
   

 

 

Visualization of Radiation For Optimized Design of Automotive Antennas 

 

A Thesis 

 

Presented in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science in 

Engineering with distinction in the College of Electrical and Computer Engineering 

 

 

By 

Ryan A. Tokola 

**************************** 

The Ohio State University 

Winter 2010 

 

 

 

BS Committee 

 

Dr. Joel Johnson 

Dr. Eric Walton 

 

Advisors Approval 

 

___________________ 

Advisor 

College of Engineering 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KnowledgeBank at OSU

https://core.ac.uk/display/159572123?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

1 

ACKNOWLEDGEMENTS 

 

Thanks to Dr. Joel Johnson for advising me on this project, Dr. John Young, and Eugene 

Lee for their helpful advice, Wladimiro Villarroel and the engineers at AGC America for their 

unflagging support of this project, and Dr. Edward Newman for allowing the use of his excellent 

ESP5 software. Extra thanks to Dr. Eric Walton for his ceaseless support, encouragement, and 

advice. 



 

2 

Table of Contents 

1. Introduction ................................................................................................................... 6 

1.1 Background ................................................................................................................ 6 

1.2 The Benefits Visualizing Radiation Data .................................................................. 8 

1.3 About VAAR ........................................................................................................... 10 

2. Initial Setup ................................................................................................................. 14 

modelGUI ...................................................................................................................... 14 

2.1 Define Antenna Geometries .................................................................................... 15 

2.2 Load Vehicle Wire Mesh Geometry ........................................................................ 19 

2.3 Locate The Antennas On The Vehicle .................................................................... 19 

2.4 Set Simulation Parameters ....................................................................................... 21 

2.5 Name and Save ........................................................................................................ 21 

2.6 Generate a Report .................................................................................................... 22 

2.7 Run the Simulation .................................................................................................. 22 

3. Data Visualization ....................................................................................................... 23 

Visualization GUIs ........................................................................................................ 23 

3.1 Load Data Files ........................................................................................................ 26 

3.2 Define Visualization Functions ............................................................................... 27 

3.3 Assign Functions to Axes ........................................................................................ 28 

3.4 Choose Parameter Values ........................................................................................ 29 

3.5 Save Setup ............................................................................................................... 33 

3.6 Generate a Report .................................................................................................... 33 



 

3 

4. m-files ........................................................................................................................... 34 

4.1 GUI m-files .............................................................................................................. 34 

4.2 Dependent m-files .................................................................................................... 34 

5. Vehicle Wire Mesh Geometry Files ........................................................................... 36 

6. Email Notification ....................................................................................................... 40 

7. *.data File Data Structure .......................................................................................... 41 

8. Future Improvements ................................................................................................. 46 

8.1 Setup ........................................................................................................................ 46 

8.2 Visualization ............................................................................................................ 47 

8.3 General ..................................................................................................................... 48 

9. References .................................................................................................................... 49 

 

 

 



 

4 

Table of Figures 

Figure 1: modelGUI .......................................................................................................... 14 

Figure 2: Antenna Definition Table .................................................................................. 15 

Figure 3: Sweep Info ......................................................................................................... 18 

Figure 4: Antenna Location and Plot ................................................................................ 18 

Figure 5: Load Vehicle Mesh / Plot Car and Antenna ...................................................... 19 

Figure 6: Default Antenna Location ................................................................................. 20 

Figure 7: Car With Antennas Properly Located ............................................................... 20 

Figure 8: Sweep Parameters.............................................................................................. 21 

Figure 9: Save/Load/Run Sweep ...................................................................................... 22 

Figure 10: Report Format Dialog ...................................................................................... 22 

Figure 11: vizSetupGUI .................................................................................................... 23 

Figure 12: vizPlotGUI, no parameters checked ................................................................ 24 

Figure 13: vizSetupGUI With Loaded Data ..................................................................... 25 

Figure 14: Load Data File ................................................................................................. 26 

Figure 15: Swept Parameter .............................................................................................. 26 

Figure 16: Antenna Plot .................................................................................................... 27 

Figure 17: Function Definition ......................................................................................... 28 

Figure 18: Function Assignment ....................................................................................... 29 

Figure 19: One Parameter Checked .................................................................................. 30 

Figure 20: vizPlotGUI, One Parameter Checked .............................................................. 31 

Figure 21: Two Parameters Checked ................................................................................ 31 

Figure 22: vizPlotGUI, Two Parameters Checked ........................................................... 32 



 

5 

Figure 23: Toggle Frequency Options .............................................................................. 33 

Figure 24: Isometric view of vehicle and image created by makeCarMesh() .................. 38 

Figure 25: makeCarMesh() parameters, side view ........................................................... 38 

Figure 26: makeCarMesh() parameters, top view ............................................................. 39 

Figure 27: makeCarMesh() parameters, isometric view ................................................... 39 

Figure 28: Sweep Setup Example ..................................................................................... 41 

 

 



 

6 

1. Introduction 

1.1 Background 

The number of wireless consumer devices is rapidly increasing, resulting in a 

proportional increase in the number of antennas on modern automobiles. Cars may be required to 

receive signals from sources including AM/FM radio, satellite radio, cellular telephone, satellite 

telephone, GPS, the intelligent highway system, remote keyless entry, Bluetooth, VHF/UHF 

television, and collision-avoidance radar. This covers a very broad frequency range, from 0.5 

MHz to 5GHz. Rather than design and implement a separate antenna for each function, the use of 

multifunctional antennas is becoming a popular focus of contemporary research. Multifunctional 

antennas are capable of operation at multiple frequencies, without the cost and space problems 

associated with individual antennas for each specific frequency range.  

On a vehicle, however, a single multifunctional antenna is insufficient for two reasons. 

First, no antenna, even if it is multifunctional, will meet gain, phase, and radiation pattern 

requirements for the entire frequency range under consideration. Second, even if such an ideal 

antenna existed, practical considerations would prevent it from acceptable operation under all 

conditions. Problems such as multipath interference, when the radiated signal destructively 

interferes with its own reflections, will occur with single antenna systems. Also, conformal 

antennas at higher frequencies will experience vehicle blockage. 

It is logical, then, to strategically locate a small network of multifunctional antennas on 

the vehicle body and combine the signals. The signals from these antennas, once intelligently 

mixed or selected, yield expanded frequency and spatial coverage, and can mitigate the effects of 

multipath interference and blockage. It is possible to place antennas nearly anywhere on a 



 

7 

vehicle, but on-glass antennas are an increasingly attractive option to automobile manufacturers, 

as they are low-cost, unobtrusive, and easy to manufacture.  

Although many techniques for accurately simulating the electromagnetic characteristics 

of antennas exist, it is difficult to design a good antenna system. Antennas are frequently 

designed through an ad-hoc combination of experience, intuition, and guesswork. Designing 

antennas for multiple frequency ranges and diversity applications is even more complicated. 

There exists a need for new technologies and methodologies to supplement traditional antenna 

design techniques.  

This project was originally conceived as an application that would automatically 

calculate the optimized design of on-glass automotive antenna networks. Users would input 

vehicle geometry, select initial antenna geometries, and an optimization algorithm would modify 

the antenna geometry until a satisfactory design had been achieved. It became apparent, 

however, that there were many difficulties with such an automated process. How would an 

optimization cost function be designed? How could designers verify that the cost function, or 

even the specific optimization algorithm, is suitable for the specific vehicle under consideration? 

How could it be know if the optimization was stuck in a small local minimum, with a much 

better solution elsewhere? How could the designer verify that the solution provided by the 

optimization algorithm could tolerate small deviations in geometry? The only way these 

questions can be answered is if engineers are more involved in design process. This project has 

become more focused as a result, with a new emphasis on enhancing designer’s understanding of 

antenna performance. 

 

 



 

8 

1.2 The Benefits Visualizing Radiation Data 

Designing antenna systems necessarily involves working with large amounts of data. 

Whether generated by numerical simulation or empirical measurement, these data are frequently 

many-dimensional and rarely smooth and intuitive. To fully appreciate the significance of these 

sets of data, it is often helpful to generate various plots to visually see what is happening. These 

plots are useful for any design process. Given calculated or measured radiation pattern data, an 

antenna designer may use plots for several purposes: 

 

 Most obviously, it is important to assess the effectiveness of a specific antenna design. A 

plot of an antenna’s radiation pattern can quickly show if it meets design criteria, and 

where it may need improvement. A plot can reveal patterns that may not be obvious from 

raw numbers, and these patterns can suggest ways of improving the design. Here, polar 

plots of an antenna’s radiation patterns will be used. 

 It is often desirable to understand how the behavior of an antenna will change when a 

geometric parameter has changed. A set of simulations, sweeping the parameter over a 

certain range, can generate data that demonstrate the effect of changing the parameter. In 

this case, rectangular plots with azimuthal angle on one axis and values of the swept 

parameter on the other axis efficiently express the relationship between the parameter 

values and the radiation patterns of the antenna. 

 To appreciate how two geometric parameters interact, it may be useful to see the effect of 

both parameters on a single plot. To accomplish this, a rectangular plot can be 

constructed that has one swept parameter on each axis. Of course, this leaves a single 



 

9 

data point for each 360˚ radiation pattern. Some function must be used to convert the 

radiation pattern into a scalar value.  

 The application of optimization algorithms to electromagnetic design is an active area of 

research. Classical gradient-based optimization methods and newer global optimization 

strategies are being used to automate design processes and arrive at solutions that might 

not have been found “by hand.”  See the references at the end of this chapter. 

o Optimization algorithms operate by evaluating the value of cost functions, which are 

single-valued assessments of the effectiveness of a design. The careful design of a 

cost function is critical to the successful application of an optimization algorithm. The 

cost function must take into account all design criteria, and balance them in an 

effective way. Also, the cost function solution space must be relatively smooth for 

optimization algorithms to work effectively. Plots of cost function values can be used 

to design, analyze, and refine the cost functions.  

o With vigorous research being dedicated to many radically different optimization 

algorithms, it is not always obvious which approach is appropriate for any given 

application. Plots of antenna radiation patterns can assist with the decision. Antenna 

simulations performed over several swept geometric parameters can help indicate 

how radiation patterns change with varying antenna geometry, and can show which 

types of optimization would be effective. For example, radiation patterns that vary 

smoothly across swept parameters could work best with local gradient-based 

algorithms, whereas radiation patterns with large numbers of local minima may 



 

10 

require global optimization techniques such as genetic algorithms or particle swarm 

optimization.   

o If an optimization algorithm that finds local minima is to be used, plots with swept 

parameters can be used to find promising neighborhoods for optimization. The plots 

can be used to find a good starting point, and then an optimization algorithm can 

refine the geometric parameters. 

 Plots are also useful for comparing data. Plotting the results of the simulation of two 

alternative antenna configurations allow easy comparison of the relative advantages of 

each design. Also, the accuracy of simulations can be checked by comparing plots of 

simulation data and actual test measurements. 

In all of these cases, an “antenna” may be a single antenna or a set of antennas. If 

multiple antennas are being considered, their signals are assumed to have been selected or 

combined in some way. Also, a “radiation pattern” may be one of several antenna characteristics, 

such as vertical or horizontal polarization, a circular polarization, or any combination of these. 

 

1.3 About VAAR 

Visualization of Automobile Antenna Radiation (VAAR) is a MATLAB-based tool 

created to help design networks of on-glass automobile antennas. It is used to simulate the 

radiation patterns of on-glass antennas and view and compare the resulting data using flexible, 

user-defined functions. 

VAAR has two main functions, which have associated Graphical User Interfaces (GUIs): 



 

11 

 Define antenna geometries, set up parameter sweeps, and generate simulations of the 

radiation patterns of the antennas with all combinations of selected parameters. This is 

accomplished with modelGUI. 

 Visually inspect the resulting data, with the ability to compare data sets side by side. Data 

is loaded in vizSetupGUI and the resulting plots are shown in vizPlotGUI. With minor 

improvements, it will be possible to load data from actual measurements of antenna 

radiation patterns, which will allow easy comparison of theoretical and real world data. 

 

VAAR’s visualization tools can assist with: 

 Selection of an optimization algorithm. 

 Development of a cost function. 

 Identification of good neighborhoods for local optimization. 

 Comparison of theoretical and measured data. 

 Assessment of optimization performance. 

 

The overall antenna design process may look something like: 

1) Import automobile geometry 

2) Define a starting set of antennas 

3) Simulate response with parameter variations 

4) Use visualization tools to refine antenna design via traditional techniques 

or - 

4)   Use an optimization algorithm 

a) Use visualization tools to identify appropriate optimization algorithm 



 

12 

b) Develop / refine cost function 

c) Identify which parameters will be varied by optimization 

d) If local optimization is selected, locate good neighborhoods for starting points 

e) Apply optimization algorithm 

5) Compare final simulated design with measured prototype response 

 

It is intended to be flexible and expandable. It should not be difficult to add components 

to enhance its functionality. For example, although it is possible to use VAAR as a way of 

setting up an optimization algorithm, it may be preferable to incorporate some components of 

VAAR into an optimization system. One advantage of using VAAR for the optimization is that 

every iteration’s data will already be in a format that can be used with VAAR’s visualization 

tools. Data may be visually compared to the results of parameter sweeps. This provides the 

designer with quick and easy feedback about the performance of the optimization.  

MATLAB is required to convert measured data to a format readable by VAAR. 

Therefore, VAAR is not currently available as a standalone application. VAAR requires 

MATLAB version 2009a or later. No MATLAB toolboxes are required.  

The simulation engine is the ESP5 Electromagnetic Surface Patch (Method of Moments) 

code, created by Edward H. Newman. Further information about ESP5 can be found at: 

http://ckm.osu.edu/sitetool/sites/pdfs/eslpublic/research/esp5_sum5_4.pdf 

VAAR uses wire meshes to define automobile geometry. Although a function that creates 

simple parametrically defined vehicle meshes is included with VAAR, users will be expected to 

provide vehicle mesh files that correspond to their current projects. The format that VAAR uses 

http://ckm.osu.edu/sitetool/sites/pdfs/eslpublic/research/esp5_sum5_4.pdf


 

13 

for vehicle mesh files is very simple, and converting existing geometry files to VAAR’s format 

is not expected to be difficult. 

VAAR has been developed without real world testing to verify the accuracy of simulation 

results. This is partially justified by the known quality of ESP5, which performs that actual 

simulations. However, it is important to be aware of that ESP5 can only be as accurate as the 

information given to it. The vehicle meshes used in the development of VAAR were extremely 

simple, which allowed for short simulation times. Vehicle meshes used in practice will likely be 

much more dense, and simulation times increase dramatically with greater wire mesh density. 

Preliminary testing has indicated that simulation results made with vehicle meshes of increasing 

density do not converge until the simulations take a prohibitive amount of time. 

VAAR is an Ohio State University research project, and as such it cannot be warranteed 

by OSU beyond its initial release. The final raw computer code (written in MATLAB) will be 

delivered with this project.  It is hoped that this User’s Guide and documentation within VAAR’s 

code will be sufficient to allow AGC  to correct, improve, and expand the software. The Future 

Improvements section on page 46 discusses several ways that VAAR may be improved. 

VAAR uses distance in meters and angles in degrees. Text that appears in the GUIs will 

appear in bold in the User’s Guide. 

 

 



 

14 

2. Initial Setup 

modelGUI 

The m-file modelGUI is used to prepare and run parameter sweeps that vary antenna 

geometry and/or simulation frequency.  modelGUI is shown with a completely defined sweep in 

Figure 1. 

 

 

Figure 1: modelGUI 

 



 

15 

modelGUI is typically used in the following sequence: 

 2.1 Define Antenna Geometries 

 2.2 Load Vehicle Wire Mesh Geometry 

 2.3 Locate The Antennas On The Vehicle 

 2.4 Set Simulation Parameters 

 2.5 Name and Save 

 2.6 Generate a Report 

 2.7 Run the Simulation 

 

2.1 Define Antenna Geometries 

Antennas are defined in modelGUI using the Front and Rear antenna definition tables. 

It is currently necessary for both antennas to be defined with at least one swept parameter (see 

section 8. Future Improvements 1 and 2). Although it is common for antennas to be located on 

the front and rear windshields, the designations “front” and “rear” are arbitrary—antennas can be 

placed anywhere on a vehicle model. An antenna definition table is shown in Figure 2. 

 

 

Figure 2: Antenna Definition Table 

 



 

16 

Antennas are composed of a set of wires. Each numbered row of the antenna definition 

table corresponds to one wire. The column sections labeled 1X, 1Y, 2X, and 2Y correspond to 

the x- and y-coordinates of the first and second wire endpoints. Because the coordinate system 

used to define antennas is independent of the vehicle’s coordinate system there is no need for a 

z-coordinate. Currently, antennas can only be defined on a flat planar surface (see section 8. 

Future Improvements 3).  

Any endpoint of any wire can be varied in either the x- or the y-direction in a parameter 

sweep. If the step column of an endpoint is set to 0, the endpoint will not be swept on that axis, 

and the value in the min column will always be used when defining the antenna. If the step 

column contains a positive nonzero value the endpoint will be defined on all values from min : 

step : max (using MATLAB notation). All endpoints must be defined such that min < max and 

step ≥ 0. Furthermore, horizontal wires require 1X < 2X for all values of 1X and 2X, and vertical 

wires require 1Y < 2Y for all values of 1Y and 2Y. If a step will be used, it is necessary to have 

the max value set greater than the min value prior to entering the step.  

When creating a new wire, first choose the wire type from the pull-down menu in the 

Direction column. Select either VoltageSourceHoriz or VoltageSourceVert for the first wire 

(see section 8. Future Improvements 5). VoltageSource wire types have a voltage source 

attached at the first point of the wire. It is this voltage source that drives the radiation pattern that 

ESP5 will calculate. Because the first endpoint of the first wire typically attaches to the vehicle 

wire mesh, it is usually located at (0,0) so the antenna coordinate system can easily be mapped 

onto the vehicle coordinate system. (See section 2.3 Locate The Antennas On The Vehicle, page 

19). When a horizontal wire has been created, the 2Y  column will contain xxxx | 0 | 

xxxx. This indicates that, as a horizontal wire, it is unnecessary to define a second y-



 

17 

coordinate. The same is true for the 2X column when vertical wires are created. No changes to 

these columns should be made. 

After the first wire, all subsequent wires must be either horizontal or vertical. Wires are 

allowed to overlap and intersect—a subroutine automatically joins overlapping wires and splits 

intersecting wires to avoid errors in ESP5 (see section 8. Future Improvements 6 and 7). It is also 

not necessary for wires to make contact with any other wires. Although the endpoints of two 

wires may occupy the same point at the beginning or end of a sweep, they should not occupy the 

same point in the middle of a sweep. For example, if a horizontal wire is located at y = 1, and a 

vertical wire has an endpoint at (2,1), a second vertical wire should not have an endpoint at 

(1:0.5:3, 1) because the horizontal wire may be split into a very small wire segment near (2,1). 

Rounding errors in MATLAB can cause the creation of a very small wire that will cause an error 

in ESP5 (see section 8. Future Improvements 4). 

Impractically long simulation times can easily be caused by an accidental choice of too 

many parameter combinations. modelGUI provides some feedback that can be used to fine-tune 

the size of parameter sweeps. Information about parameter combinations and simulation time, 

shown in Figure 3, is displayed below the antenna definition tables. Parameter Combinations is 

the total number of combinations of swept parameters. Remaining Combinations dynamically 

updates during simulation, and can be used to keep track of simulation progress. Time Left is an 

estimate of the remaining simulation time based on an average of previous simulations. Time 

Left is only meant as a general guideline, as simulation times vary with frequency and model 

complexity (see section  8. Future Improvements). 

 



 

18 

 

Figure 3: Sweep Info 

 

It is assumed that variations in the geometry of one antenna will not affect the radiation 

pattern of the other antennas. Therefore, Parameter Combinations is calculated by: 

 Parameter Combinations = 1 2i j

i j

pfreq p p
 
 
 
 
   

where  pfreq = # swept frequencies (see section 2.4 Set Simulation Parameters, page 21) 

  p1i = # values for the i
th

 swept parameter of antenna 1 

  p2i = # values for the j
th

 swept parameter of antenna 2 

 

A plot of the antenna geometry, as shown in Figure 4, will be dynamically updated as the 

antenna is being defined. If antenna parameters are swept, only the minimum value will be used 

in the plot (See section 8. Future Improvements 9). 

 

 

Figure 4: Antenna Location and Plot 

 



 

19 

2.2 Load Vehicle Wire Mesh Geometry 

To load a wire mesh of the vehicle, press the Load Car Geometry button, shown in 

Figure 5.  

 

Figure 5: Load Vehicle Mesh / Plot Car and Antenna 

 

 

It is beyond the scope of this software to assist with the creation of complex vehicle 

meshes, but makeCarMesh.m can be used to create a simple, parametrically defined vehicle 

model. (See section  5. Vehicle Wire Mesh Geometry Files, page 36). 

 

2.3 Locate The Antennas On The Vehicle 

Once antennas have been defined and a vehicle mesh has been loaded, the antennas must 

be located and oriented on the vehicle. Typically, the first antenna wire will have a voltage 

source and a first endpoint at location (0,0) in the antenna’s coordinate system. The default 

location of the antennas is with the origin of the antenna’s coordinate system at the origin of the 

vehicle’s coordinate system, with the antenna rotated to be in the vehicle’s x-z plane (See Figure 

6). The values X, Y and Z seen in Figure 4 are used to locate the antenna within the vehicle’s 

coordinate system. The value Theta is the antenna’s rotation, in radians, about the x-axis. Press 

the Plot Car button, shown in Figure 5, to see a three dimensional plot of the car and antenna, as 

shown in Figure 7. Although the plot will show the bottom of the vehicle at z = 0, during 

simulations a mirrored copy of the vehicle (as discussed below) will simulate a ground plane. 

This hypothetical ground plane is a user-defined distance below the bottom of the vehicle. Note 



 

20 

that no x-axis translation is necessary when the origin of the antenna is placed on the plane of 

lateral symmetry. (See section 8. Future Improvements 10, 11 and 12). After location changes 

have been made, it is currently necessary to modify the antenna in its antenna definition table 

before the location changes are saved. This may be as simple as entering “0.0” into a cell with 

the current value “0.” (See section 8. Future Improvements 13). 

 

 

Figure 6: Default Antenna Location  

 

  
θ

Y
Z

Y X

Z

 

Figure 7: Car With Antennas Properly Located 

 



 

21 

2.4 Set Simulation Parameters 

Frequency sweeps and theta (elevation angle) are defined in the  freq and theta text 

boxes, as shown in Figure 8 (see section 8. Future Improvements 14). Height off ground is the 

distance from the bottom of the vehicle to the hypothetical ground plane, assuming that the 

bottom of the vehicle is at z=0 in the vehicle’s coordinate system. During creation of the .esp file 

that is used for simulation, an image of the vehicle is mirrored about the hypothetical ground 

plane. This is equivalent to modeling the ground plane as a PEC.  

 

 

Figure 8: Sweep Parameters 

 

2.5 Name and Save 

The simulation  may be named and saved at any time. The name entered in the Sweep 

Name field, shown in Figure 9, will be used for both the saved simulation information (with the 

file extension .sim) and the data file that results from the simulation (with the file extension  

*.data), (See section  8. Future Improvements 15). Simulation settings are saved by pressing 

the Save button, and saved settings can be loaded by pressing the Load button. When saving, if a 

*.sim file already exists with the same name, a dialog box will ask if the previous file should be 

overwritten. Check the Email? checkbox to have an email sent when the simulation has 

complete (see section 6. Email Notification, page 40 and 8. Future Improvements 16).  



 

22 

 

Figure 9: Save/Load/Run Sweep 

2.6 Generate a Report 

All settings in vizGUI can be displayed by pressing the Report button. A dialog box, 

shown in Figure 10, presents three options: 

 Command Window Display will print the settings to the command widow. 

 Text File will generate a text file named “[sweep name]_ModelReport.txt.” A 

monospaced font, such as Courier, is recommended for viewing these files. The text file 

may not conform to the proportions of a standard page (see section 8. Future 

Improvements 18). 

 Excel Spreadsheet will generate a spreadsheet named “[sweep name]_ModelReport.xls” 

 

 

Figure 10: Report Format Dialog 

 

2.7 Run the Simulation 

With a vehicle mesh loaded, the antennas defined and located on the vehicle, simulation 

parameters set, and the simulation named and saved, the simulation may be executed by pressing 

the Run button.



 

23 

3. Data Visualization 

Visualization GUIs 

Two GUIs are used to visualize data after a sweep has been executed. vizSetupGUI (see 

Figure 11) is used to load data and define how the data will be displayed. vizPlotGUI is a set of 

four axes for plots (see Figure 12).  

 

 

Figure 11: vizSetupGUI 

 



 

24 

 

Figure 12: vizPlotGUI, no parameters checked 

 

The visualization GUIs are typically used in the following sequence: 

 3.1 Load Data Files 

 3.2 Define Visualization Functions 

 3.3 Assign Functions to Axes 

 3.4 Choose Parameter Values 

 3.5 Save 

 3.6 Generate a Report 

 

The visualization GUIs allow for the simultaneous display of data from two data sets. 

The data may be the result of simulation or actual measurements, although the function for 



 

25 

converting measured data to the data format used for simulation results has not yet been 

implemented (see section 8. Future Improvements 19, 20). This allows for the direct comparison 

of the theoretical results of two variations of antenna geometry or an antenna’s theoretical 

radiation pattern with the measured radiation pattern of the same geometry. Alternatively, the 

same data set may be loaded twice for four simultaneous plots of the same data. Note that 

modifications to default line weight and fonts in MATLAB may cause some elements of the GUI 

to display incorrectly (see section 8. Future Improvements Error! Reference source not 

found.). 

 

 

Figure 13: vizSetupGUI With Loaded Data 

 



 

26 

3.1 Load Data Files 

To load a data set, click the Select Data File button in the Load Data panel, as show in 

Figure 14,  and select the data file. Currently, data files are expected to have the file extension 

*.data. Files with other extensions may be used, but they will be filtered out by the file selection 

window. When browsing for a mesh file with an extension other than *.data, select “Files of 

Type” → “All files”. All data files must share  the data structure of *.data files (see section 7. 

*.data File Data Structure, page 41). 

 

 

Figure 14: Load Data File 

 

Once a data file has been loaded, vizSetupGui will identify and display the swept 

parameters in the Parameters panel. Figure 15 shows an example swept parameter.  

 

 

Figure 15: Swept Parameter 

 

A description of the parameter will be displayed on the left. In the case of Figure 15, the 

parameter, given as R wire 5 1X, is the x-coordinate of the first endpoint of the fifth wire of the 

Rear antenna. Below the parameter description the swept values are displayed. In the case of 

Figure 15, the parameter was swept from -0.6m to 0m with an increment of 0.3m. When first 

loaded, the data point corresponding to the minimum value of all swept parameters will be 



 

27 

selected. Other parameter values may be selected by pressing the Up and Down buttons (see 

section 8. Future Improvements 21). The selected parameter value will affect the display of 

antenna geometry and the data that is plotted in vizPlotGUI. 

When a *.data file has been loaded, a plot of the antenna geometries, shown in Figure 16, 

is displayed below the Parameters panel.  

 

 

Figure 16: Antenna Plot 

 

3.2 Define Visualization Functions 

Visualization functions dictate how data will be displayed in vizPlotGUI. All data points 

in the *.data file contain four values: FGth (the vertically polarized gain of the front antenna), 

FGph (the horizontally polarized gain of the front antenna), RGth (the vertically polarized gain 

of the rear antenna), and FGph (the horizontally polarized gain of the rear antenna). These 

values are the direct results of ESP5 simulation and are in units of dBi. Six variables, named 

a…f can be defined using the four data values, standard MATLAB functions and standard 

MATLAB syntax. Variables that are not used must be assigned the number 1 (see section 8. 

Future Improvements23). Additionally, any variable can access any previous variable. Using 

Figure 17 as an example, FGph, RGph, FGth, and RGth are assigned to variables a, b, d, and 

e, respectively. c is defined as the point-by-point maximum of a and b, and f is defined as the 



 

28 

point-by-point maximum of d and e. The final function is defined as the point-by-point 

maximum of c and f. Functions must return either a 1x360 array (which is the size of FGph, 

RGph, FGth, and RGth) or a 1x1 scalar.  

Once a function has been defined, a function name is entered in the text box to the left of 

the Save Function button, which is clicked to save the function. It is strongly recommended that 

the size of the array returned by the function be included in the function name, such as “max 1 (1 

x 360)”.  

Functions can be used to explore the radiation pattern of antennas and also predict the 

effect of cost functions used with optimization algorithms. A parameter sweep may be analyzed 

with various functions to find a desirable neighborhood for local optimization or to identify 

situations where global optimization methods may be appropriate (see section 8. Future 

Improvements 32).  

 

 

Figure 17: Function Definition 

3.3 Assign Functions to Axes 

When a function has been saved, its name appears in the list box in the Assign Function 

panel. To delete an unwanted function, select it and click the Delete button. The four Assign 

buttons correspond to the four axes in vizPlotGUI. When an Assign button is pressed, the 



 

29 

corresponding axis will display a plot of the selected visualization function using the data point 

selected in the  Parameters panel. The plot is polar, with the radial axis representing azimuthal 

angle in degrees, and the magnitude of the plot corresponding to the function value at that angle 

(see section 8. Future Improvements 22, 24). The two axes on the left plot data from the *.data 

file selected on the left of vizSetupGUI, and the two axes on the right plot data from the *.data 

file selected on the right. The function variables and final function definition are displayed to the 

left of the axes. The data file name is displayed as the title of the axis panel.  

 

 

Figure 18: Function Assignment 

 

3.4 Choose Parameter Values 

The antenna geometry and data plots correspond to the parameter values selected in the 

Parameters panel. Incrementing parameter values with the Up and Down buttons will cause 

dynamic updates of the plots, which will display the antenna geometries and function values 

associated with the selected parameters. 

 



 

30 

It is often desirable to visualize in a single plot how an antenna radiation pattern varies 

across a swept parameter. This is accomplished by checking the checkbox to the left of a 

parameter in the Parameters panel, as shown in Figure 19.  

 

 

Figure 19: One Parameter Checked 

 

When one parameter has been checked the axes in vizPlotGUI will change to orthagonal 

plots that show function values with azimuthal angle on the x-axis and the checked parameter on 

the y-axis, as shown in Figure 20. When a parameter is checked, the antenna geometry plots will 

be hidden, as it is currently not possible to plot an antenna with multiple geometry configurations 

(see section 8. Future Improvements 25, 26 and 27).  The Up and Down buttons and the 

parameter value text box associated with the checked parameter are hidden, as all parameter 

values are being used simultaneously. 

 



 

31 

 

Figure 20: vizPlotGUI, One Parameter Checked 

 

To visualize how  two swept parameters vary simultaneously, a second parameter may be 

checked in the Parameters panel, as shown in Figure 21.  

 

Figure 21: Two Parameters Checked 

 



 

32 

When two parameters are checked, the axes will display the first checked parameter (as 

counted from the top down) on the x-axis, and the second parameter on the y-axis (See section 8. 

Future Improvements 28). Because the plot is no longer a function of azimuthal angle, the 

assigned visualization functions must return a 1x1 scalar instead of a 1x360 array.  

 

 

Figure 22: vizPlotGUI, Two Parameters Checked 

The following function has yet to be implemented (see section  8. Future Improvements 

29). When the freq parameter in the Parameters panel is not checked, a pair of toggle buttons 

are shown next to the freq parameter, as shown in Figure 23. When the right button is selected, 

the frequency parameter behaves like all other swept parameters. When the left button is 

selected, the Up and Down buttons and the parameter value text box are hidden and a pull-down 

menu appears. The operation selected from the pull-down menu dictates which frequency value 



 

33 

will be used when calculating visualization function values.  As an example, if the frequency 

pull-down menu is set to Min and the selected visualization function simply returns FGth, the 

function value will be evaluated at every swept frequency, and the function returns a 1x360 array 

of the smallest value of FGth at each azimuthal degree. This makes it easy to identify the worst-

case radiation pattern of antennas across a frequency band. 

 

 

Figure 23: Toggle Frequency Options 

 

3.5 Save Setup 

Visualization settings may be named and saved at any time. The Save Setup and Load 

Setup buttons, shown in Figure 14, are used to save and load the parameter and plot settings of 

the relevant column of vizSetupGUI. Note that when a setup is loaded, the name of the data file 

and not the name of the setup appears in the load data panel. 

 

3.6 Generate a Report 

This function has yet to be implemented (see section 8. Future Improvements 30). 



 

34 

4. m-files 

 

4.1 GUI m-files 

modelGUI.m             - Generates simulation sweeps. 

vizSetupGUI.m          - Loads data, sends plots to vizPlotGUI. 

vizPlotGUI.m           - Displays plotted data from vizSetupGUI. 

 

4.2 Dependent m-files 

Setup 

allcomb.m              - Returns all combinations of input arrays.  

(c) Jos van der Geest 

antennaData2Wires.m    - Creates a matrix of antenna endpoints. 

antennaWires2Mesh.m    - Converts a matrix of antenna endpoints to a list of 

non-intersecting wires. 

emailDone.m            - Sends an email when a simulation is finished. 

getNumberOfCombos.m    - Returns the number of parameter combinations in a 

sweep. 

makeAntennaMeshSet.m   - Returns an array of all antenna geometries defined 

by the antenna definition tables. 

makeCarMesh. m         - Creates an automobile wire mesh[not used in normal 

operation]. 

makeESPFile.m          - Creates an .esp file that ESP5 will use for 

simulation. 

makeSweep.m            - Generates a simulation sweep.  

manageModelGUItable.m  - Adds 'xxxx' to unnecessary cells of the modelGUI. 

MOV_ESP5.m             - ESP5 MOV move command. 

MVX_ESP5.m             - ESP5 MVX close move command. 

PLC_ESP5.m             - ESP5 PLC plate coordinates command. 

plotAntenna.m          - Plots antenna wires in 2D. 

plotAntenna3D.m        - Plots antenna wires in 3D. 

plotCar.m              - Plots car and antenna geometry in modelGUI. 

RAD_ESP5.m             - ESP5 RAD radiation scan command. 

readPlt.m              - Extracts data from “[…]_pat.plt,” which is the file 

that is created by ESP5. 



 

35 

REM_ESP5.m             - ESP5 REM command. 

runESP.m               - Executes an ESP5 simulation. 

showCounts.m           - Displays number of parameter combinations and 

estimated time. 

showModelReport.m      - Prints all GUI values to screen. 

showSize.m             - displays the size of the matrix that results from 

the evaluation of a visualization function. 

WRC_ESP5.m             - ESP5 WRC command for wire segment. 

WRG_ESP5.m             - ESP5 WRG wire generator command. 

WRR_ESP5.m             - ESP5 WRR wire radius and conductivity command. 

 

Visualization 

assignFunction.m       - Plots the selected visualization function to the 

selected axis in vizPlotGUI. 

fnAndChecksMatch.m     - Verifies that the selected function is appropriate 

for plotting. 

getFunVal.m            - Evaluates the selected function at the selected 

point. 

GUIvisibility.m        - Changes the visibility of checkboxes and buttons as 

needed. 

handle2param.m         - Returns array of the handle information of elements 

of vizSetupGui. 

loadSavedFunctionNames.m - Populates the visualization function list box. 

loadSavedFunctions.m   - Populates the visualization function variable text 

boxes. 

polarLabels.m          - Generates a labeled polar plot. 

 (c)Brian Kat 

resetViz.m             - Returns vizSetupGUI and vizPlotGUI to their original 

state 

saveFunction.m         - Adds a new visualization function to the function 

data file. 

showVizReport.m        - Prints all GUI values to screen. 

vizGUInewDataL.m       - Prepares data for use by the GUI. 

vizGUInewDataR.m       - Prepares data for use by the GUI. 

vizPlot.m              - Main function for plotting in vizPlotGUI. 

vizStepParam.m         - Increments or decrements parameters. 

 



 

36 

5. Vehicle Wire Mesh Geometry Files 

Vehicle wire mesh geometry files are expected to have the file extension *.car. Files with 

other extensions may be used, but they will be filtered out by the file selection window. When 

browsing for a mesh file with an extension other than *.car, select Files of Type → All files.  

Vehicle wire mesh geometry files must be MATLAB formatted (MAT-file). 

Vehicle wire mesh geometry files contain an n x 3 x 2 double-precision variable called 

carMesh, where n is the number of wires in the wire mesh. carMesh is a simple list of the 

endpoints of all the wires that define the vehicle mesh: 

carMesh(:,:,1) = 

 

 X1,1 Y1,1 Z1,1 

 X1,2 Y1,2 Z1,2 

 … … … 

 X1,n Y1,n Z1,n 

 

carMesh(:,:,2) = 

 

 X2,1 Y2,1 Z2,1 

 X2,2 Y2,2 Z2,2 

 … … … 

 X2,n Y2,n Z2,n 

 

where X1,1 is the x-coordinate of the beginning of the first wire, X2,1 is the x-coordinate 

of the end of the first wire, etc. 

 



 

37 

The origin of the coordinate system should be located on the bottom surface of the 

vehicle, with the bottom of the vehicle in the X-Y plane, with the top of the vehicle in the +Z 

direction, and the vehicle bilaterally symmetrical about the Y-axis. This allows for proper 

functioning of the height off ground variable, which defines the distance between the vehicle 

and a mirror image of the vehicle. The mirror image is used to simulate a PEC ground plane (see 

section 

2.4 Set Simulation Parameters, page 21). The location of the origin of the coordinate 

system in the X-Y plane is arbitrary and can be defined in any way. It is, however, necessary to 

have a firm understanding of the coordinate system in order to properly map the local antenna 

coordinate systems onto the coordinate system of the vehicle (see “Locate the antennas on the 

vehicle”). 

Although antennas may be defined with overlapping and intersecting wires, the vehicle 

wire mesh must be suitable for ESP5 simulation, and wires must therefore only contact other 

wires at the endpoints. 

The function makeCarMesh(), in makeCarMesh.m , can be used to create a simple 

vehicle model as shown in Figure 24. makeCarMesh() is not called by any other function in this 

software, and thus must be called manually to create a vehicle wire mesh file. makeCarMesh() 

uses 23 parameters to define the geometry of a vehicle (including a heater grid). The parameters 

are illustrated in Figure 25, Figure 26, and Figure 27. 

 



 

38 

 

Figure 24: Isometric view of vehicle and image created by makeCarMesh() 

 

 

 

 

J

H G F E D

L

M

A

Z

Y

C

 

Figure 25: makeCarMesh() parameters, side view 

 



 

39 

 

X

YKB

 

 

 Figure 26: makeCarMesh() parameters, top view 

 

2

   

3

   

Z

Y X

1

4
56

7

8

9

10

11

 

 

1 heaterWidth 7 meshDensityBodyX 

2 heaterHeight 8 meshDensityBodyZ 

3 heaterNumberWires 9 meshDensityBodyYa 

4 meshDensityRoofYa 10 meshDensityBodyYb 

5 meshDensityRoofYb 11 meshDensityBodyYc 

6 meshDensityRoofX   

    

Figure 27: makeCarMesh() parameters, isometric view 

 

The parameters meshDensityRoofX and meshDensityBodyX must be even 

numbers due to the construction of the vehicle mesh. 



 

40 

6. Email Notification 

 

The m-file emailDone() is called to send an email notification when the simulation is 

completed.  

These variables must be directly entered into the file: 

 

mail is the email address to which the messages will be sent 

password is the password to the email account. [Caution: anybody can see these] 

subject is the subject line of the email 

body is the text of the email 

 

The functionality of emailDone() could be expanded to send periodic updates, such as 

“Parameter combination 50 of 1920 completed,” or error notifications, such as “ESP5 exited 

with error code 0.” 

 

 

 



 

41 

7. *.data File Data Structure 

The results of a sweep are saved in a data file with the file extension *.data. Unlike 

many data file formats (such as comma separated variable files) these files contain a saved 

MATLAB variable, sweepData, and therefore can only be generated or read by MATLAB. 

sweepData is a 1x1 structure with sixteen fields. Using the sweep shown in  Figure 28  as an 

example, we will examine each of the fields of sweepData. To manually save a *.data file, 

such as when converting measured data to a format that can be read by vizSetupGUI, use the 

command save('filename.data','sweepData'). *.data files can be loaded into 

the MATLAB workspace for editing using the command load filename.data -mat. 

 

 

Figure 28: Sweep Setup Example 

In the discussions that follow, n is the total number of swept parameters, n1 and n2 are the 

number of parameters in the antennas designated Front and Rear, respectively, including 

frequency. In the case of Figure 28, n = 4, n1 = 3, and n2 = 2. 

 



 

42 

sweepData.min: [88 -0.5000 0.3000 -0.6000] 

sweepData.min is a 1xn array of type double. It contains the minimum values of all swept 

parameters. 

sweepData.step: [2 0.5000 0.3000 0.3000] 

sweepData.step is a 1xn array of type double. It contains the step  values of all swept parameters. 

sweepData.max: [108 0 0.6000 0] 

sweepData.max is a 1xn array of type double. It contains the maximum values of all swept 

parameters. 

sweepData.name: {'freq'  'F wire 3 1X'  'F wire 4 2X'  'R wire 5 1X'} 

sweepData.name is a 1xn cell array. Each cell contains a character array with the name of the swept 

parameter. 

sweepData.pValues: {[88 98 108]  [-0.50 0]  [0.30 0.60]  [-0.60 -0.30 

0]} 

sweepData.pValues is a 1xn cell array. The n
th
 cell contains all values of the n

th
 parameter. Although 

sweepData.pValues is redundant with min, step, and max, it is assumed that pre-

calculating these values increases the speed of plotting data.  

sweepData.pIndex: {[1 2]  [1 2]  [1 2]  [1 2 3]} 

sweepData.pIndex is a 1xn cell array. Each cell contains a simple index of the swept parameters. 

Note that cell i of  sweepData.pIndex could be obtained by 

1:size(sweepData.pValues{i},2). As with sweepData.pValues itself, it is 

assumed that pre-calculating sweepData.pIndex will result in computational efficiency. 

sweepData.param: {[4-D double]  [2x3x2 double]} 

sweepData.param is a 1x2 cell array that is intended to easily access selected parameter values for 

visualization function evaluation and plotting. The first and second cells correspond to the 

antennas designated Front and Rear, respectively. The first cell contains a n1+1 dimensional 

array, and the second cell contains a n2+1 dimensional array. If the i
th
 value of each parameter of 

the Front antenna is selected in vizGUI, then param{1}(i1, i2, … ,in,:) returns the 



 

43 

parameter values associated with the parameter selection. Because the frequency parameter 

applies to both Front and Rear antennas, frequency will be the first parameter for both 

sweepData.param{1} and sweepData.param{2}. For example, if data file that results 

from the sweep shown in Figure 28 is loaded into vizGUI and the first parameter’s up button is 

pressed twice, the third parameter’s up button is pressed once, and the fourth parameter’s up 

button is pressed once, sweepData.param{1}(3,1,2,:) will return the values 108, -

0.5, and 0.6. sweepData.param{2}(3,2,:)will return the values 108 and -0.3.  

sweepData.antennaMesh: {{2x2x2 cell}  {2x3 cell}} 

sweepData.antennaMesh is a 1x2 cell array containing antenna mesh data for both antennas. The 

first and second cells correspond to the antennas designated Front and Rear, respectively. Each of 

these cells contains another cell array. These cell array within the first cell is n1 dimensional, and 

the cell array within the second cell is n2 dimensional. If the i
th
 value of each parameter of the 

Front antenna is selected in vizGUI, then sweepData.antennaMesh {1}(i1, i2, … 

,in) returns the antenna corresponding to the selected parameters. Note that antenna geometries 

are stored for each frequency, which leads to redundant information. The redundancy is tolerated 

so that accessing antenna meshes is as intuitive as possible. 

sweepData.theta: [360x1 double] 

sweepData.theta contains the values of theta used for the sweep. Currently, the values will be all be 

the value defined in modelGUI. 

sweepData.phi: [360x1 double] 

sweepData.phi contains the values of phi used for the sweep. It will usually contain 1:1:360. 

sweepData.gainTheta: {[4-D double]  [2x3x360 double]} 

sweepData.gainTheta  is a 1x2 cell array containing the vertically polarized gain  for each 

parameter combination. The first and second cells correspond to the antennas designated Front 

and Rear, respectively. The first cell contains a n1+1 dimensional array, and the second cell 

contains a n2+1 dimensional array. If the i
th
 value of each parameter of the Front antenna is 

selected in vizGUI, then sweepData.gainTheta  {1}(i1, i2, … ,in,:) returns a 360-

element array, which is the vertically polarized gain of the Front antenna at the selected 

parameters across all 360 azimuthal degrees. sweepData.gainTheta is in units of dBi. 



 

44 

sweepData.gainPhi: {[4-D double]  [2x3x360 double]} 

sweepData.gainPhi is a 1x2 cell array containing the horizontally polarized gain  for each parameter 

combination. The first and second cells correspond to the antennas designated Front and Rear, 

respectively. The first cell contains a n1+1 dimensional array, and the second cell contains a n2+1 

dimensional array. If the i
th
 value of each parameter of the Front antenna is selected in vizGUI, 

then sweepData.gainPhi {1}(i1, i2, … ,in,:) returns a 360-element array, which is 

the horizontally polarized gain of the Front antenna at the selected parameters across all 360 

azimuthal degrees. sweepData.gainPhi is in units of dBi. 

sweepData.angTheta: {[4-D double]  [2x3x360 double]} 

sweepData.angTheta is a 1x2 cell array containing the vertically polarized phase angle  for each 

parameter combination. The first and second cells correspond to the antennas designated Front 

and Rear, respectively. The first cell contains a n1+1 dimensional array, and the second cell 

contains a n2+1 dimensional array. If the i
th
 value of each parameter of the Front antenna is 

selected in vizGUI, then sweepData.angTheta {1}(i1, i2, … ,in,:) returns a 360-

element array, which is the vertically polarized phase angle of the Front antenna at the selected 

parameters across all 360 azimuthal degrees. sweepData.angTheta is in units of degrees. 

sweepData.angPhi: {[4-D double]  [2x3x360 double]} 

sweepData.angPhi is a 1x2 cell array containing the horizontally polarized phase angle  for each 

parameter combination. The first and second cells correspond to the antennas designated Front 

and Rear, respectively. The first cell contains a n1+1 dimensional array, and the second cell 

contains a n2+1 dimensional array. If the i
th
 value of each parameter of the Front antenna is 

selected in vizGUI, then sweepData.angPhi {1}(i1, i2, … ,in,:) returns a 360-

element array, which is the horizontally polarized phase angle of the Front antenna at the selected 

parameters across all 360 azimuthal degrees. sweepData.angPhi is in units of degrees. 

sweepData.gainThetaShift: {[4-D double]  [2x3x360 double]} 

sweepData.gainThetaShift contains the same information as sweepData.gainTheta  , but 

shifted +20dB with a floor of 0dB. sweepData.gainThetaShift is used for polar plotting. 

sweepData.gainPhiShift: {[4-D double]  [2x3x360 double]} 



 

45 

sweepData.gainPhiShift contains the same information as sweepData.gainPhi  , but shifted 

+20dB with a floor of 0dB. sweepData.gainPhiShift is used for polar plotting. 

 

 



 

46 

8. Future Improvements 

8.1 Setup 

1. Allow user to create only one antenna. Currently the software requires two antennas to be 

defined, although it is possible to create a simple antenna without any swept parameters, 

resulting in “wasted” simulations equal to the number of frequencies used in the sweep. 

2. Allow user to have an antenna with static geometry. Currently, the software requires at least one 

swept parameter.  

3. Allow antennas to be defined in three dimensions. Currently, antennas are defined on a flat, 

planar surface. 

4. Add rounding to antennaData2Wires. This is to avoid the creation of very small wires that 

will cause an error in ESP5. 

5. Force the first wire of an antenna to have a voltage source. Only allow simple horizontal or 

vertical options for all subsequent wires. It is currently necessary for the voltage source to be on 

the first wire for the algorithm that splits the initial set of antenna wires into a set of non-

overlapping wires to function properly (see antennaWires2Mesh.m). 

6. Generally improve antenna definition. Right now it’s not very intuitive. 

7. Improve checks for very short wires (that will be rounded to zero and cause ESP5 to crash). 

Currently, there is rounding in antennaData2Wires.m, but more work may be required to 

make the antenna creation algorithms sufficiently robust.  

8. Improve estimated time remaining by accounting for longer simulation times at higher 

frequencies. 



 

47 

9. Show all locations of swept antenna wires. Display swept wires in a different color than the rest 

of the antenna. 

10. Allow for antennas to be rotated about the other two axes. This will allow more flexibility in the 

location of antennas (side windows, etc.) 

11. Use degrees for defining antenna angle theta. This is for consistency with the angle theta that 

defines the altitude of the simulation. 

12. Label X, Y, and Z axes on vehicle plot. 

13. Save changes to antenna location as soon as they have been made, without requiring a change to 

the antenna definition table. 

14. Allow altitude of simulation (theta) to be swept. 

15. Generate a default simulation name using the current date. 

16. Add settings for an email to be sent indication progress or error. 

17. Incorporate additional simulation engines, particularly ones that are more efficient with higher 

frequencies. 

18. Modify the output of text file reports to fit onto standard paper sizes. 

8.2 Visualization 

19. Implement algorithm to convert measured radiation pattern data to simulated radiation pattern 

format. 

20. Allow viz functions to use data from both loaded data sets. 

21. Allow the user to manually enter parameter values in text box. 

22. Use list dialog listdlg() instead of listbox to display saved functions. 

23. Allow function variables to be blank if they are not used (currently need to be 1). 

24. Add dBi label to all plots? Functions may change units… 



 

48 

25. Add labels to axes when one or more parameters are checked. 

26. Allow user to control range of pcolor plots. 

27. Plot all antenna geometry configurations simultaneously when parameters are checked. Draw 

swept wires in a distinct color. 

28. When two parameters are checked, allow user to select which parameter is on which axis (x-axis 

or y-axis). 

29. Implement frequency toggle buttons. 

30. Add Generate Report function to vizSetupGUI. 

31. Simulate antenna signal multiplexing. 

 

8.3 General 

32. Add tools for optimization in a new GUI. 

33. Improve file/folder management and MATLAB search paths. 

34. Allow GUIs to be used when the current MATLAB directory has been changed. 

35. Override setup modifications to default line weight and fonts. 

 



 

49 

9. References 

[1] Blank, S. J., & Hutt, M. F. (2008, April 28-30). Antenna array synthesis using derivative, non-

derivative and random search optimization. Sarnoff Symposium, 2008 IEEE , 1-4.  

Test problems are used to compare the convergence rates of derivative (NLFI), non-

derivative direct search (Nelder-Mead simplex and finite difference quasi-Newton), and random 

search (particle swarm) optimization techniques. It is shown that the derivative based methods are 

more efficient than the non-derivative direct search methods without randomness, which in turn are 

more efficient than direct search methods with randomness. These are expected results. The non-

derivative direct search techniques are generally less efficient than derivative techniques, but are 

useful when gradient information is unavailable. Random search techniques converge very slowly, 

but have better exploratory characteristics, and are useful for finding global minima.  

 

[2] Bregon, C. D., & del Rio, E. F. (2002). Hybrid optimizer based on genetic algorithms and 

conjugate gradient. Antennas and Propagation Society International Symposium, 2002,  

IEEE , 1, 738-741.  

The authors present commercial optimization software that implements a hybrid genetic 

algorithm and gradient-based approach. It was designed for electromagnetics problems, but is 

broadly applicable. The software begins by using the genetic algorithm to find the neighborhood of 

a global solution. The gradient-based method is used to improve the accuracy of the solution found 

by the genetic algorithm. This approach combines the exploratory power of the genetic algorithm 

with the rapid convergence of gradient-based methods.  

 

[3] Csiszar, S. (2007). Optimization algorithms (survey and analysis). International Symposium on 

Logistics and Industrial Informatics, (pp. 185-188). Wildau.  

The author first surveys optimization algorithms. Classical heuristics are distinguished from 



 

50 

metaheuristics. Within metaheuristics, a large group called Adaptive Memory Programming (AMP) 

related heuristics is identified, including tabu search, evolutionary and genetic algorithms, scatter 

search, and ant colony optimization. Simulated annealing is located outside of the AMP related 

techniques because it is memoryless. It is noted that simulated annealing, in certain circumstances, 

can be guaranteed to find the optimum solution. The navigation characteristics and memory 

structure of several algorithms are compared. This paper focuses on how these algorithms work, 

and does not provide much practical information that would inform a decision between the 

algorithms.  

 

[4] Gandelli, A., Grimaccia, F., Mussetta, M., Pirinoli, P., & Zich, E. (2007). Genetical swarm 

optimization: self-adaptive hybrid evolutionary algorithm for electromagnetics. Antennas and 

Propogation, IEEE Transactions on , 55 (3), 781-785.  

A hybrid genetic algorithm/particle swarm optimization technique is proposed. The design 

of a printed reflectarray antenna is optimized with genetical swarm optimization, genetic algorithm 

and particle swarm optimization techniques. It is shown that genetical swarm optimization 

performed best for this design problem.  

 

[5] Guney, K., & Onay, M. (2008). Bees algorithm for design of dual-beam linear antenna arrays 

with digital attenuators and digital shifters. International Journal of RF and Microwave 

Computer-Aided Engineering, 18 (4), 337-347.  

The authors demonstrate the application of a bees algorithm to a design problem. It is noted 

that the bees algorithm is very accurate and does not require complicated mathematical functions.  

 

[6] Haupt, R. (1995). Comparison between genetic and gradient-based optimization algorithms 

for solving electromagnetics problems. Magnetics, IEEE Transactions on , 31 (3), 1932-1935.  

The authors use several electromagnetic optimization problems to compare a gradient-



 

51 

based algorithm (the Broyden-Fletcher-Goldfarb-Shanno quasi-Newton algorithm) with a standard 

genetic algorithm. It is discovered that the gradient-based algorithms perform best for a small 

number of continuous parameters and genetic algorithms perform best for a large number of 

quantized parameters. It is noted that genetic algorithms can be used to find good starting points for 

continuous optimization algorithms.  

 

[7] Kim, Y., & Walton, E. K. (2006). Automobile conformal antenna design using non-dominated 

sorting genetic algorithm (NSGA). Microwaves, Antennas and Propagation, IEE Proceedings, 

153 (6), 579-582.  

The authors apply a non-dominated sorting genetic algorithm to the problem of optimizing 

conformal automobile antennas. This algorithm differs from simple genetic techniques in that it can 

compromise between multiple design objectives. It is shown that algorithm can successfully modify 

an existing antenna design to compromise between gain and VSWR. The algorithm is not compared 

to any other techniques.  

 

[8] Koo, J. C., Shim, J., Suh, T. I., Bang, K., J., & Kim, H. T. (2004). Size optimization of a 

microstrip GPS antenna for automobile glass with a genetic algorithm. Journal of 

Electromagnetic Waves and Applications , 18 (11), 1459-1470.  

A simple genetic algorithm is used to successfully optimize a GPS antenna for automobile 

glass. The algorithm is not compared to any other techniques.  

 

[9] Lee, K. C. (2002). Optimization of bent wire antennas using genetic algorithms. Journal of 

Electromagnetic Waves and Applications , 16 (4), 515-522.  

A simple genetic algorithm is used to optimize the shape of a bent wire antenna. The 

general advantages of genetic algorithms over traditional gradient-based techniques is discussed, 

although no other optimization techniques are actually applied to the design problem.  



 

52 

 

[10] Li, Z., Erdemli, Y. E., Volakis, J. L., & Papalambros, P. Y. (2002). Design optimization of 

conformal antennas by integrating stochastic algorithms with the hybrid finite-element 

method. IEEE Transactions of Antennas and Propagation , 50 (5), 676-684.  

The authors combine non-deterministic optimization algorithms (genetic algorithms and 

simulated annealing) with finite-element boundary-integral simulations to design and optimize 3-D 

antenna geometry and material specifications. The paper includes flowcharts that succinctly 

describe genetic algorithms and simulated annealing.  

 

[11] Misevicius, A., Blazauskas, T., Blonskis, J., & Smolinskas, J. (2004). An overview of some 

heuristic algorithms for combinatorial optimization problems. Information Technology and 

Control , 30 (1), 7-12.  

The authors discuss the general characteristics of several optimization algorithms: descent 

local search, simulated annealing, tabu search, genetic algorithms, ant algorithms, and iterated local 

search. The performance of each of these algorithms when applied to the quadratic assignment 

problem is shown. The genetic algorithm and the iterated local search algorithm performed best.  

 

[12] Olcan, D. I., Golubovic, R. M., & Kolundzija, B. M. (2006, July 9-14). On the efficiency of 

particle swarm optimizer when applied to antenna optimization. Antennas and Propagation 

Society International Symposium 2006, IEEE , 3297-3300.  

A standard particle swarm optimization algorithm is applied to three antenna optimization 

problems. Its performance is compared to a gradient algorithm and the Nelder-Mead simplex 

algorithm. The results demonstrate that particle swarm optimization performs best for optimization 

problems with a medium number of variables, although it compared well in all problems. It is noted 

that particle swarm optimization is well suited for implementation on parallel processors.  

 



 

53 

[13] Cerretelli, M., & Gentili, G. B. (2007). Progress in compact multifunction automotive 

antennas. Electromagnetics in Advanced Applicaitons, 2007 ICEAA 2007, International 

Conference on , 93-96.  

The authors discuss their progress with vehicle mounted multifunction antennas. Whip and 

rod antennas, antennas concealed in wing mirrors or bumpers, roof and cabin mounted multi-band 

antennas, and satellite multifunction antennas are discussed.  

 

[14] Filipovic, D. S., & Volakis, J. L. (n.d.). Multifunctional conformal antennas for automobile 

applications.  

The authors present two new conformal, shallow and cavity-backed, slot spiral antennas 

with multi-band properties. The antennas are intended for simultaneous reception of the (terrestrial-

based) Digital Audio Broadasting and (satellite-based) Satellite Digital Audio Radio Services 

systems. These antennas are designed to be mounted on an automobile.  

 

[15] Wang, J. J. (n.d.). Conformal multifunction antenna for automobiles.  

The author discusses the use of a spiral-mode microstrip antenna as a multifunction 

automobile antenna. Difficulties providing an adequate body cavity are discussed, as are efforts to 

reduce the size of the antenna with new antenna designs and materials.  

 

[16] Lindenmeier, S., & Brose, J. (2008). Numerical modeling of car antennas. (P. Russer, & U. 

Siart, Eds.) Springer Berlin Heidelberg.  

The authors discuss several ways of modeling the characteristics of multifunctional 

antennas on automobiles. Volume discretization, surface discretization, quasi-optical, and hybrid 

methods are discussed. The advantages of antenna diversity are discussed. The authors present a 

system for diversity optimization using measured and simulated antenna data.  

 



 

54 

[17] Kronberger, R., Lindenmeier, H., Hopf, J., & Reiter, L. (1997). Design method for antenna 

arrays on cars with electrically short elements under incorporation of the radiation properties 

of the car body. Antennas and Propagation Society International Symposium, 1997. IEEE., 

1997 Digest , 418-421.  

The authors present a car phone antenna at the upper rim of the rear window of an 

automobile. The antenna consists of several narrowly spaced short antenna elements. Car bodies 

tend to interfere with the omnidirectional characteristics of car phone antennas. These problems are 

usually resolved with a quarter-wave vertical antenna. Multiple short elements avoid these 

problems without an intrusive vertical antenna. The simplex method was used for optimization, 

rather than a gradient technique.  

 

[18] Lindenmeier, H., Hopf, J., Reiter, L., & Kronberger, R. (1999). Optimization of the antenna-

diversity-effectiveness of complex FM-car-antenna systems. Antennas and Propagation 

Society International Symposium, 1999. IEEE , 2058-2061.  

The authors show that compact antenna systems on a single car window can provide high 

diversity effectiveness for FM radio. Antennas on multiple windows are shown to be unnecessary.  

 

[19] Abou-Jaoude, Ramzi N. (1997). Design and development of conformal automobile antennas 

using numerical modeling and experimental techniques. PhD dissertation, The Ohio State 

University. 

The author surveys techniques for the design and development of conformal automobile 

antennas. Topics relating to numerical modeling are presented, and the benefits of antenna diversity 

systems, antenna arrays, and multifunctional antennas are presented. 

 

[20] Kim, Yongjim. (2003). Development of automobile antenna design and optimization for 

FM/GPS/SDARS applications. PhD dissertation, The Ohio State University. 



 

55 

The author addresses the application of multi-objective genetic algorithms to the design of 

automobile antennas. The design requirements of automotive antennas are discussed. The author 

presents computational code for the automated optimization of rear-window automobile antennas 

with Nondominated Sorting Genetic Algorithms. 

 

[21] Villarroel, Wladimiro. (2002). Automated design and optimization of VHF/UHF automotive 

conformal antennas. PhD dissertation, The Ohio State University. 

The author discusses the application of genetic algorithms to the design of conformal FM 

automobile antennas. Special emphasis is placed on the careful development of a multi-objective 

cost function for optimization. Several useful data visualization techniques are shown. 


