			ź	61	6 - C	8.0	23	0.170	19.0	27.0
7	52	14.0	16.0 24.0	41 41	0.037	14.0	29.0			7	61	8.0	10.0	27	0.017	8.0	10.0
ŕ	52	28.0	32.0	40	0.046	16.0	30.0			7	61	12.0	14.0	24	0.017	7.1	16.0
7	52	36.0	40.0	41	0.036	14-0	30.0			7	61	14.0	16.0	27	0.013	7.7	16.0
,	72	50.0	J7.U	47	0.0	3.2	10.0			1	61	28.0	32.0	20	0.015	5.1	14.0
7	53	0.0	2.0	71	0.240	39.0	56.0			-				<b>F</b>			
÷	53	4.0	6.0	67	0.200	35.0	58.0			7	65GS 65	0.0	2.0	42	0.260	27.0	38.0
7	53	6.0	B.0	62	0.140	31.0	49.0			7	65	2.0	4.0	35	0.092	22.0	29.0
7	53	10.0	10.0	58 56	0.150	28.0	45.0			7	65	4.0	6.0	34	C.083	17,0	29.0
'n	53	12.0	14.0	51	0.091	19.0	35.0			7	65	8.0	10.0	32	9.480	15.0	30.C
7	53	14.0	16.0	50	0.078	18.0	33.0			7	65	10.0	12.0	41	0.620	15.0	30.0
÷	53	28.0	32.0	36	0.029	11.0	21.0			1	65	12-0	16.0	43	0.540	16.0	30.0
7	53	36.0	40.0	36	0.041	14.0	24.0			7	65	20.0	24.0	48	0.570	19.0	41.0
/	53	50.0	60.0	32	0.027	10.0	19.0			7	65	28.0	32.0	39	0.630	9.3	26.0
7	5465	0.0	10.0	59	0.420	57.0	60.0			7	65	50.0	60.0	39	0.280	9.9	33.0
7	54	2.0	2.0	65 66	0.044	58.0	16.0			7	460 6	0.0	10 0	20	0 250	29.0	38.0
7	54	4.0	6.0	65	0.058	50.0	13.0			;	66	0.0	2.0	68	0.410	37.0	11.0
7	54	6.0	8.0	62	0.034	40.0	10.0			7	66	2.0	4.0	51	0.110	22.0	6.8
÷	54	10.0	12.0	57	0.065	32.0	7.8			7	66	6.0	8.0	49	0.067	22.0	7.8
7	54	12.0	14.0	56	0.056	28.0	10.0			2	66	8.0	10.0	42	0.065	19.0	6.4
÷	54	20.0	24.C	42	0.048	16.0	6.0			7	66 66	12.0	12.0	43	0.035	22.0	7.5
7	54	28.0	32.0	36	0.030	14.0	5.5			7	66	14.0	16.0	40	0.035	20.0	6.9
7	54 54	36.0	40.0 60.0	27	0.019	11.0	5.1			7	66 66	16.0	20.0	41	0.035	19.0	6.9 7.0
•	54	5	00-0	20	0.02		0.4			÷	66	24.0	28.0	34	0.040	20.0	7.9
7	55GS	0.0	19.0	32	0.170	21.0	22.0			7	66	28.0	32.0	36	0.033	20.0	7.0
7	5665	0.0	10.0	47	0.400	38.0	33.C			<i>i</i>	66	36.0	40.0	30	0.026	19.0	7.3
7	56	C.C	2.0	89	1.900	83.0	98.D			7	66	40.0	49.5	28	r-024	20.0	6.5
2	56	4.0	6.0	72	2.500	88.0	88.0			1	66	49.0	53.5	21	0.014	11.0	5.5
7	56	6.0	8.0	70	0.850	84.0	81.0			7	67	0.0	2.0	90	0.570	69.0	74.0
7	56	10.0	10.0	64	1.150	57.0	76.0 60.0			7	67 67	2.0	4.0	88 96	0.590	69.0	72.0
7	56	12.0	14.C	53	0.590	46.0	51.0			7	67	6.0	8.0	92	C.250	48.0	63.0
7	56	14.0	16.0	46	0.320	30.0	36.0			7	67	3.8	10.0	85	0.250	50.0	68.0
7	56	28.0	32.0	40	0.042	17.0	29.0			2	67	12.0	14.0	62	0.240	35.0	51.0
7	56	36.0	40.C	35	0.120	19.0	27.0			7	67	14.0	16.0	61	0.190	22.0	32.0
7	57G S	0.0	10.0	45	0.730	0.0	0.0			7	67 67	16.C	20.0	56 47	0.120	20.0	32.0 30.0
7	57	C.O	2.0	77	0.950	99.0	84.0			7	67	24.0	28.0	46	0.043	19.0	30.0
7	57	2.0	4.0	71 62	0.720	82.0	82.0			7	67	28.0	32.0	45	0.032	15.0	27.0
7	57	6.0	8.0	64	0.480	36.0	48.0			, ,	67	36.0	40.0	62	0.035	0.0	0.0
7	57	8.0	10.0	61	0.380	27.0	42.0			7	67	40.0	50.0	46	0.030	13.0	26.0
ź	57	12.0	12.0	56	0.410	26.0	42.0			/	6/	50.0	60.0	41	0.025	7. C	20.0
7	57	14.0	16.0	50	0.270	22.0	38.0			7	6865	0.0	10.0	56	C.750	71.0	76.0
7	57	20.0	24.0	48 47	0.170	18.0	31.0			7	6E 68	0.0	2.0	56 50	0.025	40.0	12.0
7	57	36.0	40.0	42	0.050	18.0	33.0			7	68	4.0	6.0	56	0.061	29.0	10.0
7	57 57	40.0	50.0	46	0.043	16.0	30.0			7	68	6.0	8.0	48	0.052	27.0	9.9
	, ,	50.0	90 e U	20		,0.U	49.V			÷	68	10.0	12.0	50	0.052	29.0	10.0
7	58	0.0	2.0	81 87	0.810	88.0	110.0			7	68	12.0	14.0	56	0.073	27.0	12.0
÷	58	4.0	5.0	80	1.100	90.0	100.0			<i>'</i>	68	16.0	20.0	49	0.050	27.0	9.5
7	58	6.0	8.0	63	0.550	85.0	95.0			7	68	20.0	24.0	47	0.051	28.0	10.0
ŕ	58	10.0	12.0	68	0.420	30.0	58.0			5	68	28.0	28.0 32.0	45	0.028	27.0	9.7
7	58	12.0	14.0	51	0.240	45.0	59.0	- 89	-	7	68	32.0	36.0	46	0.055	27.0	10.0
ź	58	20.0	24.0	49	0.074	18.0	32.0	~~		;	8 <i>0</i> 88	40.0	50.0	44	0.049	23.0	8.6

STATION	INT	ER VAL	WAT ER	H G	CR	NI			CRUISE	STATION	I NT	ERVAL	WAT ER	ĦG	CR	NI
	TOP	BOTTON	*	PP 8	PPN	PPN					TOP	BOTTON	×	86 W	PPR	PPH
68	50.0	60.0	42	0.042	20.0	8.1			7	80	0.0	2.0	35	0.100	14.0	20.0
									i	вč	2.0	4.0	33	0.071	11.0	19.0
70G S	0.0	10.0	52	0.540	58.0	54.0			7	80	4.0	6.0	31	0.052	10.0	19.0
70	0.0	2.0	49	0.550	64.0	69.0			7	80	6.0	8.0	29	0.036	9.7	18.0
70	4.0	6.0	47	0.370	58.0	76.0			7	80	8.0	10.0	29	0.030	10.0	17.0
70	6.0	8.0	47	0.028	56.0	68.0			<i>'i</i>	80	12.0	14.0	33	0.033	11.0	21.0
70	B.O	10.0	49	0.380	57.0	63.0			7	80	14.0	15.0	34	0.029	12.0	20.0
70	10.0	12.0	51	0.110	59.0	58.0			7	80	16.0	20.0	28	0.027	11.0	19.0
70	12.0	14.0	50	C.130	53.0	48.0			1	80	20.0	24.0	30	0.031	11.0	19.0
70	16.0	20.0	51	0.460	62.0	44.0			4	80	28.0	40.0	26	0 020	/•5 8 7	14.0
70	24.0	28.0	50	0.240	40.0	43.0			7	8Č	50.0	60.0	25	0.007	8.9	18.0
70	36.0	40.0	48	C.220	33.0	39.0										
70	50.0	60.0	47	0.290	29.0	32.0			7	81	0.0	2.0	71	0.200	28.C	41.0
70	115.0	120.0	19	0.039	14.0	22.0			7	81	2.0	4.0	49	0.130	19.0	30.0
7105	0.0	10 0	53	0 07#	26.0	<b>49</b> 0			1	81	4.0	6.0	44	0.087	15.0	26.0
71	ő.č	2.0	66	0.059	32.0	35.0			'	81	8.0	10.0	30	0.037	13.0	22.0
71	2.0	4.0	58	0.022	30.0	33.0			ź	อัง	10.0	12.0	30	0.038	12.0	21.0
71	4.0	6.0	59	0.032	29.0	33.0			7	81	12.0	14.0	28	0.030	13.0	20.0
71	6.0	8.0	61	0.018	27.0	31.0			7	81	14.0	16.0	31	0.034	12.0	19.0
71	10 0	12 0	50	0.016	28.0	30.0			7	87	20.0	24.0	36	0.028	15.0	25.0
71	12.0	14.0	62	0.014	32.0	30.0			4	81	36.0	40.0	73	0.033	15.0	24.0
71	14.0	16.0	61	0 0 16	30.0	29.0			7	81	50.0	60.0	31	0.027	9.1	20.0
71	16.0	20.0	59	0.055	28.0	38.C										
71	20.0	24.0	62	0.110	30.0	33.0			1	82 G S	0.0	10.0	54	0.450	42.0	54.0
71	24.0	28.0	60	0.050	29.0	33.0			7	82	0.0	2.0	51	0.190	23.0	38.0
71	32.0	36.0	59	0.056	30.0	51.0			;	82	4.0	6.0	39	0.072	15.0	26.0
71	36.0	40.0	60	0.005	26.0	30.0			ż	82	6.0	8.0	38	0.055	15.0	0.0
71	40.0	50.0	60	0.057	26.0	30.0			7	82	8.0	10.0	40	0.047	14.0	27.0
71	50-0	60.0	58	0.056	26.0	29.0			7	82	10.0	12.0	39	0.053	15.0	26.0
7206	0.0	10 0	ne	0 1 20	36.0	43 0			7	82	12.0	14.0	40	0.050	14.0	26.0
7202	0.0	2.0	40 219	0.320	69.0	31.0			ź	82	20.0	24.0	39	0.047	13.0	24.0
72	2.0	4.0	44	0.310	76.0	32.0			7	82	28.0	32.0	29	0.037	13.0	23.0
72	4.0	6.0	44	0.300	74.0	27.0			7	82	36.0	40.0	33	0.032	14.0	23.0
72	5.0	8.0	46	0.300	65.0	27.0			7	82	50.0	60.0	29	0.030	12.0	20.0
72	3.8	10.0	42	0.260	60.0	22.0			7	82	60.0	70.0	30	0.034	15.0	25.0
72	10.0	12.0	57	0.410	90.0	33.0			7		<u> </u>	2.0	06	0 3 3 0	6 7 A	71 0
72	14.0	16.0	54	0.270	80.0	27.0			;	83	2.0	4.0	80	0.340	41.0	68.0
72	16.0	20.0	48	0.280	26.0	17.0			ż	83	4.0	6.0	68	0.260	31.0	57.0
72	20.0	24.0	49	0.260	20.0	12.0			7	83	6.0	8.0	61	0.220	25.0	46.0
72	24.0	28.0	50	0.240	23.0	17.0			1	83	8.0	10.0	53	0.150	19.0	37.0
72	28.0	32.U	21	0.310	23.0	14.0			4	63	10.0	12.0	56	0.110	17.0	35.0
72	50.0	60.0	35	0.023	13.0	8.4			7	83	14.0	16.0	48	0.077	14.0	28.0
. ~									ż	83	20.0	24.0	42	0.043	19.0	21.0
72	0.0	2.0	63	0.180	35.0	44.0			7	83	28.0	32.0	43	0.047	17.0	0.0
72	2.0	4.0	€0	0.099	28.0	42.0			7	83	36.0	40.C	38	0.049	15.0	27.0
72	4.0	6.0	47	0.049	22.0	40.0			7	83	50.0	50.0	46	0.040	16.0	35.0
72	8.0	10.0	53	0.060	22.0	34.0			7	8465	0.0	10.0	30	0.064	9.5	17.0
72	10.0	12.0	51	0.052	23.0	32.C			7	84	0.0	2.0	30	0.035	10.0	16.0
72	12.0	14.0	52	0.047	21.0	46.0			7	84	2.0	4.0	27	0.015	11.0	15.0
72	14.0	16.0	54	0.046	22.0	36.0			7	84	4.0	6.0	28	0.010	10.0	17.0
72	20.0	32 0	57	0.023	23.0	39.0 40.C			1	84 94	8.0	10.0	21	0.009	0.4	17.0
72	36.0	40.0	54	0.038	23.0	40.0			7	84	10.0	12.0	20	0.009	2.7	12.0
72	50.0	60. n	49	0.028	21.0	54.0			7	84	12.0	14.0	23	0.012	1.8	9.9
									7	84	14.0	16.0	29	0.010	8.6	21.0
74GS	0.0	10.0	50	0.290	29.0	37.0			7	84	20.0	27.5	18	0.015	1.1	8.5
74	2.0	4.0	36	0.053	13.0	21.0			'	04	21.5	3343	15	0.010	7.0	2/.0
74	4.0	6.0	31	0.036	0.0	19.0			7	85 G S	0.0	10.0	32	0.054	9,8	19.0
74	6.0	8.0	32	0.017	12.0	20.0			_		-					
74	8.0	10.0	31	9.031	9.6	17.0			7	86 G S	0.0	10.0	66	0.320	47.0	72.C
74 74	12.0	14.0	23	0.020	9.0	14.0			7	86	2.0	<b>u</b> . 0	64	0.200	12. 0	52.0
74	14.0	16.0	27	0.029	13.0	21.0			'n	86	4.0	6.0	62	0.180	30.0	44,0
74	20.0	24.0	27	0.024	9.1	17.0			7	86	6.0	8.0	63	0.160	21.0	43.0
74	28.0	32.0	25	0.022	9.7	17.0			7	86	8.0	10.0	60	0.110	25.0	48.0
74	36.C	4 <b>0</b> .0	24	0.024	11.0	21.0			7	86	10.0	12.0	61	0.130	22.0	43.0
7565	0.0	10 0	43	0.710	56.0	43.0			4	86	14 0	14.0	59 '	0.094	21.0	30.0
75	ŏ.c	2.0	49	1.400	110.0	110_C			'n	86	20.0	24.0	47	0.057	16.0	30.0
75	2.0	4.0	32	0.250	, 36.0	39.0			7	86	28.0	32.0	50	0.048	17.0	34.0
75	4.0	6.0	21	0.120	13.0	17.0			7	86	36.0	40.0	42	0.037	15.0	26.0
75	0.0	8.0	18	0.044	11.0	11.0			7	86	50.0	60.0	45	0.035	19.0	37.0
75	10-0	12-0	22	0,036	11.0	18_0			7	9365	0.0	10 - 0	24	0.067	12.0	41.0
75	12.0	14.0	25	0.064	18.0	29.0			•							4140
75	14.0	16.0	21	0.052	14.0	22.0			7	94GS	0.0	10.0	61	0.210	37.0	61.0
75	16.0	22.0	21	0.055	15.0	25.0			7	94	0.0	2.0	99	0.260	19.0	48.0
15	22.0	21.0	17	0.036	10.0	25.0			2	94	2.0	4.0	88	0.098	0.0	0.0
78	0.0	2.0	27	0.034	13-0	17-0			<i>'</i>	94 94	6.0	0+U 8-0	67	0.071	10.0	30.0
7ĕ	2.0	4.0	25	0.021	12.0	17.0			7	94	8.0	10.0	66	0.041	16.0	37.0
78	4.0	6.0	27	0.025	11.0	16.0			7	94	10.0	12.0	59	0.033	16.0	35.0
78	6.0	8.0	30	0.017	13.0	16.0			7	94	12.0	14.0	64	0.030	17.0	34.0
78	10.0	10.0	11 76	0.032	15.0	24.0			4	94 6.h	14.0 20 0	30.0	60	0.031	10.0	35.0
78	12.0	14.0	37	0.028	17.0	25-0			÷	9 LL	28.0	32.0	65	0.024	21.0	40.0
78	14.0	16.0	38	0.030	18.0	28.0			•	94	36.0	40.0	60	0.025	18.0	37.0
78	20.0	24.0	38	0.030	19.0	29.0	<b>.</b> .		7	94	50.0	60.0	59	0.024	22.0	38.0
78	28.0	33.0	23	0.017	7.2	16.0 _	· 90	-	-			40. 0	**			
									,	3365	v+0	10.411	10	0.0.0	17.0	31.0

CROISE	STATION	INTI TOP CH	ERVAL EOTTOM CM	WATER %	HG PPM	C P P P N	NI PPM			CR	JISE	STAT ION	INT	BOTTON	WATER S	H G PP M	CR PPR	NI PPN
7	96G S	0-0	10.0	44	C.200	34.0	42.0			i e	L.	2	4.0	6.0 8.4	19 78	0.320	53.0	45.0
7	976 s	0-0	10.0	10	6.025	5.7	13.0					-	0.0	0.4	20	0.310	07.0	
-						5.,	1310			1	L L	3	4.0	6.0	43	0.670	67.0 82.0	44.0
ź	9865	0.0	10.0	11	0.019	6.5 11.0	43.0			1	L .	3	2.0	4.0	45	0.920	63.0	42.0
7	96	2.0	4.0	15	0.017	11.0	8.3			1		3	8.0	10.0	42	0.830	110.0	57.0
<i>'</i>	98 98	4.0	6.0 8.0	16 16	0.018	12.0	7.8			1	1	2	10.0	12.0	40	1.000	160.0	62.0
7	98	8.0	10.0	16	0.018	13.0	8.7				1	3	14.0	16.0	36	0.870	75.0	33.0
÷	98 98	10.0	12.0	18 18	0.019	14.0	8.8 9.2			1	L	3	16.0	20.0	39	0.460	73.0	33.0
7	98	15.0	20.0	16	0.018	12.0	6.8			;		3	20.0	24.0	39	0.220	54.0	26.0
7	99G S	0.0	10.0	18	0.018	8.6	14.0			1		3	28.0	32.0	42	0.450	26.0	25+0
7	1000	0.0	10 0	EO	0 2 20	20.0					i.	3	36.0	40.0	42	0.310	20.0	20.0
7	100	0.0	2.0	67	0.360	38.0	46.0			1	L	3	40.0	44.5	38	0.150	22.0	21.0
7	100	2.0	4.0	65 65	0.320	39.0	46.0			1		6	2.0	4.0	20	0.290	31.0	47.0
7	100	6.0	8.0	64	0.160	22.0	36.0			1		6	4.0	6.0	15	0.190	18.0	36.0
7	100	8.0	10.0	61 56	0.110	14.0	30.0			1	L	6	6.0	8.0	21	0.540	58.0	82.0
7	100	12.0	14.0	56	0.052	13.0	29.0			ĵ.	L.	6	10.0	12.0	26	0.870	24.0	41.0
ź	100	20.0	24.0	552	0.045	12.0	24.0			)	L	6	12.0	13.3	32	0.029	19.0	39.0
7	100	28.0	32.0	44	0.033	9.2	21.0			2		31	0.0	2.0	18	0.110	1.2	4.1
ŕ	100	50.0	60.0	24	0.025	2.9	14.0			2	1	31	2.0	4.0 6.0	18 21	0.110	3.2	3.7
7	100	60.0	68.0	26	0.008	0.3	9.5			1	L I	31	6.0	8.0	18	0.160	2.1	2.5
7	1016	0.0	10.0	16	0.019	12.0	35.0			,	L	31	10.0	12.0	19	0.077	2.8	2.1
7	1026	0.0	10 - 0	20	0.018	12.0	32.0			A ,		31	12.0	14.0	18 17	0.025	C.7	2.8
7	102	0.0	2.0	18	0.019	15.0	12.0			ź		31	16 - 0	20.0	16	0.025	3.6	1.5
7	102	2.0	4.0	18 18	0.019	16.0	12.0			1	L.	31	24.0	28.0 24.0	18	0.021	5.2	2.4
7	102	6.0	8.0	17	0.017	13.0	9.4			,	•							
7	102	8.0 10.0	10.0	18 20	0.018	15.0	12.0			1	1	32	2.0	2.0	24 15	0.110	4.1	4.1
7	102	12.0	14.0	19	0.017	16.0	10.0											42.0
7	102	16.0	18.0	20	0.017	13.0	7.7			1	1	36 36	4.0	6.0	20	0.043	11.0	12.0
7	1036	0 0	10.0	hΑ	0 120	27 Å	11.6 D			3	L	36	5.0	8.0	22	0.020	17.0	28.0
7	103	0.0	2.0	80	0.063	29.0	19.0			,	•	50	0.0	3.0		0.024		2740
7	103	2.0	4.0	76 84	0.052	25.0	16.0			1	<b>L</b>	37	0.0	2.0	38	0.180	15.0	16.0
ż	103	6.0	8.0	74	0.040	21.0	15.C			Ĩ		37	4.0	6.0	30	0.034	25.0	34.0
777	103	8.0	10.0	89 68	0.120	72.0	42.0			1	L 1	37	6.0	8.0 10.0	29 30	0.026	20.0	31.0
7	103	12.0	14.0	62	0.041	20.0	13.0			i		37	10.0	12.0	30	0.035	19.0	33.0
7	103	20.0	16.0	67	0.023	22.0	13.0				4	37	12.0	14.4	33	0.035	31.0	32+0
7	103	28.0	32.0	63	0.018	24.0	14.0			1	<b>L</b>	38	0.0	5.0	29	0.028	22.0	36.0
ź	10 3	50.0	60.0	61	0.019	26.0	13.0			1	٨	4 C	0.0	2.0	25	0.023	4.8	4.3
7	1046	0.0	10.0	79	0.280	58.0	50.0			1	L	4C 40	2.0	4.0	18 19	0.023	4.6	4.0
7	104	0.0	2.0	46	0.390	44.0	40.0			j	4	40	6.0	8.0	21	0.044	6.6	9.1
7	104	2.0	4.0	51 47	0.510	75.0 46.0	54.0 40.0			1		4 C	9.8	10.0	21	0.045	5.3	8.2
7	104	6.0	8.0	45	0.250	37.0	35.0			2		41	0.0	2.0	22	0.074	5.5	6.6
7	104	8.0 10.0	10.0	39	0.200	27.0	24.0			5		41	4.0	5.5	13	0.044	3.9	8.6
7	104	12.0	14.0	26	0.017	12.0	30.0					40	• •	1.0	21	0.016	3. A	6.8
;	104	20.0	24.0	39	0.019	19.0	48.0			4	•	42	0.0					
7	104	28.0	32.0	26 25	0.009	11.0	30.C 25.0			1	4	य य य य	0.0	2.0 4.0	24	0.077	20.0	33.0
										1	Ň	44	4.0	6.0	35	0.030	18.0	40.C
7	105G	0.0	10.0	21	0.030	11.0	32.0			1	1	44	6.0	10.0	27	0.043	19.0	38.0
7	106 G	0.0	10.0	60	0.280	49.0	59.0			i		44	10.0	12.0	27	0.030	18.0	32.0
7	106 106	0.0	2.0	57 48	0.280	34.0	37.0				7	य म 4 म	12.0	16.0	32 34	0.038	20.0	44.0
7	106	4.0	6.0	73	0.570	89.0	82.0			1	l.	44	16.0	20.0	34	0.031	17.0	34.C 41.C
7	106	8.0	10.0	50 60	0.350	57.0	51.0			1	L .	44	24.0	27.0	37	0.046	22.0	38.0
7	106	10.0	12.0	53 61	0.310	49.0	47.0			,		45	0.0	2.0	22	0.009	2.0	3.0
<i>'</i> 7	106	14.0	16.0	60	0.690	70.0	57.0			i	i.	45	2.0	4.0	16	0.008	2.4	3.6
7	106	20.0	24.0	€8 ⊪1	0.290	35.0	42.0			1		45	4.0	6.U 8.0	16	0.011	2.4	3.6
7	106	36.0	40.0	39	0.060	9.6	22.0			1		45	8.0	10.0	15	n.013	2.0	6.6 3.8
7	106	50.0	60.C	30	0.011	10.0	21.0			1	1	45	12.0	14.0	17	0.014	3.1	4.8
7	1076	0.0	10_0	46	0.081	19.0	34.0			į		45	14.0	16.0	17 16	0.016	3.3	5.6
7	107	2.0	4.0	ь/ 56	0.082	17.0	28.0			1		45	20.0	23.7	19	0.015	2.4	5.3
7	107	4.0	6.0	46 36	0.052	14.0 14.0	24.0			1		46	0.0	2.0	46	81.000	8.8	21.0
ź	107	8.0	10.0	20	0.024	11.0	23.C			i		46	2.0	4.0	38	13.000	11.0	23.0
7 7	107 107	10.0	12.0 14.0	25 29	0.020	12.0 13.0	18.0			1	1	40 46	6.0	8.0	32	43.000	6.8	25.0
7	107	14.0	17.0	33	0.016	14.0	25.0			j	L .	4€	8.0	10.0	33 29	23.000	12.0 17-0	22.C 43.0
A	2	0.0	2.0	43	0.490	140.0	130.0	_	91	- 1		40 4E	12.0	14.0	28	0.540	18.0	43.0
Δ.	2	2.0	4.0	23	0.410	63.0	59.0			1	1	46	14.0	16.0	31	0.220	20.0	42.0

CROISE	STATION	INT TOP CH	EEVAL EOTTON CH	VAT EI X	R HG PPM	CR PPM	NT PPN			2	RULSE	STATION	INTE TOP CH	RVAL BOTTON CN	WATER S	H G PP M	P PH CB	N I Mqq
A A A	46 46 46	16.0 20.0 24.0	20.0 24.0 27.0	28 25 24	2.100 0.150 0.480	13.0 18.0 16.0	29.0 39.0 42.0				B B	11 11 11	0.0	2.0	18 31 73	0.100	19.0 21.0 20.0	30.0 42.0 43.0
2 2 2 2 2 2 2 2	47 47 47 47 47	0.0 2.0 4.0 6.0 8.0	2.0 4.0 6.0 8.0 10.0 12.0	55 27 47 46 41 38	0.058 0.041 0.059 0.072 0.075 0.075	6.7 4.3 14.0 13.0 12.0 9.6	26.0 9.0 25.0 22.0 21.0 21.0				អ អ អ អ អ	12 12 12 12 12	0.0 2.0 4.0 6.0 8.0	2.0 4.0 6.0 8.0	33 32 31 38 29	0.024 0.024 0.036 0.051 0.038	14.0 15.0 17.0 17.0 14.0	21.C 22.C 26.0 28.0 25.0
A A A	48 48 48	0.0 2.C 4.C	2.0 4.0 6.0	15 26 20 17	0.029	4.8 3.1 3.0 2.5	11.0 2.9 4.4 5.0				8 8 8 8 8	12 12 12 12 12	10.0 12.0 14.0 16.0 20.0	12.0 14.0 16.0 20.0 25.0	30 29 29 27 27	0.061 0.029 0.013 0.028 0.028	16.0 16.0 13.0 15.0 19.0	23.0 25.0 20.0 24.0 33.0
A A A A A A A A	4 9 9 4 4 9 4 9 9	0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0	2. r 4. 0 6. 0 10. 0 12. 0 14. 0 16. 0	36 30 30 30 28 27 27 27 27	0.310 0.055 0.034 0.037 0.068 0.032 0.037 0.067	15.0 14.0 18.0 19.0 14.0 18.0 17.0 19.0	34.0 34.0 38.0 39.0 37.0 41.0 36.0 38.0				8 8 8 8 8 8 8 8 8 8 8 8	13 13 13 13 13 13 13 13	0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0	2.0 4.0 6.0 10.0 12.0 14.0 16.0 20.0	30 26 30 25 25 24 25 24 25 24	0.012 0.027 0.015 0.016 0.015 0.014 0.014 0.008 0.009	14.0 11.0 12.0 14.0 13.0 14.0 13.0 14.0 13.0	22.0 23.0 21.0 23.0 26.0 22.0 25.0 21.0 26.0
A A	50 50	0.0	2.C 4.0	44 19	0.120	3.9 4.8	9.6 7.8				B B	13	20.0	24.0	25 72	0.022	16.0 39.0	24.0 69.0
н 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	545454545646	0.0 4.0 6.0 8.0 12.0 14.0 16.C 20.0 28.0 28.0	4.0 6.0 8.0 10.0 12.0 14.0 26.0 24.0 28.0 32.0 2.0	42 36 33 32 33 30 32 32 28 39 41	$\begin{array}{c} 0.024\\ 0.021\\ 0.016\\ 0.018\\ 0.024\\ 0.027\\ 0.028\\ 0.031\\ 0.036\\ 0.046\\ 0.076\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.$	15.0 14.0 15.0 16.0 16.0 17.0 13.0 11.0 19.0 59.0	28.0 28.0 29.0 29.0 30.0 37.0 20.0 27.0 63.0				9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	74 14 14 14 14 14 14 14 14 14 14 14 14 14	2.0 4.0 8.0 10.0 12.0 14.0 20.0 24.0 28.0 32.0 32.0 36.0	4.0 6.0 8.0 12.0 14.0 14.0 20.0 24.0 28.0 36.0 40.0 46.0	73 654 56 56 55 55 55 55 55 55 55 55 55 55 55	0.180 1.400 0.380 0.097 0.110 0.490 0.140 0.140 0.150 0.150 0.055 0.076 0.040 0.041	3 / .0 39 .0 36 .0 34 .0 28 .0 24 .0 24 .0 24 .0 25 .0 26 .0 26 .0	62.0 60.0 58.0 52.0 48.0 40.0 28.0 40.0 48.0 36.0
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		4.0 6.0 8.0 10.0 12.0 14.0 20.0 28.0 32.0 36.0	6.0 8.0 10.0 12.0 14.0 16.0 20.0 24.0 28.0 32.0 36.0 40.0	785 55 59 48 54 55 56 56 56 56	0.290 0.30 0.420 0.260 0.190 0.160 0.230 0.330 0.097 0.160 0.068 0.140 0.067	74.0 76.0 55.0 48.0 33.0 21.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	64.0 65.0 59.0 60.0 58.0 28.0 28.0 31.0 31.0				8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	15555555555555555555555555555555555555	0.0 2.0 4.C 8.0 10.0 12.0 14.0 16.0 20.0 24.0 28.0 32.0	2-0 4.0 6.0 10.0 12.0 14.0 20.0 24.0 24.0 32.0 36.0	60 61 67 57 57 61 61 58 59	$\begin{array}{c} 0.013\\ 0.010\\ 0.020\\ 0.082\\ 0.019\\ 0.018\\ 0.005\\ 0.014\\ 0.120\\ 0.067\\ 0.044\\ 0.140\\ 0.260\\ \end{array}$	37.0 43.0 46.0 46.0 43.0 47.0 41.0 29.0 22.0 26.0 25.0 21.0	59.0 61.0 63.0 61.0 64.0 63.0 39.0 39.0 41.0 35.0 33.0
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	, , , , , , , , , , , , , , , , , , ,	0.0 4.0 8.0 10.0 112.0 14.0 20.0 24.0 224.0 32.0 36.0	4.0 6.0 8.0 12.0 14.0 16.0 20.0 24.0 28.0 32.0 36.0 38.0	51972455185539 44455185539	$\begin{array}{c} 0.290\\ 0.200\\ 0.190\\ 0.160\\ 0.160\\ 0.140\\ 0.170\\ 0.092\\ 0.042\\ 0.031\\ 0.085\\ 0.085\\ 0.049 \end{array}$	53.0 49.0 35.0 30.0 23.0 20.0 19.0 27.0 27.0 27.0	63.0 63.C 58.C 51.0 45.0 45.0 36.C 30.0 30.0 44.0 30.0				8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	15 15 16 16 16 16 16 16 16	36.C 40.0 2.0 4.0 6.0 8.0 10.0 14.0 14.0 16.0 20.0	40.0 47.5 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 20.0 24.0	56 54444499635 54786899635	$\begin{array}{c} 0.100\\ 0.350\\ 0.270\\ 0.086\\ 0.062\\ 0.070\\ 0.051\\ 0.050\\ 0.045\\ 0.026\\ 0.046\\ 0.026\\ 0.046\end{array}$	22.0 23.0 46.0 41.0 29.0 26.0 23.0 26.0 24.0 16.0 12.0	34.0 35.C 62.C 58.0 56.C 46.0 47.0 48.0 45.0 25.0 21.0 21.0
8 8 8 8	9 9 9	2.0 0.0 4.0 6.0 8.0	4.0 2.0 6.0 8.0	61 71 57 54 52	0.280 0.190 0.190 0.140 0.140	63.0 60.0 53.0 48.0 41.0	78.0 72.0 72.0 70.0 60.0				8 8 8 8	16 16 16 16	28.0 32.0 36.0 40.0	28.0 32.0 36.0 40.0 43.5	36 35 38	0.022 0.013 0.017 0.037	12.0 22.0 15.0 15.0	21.0 37.0 26.0 23.0
8 8 8 8 8 8 8 8 8 8 8 8 8 8	59999599	10.0 12.0 14.0 16.0 20.0 24.0 28.0 32.0 36.0	12.0 14.0 16.0 20.0 24.9 28.0 32.0 36.0 40.0	53 49 64 57 58 58 54 50 51	0.150 0.038 0.074 0.070 0.032 0.026 0.040 0.040	38.0 33.0 22.0 25.0 23.0 23.0 23.0 23.0	56.0 53.0 53.0 40.0 42.0 42.0 41.0 36.0 42.0				B B B B B B B B B	17 17 17 17 17 17 17	0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0	2.0 4.0 6.0 10.0 12.0 14.0 16.0	26 29 34 33 32 30 31 36	$\begin{array}{c} 0.009 \\ 0.015 \\ 0.021 \\ 0.004 \\ 0.008 \\ 0.003 \\ 0.028 \\ 0.024 \end{array}$	17.0 20.0 24.0 24.0 26.0 21.0 22.0 22.0	33.0 39.0 47.0 45.0 45.0 44.0 45.0 48.0
B B B B B B B B B B B B B B B B B B B	10 10 10 10 10 10 10 10 10 10	0.0 2.0 4.0 8.0 10.0 12.0 14.0 12.0 14.0 224.0 228.0 32.0 36.0 34.0	2.0 4.0 8.0 10.0 12.0 14.0 20.0 22.0 22.0 36.0 36.0 40.0 43.0	83 91 83 79 63 556 64 755 54 67 851 48	0.0 0.017 0.020 0.021 0.004 0.005 0.530 1.000 0.005 0.004 0.003 0.023 0.023 0.015 0.043	44.C 43.C 40.0 40.0 29.0 27.0 30.0 30.0 25.0 28.C 28.C 28.C 28.0 27.0 26.0 27.0	67.0 66.0 70.0 64.0 52.0 46.0 44.0 44.0 44.0 46.0 46.0 46.0 46	_	92	_	12 13 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	18 18 18 18 18 18 18 18 18 18 18 18 18 1	0.0 2.0 4.0 8.0 10.0 12.0 14.0 20.0 24.0 28.0 32.0 36.0 40.0	2.0 4.0 5.0 10.0 12.0 14.0 16.0 20.0 24.0 28.0 32.0 36.0 40.0 49.0	60 41 40 40 40 40 40 40 40 40 40 40 40 40 40	0.043 0.033 0.045 0.034 0.021 0.053 0.053 0.025 0.024 0.026 0.026 0.014 0.069 0.061 0.0013	27.0 25.0 25.0 24.0 69.0 25.0 26.0 21.0 20.0 21.0 22.0 21.0 24.0	48.0 47.0 47.0 47.0 130.0 45.0 35.0 32.0 31.0 32.0 32.0 32.0 32.0

CRUISE	STATION	INTE TOP	BUAL	WAT ER %	HG PPH	CP PPM	NI Ppm		CROISE	STATION	INT TOP	ER VAL BOTTON	WATEI %	R HG PPH	CR PPM	N I PPM	
B	19	0.0	2.0	75	0.062	25.0	40.0		c	30	10.0	Cā 12.0	uu	0.010	18.6	35.0	
в	15	2.0	4.0	58	0.045	21.0	31.0		ž	30	12.0	14.0	44	0.015	16.0	37.0	
В	19	4.0	€.0	54	0.041	19.0	31.0		С	36	14.0	16.0	43	0.010	15.0	30.0	
8	19	6.0	10.0	51	0.057	17.0	26.0		c	30	20.0	24.0	43	0.015	16.0	41.0	
8	19	10.0	12.0	59	0.038	22.0	34.0		c	30	28.0	32.0	35	0.009	12.0	33.0	
в	19	12.0	14.0	46	0.027	18.0	27.0		č	30	50.0	60.0	38	0.012	3.3	20.0	
В	19	14.0	16.0	46	0.048	16.0	26.0		с	30	70.0	80.0	36	0.009	14.0	36.0	
8	19	16.0	20.0	52	0.042	21.0	32.0		c	30	90.0	99.0	36	0.009	10.0	31.0	
B	19	24.0	28.0	54	0.022	30.0	52.0		c	31	0.0	2.0	57	0.030	17.0	33.0	
В	19	28.0	32.0	47	0.014	19.0	24.0		ē	31	2.0	4.0	51	0.022	17.0	36.0	
В	19	32.0	36.0	51	0.027	25.0	37.0		C	31	4.0	6.0	47	0.017	18.0	41.0	
в	19	36.0	40.0	ור	0.030	23.0	34.0		c	31	6.0	8.0	44	0.017	18.0	46.0	
в	2 C	0.0	2.0	36	0.015	13.0	24.0		c	31	10.0	12.0	47	0.018	19.0	45.0	
В	20	2.0	4.0	26	0.019	13.0	22.0		c	31	12.0	14.0	42	0.015	17.0	41.0	
ц а	20	4.0	8.0	30	0.022	18.0	29.0		ç	31	14.0	16.0	48	0.019	19.0	46.0	
3	20	8.0	10.0	34	0.026	19.0	38.0		c	31	20.0	24.0	43	0.025	18.0	40.0	
В	20	10.0	12.0	29	0.024	16.0	33.0		c	31	24.0	28.0	41	0.011	15.0	38.0	
В	20	12.0	16.0	23	0.014	11.0	24.0		ç	31	28.0	32.0	40	0.009	16.0	37.0	
5	20		10.0		01012		2000		с С	31	36.0	40.0	42	0.017	18.0	41.0	
в	21	0.0	2.0	23	0.003	9.2	11.0		c	31	40.0	50.0	41	0.011	16.0	38.0	
B	21	2.0	4.0	25	0.039	11.0	16.0		C	31	50.0	60.0	39	0.017	15.0	33.0	
5 R	21	6.0	8.0	22	0.002	9.5	14.0		C	31	50.0	68.0	34	0.015	5.5	17.0	
B	21	8.0	19.0	23	0.006	13.0	28.0		¢	32	0.0	2.0	63	0.051	27.0	34.0	
В	21	10.0	12.0	32	0.008	14.0	23.0		С	32	2.0	4.0	56	0.035	16.0	26.0	
B	21	12.0	13.8	27	0.025	15.0	33.0		ç	32	4.0	5.0	47	0.019	16.0	26.0	
в	22	4.0	6.C	37	0.057	28.0	38.0		c	32	8.0	10.0	40	0.012	17.0	33.0	
э	22	2.0	4.0	38	0.100	34.0	42.0		c	32	10.0	12.0	35	0.011	13.0	27.0	
8	22	6.0	8.0	39	0.120	34.0	42.0		ç	32	12.0	14.0	29	800.0	13.0	23.0	
B	22	10.0	10.0	39	0.110	36.0	46.0		C C	32	14.0	76.0	29	0.008	13.0	23.0	
B	22	12.0	14.0	46	0.085	38.0	46.0		č	32	28.0	32.0	27	0.010	11.0	18.0	
в	22	14.0	16.0	38	0.068	22.0	36.0		C	32	36.0	40.0	31	0.012	13.0	21.0	
B	22	16.0	20.0	36	0.096	18,0	32.0		c	32	50.0	60.0	34	0.007	14.0	24.0	
Б	22	20.0	24.1)	32	C-110	11.0	34.0		C C	32	/0.4C	81.3	28	0.008	12.0	20.0	
в	63	0.0	2.0	68	0.540	51.0	71.0		с	33	0.0	2.0	85	0.260	63.0	72.0	
iii	63	2.0	4.0	77	0.260	48.0	75.0		C	33	2.0	4.0	72	0.180	45.0	51.0	
а Б	63	6.0	8.0	64	0.070	39.0	66.0		c	33	4.0	8.0	60 49	0.100	23.0	27.0	
B	63	8.0	10.0	60	0.130	39.0	64.0		c	33	8.0	10.0	44	0.030	15.0	30.0	
в	63	10.0	12.0	60	0.0	32.0	59.0		c	33	10.0	12.0	37	0.020	16.0	33.0	
8	67	14.0	16.0	58	0.065	29.0	53.0		c	55	12.0	14.0	36 96	0.019	15.0	30.0	
B	63	16.0	20.0	67	0.075	25.0	39.0		c	33	20.0	24.0	18	0.036	14.0	37.0	
В	63	20.0	24.0	70	0.063	24.0	38.0		C	33	28.0	32.0	34	0.021	14.0	38.0	
B	63	24.0	28.0	69 64	0+025	24.0	36.0		C	33	36.0	40.0	28	0.012	14.0	38.0	
в	63	32.0	36.0	70	0.057	24.0	40.0		с	34	0.0	2.0	57 .	0.210	55.0	71.0	
B	63	36.0	40.0	64	0.048	24.0	35.C		С	34	2.0	4.0	58	0.300	37.0	64.0	
3	63	40.0	48.5	53	0.092	22.0	33.0		ç	34 วง	4.0	6.0	55	0.460	26.0	47.6	
в	64	0.0	2.0	47	0.024	23.0	31.0		ĉ	34	8.0	10.0	54	0.360	32.0	48.0	
в	64	2.0	4.0	50	0.025	25.0	31.0		C	34	10.0	12.0	56	0.500	25.0	55.C	
8	64 64	4.0	6.0	50 // 3	0.050	30.0	30.0		ç	34	12.0	14.0	48	0.350	17.0	42.0	
8	64	8.0	10.0	46	0.058	26.0	29.0		č	34	20.0	24.0	40	0.200	15.0	39.0	
в	64	10.C	12.0	34	0.963	24.0	25.0		c	34	28.0	32.0	41	0.054	14.0	34.0	
ġ s	64	12.0	14.0	34	0,094	23.0	26.0		¢	34	36.0	40.0	39	0.033	13.0	37.0	
B	64	16.0	20.0	40	0.067	31.0	29.0		c	36	0.0	2.0	78	0.320	58.0	68-0	
В	64	20.0	24.0	39	0.072	28.0	28.0		č	36	2.0	4.0	76	0.270	51.0	63.0	
B	64	24.0	28.0	45	0.098	28.0	C.0		ç	36	4.0	6.0	76	0.150	32.0	55.0	
Б	04	20.0	31.0	40	0.033	20.0	21.0		c	30	8.0	10.0	75	0.130	27.0	45.0	
В	80	0.0	2.0	33	0.005	11.0	18.C		č	36	10.0	12.0	67	0.046	22.0	42.0	
B	90	2.0	4.0	29	0.017	12.0	16.0		С	36	12.0	14.0	62	0.039	23.0	43.0	
B	90 87	4.0	6.0	33	0.005	11.0	19.0		c	36	14.0	16.0	62	0.028	24.0	42.0	
8	80	8.0	10.0	30	0.010	13.0	22.0		C	36	28.0	32.0	57	0.025	23.0	47.0	
В	80	10.0	12.0	33	0.003	14.0	22.0		c	36	36.0	40.0	57	0.023	24.0	44.0	
В	80	12.0	14.0	31	800.0	13.0	20.0		c	36	50.0	60.0	55	0.022	22.0	41.G	
9	80	16.0	20.0	30	0.005	12.0	20.0		C	30	10.0	80.0	52	0.029	23.0	39.0	
8	80	20.0	24.0	29	0.008	12.0	19.0		С	37	0.0	2.0	81	0.170	54.0	99.0	
8	80	24.0	28.0	29	0.009	13.0	19.0		c	37	2.0	4.0	79	0.068	53.0	97.0	
B	οι	20.0	34.1	20	045.12	11.0	20.0		2	37	4.0	8.0	73	0.081	41.0	85.0	
С	24	0.0	4.0	70	0.085	43.0	61.0		ā	37	8.0	10.0	71	0.026	29.0	73.0	
c	24	4.0	6.0	26	0.016	13.0	29.0		C	37	10.0	12.0	68	0.029	26.0	70.0	
с 	24	0.0	10.0	31	0.015	17.0	41.0		C C	17 77	12.0	14.0	66 68	0.040	28.0	70.0	
č	24	10.0	12.0	29	0.008	12.0	32.0		c	37	16.0	20.0	65	0.008	28.0	73.0	
c	24	12.0	14.0	29	0.012	18.0	42.0		c	37	20.0	24.0	64	0.012	28.0	72.0	
C C	24	74.0	16.0	31	0.012	10.0	30.C 42.N		ç	37	24.0	28.0	64	0.008	28.0	73.0	
c	24	28.0	32.0	31	0.017	15.0	39.0		č	37	32.0	36.0	62	0.021	28.0	73.0	
c	24	36.0	38.0	29	0.019	9.6	30.0		c	37	36.0	40.0	61	0.012	27.0	70.0	
~	30	0 0	2 0	60	0.003	20.0	40.0		ç	37 1	40.0	50.0	61	0.014	24.0	64.C	
c	36	2.0	4.0	51	0.007	18.0	35.0		c c	37	50.0 50.0	70.0	59	0.022	28.0 28.0	73.0	
С	30	4.0	6.0	51	0.006	16.0	33.0	0.2	c	37	70.C	80.0	58	0.0	26.0	65.0	
c	30	6.0 8.0	8.0	50 46	0.003	18.0	40.0 -	y3 -	с	37	80.0	90.0	61	0.025	25.0	65.0	
~	~ ~	V + V															

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CRU IS E	ST AT ION	INTERVAL TOF BOTTO	WATE B 5	R HG PPN	CR PPM	NI Ppm		CRUISE	STATION	INTI TOP	BOTTON	WATER N	HG PPH	CR PPM	N I PPM
C       36       1.0       4.0       8.0       0.079       34.0       71.4       C       4.6       52.0       53.0       C       4.6       52.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0       53.0	С	38	0.0 2.0	76	0.160	41.0	86.0		c	4 E	C8 10.0	CH 12.0	56	0.028	22.0	56.0
	C C	38	2.0 4.0	83	0.070	34.0	71.0		С	46	12.0	14.0	52	C.029	21.0	55.0
C         38         8.0         10.0         42.0         55.0         C         42         55.0         C         43         55.0         55.0         C         43         43.0         65.0         75.0         75.0         75.0         75.0         75.0         75.0         75.0         75.0         75.0         75.0         75.0         75.0         75.0         75.0         75.0         75.0         75.0	č	36	€.0 B.C	67	0.047	23.0	55.0		č	46	14.C	76.0	52	0.024	20.0	57.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	с	38	8.0 10.0	69	0.036	23.0	55.0		č	46	28.0	32.C	52	0.025	21.0	58.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ç	38	10.0 12.0	64	0.033	20.0	51.0		с	46	36.0	40.0	45	0.024	16.0	50.C
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	с С	36	14.0 16.0	63	0.030	21.0	50.0		r	a 7	0.0	2.0	80	0 2 20	52.0	100.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	c	38	20.0 24.0	60	0.068	23.0	67.0		č	47	2.0	4.0	77	0.170	51.0	110.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	c	36	28.0 32.0	56	0.029	24.0	58.0		c	47	4.0	6.0	74	0.130	48.0	110.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	c	38	50.0 60.0	52	0.037	22.0	55.0		C C	41	8.0	10.0	70	0,140	36.0	85.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	С	38	70.0 80.0	49	0.036	22.0	54.0		č	47	10.0	12.0	70	0.055	29.0	81.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C	36	90.0 94.0	47	0.065	21.0	54.0		c	47	12.0	14.G	69	0.048	28.0	70.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	с	39	0.0 2.0	71	0.047	33.0	73.0		C F	47	14.0	16.C 28.0	73	0.023	27.0	/4.C 68.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	с	39	2.0 4.0	74	0.032	28.0	53.0		č	47	28.0	32.0	69	C.012	24.0	66.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	c	35	4.0 6.0	74	0.020	21.0	47.0		c	47	36.0	40.0	72	0.010	27.0	79.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ũ	39	8.0 10.0	67	0.018	20.0	49.0		L	·• ,	20.0	00.5	Ct.	0.022	20.0	1946
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	c	39	10.0 12.0	67	0.006	19.0	50.0		ç	47	0.0	2.0	82	0.066	37.0	90.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	с с	39	14.0 16.0	59	0.010	17.0	43.0		c c	47	2.0	4.0	85	0.056	32.0	27.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ç	39	20.0 24.0	54	0.014	19.0	45.0		- E	47	6.0	8.0	85	0.029	29.0	73.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	÷	39	28.0 32.0	52	0.010	21.0	51.0		C.	47	0.9	10.0	81	0.018	29.0	74.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	č	39	50.0 60.0	50	0.011	18.0	43.0		2	47	12.0	14.0	68	0.024	27.0	63.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ċ	35	70.0 80.0	48	0.014	20.0	50.0		ċ	47	14.0	16.0	75	0.017	30.0	68.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	c	41	0.0 2.0	74	0.033	39.0	57.0		C	47	20.0	24.0	64 61	0.019	28.0	78.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	č	41	2.0 4.0	81	0.041	36.0	58.0		c	47	36.0	40.0	62	0.017	28.0	74.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	c	41	4.0 6.0	71	0.039	28.0	47.0		c	47	50.0	60.0	57	0.0 10	25.0	50.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	č	41	8.0 10.0	62	0.034	28.0	45.0		C	4 /	10.0	80.0	2.5	0.015	23.0	20.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	c	41	16.0 12.0	57	C.013	26.0	45.0		с	49	0.0	2.0	63	0.210	31.0	67.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C C	41	12.0 14.0	56	0.019	26.0	43.0		Ċ C	49	2.0	4.C	54	0.130	25.0	54.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	č	41	20.0 24.0	62	0.013	26.0	44.0		2	49	6.0	8.0	53	0.080	20.0	50.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	с	41	28.0 32.0	61	0.024	25.0	44.0		c	4 Ç	8.0	10.0	50	0.064	18.0	46.0
c       1       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0	c	41	36.0 40.0	60 53	0.017	26.0	43.0		C	49	10.0	12.0	51	0.051	17.0	44.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	÷,	50.00 57.0	22	0.025	23.0	42.00		č	49	14.0	16.0	55	0.045	18.0	40.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	c	42	0.0 2.0	79	0.095	52.0	84.0		C	49	20.0	24.0	50	0.020	18.0	41.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C 2	42	2.0 4.0	77	0.092	52.0	82.0		c c	45	28.0	32.0	36 34	0.008	12.0	30.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	č	42	6.0 8.0	70	0.025	38.0	70.0		č	49	50.02	58.0	35	0.054	15.0	40.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	c	42	8.0 10.0	70	0.082	29.0	57.0					~ •				<i></i>
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	с с	42	12.0 12.0	68	0.081	28.0	69.0		с с	51	2.0	2.0	65	0.230	40.0	54.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	c	42	14.0 16.0	65	0.040	31.0	76.0		č	51	N.C	6.0	62	0.260	36.0	46.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ç	42	20.0 24.0	68	0.017	27.0	50.C		c	51	6.0	8.0	62	0.170	46.0	54.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	č	42	36.0 40.0	69	0.013	24.0	55.0		c	51	10.0	12.0	50	0.050	23.0	35.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	c	42	50.0 60.0	73	0.022	26.0	58.0		c	51	12.0	14.0	48	0.042	21.0	33.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C C	42	70.0 80.0	64 62	0.025	29.0	65.0 62.0		С 2	51	74.0	16.0 28.0	48 40	0.028	17.0	27.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	•					1010			2	51	28.0	32.C	36	0.023	15.0	23.0
C       42       2.0       4.0       76       0.020       29.0       56.0         C       42       6.0       70       0.020       29.0       56.0       C       57       50.0       52       0.0       2.0       70         C       42       6.0       12.0       67       0.022       29.0       56.0       C       52       0.0       2.0       70         C       42       10.0       12.0       68       0.018       30.0       60.0       C       52       4.0       6.0       63         C       42       14.0       16.0       70       0.012       27.0       59.0       C       52       6.0       6.0       63         C       42       14.0       16.0       70       0.021       27.0       59.0       C       52       8.0       10.0       67         C       42       36.0       40.0       61       0.012       27.0       59.0       C       52       10.0       12.0       56         C       42       36.0       60.0       0.012       27.6       57.0       C       52       28.0       10.0       71       60.0	2	42	0.0 2.0	80	0.086	32.0	55.0		ç	51	36.0	40.0	39	0.021	15.0	24.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	с с	42	4.0 6.0	72	0.020	29.0	52.0		C	51	50.0	60.C	32	0.033	14.0	25.0
C       47       8.0       10.0       67       0.022       29.0       61.0       C       52       2.0       4.0       70         C       42       10.0       12.0       68       0.018       30.0       60.0       C       52       4.0       6.0       68         C       42       12.0       14.0       67       0.012       27.0       59.0       C       52       6.0       8.0       74         C       42       14.0       16.0       70       0.007       29.0       59.0       C       52       8.0       10.0       67         C       42       20.0       23.0       63       0.023       25.0       56.0       C       52       10.0       12.0       14.0       53         C       42       36.0       40.0       61       0.017       26.0       57.0       C       52       20.0       24.0       44.0       60.0       44.0       60.0       70.0       22       20.0       22       80.0       32.0       37         C       42       0.0       2.0       84.0       0.0       34.0       82.0       20       53       C.0       2.0	ē	42	6.0 8.0	70	C.017	27.0	50.0		c	52	6.0	2.0	70	0.490	45.0	83.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ç	42	8.0 10.0	67	0.022	29.0	61.0		ç	52	2.0	4.0	70	0.560	51.0	110.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	č	42	12.0 14.0	67	0.012	27.0	59.0		c	52	ε.C	8.0	74	0.370	48.0	99.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	c	42	14.0 16.0	70	0.007	29.0	59.0		c	52	8.0	10.0	67	0.270	29.0	88.0
C $42$ $36+0$ $40+0$ $61$ $0+0+7$ $22+3$ $50+0$ $C$ $52$ $14+0$ $16+0$ $46$ $C$ $42$ $50+6$ $60+0$ $60$ $0+12$ $27+6$ $57+0$ $C$ $52$ $22+0$ $24+0$ $44$ $C$ $42$ $70+0$ $84+0$ $57$ $0+02$ $27+6$ $57+0$ $C$ $52$ $22+0$ $24+0$ $44$ $C$ $42$ $6+0$ $57$ $0+02$ $24+0$ $54+0$ $C$ $52$ $26+0$ $42+0$ $32+0$ $32+0$ $37$ $C$ $42$ $6+0$ $84+0$ $0+040$ $30+0$ $74+0$ $C$ $52$ $36+0$ $40+0$ $38+0$ $C$ $52$ $36+0$ $40+0$ $38+0$ $C$ $53$ $C+0$ $37+0$ $82+0$ $82+0$ $82+0$ $82+0$ $82+0$ $82+0$ $82+0$ $82+0$ $82+0$ $82+0$ $82+0$ $82+0$ $82+0$ $82+0$ $82+0$ $82+0$ $82+0$ $82+0$	c	42	20.0 24.0	63	0.025	27.0	59.0		c	52	10.0	12.0	56	0.180	32.0	71.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	č	42	36.0 40.0	61	0.017	26.0	57.0		č	52	14.0	16.0	46	8,120	22.0	55.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ē	42	50.0 60.0	60	0.012	27.0	57.0		c	52	20.0	24.0	44	0.030	17.0	42.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ŀ	42	70.0 84.0	57	0.021	24.0	54.0		с c	52	28.0	40.0	37 38	0.025	16.0	#5°C
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	с	43	0.0 2.0	84	0.040	30.0	74.0		ē	52	50.0	59.0	35	0.017	15.0	41.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	43	2.0 4.0	84	0.0	34.0	82.0			57	• •	2 2	67	0 8 20	11 <b>2 A</b>	01.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	43	6.0 9.0	67	0.036	26.0	72.0		2	53	z.c	4.0	68	0.490	47.0	99.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	c	42	8.0 10.0	71	0.037	27.0	86.0		ĉ	52	4.0	6.C	66	0.420	45.0	100.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	43	10.6 12.0	67	0.061	28.0	85.0		ç	53	6.0	8.0	62	0.370	38.0	91.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<u>د</u>	43	14.0 15.0	66	0.032	25.0	83.0		2	53	10.0	12.0	61	0.350	37.0	A3.0
c       43       28.0       32.0       59       0.031       26.0       76.0 $c$ 53       14.0       16.0       58 $c$ 45       0.0       2.0       71       0.467       55.0       95.0 $c$ 53       28.0       32.0       56 $c$ 45       2.0 $a.0$ 71       0.467       55.0       95.0 $c$ 53       28.0       32.0       55 $c$ 45       2.0 $a.0$ 71       0.260       53.0       92.0 $c$ 53       76.0       80.0       52.0 $c$ 45       4.0       6.0       71       0.300       54.0       91.0 $c$ 54       0.0       2.7       75 $c$ 45       6.0       6.0       70       0.240       58.0       93.0 $c$ 54       2.0       2.7       75 $c$ 45       8.0       10.0       70       0.240       58.0       93.0 $c$ 54       2.0       4.0       72 $c$ 45       10.0       12.0       66       0.340       50.0 <td< td=""><td>с</td><td>43</td><td>20.0 24.0</td><td>61</td><td>0.041</td><td>26.0</td><td>79.0</td><td></td><td>с</td><td>53</td><td>12.0</td><td>14.0</td><td>61</td><td>0.300</td><td>40.0</td><td>90.0</td></td<>	с	43	20.0 24.0	61	0.041	26.0	79.0		с	53	12.0	14.0	61	0.300	40.0	90.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C	43	28.0 32.0	59	0.031	26.0	/ <b>6</b> .0		c	53	14.0	16.0	วช 56	0.130	31.0	71.0
C       45       2.0       8.0       71       0.260       53.0       92.0       C       53       36.0       40.0       52         L       45       4.0       6.0       71       0.300       54.0       91.0       52         L       45       6.0       80       73.0       54.0       87.0       C       54       0.0       2.7       75         L       45       8.0       10.0       70       0.240       58.0       93.0       C       54       2.0       4.0       72         L       45       8.0       10.0       70       66       0.340       50.0       85.0       C       54       4.0       6.0       73         L       45       12.0       16.0       50       0.601       23.0       51.0       C       54       4.0       6.0       73         L       45       12.0       14.0       50       0.061       23.0       51.0       C       54       6.0       8.0       72	c	45	0.0 2.0	71	0.460	55.C	95.0		ē	53	28.0	32.0	55	0.130	25.0	63.0
c       45       4.0       51       0.300       54.0       57.0       C       54       0.0       2.0       75         c       45       8.0       10.0       70       0.240       58.0       93.0       C       54       2.0       4.0       72         c       45       10.0       12.0       66       0.340       50.0       85.0       2.5       54       4.0       72         c       45       12.0       12.0       66       0.340       50.0       85.0       C       54       4.0       6.0       73         c       45       12.0       14.0       50       0.061       23.0       51.0       C       54       6.0       72	2	45	2.0 4.0	71	0.260	53.0	92.0		С	53	36.0	40,0	52	0.083	23.0	60.0
2         45         8.0         10.0         70         0.240         58.0         93.0         C         54         2.0         4.0         72           c         4.5         10.0         12.0         66         0.340         50.0         85.0         C         54         4.0         6.0         73           c         4.5         12.0         66         0.340         50.0         85.0         C         54         4.0         6.0         73           c         4.5         12.0         14.0         50         0.061         23.0         51.0         C         54         6.0         72	د د	40	6.0 8.0	69	0.330	54.0	87.0		с	54	0.0	2.7	75	0.120	52.0	83.0
ت 45 10.0 12.0 66 0.340 50.0 85.0 c 54 4.0 6.0 73 ت 45 12.0 14.0 50 0.061 23.0 51.0 c 54 6.0 8.0 72	z	45	8.0 10.0	70	0.240	58.0	93.0		ċ	54	2.0	4.0	72	0.190	49.0	74.0
	C A	45	10.0 12.0	66 50	0.340	50.0	85.C		c	54 54	4.0	5.0 8.0	73	0.210	44.0	73.0
C 45 14.0 16.0 46 0.029 16.0 40.0 C 54 8.0 10.0 69	с С	45	14.0 16.0	46	0.029	16.0	40.0		č	54	8.0	10.0	69	0.160	41.0	66.0
C 45 20.0 28.0 50 0.019 22.0 89.0 C 54 10.0 12.0 67	c	45	20.0 24.0	50	0.019	22.0	49.0		c	54	10.0	12.0	67	0.230	38.0	63.0
⊂ ~= ∠5.0 32.0 ~0 0.020 20.0 43.0 C 54 12.0 14.0 54 C 45 36.0 40.0 42 0.021 17.0 42.0 C 54 18.0 56.0 67	C C	42	20.0 32.C 36.0 40.0	40	0.021	17.0	42.0		c c	54	14.0	16.0	67	0.250	35.0	40.U 61.C
C 42 50.0 56.0 41 0.023 18.0 42.6 2 54 20.0 24.6 59	c	4 5	50.0 56.0	41	0.023	18.0	42.6		ð	54	20.0	24.0	59	0.150	29.0	59.0
ت 54 28,0 32,0 46 د 4,6 0,0 2,0 74 0,057 25,0 57 0 د 54 28,0 32,0 46		44	0.0 2.0	74	0.057	25-0	57.0		č	54 54	28.0	3Z.0	46 35	U-052 0-012	16.0	33.0
	2	46	2.0 4.0	70	0.040	23.0	52.0		-				6.6			2.20
L 46 4.0 6.0 63 0.042 25.0 56.0 C 56 0.0 2.0 68	<u>ب</u>	46	4.0 6.0	63	0.042	25.0	56.0	<b>^</b>	c	56	0.0	2.0	68	0.870	74.0	71.0
C 46 8.0 10.0 62 0.031 23.0 46.0 - 94 - C 56 2.0 4.0 66 C 46 8.0 10.0 62 0.031 23.0 54.0 C 56 4.0 6.0 72	6	46 4E	8.0 8.0	64 62	0.032	23.0	40.0 ~ 54.0	- 94	 c	56	4.0	5.0	72	C.820	76.0	73.0

:S 8	STATION	INT) TOP	BOTTOM	WATER X	H G PP N	CR PPH	NI PPM			28	UISE	STATION	INTE TOP	RVAL BOTTOM	W AT ER K	HG PPM	CR PPN	N I PPN
	56	СМ 6.0	см 8.0	62	0.720	77.0	74.0				с	74	CN 12.0	CH 14.0	36	0.064	15.0	20.0
	56	8.0	10.0	61	0.520	76.0	74.0				c	74	14.0	16.0	37	0.038	11.0	17.0
	50	10.0	12.0	55 UU	0.720	20.0	28.0				C	74	20.0	24.0	28	0.020	11.0	16.0
	56	14.0	16.0	44	0.032	19.0	28.0				L	/4	20.0		24	0.020	10.0	17.0
	56	20.0	24.0	44	0.026	17.0	26-0				c	78	0.0	2.0	85	0.092	46.0	85.0
	56	36.0	-40.0	36	0.021	15.0	24.0				C C	78	2.0	4.0	71	0.120	35.0	68.0
											č	78	6.0	8.0	75	0.069	22.0	61.0
	57	2.0	4.0	65 66	1.200	91-0	70.0				ç	78	8.0	10.0	67 65	0.031	19.0	56.0
	57	4.0	6.0	66	1.300	98.0	75.0				c	78	12.0	14.0	59	0.037	17.0	53.0
	57	6.0	8.0	67	1.200	98.0	78.0				C	78	14.0	16.0	72	0.029	20.0	67.0
	57	10.0	12.0	65	1.700	95.0	67.0				C C	78	28.0	32.0	57 54	0.020	17.0	60.0
	57	12.0	14.0	62	2.000	95.0	63.0				¢	78	36.0	40.0	52	0.039	18.0	59.0
	57	14.0	16.C 24.0	66 65	1.900	110.0	79.0				ç	78	50.0	60.0	52 48	0.036	16.0	53.0
	57	28.0	32.0	58	0.0	80.0	57.0				-	70	10.00		40		,0.0	2240
	58	0.0	2.0	65	0-610	82.0	100.0				C C	79 70	0.0	2.0	38	0.014	13.0	26.0
	58	2.0	4.0	69	0.830	84.0	110.0				č	79	4.0	6.0	25	0.014	8.5	17.0
	58	6.0	8.0	86	0.420	81.0	120.0				C	79	6.0	8.0	28	0.020	17.0	28.0
	58	0.8	10.0	85	1.700	89.0	130.0				С	81	0.0	2.0	67	0.620	68.0	77.0
	58	10.0	12.0	76	0.760	68.0 38.0	96.0				c	81	2.0	4.0	69 57	0.490	62.0	76.0
	58	14.0	16.0	61	0.250	37.0	79.0				č	81	6.0	8.0	62	0.650	66.0	78.0
	58	20.0	24.0	51	0.045	24.0	37.0				C	81	8.0	10.0	63	0.690	68.0	79.0
	5.8	36.0	40.0	45	0.032	21.0	50.0				C	81	12.0	14.0	60	0.510	54.0	70.0
	58	50.0	60 - 0	42	0.027	17.0	40.0				C	81	14.0	16.0	59	0.320	41.0	52.0
	60	0.0	2.0	79	1.600	180.0	150.0				с с	81	20.0	24.0	57	0.100	22.0	40.0
	60	2.0	4.0	72	2.200	190.0	140.0				c	81	36.0	40.0	55	0.074	24.0	41.0
	6C 60	4.0	6.0 8.0	64 66	1.900	180.0	130.0				c	83	0.0	2 0	72	0 2 20	30.0	45 0
	60	8.0	10.0	56	0.730	90.0	76.0				č	82	2.0	4.0	46	0.087	15.0	20.0
	60	10.0	12.0	50	0.570	78.0	75.0				С	82	4.0	6.0	26	0.025	8.7	13.0
	60	14.0	14.0	50 51	0.300	69.0	56.0				с с	82	6.C 8.0	8.0 10.0	24	0.015	9.2	14.0
	60	20.0	24.0	48	0.310	44.0	50.0				ĉ	82	10.0	12.0	22	0.012	9.6	16.0
	6 C	28.0	33.0	25	0.021	9.6	22.0				C C	82	12.0	14.0	22	0.013	8.6	17.0
	65	0.0	2.0	59	0.250	30.0	37.0				c	82	16.0	20.0	22	0.012	8.9	18.0
	65	2.0	4.0	55	0.280	31.0	39.0					<b>CT T</b>	• •	- <b>•</b>	#'D	0 3 10	100.0	110.0
	65	6.0	8.0	52	0.310	29.0	37.0				c	CLH	2.0	4.0	31	0.280	56.0	83.0
	65	8.0	10.0	47	0.140	21.0	29.0				c	CLH	4.0	6.0	40	0.230	71.0	90.0
	65	12.0	12.0	18	0.048	17.0	26.0				C C	CLE	6.0	8.0	47	0.310	150.0	110.0
	6 5	14.0	16.0	47	0.035	19.0	30.0				č	CLH	10.0	12.0	41	0.230	85.0	110.0
	65	20.0	24.0	36	0.026	15.0	24.0				C	CLH	12.0	14.0	40	0.210	69.0	110.0
	65	36.0	40.0	39	0.037	19.0	29.0				ĉ	CLH	20.0	24.0	50	0.620	170.0	190.0
	4.4	• •	2.0	60	0 500	4.2. 0					C	CL H	28.0	32.0	45	0.240	87.0	100.0
	66	2.0	4.0	62	0.589	37.0	45.0				L	C1.8	36.0	40.0	49 T	0.300	150+0	130.0
	66	4.0	6.0	61	0.620	33.0	43.0				D	1	0.0	2.0	64	0.460	7.0	54.0
	66	8.0	10.0	59 46	0.190	14.0	18.0				D D	1	2.0	4.0	65 64	0.550	17.0	54.0
	66	10.0	12.0	45	0.085	12.0	16.0				D	i	6.0	8.0	63	0.470	18.0	51.0
	66 66	12.0	14.0	45 nu	0.093	13.0	18.0				Ð	1	8.0	10.0	69 67	0.380	21.0	56.0
	66	20.0	24.0	41	0.072	17-0	27.0				D	1	12.0	14.0	72	0.055	19.0	49.0
	66	28.0	32.0	38	0.054	14.0	22.0				D	1	14.0	16.0	70	0.002	22.0	53.0
	00	20.0	40.0	41	0.051		23.0				ט ס	1	20.0 28.C	32.0	47	0.020	18.0	56.0
	68	0.0	2.0	65	0.520	62.0	77.0				D	1	36.0	40.0	31	0.022	16.0	38.0
	68	4.0	6.0	64	0.690	62.0	79.0				n	2	0.0	2.0	57	0.500	19.0	53.0
	68	6.0	8.0	62	0.540	62.0	69.0				D.	2	2.0	4.0	60	0.560	20.0	58.0
	68	8.0	10.0	61 60	0.730	68.0 61 0	75.0				D	2	4.0	6.0	64	0.620	24.0	65.0
	68	12.0	14.0	58	0.320	56.0	64.0				ס	2	8.0	10.0	62	0.490	20.0	57.0
	68	14.0	16.0	58	0.500	46.0	55.0				D	2	10.0	12.0	56	0.250	15.0	49.0
	68 68	20.0	32.0	51	0.074	22.0	36.0				D	2	12.0	14.0	60 56	0.260	21.0	52.0
	6.8	36.C	42.0	45	0.041	23.0	37.0				Ď	2	20.0	24.0	60	0.230	22.0	58.0
	73	0.0	2.0	81	0.140	43.0	53.0				D	2	28.0	32.0	53	9.00Z	19.0	47.0
	73	2.0	4.0	75	0.079	26.0	41.0				D	3	0.0	2.0	33	0.400	16.0	37.0
	73	4.0	6.0 8-0	80	0.056	24.0	44.0				D	3	2.0	4.0	36	0.240	16.0	38.0
	73	8.0	10.0	72	0.038	26.0	45.0				D	3	6.0	8.0	24	0.008	21.0	41.0
	73	10.0	12.0	73	0.024	27.0	47.0				D	3	8.0	10.0	26	0.005	19.0	38.0
	73	14.0	16.0	68	0.020	25.0	43.0				ט ס	3	12.0	14.0	29	0.003	21.0 19.0	40.0
	73	20.0	24.0	72	0.022	26.0	44.0				D	3	14.0	16.0	29	0.004	21.0	41.0
	73	∠8.9 36.0	32.0 40.0	ъс 68	0.013	26.0 26.0	46.0 46.0				Ð	3	20.0	24.0	29	0.004	17.0	37.0
	73	50.0	60.0	71	0.013	25.0	43.C				D	4	C.0	2.0	24	0.470	10.0	26.0
	73	10.0	80.0	98	0.023	28.0	44.0				0	4	2.0	4.0	29 42	0.039	13.0	31.0 44.0
	74	0.0	2.0	90	0.560	39.0	44.0				a	4	6.C	8.0	44	0.0	17.0	47.0
	74 74	2.0	4, n 5, 0	71 62	0.380	37.0	44.C 41.0				D D	4	8.0	10.0	39 27	0.002	17.0	39.0
	74	6.0	8.0	57	0.220	31.0	37.0				Ď	4	12.0	14.0	38	0.012	18.0	37.0
	74 74	8.0	10.0	44 30	0.069	20.0	27.0	-	95		D	4	14.0	15.0	35	0.001	19.0	39.0
	· -				~ • • • • •		4.4. s L				<b>u</b>	4	21.4U	44 s U	30	v. v v 3	10.0	34.0

CRUISE	ST AT ION	INT	ERVAL	WATER	H G	CR	NI
		TO F CM	EOTTOM CM	я	PPM	PPM	PPM
D	4	28.0	32.0	33	0.001	22.0	45.0
D	4	36.0	40.0	31	0.0	18.0	36.0

## APPENDIX 3

## COMPUTER PROGRAMS

С		ACMP	10
С	PROGRAM ACOMP	ACNP	20
С		ACMP	30
С	WRITTEN BY DAVID DRAIN	ACMP	40
С	DURING FALL 1977	ACMP	50
С	AT BOWLING GREEN STATE UNIVERSITY	ACMP	60
С	BOWLING GREEN, OHIC	ACMP	70
С		ACMP	80
С	ACOMP HANDLES I/O FOR SUBROUTINE AMODEL, WHICH IS A SEDIMENT	ACMP	90
С	MOVENENT MODEL FOR LAKE ERIE	ACMP	100
С		ACMP	110
С	ACOMP HAS THE FOLLOWING STEPS:	ACMP	120
С	1. READ INPUT DATA	ACMP	130
С	2. FOR EACH OF THE 6 WIND DIRFCTIONS:	ACMP	140
С	A. READ PROBAFILITIES	ACMP	150
С	B. RUN MODEL (AMODEL)	ACMP	160
С	C. SAVE RESULTS, PROPERLY WEIGHTED	ACMP	170
С	3. OUTPUT RESULTS	ACMP	180
C		ACHP	190
С	UNIT1 IS AN INPUT TAPE NAMED .SRN1107 WITH DCB=(RECFM=VSB)	ACMP	200
C	ACOMP READS THE FOLLOWING INFORMATION FROM UNIT 1:	ACMP	210
C	ILOC MODEL COORDINATES OF ADJACENT MODEL REGIONS	ACMP	220
С	ALFA FALLOUT RATIO	ACMP	230
С	SED SEDIMENT INPUT	ACMP	240
С	TPANSFER PROBABILITIES (READ SIX TIMES)	ACNP	250
С		ACMP	2 60
C	UNIT3 IS AN OUTPUT TAPE WITH DCB=(RECFM=VSB)	ACMP	270
C	ACOMP WRITES TWC RECORDS ON UNIT 3:	ACMP	280
С	1. FALLEN SEDIMENT	ACMP	290

С	2. SUSPENDED SECIMENT	ACMP	300
С		ACM P	310
С	ACOMP READS ONE CONTROL CARD, FORMAT 2F10.5,E10.4,314	ACMP	320
С	IT READS	ACMP	330
С	TIME MODEL TIME UNIT (2.5 HOURS)	ACMP	340
С	THRSH THRESHOLD FOR CONVERGENCE TEST	ACNP	350
С	A SCALE	ACMP	360
С	(SCALE=1.E+30 IS RECOMMENDED TO MINIMIZE ROUNDOFF ERROR)	ACMP	370
C	I MAX NUMBER OF MODEL ITERATIONS	ACMP	380
С	J IF 0, DO NOT CHECK FOR SUSPENDED SEDIMENT CONVERGENCE	ACMP	3 90
С	K HOW OFTEN TO CHECK FOR CONVERGENCE	ACMP	400
С		ACMP	410
C	ACOMP REQUIRES 38448 (HEX) BYTES,	ACMP	420
С	AND 14 MINUTES CPU TIME (FOR T=100) ON AN IBM 360/70	ACMP	430
С		ACMP	440
	LOGICAL LFLAG	ACMP	450
	DIMENSION OMALFA(2529), SED(2529)	ACMP	460
	DIMENSION FRAC(6), TOTSED(2529)	ACMP	470
	INTEGER*2 ILOC(2529,9)	ACMP	480
	COMMON S (2529,6), WPROB (2529,9), LFLAG, THRSH, IND MAX, I FET, ILOC	ACMP	490
С		ACMP	500
С	NOTE THAT S(.,2) AND S(.,3) ARE READ IMPLICITLY	ACMP	510
С		ACMP	520
	EQUIVALENCE (SED(1), $S(1,3)$ )	ACMP	530
	EQUIVALENCE (OM ALFA $(1)$ , S $(1,2)$ )	ACMP	540
	DATA FRAC/. 1666667, 0833333, 4166667, 1666667, 0833333, 0833333/	ACMP	550
	CALL ERRSET (208,500,0,1,0)	ACHP	560
С		ACMP	570
C	TIME UNIT=2.5 HCURS	ACMP	580
С		ACMP	590
	READ $(5, 701)$ TIME, THRSH, A, I, J, K	ACMP	600
_	WRITF(6,721) TIME, THRSH, A, I, J, K	ACMP	610
C		ACMP	620
C	TAB PAST ICON	ACMP	630
C		ACMP	640
	READ(T) X	ACMP	650

ł. ł

86

C			ACMP 660
С		TAB PAST IRS IRS (N) = WES COORDS OF REGION N	ACMP 670
С			ACMP 680
		READ(1) X	ACMP 690
С			ACMP 700
С		READ ILOCILOC GIVES MODEL INDICES OF ADJACENT MODEL REGIONS	ACMP 710
С			ACMP 720
		PEAD(1) ILOC	ACMP 730
c			ACMP 740
C		READ FALLOUT RATIO	ACMP 750
С			ACMP 760
-		READ(1) OMALFA	ACMP 770
C			ACMP 780
C		CALCULATE 1-FALLOUT RATIO	ACMP 790
C			ACNP 800
	10.1	$\frac{1}{10} \frac{1}{10} \frac{1}{10} = \frac{1}{10} \frac{1}{10}$	ACHP 810
c	10.1	$OHALFA(IA) = I_0 = OHALFA(IA)$	ACMP 820
Č		DEID CEPTHEIM TINNA	ACRP 03U
ĉ		ALAD SELIMENI INFUL	ACHD 950
C		RFID(1) SFD	ACHP 050 ATMD 860
		$n_{1} = 1 - 2520$	
	901	SED(TA) = SED(TA) + 1, E = 03	ACHP 070
C			JCMD RQD
č		TAB PAST WATER DEPTHS	ACMP 900
č			ACNP 910
-		READ(1) X	ACMP 920
С			ACMP 930
С		SCALE SEDIMENT INPUT	ACMP 940
С			ACMP 950
		DO 100 IA=1,2529	ACMP 960
Ç			ACMP 970
С		SET INITIAL SUSPENDED SEDIMENT TO O	ACMP 980
C			ACMP 990
		S(IA, 1) = 0.	ACMP1000
		TOTS ED $(IA) = 0$ .	ACMP 1010

- 99 -

```
100 SED (IA) = SED (IA) *A
                                                                            ACMP1020
      INDMAX = 2529
                                                                            ACMP1030
      DO 999 IFIRST=1.6.1
                                                                            ACMP1040
С
                                                                            ACMP1050
С
      READ TRANSFER PROBABILITIES
                                                                            ACMP1060
С
                                                                            ACHP 1070
      READ(1) WPROB
                                                                            ACMP1080
С
                                                                            ACMP1090
С
      CALL SEDIMENT MODEL
                                                                            ACMP1100
      AMODEL (I, J, K) WHERE
С
                                                                            ACMP1110
С
      I=MAXIMUM NUMBER OF RUNS
                                                                            ACMP1120
      J=1 TO TEST FOR CONVERGENCE, 0 OTHERWISE
С
                                                                            ACMP1130
      K=PREQUENCY OF CONVERGENCE TEST
                                                                            ACM P1140
С
С
                                                                            ACMP1150
      CALL AMODEL(I,J,K)
                                                                            ACMP1160
С
                                                                            ACMP1170
      IF(J.EQ.0) GO TO 718
                                                                            ACMP1180
      IF(LFLAG) GO TO 717
                                                                            ACMP1190
      WRITE(6,705)
                                                                            ACMP1200
                                                                            ACMP1210
      GO TO 718
  717 WRITE(6,704) IRET
                                                                            ACMP1220
  718 CONTINUE
                                                                            ACMP 1230
      DO 305 IT=1,2529
                                                                            ACM P1240
                                                                            ACMP1250
С
                                                                            ACMP1260
С
      TOTSED MUST BE NORMALIZED FOR TIME
С
      TOTSED IS YEAR AVERAGED SEDIMENT FALLING PER TIME UNIT
                                                                           ACNP1270
С
                                                                            ACMP 1280
      TOTSED (IT) =TOTSED (IT) +S(IT, 1) * FRAC (IFIRST)
                                                                            ACMP 1290
С
                                                                            ACMP1300
Ċ
      RFINITIALIZE SUSPENDED SEDIMENT
                                                                            ACMP1310
                                                                            ACMP1320
C
  305 S(IT,1)=0.
                                                                            ACMP 1330
  999 CONTINUE
                                                                            ACMP1340
С
                                                                            ACNP 1350
С
                                                                            ACMP1360
      SAVETOTSED (FALLEN SEDIMENT)
С
      AND COMPENSATE FOR SCALING
                                                                            ACN P1370
```

# - 100 -
С		ACNP 1380
	DO 306 IA=1,2529	ACM P1390
	SED $(IA) = S(IA, 2) * TOTSED (IA) / A$	ACMP1400
	306  TOTS ED(IA) = TOTS ED(IA) * (1 S(IA, 2)) /A	ACMP1410
	WRITE(3) TOTSED	ACMP1420
С		ACMP1430
С	SAVE YEAR AVERAGED SUSPENDED SEDIMENT	ACM P1440
С		ACMP 1450
	WRITE(3) SED	ACMP 1460
	STOP	ACMP1470
	705 FORMAT (' CONVERGENCE DID NOF OCCJR')	ACMP1480
	721 FORMAT (* TINE= *, F8.2, * THRSH= *, E12.6, * SCALE= *, E12.6/	ACMP1490
	1' MAXRUN= ', 16, ' CCNVTST= ', 16, ' FREQ= ', 16)	ACMP1500
	701 FORMAT (2F10.5.E10.4.314)	ACHP 1510
	704 FORMAT ('ICONVERGENCE OCCURED IN', I4. ' STEPS'//)	ACMP 1520
	END	ACM P1 530

	SUBROUTINE AMODEL (MAXRUN, ICONVS, ITEST)	ANDL	10
С		AMDL	20
С		AMDL	30
С	SUBROUTINE AMCDEL	A MD L	40
С		AMDL	50
С	WRITTEN BY DAVID DRAIN	AMDL	60
С	SPRING 1977	AMDL	70
с	AT BOWLING GREEN STATE UNIVERSITY	ANDL	80
С	BOWLING GREEN, CHIO	AMDL	90
С	•	AMDL	100
С	SURBOUTINE AMODEL DETERMINES SUSPENDED AND BOTTON SEDIMENT	A MD L	110
С	NOVENENT	AMDL	120
С		ANDL	130
С	MAXRUN=MAXIMUN NUMBER OF TIME UNITS TO RUN AMODEL	AMDL	140
С	ICONVS=0 DO NOT CHECK FOR CONVERGENCE OF SUSP. SEDIMENT	AMDL	150
С	ICONVS=1 CHECK FOR CONVERGENCE	AMDL	160
С	ITEST HOW OFTEN TO TEST FOR CONVERGENCE	AMDL	170
С	THRSH THRESHOLD FOR CONVERGENCE TEST	AMDL	180
С	INV INVERSE FUNCTION FOR ADJACENT REGION INDICES	ANDL	190
С	IRET=NUMBER OF ITERATIONS COMPLETED	ANDL	200
С	INDMAX NUMBER OF REGIONS	AMDL	210
С		AMDL	220
С	S(2529,6) SEDIMENT ARRAY	AMDL	230
С	S(., 1) SUSPENDEL SEDIMENT	ANDL	240
С	S(.,2) FALLOUT FATIO	AMDL	250
С	S (., 3) SEDIMENT INPUT CONSTANT FROM OUTSIDE OF THE MODEL	AM DL	260
С	S(.,4) TEMPORARY STORAGE	AMDL	270
С	S(.,5) TEMPORARY STORAGE	A MD L	280
С	S(.,6) TEMPORARY STORAGE	AMDL	290
С	P(I,J) IS THE PROBABILITY OF WATER MOVEMENT FROM REGION I	A MD L	300
С	TO REGION J DURING ONE MODEL STEP	AMDL	310
С	TOREGION J DURING ONE MODEL STEP	AMDL	320
С		ANDL	330
С	ALL I/O IS DONE BY THE CALLING PROGRAM, ACOMP	AMDL	340
С		AMDL	350
С		ANDL	360

- 102 -

```
С
                                                                               ANDL 370
      LOGICAL LFLAG
                                                                               AMDL 380
      INTEGER*2 ILOC(2529,9)
                                                                               AMDL 390
      COMMON S(2529,6), WPROB (2529,9), LFLAG, THRSH, INDMAX, IRET, ILOC
                                                                               AMDL 400
       DIMENSION INV (9)
                                                                               AMDL 410
      DATA INV/1,9,8,7,6,5,4,3,2/
                                                                               ANDL 420
      DO 200 IA=1, MA XRUN,1
                                                                               AMDL 430
      IF((ICONVS . EQ. 1) . AND. (MOD(IA , ITEST) . EQ. (ITEST-2)))
                                                                               AMDL 440
     1GO TO 300
                                                                               AMDL 450
      IF((ICONVS . EQ. 1). AND. (MOD(IA , ITEST). EQ.0)) GO TO 400
                                                                               AMDL 460
С
                                                                               AMDL 470
С
      COMPUTE TRANSPORTABLE SEDIMENT IN S(., 6)
                                                                               AMDL 480
C
                                                                               AMDL 490
                                                                               AMDL 500
  110 DO 120 ID=1, INDMAX, 1
      S(ID, 4) = 0.
                                                                               AMDL 510
  120 S(ID,6) = S(ID,1) * S(ID,2)
                                                                               AMDL 520
С
                                                                               AMDL 530
С
      COMPUTE NEW SUSPENDED SEDIMENT
                                                                               AMDL 540
С
                                                                               ANDL 550
       DO 180 IE=1, INDMAX
                                                                               AMDL 560
      DO 160 IF=1,9,1
                                                                               ANDL 570
       IF(ILOC(IE, IF) \cdot EQ \cdot 0) = GO TO 160
                                                                               AMDL 580
      S (IE,4) = WPROB (I LOC (IE, IF), INV (IF)) *S (ILOC (IE, IF), 6) +S (IE,4)
                                                                               ANDL 590
  160 CONTINUE
                                                                               AMDL 600
  180 S(IE, 1) = S(IE, 4) + S(IE, 3)
                                                                               ANDL 610
      GO TO 200
                                                                               AMDL 620
С
                                                                               AMDL 630
C
      SAVE SUSPENDED SEDIMENT IN S(.,5) FOR CONVERGENCE TEST
                                                                               ANDL 640
C
                                                                               ANDL 650
  300 DO 310 IC=1, INDMAX, 1
                                                                               AMDL 660
  310 S(IC,5) = S(IC,1)
                                                                               ANDL 670
      GO TO 110
                                                                               ANDL 680
C
                                                                               AMDL 690
С
      CHECK FOR CONVERGENCE
                                                                               ANDL 700
C
                                                                               AMDL 710
  400 DUM=0.
                                                                               AMDL 720
```

```
- 103 -
```

		DUM2=0.	AMDL	730
		IT A= IA	ANDL	740
		DO 410 IB=1, IND MAX, 1	AMDL	750
		DUM2=DUM2+S(IB, 1)	AMDL	760
	410	DUN=DUM+ABS(S(IE, 1)-S(IB, 5))	AMDL	770
		IF (DUM. IE. THRSH) GO TO 500	AMDL	780
		PERC=DUM/DUM2	AMDL	790
		WRITE(6,705) ITA, DUM, PERC	A MD L	800
	705	FORMAT (* AT STEP *, 16, * ERROR= *, E12.6, * PERCENT ERROR= *, E12.6)	AMDL	810
		GO TO 110	ANDL	8 20
	200	CONTINUE	AMDL	830
		LFLAG = .FALSE.	AMDL	840
		RETURN	AMDL	850
С			AMDL	860
С		CONVERGENCE OCCURED	ANDL	870
¢			AMDL	880
	500	LF LAG=. TRUE.	AMDL	890
		IRFT = IA	ANDL	900
		RETURN	AMDL	910
		enc	ANDL	920

С		ZBMD	10
С	PROGRAM ZBMD	ZBMD	20
С		ZBMD	30
С	WRITTEN BY DAVIC CRAIN	ZBMD	40
С	DURING SPRING 1977	ZBMD	50
С	AT BOWLING GREEN STATE UNIVERSITY	ZBMD	60
С	AT BOWLING GREEN, OHIO	ZBMD	70
С		ZBMD	80
C	ZBMD HANDLES I/C FOR SUBROUTINE PROB, WHICH COMPUTES	ZBMD	90
С	PROBABILITIES OF WATER TRANSPER FROM ONE MODEL REGION TO THOSE	ZBMD	100
С	ADJACENT TO IT	ZBMD	110
С		ZBMD	120
С	ZBMD DOES THE FOLLOWING THREE STEPS	ZBMD	130
С	1. READ ALL NECESSARY DATA	ZBMD	140
С	2. CALL PROB TO COMPUTE TRANSFER PROBABILITIES	ZBMD	150
С	3. SAVE THE RESULTS ON TAPE	ZBMD	160
С		ZBND	170
С	INPUT TAPES:	ZBMD	180
С	UNIT1 NAMED MASTER WITH DCB= (RECFM=FB, LRECL=80, BLKSIZE=7280)	ZBMD	190
С	UNIT1 HAS WATER DEPTHS	ZBMD	200
С	UNIT2 NAMED .FINTAPE WITH DCB= (RECFM=VSB)	ZBMD	210
С	UNIT2 HAS WATER VELOCITIES AS FOLLOWS	ZBMD	220
С	6 WIND DIRECTIONS (6 DEPTHS (X DIRECTION, Y DIRECTION))	ZBMD	230
С	FOR A TOTAL OF 72 RECORDS	ZBMD	240
С	UNIT8 NAMED .BHDPREP WITH DCB= (RECFM=FB, LRECL=108, BLKSIZE=8100)	ZBMD	250
С	UNIT8 HAS COORDINATES OF MODEL REGIONS BY INDEX	ZBM D	260
С		ZBMD	270
С	ZBMD WRITES 6 RECORDS TO UNIT9, EACH 2529 BY 9	ZBMD	280
C	UNIT9 HAS DCB=(RECFM=VSB)	ZBMD	290
С		ZBMD	300
	DIMENSION ASUM(9), PA(9), A(122, 40), IRS(2625, 2)	ZBHD	310
	COMMON DEPTH( 122, 40), XVEL(122, 40, 6), YVEL(122, 40, 6)	ZBND	320
	DIMENSION WPROB (2529,9)	ZBMD	330
	TIM=2.5	ZBMD	340
	BOUND=1	ZBMD	350
С		ZBND	360

1 105 -

С		READ DEPTHS	ZBMD	370
С			ZBMD	380
		DO 20 IM=1,122,1	ZBMD	390
		DO 10 IN=1,5,1	ZBMD	400
		IA= (IN-1) *8+1	ZBND	410
		IB=IN*8	ZBMD	420
	10	READ(1,730)  (DEPTH(IM,IC),IC=IA,IB)	ZBND	430
	20	CONTINUE	ZBMD	440
С			ZBMD	450
С		READ COORDINATES IN ORDER BY INDEX	ZBMD	460
С			ZBMD	470
		DO 107 IA= 1, 175, 1	ZBMD	480
		IC=(IA-1) *15+1	ZBMD	490
		ID=IA*15	ZBMD	500
	107	READ(8,711) ((IRS(IB,IE),IE=1,2),IB=IC,ID) $((IRS(IB,IE),IE=1,2),IB=IC,ID)$	ZBMD	510
		DO $300 IZ=1,6,1$	ZBMD	520
С			ZBMD	530
С		READ HOROZONTAL VELOCITIES	ZB MD	540
С			ZBMD	550
		DO 131 $IA=1, 6, 1$	ZBMD	560
		READ(2) A	ZBMD	570
		DO 19 IAA= 1, 122, 1	ZBND	580
		DO 18 IAB=1,40,1	ZBND	590
		IF(A(IAA, IAB) .GT. BOUND) A(IAA, IAB) = BOUND	ZBND	600
	18	XVEL(IAA,IAB,IA)=A(IAA,IAB)	ZBMD	610
	19	CONTINUE	ZBMD	620
		READ(2) A	ZBMD	630
		DO 17 IAA=1,122,1	ZBMD	640
		DO 16 IAB=1,40,1	ZBMD	650
		IF (A (IAA, IAB) .GT. BOUND) A (IAA, IAB) = BOUND	ZBMD	660
	16	YV EL (IAA, IAB, IA) = A (IAA, IAB)	ZBMD	670
	17	CONTINUE	ZBMD	680
	131	CONTINUE	ZBMD	690
C			ZBMD	700
С		CALCULATE AND TAPE WATER TRANSFER PROBABILITIES	ZBND	710
С			ZBMD	720

	DO 200 IB= 1,2529	ZBMD	730
	IF (IRS (IB, 1). IE.0) GO TO 111	ZBMD	740
	CALL PROB(IRS(IE, 1), IRS(IB,2), ASUM, PA, TIM)	ZBMD	750
	DO 122 IPRO=1,9	ZBMD	760
122	WPROB(IB, IPRO)=PA(IPRO)	ZBMD	770
	GO TO 200	ZBMD	780
111	DO 121 IC=1,9,1	ZBMD	790
121	WPROB(IB, IC) = $0$ .	ZBHD	800
200	CONTINUE	ZBMD	810
	WRITE(9) WPROB	ZBND	820
30.0	CONTINUE	ZBMD	830
	STOP	ZBND	840
711	FORMAT (1X, 3013)	ZBMD	850
730	FORMAT (8F10.5)	ZBMD	860
	END	ZBND	870

	SUBROUTINE PROB (M, N, ASUM, PA, TIME)	PROB	10
С		PROB	20
С	SUBROUTINE PROB	PROB	30
С		PROB	40
С	WRITTEN BY DAVIE DRAIN, SPRING 1977	PROB	50
С	AT BOWLING GREEK STATE UNIVERSITY, BOWLING GREEN, OHIO	PROB	60
С		PROB	70
С	PROB COMPUTES THE PROBABILITY OF WATER TRANSFER DURING A	PROB	80
C	GIVEN TIME UNIT FROM ONE SEDIMENT MODEL REGION TO THOSE	PROB	90
°C	ADJACENT TO IT	PROB	100
С		PROB	110
С	PROB HAS THREE STEPS:	PROB	120
С	1. INTERPOLATE HOROZONTAL VELOCITIES AND ARBIVE AT A	PROB	130
С	PIECEWISE LINEAF FUNCTION FOR HOROZONTAL WATER VELOCITY IN	PROB	140
С	TERMS OF WATER CEPTH.	PROB	150
C	2. INTEGRATE THESE HOROZONTAL VELOCITIES OVER DEPTH TO	PROB	160
С	TO DETERMINE THE VOLUME OF WATER MOVED FROM THIS REGION	PROB	170
С	TO THOSE ADJACENT TO IT.	PROB	180
C	3. DIVIDE THE VCLUME OF WATER NOVING FROM REGION I TO REGION	J PROB	190
С	BY THE VOLUME OF WATER IN REGION I TO OBTAIN THE DESIRED	PROB	200
С	PROBABILITIES.	PROB	210
C		PROB	220
C	ALL I/O IS NANAGED BY THE CALLING PROGRAM, ZBMD.	PROB	230
C		PRO B	240
С	M,N IS THE INDEX OF THE WES REGION	PROB	250
С	ASUM IS AN ARRAY OF WATER AMOUNTS TRANSFERRED	PROB	260
C	IN CUBIC FEET PER (TIME*HOUR)	PROB	270
Ç	PA IS AN ARRAY OF PROBABILITIES RETURNED	PROB	280
С	ADJACENT REGIONS ARE INDEXED AS FOLLOWS:	PROB	290
С	2 3 4	PROB	300
С	5 1 6	PRO B	310
С	789	PROB	320
С		PROB	330
С	TIME IS IN HOURS AND SHOULD BE SUCH THAT TIME*MAX VELOCITY<2	MILES PROB	340
С	SO TIME<2.9333336/MAX VELOCITY (IN FEET PER SECOND)	PROB	350
С		PROB	360

- 108 -

С		PROB 370
С	DEPTH IS AN ARRAY OF WATER DEPTHS	PROB 380
С	XVEL IS AN ARRAY OF (X-DIRECTION) HOROZONTAL WATER VELOCITIES	PROB 390
С	YVEL IS AN ARRAY OF (Y-DIRECTION) HOROZONTAL WATER VELOCITIES	PROB 400
С	- ,	PROB 410
	COMMON DEPTH (122,40), XVEL (122,40,6), YVEL (122,40,6)	PROB 420
	DIMENSION Z (7), X (6), Y (6), XM (6), YM (6), XB (6), YB (6), ASUM (9), PA (9)	PROB 430
	DATA WD/10560./	PROB 440
	DATA Z/0., 5., 10., 20., 40., 60., 0./	PROB 450
	F1 (S1, S2, B1, B2, D1, D2) = S1 *S2* (D2**3/3-D1**3/3) +	PROB 460
	C(S1*B2+S2*B1)*(D2**2/2-D1**2/2)+B1*B2*(D2-D1)	PROB 470
	F4 (S1, S2, B1, B2, D1, D2) = S1 + S2 + (D2 + 3/3 - D1 + 3/3) +	PROB 480
	C (WD * S2 + S1 * B2 + S2 * B1) * (D2 * 2/2 - D1 * 2/2) + (WD * B2 + B1 * B2) * (D2 - D1)	PROB 490
C		PROB 500
С	READ DEPTH, HOROZONTAL VELOCITIES	PROB 510
С		PROB 520
	DO 20 I=1,6,1	PROB 530
	X(I) = XVEL(M, N, I)	PROB 540
	20 $Y(I) = YVEL(M, N, I)$	PROB 550
	ZNAX=DEPTH (M, N)	PROB 560
	Z(7) = ZMAX	PROB 570
	DO 90 I=1,9,1	PROB 580
	90  ASUN(I) = 0.0	PROB 590
	IF (ZMAX.GT5) GO TO 5	PROB 600
	DO 2 IA=1,9,1	PROB 610
	2 PA (IA) = 0.	PROB 620
	RETURN	PROB 630
	5 CONTINUE	PROB 640
С		PROB 650
C	CHANGE THE FT/SEC INPUT TO FT/HOUR*TINE	PROB 660
С		PROB 670
	DO 100 I=7,6,1	PROB 680
	$X(I) = X(I) * 360 C_{\bullet} * TIME$	PROB 690
	100 Y(I)=Y(I)*3600.*TINE	PROB 700
C		PROB 710
С	LINEARLY INTERPOLATE THE HORIZONTAL VELOCITIES	PROB 720

С PROB 730 DO 110 I=1,6,1 **PROB** 740 J=I+1PROB 750 IF((Z(J), LE, ZMAX), AND, (J, LT, 7)) GO TO 108 **PROB** 760 X B (I) = X (I)PROB 770 XM(I)=0.**PROB** 780 Y B (I) = Y (I)**PROB** 790 PROB 800  $Y \boxtimes (I) = 0$ . IMAX=I **PROB** 810 GO TO 112 PROB 820 108 X M (I) = (X(J) - X(I)) / (Z(J) - Z(I))PROB 830 X B (I) = (Z (J) * X (I) - Z (I) * X (J)) / (Z (J) - Z (I))**PROB 840** Y = (Y (J) - Y (I)) / (Z (J) - Z (I))**PROB** 850 Y B (I) = (Z (J) * Y (I) - Z (I) * Y (J)) / (Z (J) - Z (I))**PROB 860 PROB** 870 110 CONTINUE С **PROB** 880 С INTEGRATE VELOCITY OVER DEPTH **PROB 890** С **PROB** 900 112 IDEPTH=1 PROB 910 JDEPTH = IDEPTH + 1PROB 920 **PROB** 930 113 IF ((JDEPTH.GT.IMAX).OR. (JDEPTH.GT.6)) GO TO 200 IF ( ( (X ( IDEPTH) . GT. 0.) . AN D. (X ( JDEPTH) . LT. 0. ) ) . OR. **PROB** 940 C(X(JDEPTH).GT.O.). AND. (X(IDEPTH). LT.O.)) GO TO 116 **PROB** 950 **PROB 960** XT=Z (J D EPT H) PROB 970 GO TO 118 116 XT=-XB (IDEPTH)/XM (IDEPTH) **PROB** 980 118 IF(((Y (IDEPTH), GT. 0.), AND. (Y (JDEPTH), LT. 0.)).OR. **PROB** 990 C(Y(JDEPTH).GT.O.). AND. (Y(IDEPTH).LT.O.)) GO TO 120 **PROB 1000** YT = Z (JDEPTH)**PROB 1010** GO TO 122 PROB1020 120 YT=-YB (IDEPTH)/YM (IDEPTH) PROB 1030 122 IF (XT-YT) 124,124,126 PROB1040 124 DT 1=XT PROB1050 DT2 = YT**PROB1060** 

PROB 1070

PROB 1080

GO TO 130

126 DT1=YT

- 110 -

		DD054000
420		PROB 10 90
130	DEPTI=(DTI+Z(IDEPTH))/Z	PROBITIO
	DEPT 2= (CT2+DT 1)/2	PROB1110
	DEPT3 = (Z(JDEPTH) + DT2) / 2	PROB 1 1 20
	K=0	PROB 1130
	TXM=XM (IDEPTH)	PROB1140
	TYM=YM (IDE PTH)	PROB1150
	TXB=XB(IDEPTH)	PROB1160
	TYB=YB (IDE PTH)	PROB1170
	CM=→TX M	PROB1180
	CB=-TXB	PROB 1190
	DH=-TYH	PROB1200
	DB=-TYB	PROB 1210
	DEPTX= DEPT 1	PRO B1220
	DEPI = Z (IDEPTH)	PROB1230
	DEPI2=DT1	PROB 1240
131	CONTINUE	PRO 81250
	IF (((XM (IDEPTH) *DEPTX= XB(IDEPTH)), GE, 0.) . AND.	PROB 1260
C	C((YM (IDEPTH) * DEFTX+YB (IDEPTH)), GE. 0.)) GO TO 140	PROB 1270
	IF ( (XM (IDEPT H) *DEPTX+XB (IDEPTH)) - GE. 0.) .AND.	PROB1280
C	$((YM(IDEPTH) *DEPTX+YB(IDEPTH)), LT_0, ))$ GO TO 150	PROB 1290
	TF((XM (TDEPTH) * DEPTX + XB (TDEPTH)), LT, 0, ), AND.	PROB 1300
C	$((\mathbf{Y} \mathbf{M} (\mathbf{T} \mathbf{D} \mathbf{F} \mathbf{P} \mathbf{T} \mathbf{H}) * \mathbf{D} \mathbf{E} \mathbf{P} \mathbf{T} \mathbf{H} \mathbf{Y} \mathbf{R} (\mathbf{T} \mathbf{D} \mathbf{F} \mathbf{P} \mathbf{T} \mathbf{H}) $ (G. 0.)) GO TO 160	PROB1310
-	TF (/ (YM (TDEPTH) *DEPTY + YB (TDEPTH)), LT, 0.1, AND.	PROB 1 320
C	$((\chi n (D E D H) + D E D X + \gamma B (T D E D H)) + L T = (0, 1) = G(T = 17)$	PROB 1320
140	$\lambda SIIN (3) = \lambda SIIN (3) + FU (CM, TYN, CB, TYB, DEPT1, DEPT2)$	PROB1340
140	A S H (4) = A S H (4) + P1 (T X T Y T T Y T T T T T T T T T T T T T	PROB 1350
	ASIM (6) = ASIM (6) + PU(DM, TYM, DB, TYB, DRDT1, DRDT2)	PROB1360
	GO = TO = 180	PROB 1370
15.0	$ASTIM (6) = ASTIM (6) + F4 (TYN_TYN_TYN_TYN_TYN_TYN_TYN_TYN_TYN_TYN_$	PROB1380
100	ASIIN(8) = ASIIN(8) - FU(CM, TYN, CB, TYB, DEPT1, DEPT2)	PROB 1 390
	$\Delta SIM (9) = \Delta SIM (9) = F1 (TXM .TYM .TXB .TYB .DEPT1 .DEPT2)$	PROB 1400
160	$\Delta SUM(2) = \Delta SUM(2) - P1(TXN_TYM_TYM_TYM_TYM_DEPT1_DEPT2)$	PROB1400
,		PROR 1410
	ASHM (3) = ASHM (3) + F4 (TXM TYM TYM TYR TYR DRPT1 DRPT2)	DRARIAR
	ACHN/5) =1CHN/5) -FH/AN TYN DR TYR DTDT' DFDT')	EROD 1430 DDAD 4 88A
	ROULDJ -ROULDJ -E4 (DEJ IRE, DEJ RE, DET 1, DET 2)	E 000 1440

		GO TO 180		PROB1450
	170	ASUN (5) =ASUM (5) -F4 (TYM, TXM, TYB	TXB, DEPI1, DEPI2)	PROB1460
		ASUM (7) =ASUM (7) +F1 (TXM, TYM, TXB	TYB, DEPI1, DEPI2)	PROB 1470
		ASUM(8) = ASUM(8) - F4(TXM, TYM, TXB	TYB, DEPI1, DEPI2)	PROB1480
	180	K=K+1		P10B1490
		IF (ABS (DEP 12-Z (JDEP TH))001)	188, 188, 182	PRO B1500
	18 2	IF (K.EQ.2) GO TC 184		PR OB 1510
		DEPTX = DEPT2		PROB 1 520
		DEPI1=DT1		PROB1530
		DEPI2=DT2		PROB 1540
		GO TO 131		PROB1550
	18 4	DEPTX=DEPT3		PROB1560
		DEPI1=DT2		PROB 1570
		DEPI2=Z (JDEPT H)		PROB1580
ł		GO TO 131		PR OB 1590
سر	188	IDEPTH=IDEPTH+1		PROB 1600
Ĺ,		J DEPTH=IDEPTH+1		PRO B 1610
N		GO TO 113		PROB 1620
1	20 0	CONTINUE		PROB1630
		AX = X (I MAX)		PROB1640
		A Y = Y (I M A X)		PROB 1650
		ZD=ZMAX-Z(IMAX)		PROB1660
		IF ((AX. GE. U.) . A ND. (AY. GE. U.))	GO TO 210	PR OB 1670
		IF ( (AX. GE. 0.) . A ND. (AY. LT. 0.) )	GO TO 220	PROB 1680
		IF((AX.LT.0.).AND.(AY.GE.0.))	GO TO 230	PROB1690
		LF ((AX. LT.U.) . A ND. (AY. LT.U.))	GO TO 240	PROB 1700
	210	ASUM $(3) = ASUM (3) + (WD - AX) + A I + ZD$		PROB1710
		ASUM(4) = ASUM(4) + (AX + AI + 2U)		PRUD1720
		A > Um (b) = A > Um (b) + (WU = AI) + AX + ZU		PRUB 1730
	22.0			PROB1740
	220	ASUM(0) = ASUM(0) = (WD + AI) = AX + AD		DROB1760
		$ASUM(0) = ASUM(0) = (WD^2 AX) + AI + 2D$		PROB1700
		$a_0 = \frac{1}{250}$		PROB 1780
	220	$A = \frac{10}{200} =$		PROB1700
	250	ASIM(3) = ASIM(3) + (WD + AY) + AV + 7D		PR 08 1800
		Roon(o) -Roon(o) · (Ho. RK) · NI · AD		

ł
11
Ν
1

```
ASUM(5) = ASUM(5) - (WD-AY) * AX*ZD
                                                                                     PROB1810
    GO TO 250
                                                                                     PROB 1820
240 ASUM (5) = ASUM (5) - (WD+AY) * AX*ZD
                                                                                     PROB1830
    ASUM(7) = ASUM(7) + AX + AY + ZD
                                                                                     PROB 1840
    ASUM (8) = ASUM (8) - AY = (WD + AX) = ZD
                                                                                     PROB 1850
250 VOL=WD**2*ZMAX
                                                                                     PROB1860
                                                                                     PROB 1870
    CHECK FOR VERY SMALL AMOUNT OF TRANSFER--IT WILL CAUSE UNDERFLOW
                                                                                     PROB1880
                                                                                     PR OB 1890
    DO 310 IA=2,9,1
                                                                                     PROB 1900
    IF (ASUM (IA).GT..1) GO TO 310
                                                                                     PROB1910
    ASUM(IA)=0.
                                                                                     PROB 1920
310 CONTINUE
                                                                                     PROB1930
                                                                                     PROB 1940
    CONPUTE PROBABILITIES OF TRANSFER
                                                                                     PROB 1950
                                                                                     PROB1960
    PA(2) = A SUM(2) / VOL
                                                                                     PROB 1970
    PA(3) = ASUM(3) / VOL
                                                                                     PRO B 1980
    PA(4) = ASUM(4) / VOL
                                                                                     PROB1990
    PA (5) = A SUM (5) / VOL
                                                                                     PROB 2000
    PA(6) = ASUM(6) / VOL
                                                                                     PROB2010
    PA(7) = A SOM(7) / VCL
                                                                                     P30B2020
    PA(8) = ASUM(8) / VOL
                                                                                     PROB2030
    PA(9) = ASUM(9) / VCL
                                                                                     PROB2040
    ASUM(1) = VOL - (ASUM(2) + ASUM(3) + ASUM(4) + ASUM(5) +
                                                                                     PROB2050
   1 \text{ASUM}(6) + \text{ASUM}(7) + \text{ASUM}(8) + \text{ASUM}(9))
                                                                                     PROB2060
    PA(1) = ASUM(1) / VOL
                                                                                     PROB2070
    RETURN
                                                                                     PROB 2080
    END
                                                                                     PROB2090
```

ł

C

С

С

С

С

С

	С		ZCON	10
	С	PROGRAM ZCON	ZCON	20
	С		ZCON	30
	С	WRITTEN BY DAVIC CRAIN	ZCON	40
	С	DURING SPRING 1978	ZCON	50
	С	AT BOWLING GREEN STATE UNIVERSITY	ZCON	60
	С	BOWLING GREEN, OHIO	ZCON	70
	С		ZCON	80
	С	ZCON ATTEMPTS TO FIND A BETTER ESTIMATION OF THE RATE OF SEDIMENT	ZCON	90
	С	FALLOUT (ALFA) BY MANIFULATING BOTH ALFA, AND THE SUSPENDED	ZCON	100
	С	SEDIMENT DISTRIBUTION	ZCON	110
	С		ZCON	120
	С	THE FLOW CHART EELOW EXPLAINS THE OPERATION OF ZCON	ZCON	130
	С		ZCON	140
	C	/	ZCON	150
	С	READ INPUT AND	ZCON	160
-	С	I INITIAL CONDITIONS	ZCON	170
7	С	化化学 化化学 化化学 化化化学 化化化学 化化化学 化化化学 化化化化学 化化化化化化	ZCON	180
	С	ų.	ZCON	190
	С		ZCON	200
	С	**********************	ZCON	210
	С	1	ZCON	220
	С		ZCON	230
	С		ZCON	240
	С	SUBROUTINE XAT	ZCON	250
	C	CHANGE ALFA TO CORRELATE HIGHLY	ZCON	260
	С	WITH OBSERVED RATES	ZCON	270
	C	电电 的领力 有法分别 子科斯 化物体化 有 的单单位 的 计子的 男子 经有 全有 自己 经 电学中	ZCON	280
	C		ZCON	290
	C		ZCON	300
	C	1/	ZCON	310
	C		ZCON	320
	C	I SUBROUTINE FALFA	ZCON	330
	C	TEST ALFA COMPUTED IN XAT	ZCON	340
	C		ACON	350
	С	I UNREASONABLE OK I	ZCON	360

I 114 -

С		ZCON	370
С		ZCON	380
С		ZCON	390
С		ZCON	400
С	I STOP I	ZCON	410
С		ZCON	420
С	1 1	ZCON	4.30
С	/	ZCON	440
С		ZCON	450
С	SUBROUTINE CHANGE	ZCON	460
С	CHANGE SUSPENDED SEDIMENT	ZCON	470
С	DISTRIBUTION	ZCON	480
С		ZCON	490
С	1	ZCON	500
С	1	ZCON	510
С		ZCON	520
С		ZCON	530
С	UNIT 1 IS NAMEI EGSU.C.SGEOL1.WALTERS.ALFTAP	ZCON	540
С	WITH DCB=(RECFM=VSB)	ZCON	550
С	ZCON READS FROM UNIT1:	ZCON	560
С	WRATE OBSERVED SED RATES FOR LJW REGIONS	ZCON	570
С	ICON MODEL AREA IA IS IN LJW AREA ICON(IA)	ZCON	580
С	ALFA PROPORTION OF SEDIMENT FALLING OUT IN MODEL STEP	ZCON	590
С	DEEP DEPTH OF LAKE	ZCON	600
C	TOTSED SUSPENDED SEDIMENT DISTRIBUTION	ZCON	610
С		ZCON	6 20
С	UNIT2 IS A TAPE WITH DCB= (RECFM=VSE)	ZCON	630
С	ZCON STORES THE FOLLOWING ON UNIT2	ZCON	640
C	TOTSED NEW SUSPENDED SEDIMENT DISTRIBUITON	ZCON	650
С	SED NEW FAILEN SEDIMENT DISTRIBUITON	ZCON	660
С	SUM SED RATE PREDICTED BY NEW PARAMETERS	ZCON	670
С	OALFA NEW ALFA	ZCON	680
С		ZCON	690
	INTEGER*2 ICON(2529)	ZCON	700
	COMMON WRATE (34), TOTSED (2529), SED (2529), ALFA (2529), SUM (34),	ZCON	710
	10ALFA(2529), DEEF(2529), NUM(34), ICON	ZCON	720

		LOGICAL LTALFA	ZCON	730
		READ(1) WRATE	ZCON	740
		READ(1) ICON	ZCON	750
		READ(1) ALFA	ZCON	760
		READ(1) DEEP	ZCON	770
		READ(1) TOTSED	ZCON	780
С			ZCON	790
С		SCALE SUSPENDED SEDIMENT UP TO GIVE REASONABLE SED RATES	ZCON	800
С			ZCON	810
		DO 3 IA=1, 2529	ZCON	820
С			ZCON	830
С		USE FINAL ALFA FROM RAT AS INITIAL CONDITION	ZCON	840
С			ZCON	850
		OALFA(IA) = ALFA(IA)	ZCON	860
	3	TOTS ED (IA) = TO TS ED (IA) $*1.E06$	ZCON	870
		DO 100 IA=1,30	ZCON	880
		IX=IA	ZCON	890
		WRITE(6,704) IA	ZCON	900
C			ZCON	910
С		ADJUST ALFA FOR HIGH CORRELATION WITH OBSERVED RATES	ZCON	920
С			ZCON	930
		CALL XAT	ZCON	940
С			ZCON	950
С		SEE IF THE NEW ALFA IS REASONABLE	ZCON	960
С			ZCON	970
		CALL TALFA(LTALFA)	ZCON	980
		IF (LTALFA) GO TC 101	ZCON	990
С			ZCONI	000
С		IF NOT, CHANGE SUSPENDED SEDIMENT CONDITIONS	ZCONI	10 10
С			ZCON1	020
		CALL CHANGE	ZCON 1	10 30
	100	CONTINUE	ZCON 1	1040
	101	WRITE(6,707) IX	Z CON 1	050
		WRITE(6,703)	ZCON1	1060
		DO 110 IA=1,34	ZCON 1	070
	110	WRITE(6,702) IA,WRATE(IA),SUM(IA)	Z CON 1	080

- 116 -

WRITE(2) TOTSED	ZCON 1090
WRITE(2) SED	Z CON 1 100
WRITE(2) SUM	ZCON1110
WRITE(2) OALFA	2CON1120
STOP	ZCON1130
701 FORMAT (//' CONVERGENCE OCCURED IN ', I3, ' STEPS')	ZCON 1140
702 FORMAT (2X, 12, 2X, E12.6, 2X, E12.6)	Z CON 1 150
703 FORMAT (//5X, "REAL RATE", 5X, "CALCULATED RATE"//)	ZCON 1 160
704 FORMAT (* **MAIN** STEP *,14)	Z CON 1170
END	2CON 1 180

	SUBROUTINE XAT	XAP	10
С		XAT	20
С	SUBROUTINE XAT	XAT	30
С		XAT	40
С	WRITTEN BY DAVID DRAIN	XAT	50
С	DURING SPRING 1978	XAT	60
С	AT BOWLING GREEK STATE UNIVERSITY	XAT	70
C	BOWLING GREEN, CHIO	XAT	80
С		XAT	90
c	XAT PERFORMS THE FOLLOWING OPERATIONS	XAT	100
c	1. CALCULATE THE SED RATE WITH OALFA FOR EACH LIW REGION	XAF	110
Ċ	2. COMPUTE CORRELATION COEFFICIENTS WITH OBSERVED RATES	YAT	120
C	3. SEE WHERE ERRORS (LOW CORRELATIONS) OCCUR AND COMPUTE	YA T	1 30
C C	NEW ALFA	YAT	140
č		YAP	150
c c	ALL TZO TS MANAGED BY THE CALLING DROGRAM . ZCON	Y A P	160
C C	and the remaining of the capting modified from	ሃ እጥ	170
Ċ	TNTRGER*2 TCON(2529)	7 A T	180
	COMMON WRATR(34), TOTSED(2529) SED(2529), ALEA(2529), SUM(34),	<b>Å</b> 7 de 1	190
	1011F1(2529) = 0FEP(2529) = 0IIM(34) = 1000	¥ % P	200
	$\mathbf{DT} \mathbf{MENST} (\mathbf{N} - \mathbf{R} \mathbf{T} + \mathbf{S} \mathbf{U}) = (13, 3)$	ጃ ዓደ ፶ እጥ	210
	DIMENSION ANT (34) BOT (34)	71 T	270
		ላ ጠ የ እ ጥ	230
C	DAIR TONYTY	አብ ነ ሃእጥ	2.50
č	FALCON CONVERTS FROM KG (4 MTLES) -2 (2.5 HOURS) -1 TC	¥ 3.7P	250
č	$\frac{1}{1000} = \frac{1}{1000} = \frac{1}{10000} = \frac{1}{100000} = \frac{1}{10000000} = \frac{1}{10000000000000000000000000000000000$	¥ 1 P	250
č		444 737	200
0	FALCON = 3.38459E-03	¥ A T	280
с		¥ስ ጥ	290
c	AOT AND BOT ARE UPPER AND LOWER LIMITS RESPECTIVELY FOR RAT	XAT	300
c		XAT	310
	IF (IJK.GT.1) GO TC 2	XAT	320
	DO 1 IA=1,34	XAT	330
	1 READ (5, 704) AOT (IA), BOT (IA)	XAT	340
	2 CONTINUE	XAT	350
	IJK=10	XAT	360

	DO 3 IA=1,2529	KA T	370
3	SED(IA) =TOTSED(IA) *OAL FA (IA) * FALCON	XAL	380
С		XAT	390
С	CHANGE ALFA UNTIL FREDICTED RATES CORRELARE HIGHLY WITH	XA T	400
С	OBSERVEC RATES	XAT	410
С		XAL	420
	DO 100 I300=1,1500	XAT	430
	IX=I300	XAP	440
	I100=I300/3	XAT	450
	DO 5 IA=1,3	XA T	460
	DO 4 IB=1,3	ХАГ	470
4	C(IA,IB)=0.	XA T	480
5	CONTINUE	XA T	490
	DO 10 IA=1,34	XAT	500
	SUN(IA) = 0.	XAT	510
	NUM(IA)=0.	XA T	520
10	RAT(IA) = 0.	XAT	530
С		XAF	540
С	CALCULATE SEDIMENTATION RATES FOR EACH LJW REGION	XAT	550
С		XAT	560
	DO 20 IA=1,2529	XA T	570
	IF (ICON (IA), EQ. 0) GO TO 20	XAT	580
	IF (DEEP (IA) . LT. 5.) GO TO 20	XAF	590
	NUM(ICON(IA)) = NUM(ICON(IA)) + 7	XAT	600
~ *	SUM (ICOH(IA)) = SUM (ICON (IA)) + SED(IA)	XAT	610
20	CONTINUE	XAT	620
C		XAT	630
C	COMPUTE CORRELATION COEFFICIENT	XAF	640
C	NO 20 TB-1 21	XAT	650
	$DU = SU = \frac{1}{2} \frac{1}{2}$	XA T XA T	670
	$\frac{1}{1} = \frac{1}{2}$	AA 1. V 1 70	670
	$DV = 47 \pm 2$	8 8 1 7 8 7	600
	C(TR 2) = C(TR 2) + C(TR) + TRATE(TR) + O(C(TR))	አርት እስ	700
20	= C(TR - 3) = C(TR - 3) + S(TR)(TR) + S(TR)(TR)	АП 1 У В/Р	710
27	силили в струзу — струзу троп(тв) - роп(тв)	VAP	7720
30		ANI	124

- 119 -

DO 40 IA=22,33	XAT	730
SUM(IA)=SUM(IA)/NUM(IA)	XAT	740
DO 39 IB=1,3,2	XAP	750
C(IB,1) = C(IB,1) + WRATE(IA) + SUM(IA)	XA T	760
C(IB,2) = C(IB,2) + SUH(IA)	XAT	770
39 C (IB, 3) = C (IB, 3) + SUM (IA) + SUM (IA)	XA T	780
40 CONTINUE	XA T	790
SUM(34) = SUM(34) / NUM(34)	XA T	800
C(1, 1) = C(1, 1) + WRATE(34) + SUM(34)	XAT	810
C(1, 2) = C(1, 2) + SUM(34)	XAT	820
C(1,3) = C(1,3) + SUM(34) + SUM(34)	XAP	830
RT = (C(1,1)39973 * C(1,2)) /	XAT	840
1(1, 46392*SQRT(C(1, 3)-C(1, 2)*C(1, 2)/34.))	XAT	850
BW = (C(2, 1)51955 * C(2, 2)) /	XAT	860
1(.96803 + SQRT(C(2,3) - C(2,2) + C(2,2) / 21.))	ХАГ	870
RC = (C(3,1)19927 * C(3,2))/	XAT	880
1(.64029*SQRT(C(3,3)-C(3,2)*C(3,2)/12.))	XA T	890
	XAT	900
FIND ERRORS TO COMPUTE NEW ALFA	XAP	9 10
	X AT	920
DO 50 IA=1,34	XAT	930
50 RAT (IA) = (WRAT $E(IA)$ - SUM (IA)) / WRATE (IA)	XAT	940
DO 60 IA=1,34	XAT	950
	XAF	960
NOTE THAT AOT AND BOT ARE SUCCESIVELY REDUCED TO AVOID	OSCILLATIONXAT	970
	XA T	980
A = AOT (IA) / 12.	XAT	990
B=BOT(IA)/12.	XAT	1000
IF(RAT(IA).LT.B) $RAT(IA) = B$	XAT	1010
$IF(RAT(IA) \cdot GT \cdot A) RAT(IA) = A$	XAT	1020
60 CONTINUE	XAT	10.30
	XAT	1040
COMPUTE THE NEW ALFA	XAT	1050
no 70 Th-4 0500	XAT	1050
$\frac{1}{10} \frac{1}{10} \frac$	XAP	1070
B = OA LF A (LA) + RAT (LCCN(LA))	XAP	1080

c c c

C C C

c c c

	IF (B.LT.1.) GO TO 61	XAT 1090
	OA LFA (IA) = 1.	XAF 1100
	GO TO 70	XAT 1110
61	IF(B.GT.0.) GO TO 62	XAT 1120
	OALFA(IA) = 0.	XAF 1130
	GO TO 70	XAF 1140
62	OA LFA (IA) = B	XAT 1150
70	CONTINUE	XAT 1160
	DO 80 $IA=1,2529$	XAF 1170
80	SED(IA) =TOTSEC(IA) *OALFA(IA) *FALCON	XAT 1180
	IF (RT.GT., 75) GO TO 101	XAF 1190
100	CONTINUE	XAF 1200
	WRITE (6,700)	XAT 1210
	WRITE(6,703)	XAT 1220
	WRITE(6,705)	XAT 1230
	WRITE(6,701) RT,RW,RC,IX	XAF 1240
	STOP	XAT 1250
10 1	WRITE(6,700)	XAT 1260
	WRITE(6,702)	XAF 1270
	WRITE (6,705)	XAF 1280
	WRITE(6,701) ET,RW,RC,IX	XAT 1290
	R ETU BN	XAT 1300
700	FORMAT (* *RAT **)	XAF 1310
701	PORMAT(' CORRELATIONS = ', 3(2X, E12.6), 'AT', I4)	XAF 1320
702	FORMAT ( CONVERGENCE OCCURED )	XAT 1330
70 3	FORMAT (' CONVERGENCE DID NOT OCCUR')	XAT 1340
704	FORMAT (2E12.6)	XAF 1350
705	FORMAT(21X, "TOTAL",8X, "WESTERN",7X, "CENTRAL")	XAT 1360
	END	XAT 1370

		SUBROUTINE TALFA(LTALFA)	TLPA	10
	С		TLFA	20
	С	SUBROUTINE TALFA	T L F A	30
	С		TLFA	40
	С	WRITTEN BY DAVIC DRAIN	TLFA	50
	С	DURING SPRING 1978	T L FA	60
	С	AT BOWLING GREEN STATE UNIVERSITY	TLFA	70
	С	BOWLING GREEN, OHIO	TLFA	80
	С		TLFA	90
	С	SUBROUTINE TALFA CHECKS TO SEE IF ALFA AS COMPUTED BY XAT IS	<b>FLFA</b>	100
	С	A REASONABLE ESTIMATE OF SEDIMENT FALLOUT RATE, AND OUTPUTS	TLFA	110
	С	THOSE REGIONS IN WHICH THE TEST FAILS	TLFA	120
	С		TLFA	130
	С	LTALFA IS A LOGICAL VARIABLE WHICH RETURNS	TLFA	140
	С	TRUE IF THE ALFA ARE REASONABLE	TLFA	150
•	С	FALSE IF THE ALFA ARE NOT REASONABLE	T L F A	160
12	С		TLFA	170
N	С	ALL I/O IS NANAGED BY THE CALLING PROGRAM , ZCON	TLFA	180
1	С		TLFA	190
		INTEGER*2 ICON(2529)	TLFA	200
		COMMON WRATE(34), TOTSED(2529), SED(2529), ALFA(2529), SUM(34),	TLFA	210
		10ALFA (2529), DEE P(2529), NUM (34), ICO N	TLFA	220
		DIMENSION BRR (34)	TLFA	230
		LOGICAL LTALPA	TLFA	240
		DIMENSION T(34), TR(34), ICT(34)	TLFA	250
		DATA ITJK/1/	T L P A	260
		IF(ITJK.GT.1) GC TO 2	r lfa	270
	С		TLFA	280
	С	T IS AN ARRAY OF REASONABLE ALFA	r l pa	290
	С	TR IS AN ARRAY CF ACCEPTABLE DEVIATIONS FROM THESE	TLPA	300
	С		<b>FLFA</b>	310
		DO 1 IA=1,34	r lpa	320
		READ (5, 702) T (IA), TR (IA)	TLFA	330
		1 TR(IA) = TR(IA) * 10.	T LFA	340
		2 CONTINUE	TLFA	350
		IT JK=10	TLFA	360

```
С
                                                                                 TLFA 370
С
                                                                                TLFA 380
       ICT IS AN ARRAY OF FLAGS:
       O MEANS ALFA IN REGION IS REASONABLE
С
                                                                                TLFA 390
С
       1 OTHERWISE
                                                                                 TLFA 400
C
                                                                                FLFA 410
                                                                                TLPA 420
       DO 3 IA = 1,34
                                                                                TLFA 430
       ERR(IA) = 0.
    3 \text{ ICT}(IA) = 0
                                                                                TLFA 440
      LTALFA = . TRUE .
                                                                                TLFA 450
       I=0
                                                                                TLFA 460
      DO 100 IA=1,2529
                                                                                TLFA 470
      IF ( (ICON (IA) . LT. 22) . OR. (ICON (IA) . GT. 33)) GO TO 100
                                                                                TLFA 480
      IF (ABS (OALFA (IA) -T (ICON (IA))) . LT. TR (ICON (IA))) GO TC 100
                                                                                TLFA 490
      ERR (ICON (IA)) = ERR (ICON (IA)) + OALFA (IA) - T (ICON (IA))
                                                                                TLFA 500
                                                                                FLFA 510
      ICT(ICON(IA)) = ICT(ICON(IA)) + 1
  100 CONTINUE
                                                                                TLFA 520
      DO 200 IA=1,34
                                                                                TLPA 530
      ERR(IA) = ERR(IA) / NUM(IA)
                                                                                TLFA 540
С
                                                                                TLFA 550
      REJECT ALFA IF MORE THAN 10 PERCENT ARE WRONG
С
                                                                                TLPA 560
С
                                                                                TLFA 570
      ITCON=NUM(IA) /10
                                                                                TLFA 580
      IF(ICT(IA).LE.ITCON) GO TO 200
                                                                                TLFA 590
                                                                                TLFA 600
      LTALFA = .FALSE.
      WRITE(6,701) IA, ERR(IA), ITCON
                                                                                TLFA 610
                                                                                TLFA 620
  200 CONTINUE
      RETURN
                                                                                TLFA 630
  701 FORMAT (* *TAL FA* ALFA FAILED IN REGION *, I4, * ERROR = *, E12.6,
                                                                                TLFA 640
     12X,I6, * ALFA PAILED*)
                                                                                TLFA 650
  702 FORMAT (2E12.6)
                                                                                TLFA 660
       END
                                                                                TLFA 670
```

ł

	SUBROUTINE CHANGE	CHNG	10
С		CHNG	20
С	SUBROUTINE CHANGE	CHNG	30
С		CHNG	40
С		CHNG	50
С	WRITTEN BY DAVIE CRAIN	CHNG	60
С	DURING SPRING 1978	CHNG	70
С	AT BOWLING GREEN STATE UNIVERSITY	CHNG	80
С	BOWLING GREEN, CHIO	CHNG	90
С	·	CHNG	100
С	SUBROUTINE CHANGE CHANGES THE SUSPENDED SEDIMENT	CHNG	110
С	DISTRIBUTION TO PRODUCE A MORE REASONABLE OVERALL DISTRIBUTION	CHNG	120
С		CHNG	130
С	ALL I/O IS MANAGED BY THE CALLING PROGRAM , ZCON	CHNG	140
С		CHNG	150
	INTEGER*2 ICON(2529)	CHNG	160
	COMMON WRATE (34), TOTSED (2529), SED (2529), ALFA (2529), SUM (34),	CHNG	170
	10ALFA(2529), DEEP(2529), NUM(34), ICON	CHNG	180
	GAMMA = .22	CHNG	190
	I=0	CHNG	200
С		CHNG	210
С	UPSCLE CORRESPENDS TO ABOUT A '4' ON AN ISOPAC MAP	CHNG	220
С	THE BASE VALE IS	CHNG	230
С	UPSCLE = .77788E03	CHNG	240
С	WHEN TOTSED IS SCALED UP, UPSCLE MUST BE SCALED ACCCRDINGLY	CHNG	250
С		CHNG	260
	UPSCLE = .77788E09	CHNG	270
	DO 100 IA= 1, 2529	CHNG	280
	IF ( (ICON (IA) . LT.22) . OR. (ICON (IA) . GT. 33) ) GO TO 100	CHNG	290
	IF (TOTSED(IA) .GT. UPSCLE) GO TO 100	CHNG	300
	IF (TOTSED (IA) . LI. 1. E-10) GO FO 100	CHNG	310
	TOTSED (IA) =TOTSED (IA) * (UPSCLE/TOTSED (IA)) **GAMMA	CHNG	320
	I=I+1	CHNG	330
	100 CONTINUE	CHNG	340
	WRITE(6,700)	C HN G	350
	WRITE(6,701) I	CHNG	360

- 124 -

	RETURN						CHNC	; 370
700	FORMAT ( * *CHANG	GE**)					CHNC	380
701	FORMAT (2X, 16, *	SUSPENDED	SEDIMENT	V A LU ES	WERE	CHANGED*)	CHNG	390
	END						CHNC	400

С		TRNX	10
С	PROGRAM TRANK	TRNX	20
C		TRNX	30
С	WRITTEN BY DAVIE ERAIN	TRNX	40
С	SUNNER 1978	<b>FRNX</b>	50
С	AT BOWLING GREEN STATE UNIVERSITY	TRNX	60
с	BOWLING GREEN, OHIO	TRNX	70
С	·	TRNX	80
С	TRANX USES WATER TRANSPORT PROBABILITIES AND SUSPENDED SEDIMENT	TRNX	90
С	DISTRIBUTION TO COMPUTE AMOUNT OF SEDIMENT TRANSPER FROM ONE	TRNX	100
С	LJW REGION TO THOSE ADJACENT TO IT	TRNX	110
С		TRNX	120
С	TRANX DOES THE FOLLOWING OPERATIONS	TRNX	130
С	1. READ DATA	TRNX	140
С	2. SCALE SUSPENDED SEDIMENT AS IN ZCON	TRNX	150
С	3. CALCULATE AMOUNT OF TRANSFER	TRNX	160
С	4. OUTPUT RESULTS	TRNX	170
С		TRNX	180
С	TRANK READS THE FOLLOWING TAPES:	<b>FRNX</b>	190
С	UNIT1 .AP9132 WITH DCB=(RECPM=VSB)	TRNX	200
С	OLD SUSPENDED SEDIMENT DISTRIBUTION	TRNX	210
С	UNIT2 . RUN029 WITH DCB=(RECFM=VSB)	<b>r</b> r n x	220
С	ICON NODEL REGION IA IS IN LJW REGION ICON(IA)	TRNX	230
С	ILOC NODEL REGIONS ADJACENT TO REGION IA ARE ILOC(IA, 1),	TRNX	240
С	ILOC (IA, 9)	r r n x	250
С	P1,P6 PROBABILITIES OF WATER TRANSFER	TRNX	260
С	UNIT3.TOSSOA WITH DCB=(RECFM=VSB)	<b>FRNX</b>	270
С	ALFA AS COMPUTED IN ZCON	<b>FRNX</b>	280
С		TRNX	290
С	UNIT4 IS AN OUTPUT TAPE WITH DCB=(RECFM=VSB)	TRNX	300
С	SIX 34 BY 34 MATRICES OF SUSPENDED SEDIMENT TRANSFER	TRNX	310
С	(ONE FOR EACH WIND DIRECTION) ARE WRITTEN	<b>TRNX</b>	320
С		TRNX	330
	INTEGER*2 ICON(2529), ILOC (2529,9)	TRNX	340
	DIMENSION S(2529), ALFA(2529), P(2529, 9), TR(34, 34)	TRNX	350
	GA MMA = • 22	TRNX	360

```
TRNX 370
   UPSCLE = .77788E09
                                                                            TRNX 380
   READ(2) ICON
                                                                            TRNX 390
   READ(2) X
                                                                            TRNX 400
   READ(2) ILOC
                                                                            TRNX 410
   READ(2) X
                                                                            TRNX 420
   READ(2) X
   DO 1 IA=1.3
                                                                            TRNX 430
                                                                            TRNX 440
 1 \text{ READ}(3) X
                                                                            TRNX 450
   READ(3) ALFA
                                                                            TRNX 460
   DO 100 IA=1,6
                                                                            TRNX 470
   READ(1) S
                                                                            FRNX 480
   READ(2) P
                                                                            TRNX 490
   DO 7 IB=1.34
                                                                            TRNX 500
   DO 6 IC=1, 34
                                                                            TRNX 510
 6 \text{ TR}(IB, IC) = 0.
 7 CONTINUE
                                                                            TRNX 520
                                                                            TRNX 530
   SCALE SUSPENDED SEDIMENT AS IN ZCON
                                                                            TRNX 540
                                                                            TRNX 550
                                                                            TRNX 560
   DO 20 IB=1,2529
                                                                            TRNX 570
   S(IB) = S(IB) * 1.E06
   IF ((ICON(IB).LT.22).OR. (ICON(IB).GT.33)) GO TO 20
                                                                            TRNX 580
                                                                            TRNX 590
   DO 10 IC=1.3
                                                                            TRNX 600
   IF(S(IB).GT.UPSCLE) GO TO 20
                                                                            TRNX 610
   IF (S(IB).LT.1.E-09) GO TO 20
                                                                            TRNX 620
10 S (IB) = S (IB) * (UP SCL E/S (IB) )**GA MMA
                                                                            TRNX 630
20 S (IB) = S (IB) * (1. - ALFA (IB))
                                                                            TRNX 640
                                                                            TRNX 650
   COMPUTE TRANSFER BETWEEN ADJACENT LJW REGIONS
                                                                            TRNX 660
   DO 80 IE=1,2529
                                                                            TRNX 670
                                                                            TRNX 680
   IY = ICON(IB)
                                                                            TRNX 690
   IF (IY.EQ.0) GO TO 80
                                                                            TRNX 700
   DO 60 IC=2,9
                                                                            TRNX 710
   IF (ILOC (IB, IC). LE.0) GO TO 60
   IX=ICON (ILOC (IB, IC))
                                                                            TRNX 720
```

```
127 -
```

1

c c

С

С

С

С

	IF (IX.EQ.0) GO TO 60	TRNX	730
	IF(IX. EQ.IY) GO TO 60	I B NX	740
	TR(IY, IX) = TR(IY, IX) + P(IB, IC) + S(IB)	TRNX	750
60	CONTINUE	TRNX	760
80	CONTINUE	<b>TRNX</b>	770
100	WRITE(4) TR	TRNX	780
	STOP	T RNX	790
	END	TRNX	800

//HG10	031 JOB , DAVID DRAIN'		
/*RESI	PEC $E=SGEOL1, T=225, L=4, M=11, K=190$		
// EX:	EC FORTHCLG, PARM.FORT='MAP, XREF, ID, OPT=2'		
//SYSI	UT1 DD DSN=&UT1, UNIT=DISK, SPACI=(TPK, (40))		
//SYS	UT2 DD DSN=&UT2, UNIT=DISK, SFACE= (TFK, (40))		
//FOR	T.SYSIN DD *		
C	HGMODL	HGMD	10
С		HGMD	20
С	WRITTEN BY DAVID DRAIN	HGMD	30
С	DURING 1977-1978	HGMD	40
С	AT BOWLING GREEN STATE UNIVERSITY	HGMD	50
С	BOWLING GREEN, OHIO	HGMD	60
С		HGMD	70
С	HGNODL MODELS THE MOVEMENT OF MEECURY THROUGH FIVE LEVELS	HGMD	98
С	(FISH BENTHOS ACTIVE-SEDIMENT INACTIVE-SEDIMENT WATER)	HGMD	90
С	OF LAKE ERIE	HGMD	100
С		HGMD	1 10
С	HGMODEL DOES THE FOLLOWING STEPS:	HGMD	120
С	1.READ CONSTANTS TO BE USED IN THE MODEL	HGMT	130
С	2.READ INITIAL CONDITIONS	HGMD	140
С	3.RUN THE MODEL FROM 1938 TO 2019 (USING BKGS)	HGMD	150
С	4.SAVE RESULTS FOR EACH MONTH	HGMD	160
С		HGMD	170
С	HGMODL REQUIRES ONE TAPE TO RUN (UNIT 1)	HGMD	180
С	THAT TAPE IS NAMED BGSU, C. SGEOL1, WALTERS, HGRUN	HGMD	190
С	WITH DCB= (RECFM=VSB)	HGMD	200
C		HGMD	210
С	HGMODL WRITES A TAPE RECORD (TO UNIT 2) FOR EACH MONTH	HGMD	220
С		HGMD	230
С	CONSTANTS IN THE MODEL	HGMD	240
С	ZC DEPTH OF ACTIVE SEDIMENT	HGMD	2 50
С	RAEEF RATIO BETWEEN ASSIM EFF OF ME-HG AND ENERGY FOR FISH	HGMD	260
С	RAEEB RATIO BETWEEN ASSIM EFF OF ME-HG AND ENERGY FOR BENTHOS	HGMD	270

С	QESED	SPECIFIC ENERGY CONTENT OF SEDIMENT	HGMD	280
С	RMBB	RATE CONST FOR METABOLIC BEKDWN OF ME-HG IN BENTHOS	HGMD	290
С	DENS	DENSITY OF SEDIMENT	HGMD	300
С	Q(L,K)	=1 FOR SED REGION K IN LAKE PEGION L, O OTHERWISE	HGMD	3 10
С	QRES F	ENERGY LOST BY FISH IN RESPIRATION	HGMD	3 20
С	QRESB	ENERGY LOST BY BENTHOS IN RESPIRATION	HGMD	3 30
С	QASSF	ENERGY ASSIMILATED BY FISH	HGMD	340
С	QASSB	ENERGY ASSIMILATED BY BENTHOS	HGMD	350
С	QB(L)	STANDING CROP OF BENTHOS IN LAKE REGION L	HGMD	360
С	QF(L)	STANDING CROP OF FISH IN LAKE REGION L	HGMD	370
С	F(K)	PRACTION OF SEDIMENT IN APEA L TREATED AS AREA K	HGMD	380
С	SIGMA(K)	SEDIMENTATION RATE IN AEEA K	HGMD	390
с	A (K)	AREA OF SEDIMENT REGION K	HGMD	400
С	DOSM	DISSOLVED OXYGEN CONCENTRATION IN SURFACESMID WATERS	HGMD	4 10
С	DOB	DISSOLVED OXYGEN CONCENTRATION IN BOTTOM WATERS	HGMD	420
С	TRANSV	SEDIMENT TRANSFER CONSTANT (MONTH DEPENDENT)	HGMD	430
С			HGMD	4 40
С	MODEL PA	RAMITER	HGMD	4 50
С	RATIO	RATIO OF SUSPENDED SEDIMENT RESULTING FROM RESUSPENSION	HGMD	460
С			HGMD	470
С	MODEL VA	RIABLES	HGMD	480
С	Y(IA)	MERCURY CONTENT OF MODEL PEGION IA	HGMD	490
С	DERY (IA)	DERIVATIVE OF MERCURY CONTENT	HGMD	500
С	AUX	ARRAY FEQUIRED FOR RKGS	HGMD	510
С	SVYR	ARRAY OF VALUES SAVED AT THE END OF EVERY MONTH	HGMD	520
С	PRMT	INITIAL VALUE AND PARAMETER APRAY FOR RKGS	HGMD	530
С	C1(L)	MERCURY CONCENTRATION FOR FISH IN LAKE REGION L	HGMD	540
С	C2(L)	MERCURY CONCENTRATION FOR BENTHOS IN REGION L	HGMD	550
С	C3 (K)	MERCURY CONCENTRATION IN SEDIMENT IN PEGION K	HGMD	560
С	CFIN(6)	CONSTANT HG INPUT TO FISH FROM WATER	HGMD	570
С	CBIN(L)	CONSTANT HG INPUT TO BENTHOS FROM WATER	HGMD	580
С	-		HGMD	5 90
	COMMON Z	C, RAEEF, RAEEB, RMBF, RMBB, DENS, QASSF(3), QASSB(3), QDF(3),	HGMD	600

```
HGMD 610
    10B(3), OF(3), F(34), SIGMA(34), A(34), TPANSV(34, 34, 12), C1(3), C2(3),
    2C3(34), CFIN(3), CBIN(3), ZCDQSD, ORAEEF, OFAEEB, Q(3, 34), QDB(3), IM
                                                                              HGMD 620
                                                                              HOWD SAA
     EXTERNAL FCT, OUTP
     DIMENSION PRMT(5), Y (74), DERY(74), AUX(8,74), SVRY(42)
                                                                              HGMD 640
    1, DOB (12), DOSE (12), QRESF (3), QRFSB (3)
                                                                              HGMD 659
     CALL ERRS ET (208,600,-1,1,0)
                                                                              HGMD 660
                                                                              HGMD 670
                                                                              HGMD 680
     READ CONSTANTS
                                                                              HGMD 690
                                                                              HGMD 700
     RATTO=RATIO CF SUSPENDED SEDIMENT RESULTING FROM RESUSPENSION
                                                                              HGMD 710
                                                                              HGMD 720
     RATIO IS A MODEL PARAMETER, NOT A CONSTANT
                                                                              HGMD 730
                  .04
                                                                              HGMD 740
     ZC=
                                                                              HGMD 750
                  .15
     RAEEF=
                                                                              HGMD 760
                  .6
     RAEEB=
                                                                              HGMD 770
     QESED=
                  100.
                                                                              HGMD 780
     RMBF=
                  .346
                                                                              HGMD 790
     RMBB=
                  1.15
                                                                              HGMD 800
     DENS=
                  1100.
                                                                              HGMD 810
     ZCDOSD = ZC * DENS * OESED
                                                                              HGMD 820
     ORAEEF= 1. -RAFFF
                                                                              HGMD 830
     ORAEEB= 1. - RAFEB
     DO 108 IA=1,3,1
                                                                              HGMD 840
                                                                              HGMD 850
 108 READ (5,7110) (Q(IA, IB), IB=1,34)
                                                                              HGMD 860
7110 FORMAT (34F1.0)
                                                                              HGMD 870
     READ (5, 7101) (QRESF (L), L=1, 3)
                                                                              HGMD 880
     READ(5,7101)(ORESB(L), L=1,3)
                                                                              HGMD 890
     READ (5,7101) (QASSF (L), L=1,3)
                                                                              HGMD 900
     READ (5, 7101) (QASSB (L), L=1, 3)
     READ (5,7101) (ODF(L), L=1.3)
                                                                              HGMD 910
                                                                              HGMD 920
     READ (5,7101) (ODB (L), L=1,3)
     READ (5, 7101) (QB(L), L=1, 3)
                                                                              HGMD 930
```

C C

С

С

С

С

С

```
READ (5,7101) (QF(L), L=1,3)
                                                                                HGMD 940
      READ (5, 7102) (F (K), K=1, 34)
                                                                                HGMD 950
      RFAD (5,7103) (SIGMA (K), K=1,34)
                                                                                HEMD 960
      READ (5,7103) (A (K), K=1,34)
                                                                                HGMD 970
      DO 110 IM=1,12,1
                                                                                HGMD 980
  110 READ (5,7104) DOSM (IN), DOB (IN)
                                                                                HGMD 990
 7104 FORMAT (2E12.6)
                                                                                HGMD 1000
 7103 FORMAT (4((8E9.4)/), 2E9.4)
                                                                                HGMD 10 10
 7102 FORMAT (3((10F7.6)/), 4F7.6)
                                                                                HGMD1020
 7101 FORMAT (3E12.6)
                                                                                HGMD 10 30
С
                                                                                HGMD 10 40
С
      TAB PAST W (NO LONGER USED)
                                                                                HGMD 10 50
С
                                                                                HGMD 10 60
      READ(1) X
                                                                                HGMD 1070
      READ(1) TRANSV
                                                                                HGMD1080
С
                                                                                HGMD 1090
С
      TEST RATIO TO MAKE SURE MASS WILL BE CONSERVED
                                                                                HGMD1100
С
                                                                                HGMD 1110
      IRAT=0
                                                                                HGMD 1120
      RATIO=1.
                                                                                HGMD1130
      DO 803 IRAT1=1,34
                                                                                HGMD1140
      SSOASD=A
                  (IBAT1) *.04*1100.
                                                                                HGMD1150
      DO 802 IRAT2=1, 12
                                                                                HGMD1160
      DO 801 IRAT3=1,34
                                                                                HGMD1170
      IF (TRANSV (IRAT1, IRAT3, IRAT2). LE. 1. E-05) GO TO 801
                                                                                HGMD1180
      IF (RATIO.LE. (SSOASD/TRANSV (IRAT1, IRAT3, IRAT2))) GO TO 801
                                                                                HGMD1190
      IRAT=1
                                                                                HGMD 1200
      RATIO= SSOAS D/TRANSV (IRAT1, IRAT3, IRAT2)
                                                                                HGMD 12 10
  801 CONTINUE
                                                                                HGMD1220
  802 CONTINUE
                                                                                HGMD 1230
  803 CONTINUE
                                                                                HGMD1240
                                                                                HGMD1250
       IF(IRAT.EQ.1) WRITE(6,804) RATIC
  804 FORMAT (' RATIO TOO LARGE, NEW RATIO= ', E12.6)
                                                                                HGMD 1260
```

- 132 -

```
HGMD 1270
С
С
      TRANSV MUST BE SCALED BY RATIO TO INSURE THAT THE MODEL
                                                                               HGND1280
С
                                                                               HGMD 1290
       WILL CONSERVE MASS
С
                                                                               HGMD 1300
      DO 807 IR1=1.34
                                                                               HGND1310
      DO 806 IR2=1,34
                                                                               HGMD1320
      DO 805 IR3=1.12
                                                                               HGMD 1330
  805 TRANSV (IR1. IF2, IR3) =TRANSV (IR1, IE2, IR3) *RATIO
                                                                               HGMD1340
  806 CONTINUE
                                                                               HGMD1350
  807 CONTINUE
                                                                               HGMD1360
                                                                               HGMD1370
С
С
                                                                               HGMD1380
      READ INITIAL CONDITIONS
C
                                                                               HGMD 1390
      DO 205 IA=1,74
                                                                               HGMD1400
  205 Y(IA) = 0.
                                                                               HGMD 14 10
                                                                               HGMD 14 20
       DO 210 IA=7.40
  210 READ (5,7201) Y(IA)
                                                                               HGMD1430
C
      CHANGE TO INITIAL CONCENTRATION CF .03 PPM
                                                                               HGMD 1440
       DO 211 IA=1,74
                                                                               HGMD1450
  211 Y (IA) = .44444444 Y (IA)
                                                                               HGMD1460
                                                                               HGMD 1470
С
      RUN THE MODEL, STEP SIZE = ONE MONTH
С
                                                                               HGMD1480
                                                                               HGMD 1490
C
 9001 FORMAT (3(5X, E12.6))
                                                                               HGMD1500
                                                                               HGMD1510
 9002 FORMAT (6(6(2X,E10.5)/))
                                                                               HGMD 1520
 9003 FORMAT (11(7(2X,E10.5)/))
      DO 498 IYR=1938,2019
                                                                               HGMD1530
       DO 499 IM=1,12.1
                                                                               HGMD1540
      WRITE(6,7105) IN.IYE
                                                                               HGMD 15 50
 7105 FORMAT (' COMMENCING MONTH ', 14, ' OF ', 14)
                                                                               HGMD 1560
С
                                                                               HGMD1570
С
       ACCOUNT FOR HG SOUFCES OUTSIDE THE LAKE
                                                                               HGMD 1580
                                                                               HGMD 1590
С
```

- 133 -

С	DETREX, ASHTABULA, REGION 32	HGMD 1600
С		HGMD1610
	IF((IYB,GE,1963),AND,(IYE,LE,1970)) Y(38)=Y(38)+3,447P02	<u>HG₩D1620</u>
С		HGMD 16 30
С	SANDUSKY BAY, REGION 21	HGMD1640
С		HGM D 16 50
	IF(IYR.GE.1941) Y(27) = Y(27) +1.0057E+02	HGMD1660
С		HGMD 1670
С	WYANDOT MICHIGAN, REGION 9	HGMD1680
С		HGMD1690
	IF((IYR,LE,1958),AND,(IYR,GE,1940))Y(15)=Y(15)+1,021E(2	HGMD 1700
	IF((IYR.GE, 1941).ANE.(IYR.LE.197C).AND.(IM.LE.4))	HGMD 17 10
	1Y(15) = Y(15) + 2.041E02	HGMD1720
С		HGMD 17 30
С	CALCULATE MONTH DEPENDENT CONSTANTS	HGMD1740
С		HGMD1750
	DO 106 IA=1,3	HGMD1760
	$CBIN(IA) = 2 \cdot E - 15 * QR ESB(IA) / DOB(IM)$	HGMD1770
	106 CFIN $(IA) = 2, E - 15 * QRESP (IA) / DOSM (IM)$	HGMD 1780
С		HGMD1790
С	NORMALIZE TIME FOR FKGS TO AVOID ROUNDOFF BEROE	HGMD1800
С		HGMD 18 10
	PRMT (1) =0.	HGMD 18 20
	PRMT(2) = 1.	HGMD1830
	PRMT(3) = 1.E - 10	HGMD 18 40
С		HGMD 1850
С	ERROR IS AT MOST 1 PERCENT OF ORIGINAL HG MASS	HGMD1860
С		HGMD 1870
	PRMT(4) = 6000.	HGMD1889
С		HGMD 18 90
С	CHOOSE ERROP WEIGHTS TO MINIMIZE BEROR	HGMD 1900
С		HGMD1910
	DO 215 IA=1.3	HGMD 1920

215	DERY(IA) = 3.33333E-03	HGMD 19 30
	DO 217 IA=4,6	HGMD1940
217	DERY(IA) = 3.33338 - 04	HGMD1950
	DO 218 IA=7,40	HGMD 1960
218	DERY $(IA) = 2.94118E - 05$	HGMD1970
	DO 219 $IA = 41,74$	HGMD1980
219	DERY(IA) = 2.61471E - 02	HGMD 1990
	NDIM=74	HGMD 2000
	CALL FKGS (PRMT, Y, DERY, NDIM, IHLF, FCT, OUTP, AUX)	HGMD20 10
	IF (IHLF.LE. 10) GO TO 216	HGMD 20 20
	WRITE(6,7202)	HGMD 20 30
	STOP	HGMD2040
216	CONTINUE	HGMD 20 50
С		HGMD2060
С	SAVE RESULTS	HGMD2070
С		HGMD 20 80
	WRITE(2) Y	HGMD2090
	DO 500 IA=1,3	HGMD 2100
500	SVRY(IA) = C1(IA)	HGMD 21 10
	DO 501 IA=1,3	HGMD2120
501	SVRY(IA+3) = C2(IA)	HGMD 2 1 30
	DO 502 IA=1,34	HGMD2140
502	SVRY(IA+6) = C3(IA)	HGMD2150
	SVRY(41) = IYR	HGMD 2 1 60
	SVRY(42) = IM	HGMD 2 1 70
	WRITE(2) SVRY	HGMD2180
	WRITE(6,7106) IM,IYR	HGMD 2 1 90
7106	FORMAT (' ENDING MONTH ', 14, ' OF ', 14)	HGMD2200
499	CONTINUE	HGMD2210
<b>49</b> 8	CONTINUE	HGMD 2 2 2 0
	STOP	HGMD2230
7 20 1	FORMAT (F10, 5)	HGMD2240
7202	FORMAT (' *****PROGRAM TERMINATED *****')	HGMD 2 2 50

- 135 -

	END	HGMD2260	
	SUBROUTINE FCT(X,Y,DERY)	HGMD2270	
С		HGMD2280	
с	SUBROUTINE FCT	HGMD2290	
С		HGMD2300	
С	SUBROUTINE FCT IS REQUIRED BY EKGS WHICH IS A FORTEAN	HGMD2310	
С	SCIENTIFIC SUBROUTINE PACKAGE ROUTINE FOR SOLVING SIMULTANEOUS	HGMD2320	
С	DIFFERENTIAL EQUATIONS BY THE RUNGE-KUTTA METHOD	HGMD2330	
С		HGMD2340	
С	FCT CALCULATES THE DERIVATIVE OF THE FUNCTION WF	HGMD2350	
С	ARE TRYING TO ESTIMATE	HGMD 2360	
С		HGMD2370	
С	VARIABLES INTERNAL TO FCT	HGMD2380	
С	TR21 TRANSFER FROM BENTHOS TO FISH	HGMD2390	
С	TR31 TRANSFER FROM FISH TO SEDIMENT	HGMD2400	
С	TR23 TRANSFER FROM BENTHOS TO SEDIMENT	HGMD2410	
C	TR32 TRANSFER FROM SEDIMENT TO BENTHOS	HGMD 2420	
С	TP3 TRANSFER BETWEEN SEDIMENT REGIONS	HGMD2430	
С	TR34 TRANSFER FROM ACTIVE TO INACTIVE SEDIMENT	HGND2440	
С		HGMD 2450	
	COMMON ZC, RAFEF, RAFEB, RMBF, RMB5, CENS, QASSF (3), QASSB (3), ODF (3),	HGMD2460	
	10B(3), OF(3), F(34), SIGMA(34), A(34), TRANSV(34, 34, 12), C1(3), C2(3),	HGMD2470	
	2C3(34), CFIN(3), CBIN(3), ZCDOSD, OFAEEF, ORAEEB, Q(3, 34), QDB(3), IM	HGMD2480	
	DIMENSION Y (74), DERY (74),	HGMD2490	
	1TR 32 (34) . TP 3 (34.34) . TR 34 (34)	HGMD2510	
	DATA IFCTNT/1/	HGMD 2520	
	IF (MOD (IFCTNT, 200) . EO. 0) WRITE (6,7101) X, IFCTNF	HGMD 25 30	
	IF (MOD (IFCTNT, 1000) .EQ. 1) CALL TEAC (Y, DERY)	HGMD2540	
	IFCTNT=IFCTNT+1	HGMD2550	
710	1 FORMAT (' BEGINNING FCT, TIME= ', E12.6, ' FCT CALLS = ', I8)	HGMD 25 60	
с		HGMD2570	
С	PATES DEPENDING ON LAKE REGION ONLY	HGMD 2580	
С		HGMD2590	
		DO 100 $L=1,3$	HGMD2600
---	-----	-------------------------------------------------	------------
		C1(L) = Y(L) / QF(L)	HGMD2610
		C2(L) = Y(L+3) / QB(L)	HGMP 26 20
	100	TR21(L) = QASSB(L) *C2(L) * RAEEF	HGMF 26 37
		DO 110 K=1,34	HGMD2640
	110	C3(K) = Y(6+K) / (A(K) * 2CDQSD)	HGMP 26 50
С			4GMD2667
С		RATES DEPENDING ON SEDIMENT AND LAKE REGIONS	HGMD2670
С			HGMD 26 80
		DO 200 L=1,3	HGMD2690
		CON13(L) = (QDF(L) + QASSF(L) + ORAEEF) + C1(L)	HGMD2700
		CON23(L) = (QDE(L) + QASSB(L) * ORAFEB) * C2(L)	HGMD 27 10
	200	CON32(L) = QASSB(L) * PAEEB	HGMD2720
		DO 210 K=1,21	HGML 27 30
		TR13(K) = CON13(1) * F(K)	HGMD274C
		TR23(K) = CON23(1) * F(K)	HGMD2750
	210	TR 32 (K) = CON 32 (1) * C3 (K)	HGMD2760
		DO 22( $K=22,33$	HGMD2770
		TR13(K) = CON13(2) * F(K)	HGMD2780
		TR23(K) = CON23(2) * F(K)	HGMD 2790
	220	TR32 (K) = CON32 (2) * C3 (K)	HGMD2800
		TR 13 (34) = CON 13 (3) *F (34)	HGMD2810
		TR23(34) = CON23(3) *F(34)	HGMD 28 29
		TR32(34) = CON32(3) * C3(34)	HGMD2830
		DO 300 K=1,34	HGMD2840
		TR34(K) = Y(6+K) * SIGMA(K) / 2C	HGMD 28 50
		DO 250 M=1,34	HGMD2860
	250	TP3(K,M)=Y(6+K) *TRANSV(M,K,IM)/(A(M) *ZC*DENS)	HGMD2870
	300	CONTINUE	HGMD2880
С			HGMD2890
С		COMPUTE DERIVATIVES	HGMD2900
С			HGMD 29 10
		DO 400 $L=1,3$	HGMD2920

		DERY $(L) = TR21(L) + CFIN(L)$	HGMD2930
		DERY (L+3) = CBIN(L) - TR21(L)	HGMD 2940
		DO 350 K=1,34	HGMD2950
		DERY (L) = DERY (L) - TR13(K) $*Q(L, K)$	HGMD2960
	350	DERY $(L+3) = DERY(L+3) + (TR32(K) - TR23(K)) * Q(L,K)$	HGMD 29 70
	400	CONTINUE	HGMD2980
		DO 500 K=1,34	HGMD2990
		DERY(K+40) = TR34(K)	HGMD 30 CO
		DERY $(K+6) = TR23(K) - TR32(K) - TR34(K) + TR13(K)$	HGMD 30 10
		DO 450 M=1,34	HGMD3020
	450	DERY $(K+6) = DERY(K+6) + TP3(M, K) - TP3(K, M)$	HGMD 30 30
	500	CONTINUE	HGMD 30 40
		RETURN	HGMD3050
		END	HGMD 30 60
1		SUBROUTINE TRAC(Y, DERY)	HGMD 30 70
ц Ц	с		HGMD3C80
8	C	SUBROUTINE DIFAC PROVIDES DEBUGGING ASSISTANCE	HGMD 30 90
1	С	WHEN CALLED, IT WILL DUMP Y AND DERY	HGMD 3100
•	С		HGMD3110
		DIMENSION Y(74), DERY(74)	HGMD 3120
		WRITE(6,701) (Y (IA), IA=1,74)	HGMD313C
		WRITE(6,701) (DERY(IA), IA=1,74)	HGMD3140
		RETURN	HGMD 3150
	701	FORMAT (25 (6 (2X, E12, 6) /))	HGMD3160
		END	HGMD3170
		SUBROUTINE OUTP (X, Y, DERY, IHLF, NDIM, PRMT)	HGMD 3180
	С	SUBROUTINE OUTP	HGMD 3 190
	С	SUBOUTINE OUTP OS REQUIRED BY RKGS	HGMD3200
	С	OUTP CHECKS INPUT PARAMETERS AND PREGRESS OF PKGS	HGMD3210
		DIMENSION Y (74), DEPY (74), PRMT (5)	HGMD3220
		IF(IHLF.LE. 10) RETURN	HGMD3230
		PRMT (5) =1.	HGMD 3240
		IF(IHLF.EQ.11) GO TO 10	HGMD3250

IF(IHLF.EQ. 12) GO TO 20	HGMD3260
WRITE(6,710)	HGMD 3270
RETURN	HGMD 3280
10 WRITE(6,720)	HGMD3290
RETURN	HGMD3300
20 WRITE(6.730)	EGMD 3310
710 PORMAT (* *** INITIAL INCREMENT <( *)	HGMD3320
720 FORMATI'I *** MORE THAN TEN BISECTIONS OF THE ORIGINAL INCREMENT	T' HGMD3330
1//! *** WERE NECESSARY TO GET SATISFACTORY ACCUPACY!)	HGMD3340
730 PORMAT( $! ***$ INITIAL INCREMENT = C !)	HGMD3350
RETIRN	HGMD 3360
END	HGMD 3370
//GO.FT01F001 DD DSN=BGSU.C.SGEOL1.WALTERS.HGEUN.	
// UNIT=TAPE.DISP=(OLD.KEEP).DCB=(RECFM=VSB)	
//GO.FT02F001 DD DSN=BGSU.C.SGEOL1.WALTERS.HG1031.	
// UNTT=TAPE. DISP= (NEW. CATLG). DCE= (RECEM=VSB)	
//GO.FT05F001 DD *	
111111111111111111100000000000000000000	
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
1.28518 E+125.87988 E+111.87444 E+12 ORESF	
7.03745 E+123.21918 E+131.02642 E+13 ORESB	
1.55384 E+127.10784 E+132.26629 E+12 QASSF	
1.26425 E+135.78313 E+131.84392 E+13 QASSB	
1.94433 E+118,89406 E+112,83582 E+11 QDF	
4.09169 E+121.87168 E+135.96775 E+12 QDB	
1.2111 E+105.5398 E+101.7664 E+10 QB	
1.8030 E+138.2474 E+132.6296 E+13 QF	
.016057.020071.042819.037466.026762.026762.026762.029438.021409.01605	71-10 86
.026762.026762.026762.037466.053523.10(811.107046.123103.098215.09634	2 11-20 E
.039607.028082.023401.036857.095244.064354.059089.052653.065524.15678	9 21-30 F
. 131340. 122272. 1643951.	30-34 F
8.591E-034.155E-035.205E-036.871E-031.364E-034.857E-033.676E-035.685E	-03 1 SIGMA

8.386E-034.790E-037	028E-036.05	1E-033.54	15E-033.	1693-034.99	1E-033,911E-03	2	SIGMA
3,571E-034.741E-033	.704E-034.21	6E-036.8'	18E-C46.	873E-032.22	7E-031.489E-03	3	SIGMA
6.709E-042.613E-031.	262E-037.94	5E-044.65	55E-042.	091E-041.62	3E-032.135E-03	4	SIGMA
1.376E-032.626E-03						5	SIGM1
6. E+077.5 E+071.	6 E+081.4	E+081,	E+081.	E+0.81.	E+081.1 E+08	1	AREA
8. E+076. E+071.	E+081.	P+081.	E+081.	4 E+082.	E+083.767E+08	2	AREA
4. E+084.6 E+083	.67 E+083.6	E+081.48	3 F+084.	8 E+084.	E+086.3 E+08	3	AREA
1.628E+091.1 E+091.	.01 E+099.	E+081,12	2 E+092.	680E+092.24	5E+092.09 E+09	4	AREA
2.81 E+095.45 E+09						5	APEA
1.42984 E-051.32896	E-05				DOSM-DOB-1		
1.48671 E-051.38583	E-05				DOSM-DOB-2		
1.45760 E-051.35672	E-05				DOSM-DOB-3		
1.34758 E-051.24670	E-05				DOSM-DCE-4		
1.18542 E-C51.08454	E-05				DOSM-DOB-5		
1.01628 E-059.15398	E-06				DOSM-DOB-6		
8,87129 E-067.86246	E-06				DOSM-DOB-7		
8.33269 E-067.32386	E-06				DOSM-DOB-8		
8,71189 E-067,70306	E-06				DOSM-DOB-9		
9.89445 E-068.88562	E-06				DOSM-DOB-10		
1.15469 E-051.05381	E-05				DOSM-DOB-11		
1.31934 E-051.21846	E-05				DOSM-DOB-12		
17.82	1	INITIAL	HG				
22.275	2	INITIAL	HG				
47.520	3	INITIAL	ĦG				
41.58	4	INITIAL	HG				
29.7	5	INITIAL	HG				
29.7	6	INITIAL	HG				
29.7	7	INITIAL	HG				
32.67	8	INITIAL	ĦG				
23.76	9	INITIAL	HG				
17.82	10	INITIAL	HG				
29.7	11	INITIAL	HG				
29.7	12	INITIAL	HG				

- 140 -

29.7	13	INITIAL HG
41.58	14	INITIAL HG
59.4	15	INITIAL HG
111.88	16	INITIAL HG
118.8	17	INITIAL HG
136.62	18	INITIAL HG
109.	19	INITIAL HG
106.92	20	INITIAL HG
43.956	21	INITIAL HG
142.56	22	INITIAL HG
118.8	23	INITIAL HG
187.11	24	INITIAL HG
483.52	25	INITIAL HG
327.60	26	INITIAL HG
299.97	27	INITIAL HG
267.3	28	INITIAL HG
332.64	29	INITIAI HG
795.96	30	INITIAL HG
666.77	31	INITIAL HG
620.73	32	INITIAI HG
834.57	33	INITIAL HG
1618.7	34	INITIAL HG
/*EOF		