
PASSIVE TIME SYNCHRONIZATION IN SENSOR NETWORKS

USING OPPORTUNISTIC FM RADIO SIGNALS

An Honors Thesis

Presented in Partial Fulfillment of the Requirements for

the Degree Bachelor of Science with Distinction in Electrical and Computer

Engineering of The Ohio State University

By

Gerardo Balderas

The Ohio State University

2011

Examination Committee:

Dr. Lee Potter

Dr. Rajiv Ramnath

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KnowledgeBank at OSU

https://core.ac.uk/display/159571809?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

i

ABSTRACT

 Time synchronization is a critical piece of infrastructure for any wireless sensor

network. It is necessary for applications such as audio localization, beam-forming,

velocity calculation, and duplicate event detection. All of which require the coordination

of multiple nodes.

 Recent advances in low-cost, low-power wireless sensors have led to an increased

interest in large-scale networks of small, wireless, low-power sensor nodes. Because of

the more stringent power and cost requirements that this technology is driving, current

time synchronization techniques must be updated to capitalize on these advances.

 One time synchronization method developed specifically for wireless sensor

networks is Reference Broadcast Synchronization. In RBS, a reference broadcast is

transmitted to sensor nodes that require synchronization. Be recording the time of

arrival, nodes can then use those time stamps to synchronize with each other.

 This project aimed to make the RBS system even more robust, energy efficient,

and cost effective by replacing the reference broadcast with an ambient RF signal (FM,

TV, AM, or satellite signals) already prevalent in the environment. The purpose of this

project was to demonstrate the viability of using Opportunistic RF synchronization by 1.)

quantifying error, 2.) applying this synchronization method in a real world application,

ii

and 3.), implementing a wireless sensor network using Android smart phones as sensor

nodes.

 Many of the objectives for the project were successfully completed. For

convenience and economic reasons, an FM signal was chosen as the reference broadcast.

FM Radio Synchronization error was then quantified using local FM Radio stations. The

results of this experiment were very favorable. Using 5 second segments for correlation,

total error was found to be 0.208±4.499µs. Using 3 second segments, average error was

2.33 ± 6.784µs. Using 400ms segments, synchronization error was calculated to be 4.76

± 8.835µs. These results were comparable to sync errors of methods currently in

widespread use.

 It was also shown that Opportunistic RF Synchronization could be used in real

world applications as well. Again FM was the RF signal of choice. FM Radio

Synchronization was tested in an Audio Localization experiment with favorable results.

 Implementation of an Android Wireless Sensor Network according to our

specifications, however, could not be achieved. HTC EVO 4G’s were programmed to

communicate through TCP / IP network connections, record audio with a microphone,

and to record FM Radio streams from the EVO’s internal FM radio. Although recording

these two sources separately as different data tracks was successful, simultaneous

recording of these streams could not be accomplished (simultaneous recording is

essential for Opportunistic RF Synchronization).

iii

 Although the Android smart phone implementation was not a total success, this

project still provided data that supported the practical use of Opportunistic RF

Synchronization.

iv

ACKNOWLEDGEMENTS

I would like to thank my wife Marsha for her love, patience and help in the field. Her

support has always been my inspiration.

I would like to thank and acknowledge Dr. Josh Ash for all of the guidance, patience, and

collaboration he has had with me during this project. I learned much under his wing, and

this project was the reason for the job offer from Intel.

I would like to thank and acknowledge Dr. Lee Potter for his guidance and leadership.

He routinely went out of his way to make sure I was on the “right track.”

Finally I would like to thank and acknowledge Alex Boytim for all of the training and

support he has given me in field work. We collaborated in three data gathering

experiments.

v

VITA

March 10, 1981…………………..……………….Born – Del Rio, TX

1999-2001…………………………………...........Student, U.S. Naval Academy

2008 – present…………………………………….Student, The Ohio State University

FIELDS OF STUDY

Major Field: Electrical and Computer Engineering

vi

TABLE OF CONTENTS

Abstract .. i

Acknowledgements .. iv

Vita .. v

Fields of Study .. v

List of Figures .. viii

1. Introduction ... 1

1.1. Problem .. 1

1.2. Objectives .. 2

2. Background .. 3

2.1. Time Synchronization Error .. 3

2.2. Characteristics of Time Synchronization Methods .. 4

2.3. Reference Broadcast Synchronization ... 6

2.4. Timing-Sync Protocol For Sensor Networks ... 8

3. Wider Impact of Opportunistic RF Synchronization ... 10

4. Opportunistic RF Synchronization Implemented With FM Radio 11

4.1. FM Radio Synchronization Error Experiment ... 13

4.2. Results .. 14

4.3. Discussion .. 15

5. Time Difference of Arrival Localization ... 15

5.1. Localization Application .. 17

5.2. Data .. 18

5.3. Discussion .. 20

6. Implementation Using Android Smart Phones .. 21

6.1. Design Process ... 21

6.2. TCP / IP Module .. 23

6.3. Audio Recording Module .. 24

6.4. FM Radio Recording Module .. 24

vii

6.5. Integration .. 28

7. Conclusion ... 30

IEEE Standards ... 31

Bibliography ... 32

viii

LIST OF FIGURES

Figure 1: Message Uncertainties that contribute to Synchronization Error 4

Figure 2: Example of Reference Broadcast Synchronization ... 7

Figure 3: Example of Timing-Sync Protocol .. 8

Figure 4: Two way communication between nodes ... 9

Figure 5: Example of Opportunistic RF Synchronization using an FM signal from a local

radio station. .. 10

Figure 6: Unsynchronized Nodes (Recorders) with FM Radio Data and a Channel

Recording Signal of Interest ... 12

Figure 7: Synchronized Nodes (Recorders) with FM Radio Data. Notice how L Channels

are “lined up”. This is done by correlation and produces the offset necessary to

synchronize R Channel data.. 12

Figure 8: Experimental Setup for FM Radio Sync Error Analysis 13

Figure 9: Average Time Sync Errors for Local FM Radio Stations. FM Radio

correlations were done with increasing lengths of FM segments. Average calculated with

100 trials.. 14

Figure 10: Diagram of Two Microphones listening to an Audio Source 15

Figure 11: Sensor Node Configuration for TDOA Localization Experiment 17

Figure 12: Layout of Sensor Node and Audio Source Locations. M numbered nodes are

microphones. S numbered nodes are Audio Sources. One sensor node failed in the field.

... 18

Figure 13: Results for TDOA Localization Experiment ... 19

Figure 14: Histogram of Measured TDOA Error using buckets of size 120µs 20

Figure 15: Design Process for OSU Recorder - Audio Localization Application for

Android Smart Phone .. 22

Figure 16: Diagram of Server / Client relationship used by OSU Recorder 23

Figure 17: User Interface for OSU Recorder .. 24

Figure 18: Process Flow for Software Operation of FM Radio implemented in

CyanogenMod v6.0.1 .. 27

Figure 19: - Hardware Block Diagram for BCM4329 - Ports for FM Radio control are at

bottom of figure. ... 28

Figure 20: FM Radio and Audio Architecture within CyanogenMod v6.0.1 29

Figure 21: Checklist of Objectives Successfully Completed .. 30

1

1. INTRODUCTION

1.1. PROBLEM

Time synchronization is a critical piece of infrastructure for any wireless sensor

network. It is used for applications which require the coordination of multiple nodes.

Some applications include audio localization, beam-forming, velocity calculation, and

duplicate event detection. Recent advances in low-cost, low-power wireless sensors have

led to an increased interest in large-scale networks of small, wireless, low-power sensor

nodes. Because of the more stringent power and cost requirements that this technology is

driving, current time synchronization techniques must be updated to capitalize on these

advances.

One time synchronization method in widespread use is called Reference

Broadcast Synchronization (RBS). Sensor nodes implemented by RBS record a portion

of the broadcast signal that is transmitted from a local node. If any action has to be

coordinated between sensor nodes, the reference signal recordings at each node are

compared to each other to find a phase offset. This offset is the time difference needed to

sync two nodes with each other. (Elson, Girod, & Estring, 2002)

Current RBS methods require the creation and propagation of a reference signal to

be used by receivers for time synchronization. The scope of the system is thus limited by

the range of the transmitter. This transmitter not only increases power requirements for

the system, but it also creates an unnecessary foreign signal within the environment.

We propose a novel method that would drive down the power requirements of a

system, increase its scope, and simply its synchronization to single-hop communication.

2

If a signal already present in the environment is used, a system can save on costs and

power by “piggybacking” on its availability. Potential opportunistic signals include FM,

TV, AM, or satellite signals already prevalent in the environment. Using an ambient RF

signal, such as a radio wave, not only exploits the energy of an already existing

transmitter, but it allows the sensor nodes to operate in a completely passive “only when

needed” manner. All “chatter” is eliminated creating a stealthy system, and the passivity

of the system increases the battery efficiency of the nodes.

1.2. OBJECTIVES

The purpose of this project was twofold. The first purpose was to demonstrate the

viability of using a third party ambient RF signal (in this case, from a local FM Radio

station) as a means for time synchronization in a sensor network environment.

The second purpose was to demonstrate the economic and convenient practicality

of using this technique by implementing its use with popular multiple sensor platforms,

Android smart phones.

The HTC EVO 4G, an Android smart phone used in this project, provides a

plethora of sensors which includes an FM radio receiver, GPS receiver, Wi-Fi capability,

Bluetooth capability, light sensor, accelerometer, compass, still / video camera, and a

microphone. What makes the platform even more desirable to work with is that all the

sensors are accessible by a Java API (Application Programming Interface). This not only

simplifies equipment gathering and setup for the researcher, but it allows quick

implementation of a wireless sensor network using nothing but off-the-shelf components.

3

To fulfill this purpose, three objectives were set forth. The first objective of the

project was to quantify the error associated with the FM Radio time synchronization

method. The second objective was to demonstrate the use of this time synchronization

method with a well known wireless sensor network application, audio localization. The

final objective was to design and implement a wireless sensor network composed of

Android smart phones.

2. BACKGROUND

2.1. TIME SYNCHRONIZATION ERROR

The goal of time synchronization is to accurately represent data events from

multiple sensors (or nodes) on one common timeline. This could mean synchronizing the

clocks of nodes to match a global time, or it could mean finding the offsets necessary to

synchronize nodes to a moment in time. Regardless of the time sync method, every data

event can be represented by a time stamp based on the following equation:

����� = ���	� + ���� + ����� (1)

where ����� denotes the measured time of event, which is composed of three

components, ���	�(the true time when the event occurred), ���� (the error introduced

by the synchronization error), and �����(the error introduced by the measurement

method of the application).

Synchronization error is caused by the uncertainties of time that occur when a

sender node sends a time stamp to a receiver node. The error can be broken down into

four components (refer to Figure 1): Send Time, Access Time, Propagation Time, and

Receive Time. (Sivrikaya & Yener, 2004)

4

Figure 1: Message Uncertainties that contribute to Synchronization Error

Send Time: This error comes from time spent to construct the message to be sent.

Uncertainties stem from scheduling within the operating system and from the time

needed to transfer the message to the Network Interface Controller (NIC) for

transmission.

Access Time: Each packet faces some delay at the medium access control (MAC) layer

before actual transmission. The sources of this delay depend on the MAC scheme used,

but some typical reasons for delay are waiting for the channel to be idle or for the time-

division multiple access (TDMA) slot for transmission. (Sivrikaya & Yener, 2004)

Propagation Time: This is the amount of time it takes the message to travel from the

sender to the receiver. In one method of time synchronization, it is assumed that a

reference signal arrives at two sensor nodes at the same time. Because of the finite speed

of the signal, there would be some unknown time difference between the arrivals. This is

also attributed to this type of error.

Receive Time: This error comes from the time spent in decoding the message.

2.2. CHARACTERISTICS OF TIME SYNCHRONIZATION METHODS

In their paper, Sivrikay and Yener presented a broad set of characteristics used to

measure the trade-offs between different synchronization methods. This helps in gauging

5

the benefits of the technique proposed in this project. The metrics are summarized as

follows: (Sivrikaya & Yener, 2004)

Energy efficiency: Energy efficiency is one of the most important metrics for wireless

sensor nodes. Since most nodes are battery powered, great care must be taken so that

unnecessary transmissions between nodes are not made.

Scalability: Most sensor network applications need deployment of a large number of

sensor nodes (some in the thousands). The synchronization method should be just as

proficient with a higher number of nodes as with a few.

Precision: Precision is based on the application that the synchronization method is used.

For some applications, accuracy down to the microsecond is needed whereas other

applications would only require proper ordering of events.

Robustness: Since sensor networks are deployed in the field for long periods of time,

sensor nodes have to survive the elements. The synchronization method should continue

working even if a few sensor nodes become inoperable.

Lifetime: This requirement describes how long two nodes stay synchronized together

after a time synchronization is done.

Scope: Scope describes the end result of synchronization and whether it is for a few local

nodes or all the nodes in a topology. Some methods synchronize a global clock that all

other nodes synchronize to. In other cases, finding time offsets and working with relative

times is desired instead.

6

Cost and size: Sensor nodes are becoming smaller and more inexpensive. Therefore, it

might be unrealistic to attach relatively large or expensive hardware (such as a GPS

receiver) to a cheap device. The synchronization method should be economically viable

as well.

Immediacy: Immediacy describes how quickly synchronization has to be processed. In

some cases, a data event needs to be processed so quickly that the nodes should be pre-

synchronized. (Sivrikaya & Yener, 2004)

 With these requirements defined, a quick survey of current time synchronization

techniques can now be better understood.

2.3. REFERENCE BROADCAST SYNCHRONIZATION

 Reference Broadcast Synchronization (RBS) was designed specifically for

Wireless Sensor Networks. Rather than synchronize nodes in the sender – receiver

traditional fashion, RBS was designed to reduce a large portion of message error (refer to

Figure 1) by eliminating the uncertainty of the sender and access time.

 In RBS, one node transmits a reference signal (pulse) to two nodes in the

surrounding area (refer to

time based on its internal clock. The two recei

other. The difference between the two is considered

the two. (Roche, 2006)

Figure

 Since the reference signal is an RF signal, it is assumed that the reference signal

arrives at both nodes at the same time. This is considered a propagation time error, but

for short distances (< 300m), it is

 RBS has high precision, good energy efficiency, and good robustness. Scalability

and scope become an issue with bigger topologies as multiple reference signal

7

In RBS, one node transmits a reference signal (pulse) to two nodes in the

surrounding area (refer to Figure 2). Upon receiving this pulse, each receiver records the

time based on its internal clock. The two receivers then transmit their timestamps to the

other. The difference between the two is considered the offset necessary to synchronize

Figure 2: Example of Reference Broadcast Synchronization

Since the reference signal is an RF signal, it is assumed that the reference signal

arrives at both nodes at the same time. This is considered a propagation time error, but

t distances (< 300m), it is negligible. (Elson, Girod, & Estring, 2002)

RBS has high precision, good energy efficiency, and good robustness. Scalability

and scope become an issue with bigger topologies as multiple reference signal

In RBS, one node transmits a reference signal (pulse) to two nodes in the

). Upon receiving this pulse, each receiver records the

vers then transmit their timestamps to the

the offset necessary to synchronize

Since the reference signal is an RF signal, it is assumed that the reference signal

arrives at both nodes at the same time. This is considered a propagation time error, but

(Elson, Girod, & Estring, 2002)

RBS has high precision, good energy efficiency, and good robustness. Scalability

and scope become an issue with bigger topologies as multiple reference signal

transmitters are needed. RBS

environments which occur

2.4. TIMING-SYNC PROTOCOL

 Timing-Sync Protocol

method based on Network Time Protocol

Sensor Networks. Like NTP, sensor nodes synchronize by sender

communications. To reduce the power drain from all of these communications, sensor

nodes are assigned numbers

root node.

 This occurs during the

level_discovery packet to the nearest nodes. This packet contains the level of

When other nodes receive the packet, they are then assigned the next number as a level.

Those nodes then send a new level_discovery packet to their neighbors. The process

repeats until all nodes are assigned a level. (

8

transmitters are needed. RBS solutions become more complicated for multi

environments which occur as the topology is expanded. (Elson, Girod, & Estring, 2002)

SYNC PROTOCOL FOR SENSOR NETWORKS

Sync Protocol for Sensor Networks (TPSN) is a time synchroniza

method based on Network Time Protocol (NTP) specifically geared towards Wireless

Like NTP, sensor nodes synchronize by sender-receiver

communications. To reduce the power drain from all of these communications, sensor

numbers based on a hierarchy of levels starting with the 0 level, or the

This occurs during the Discovery Phase. The root node (selected first) transmits a

level_discovery packet to the nearest nodes. This packet contains the level of

When other nodes receive the packet, they are then assigned the next number as a level.

Those nodes then send a new level_discovery packet to their neighbors. The process

repeats until all nodes are assigned a level. (Refer to Figure 3)

Figure 3: Example of Timing-Sync Protocol

for multi-hop

(Elson, Girod, & Estring, 2002)

is a time synchronization

specifically geared towards Wireless

receiver

communications. To reduce the power drain from all of these communications, sensor

based on a hierarchy of levels starting with the 0 level, or the

Discovery Phase. The root node (selected first) transmits a

level_discovery packet to the nearest nodes. This packet contains the level of the sender.

When other nodes receive the packet, they are then assigned the next number as a level.

Those nodes then send a new level_discovery packet to their neighbors. The process

9

 During the Synchronization Phase, offsets between nodes are calculated as

illustrated in Figure 4. Node A emits a synchronization_pulse to Node B. The packet

contains a time stamp (T1) of its sending time. When Node B receives the message, the

node records a timestamp (T2) and then sends back a new packet with a new timestamp,

T1, and T2. When Node A receives the message, it then uses all four time stamps to find

the offset necessary for Node A to synchronize with Node B.

 The root node initiates this whole process by emitting a timing_pulse. This pulse

tells all of the lower nodes to synchronize with the root node. After 2-way messaging is

complete, level 2 nodes communicate with level 1 nodes to synchronize. The process

repeats until all nodes are synchronized. (Ganeriwal, Kumar, & Srivastava, November 5-

7, 2003)

Figure 4: Two way communication between nodes

 TPSN was designed as a multi-hop solution, so it can span very large topologies.

It has the greatest scope (all nodes synchronized to a global clock), good scalability, good

lifetime, and is argued by Ganeriwal to have better precision than Reference Broadcast

Synchronization. By applying time stamps in the MAC (Medium Access Control) level

of hardware rather than the

1) are reduced to negligible amounts. Unfortunately the trade off is energy efficiency

system complication, and some robustness.

require a new Level Discovery phase to be executed.

3. WIDER IMPACT OF

Figure 5: Example of Opportunistic RF

Opportunistic RF

key differences. In an RBS system, t

the transmitter being used for the reference broadcast. By using a 3

however, the scope of the system can theoretically be increased for miles for

economic (FM receivers for each

10

Synchronization. By applying time stamps in the MAC (Medium Access Control) level

of hardware rather than the software level, sender and receiver error times (refer to

duced to negligible amounts. Unfortunately the trade off is energy efficiency

and some robustness. A loss of a few key sensor nodes would

Discovery phase to be executed.

WIDER IMPACT OF OPPORTUNISTIC RF SYNCHRONIZATION

Opportunistic RF Synchronization using an FM signal from a local radio station.

 Synchronization operates much like RBS except there are a few

In an RBS system, the scope of the network is limited by the range of

the transmitter being used for the reference broadcast. By using a 3rd party transmitter,

however, the scope of the system can theoretically be increased for miles for

economic (FM receivers for each node are inexpensive) and minimum power costs.

Synchronization. By applying time stamps in the MAC (Medium Access Control) level

level, sender and receiver error times (refer to Figure

duced to negligible amounts. Unfortunately the trade off is energy efficiency,

A loss of a few key sensor nodes would

RONIZATION

using an FM signal from a local radio station.

Synchronization operates much like RBS except there are a few

he scope of the network is limited by the range of

party transmitter,

however, the scope of the system can theoretically be increased for miles for low

power costs. With

11

this increased scope also comes simplicity. Compared with TPSN, the wider range of

powerful ambient RF signals would allow a simpler implementation of large scale

networks. The time synchronization in a wireless sensor network could easily become a

single-hop operation.

The second key difference comes from the reference itself. Rather than a short

pulse broadcast, an FM radio tower offers the luxury of a continuous broadcast 24 hours a

day / 7 days a week. This increases the passivity and the immediacy of the system by

allowing it to synchronize data exactly when an event of significance occurs.

4. OPPORTUNISTIC RF SYNCHRONIZATION IMPLEMENTED WITH FM

RADIO

Opportunistic RF Synchronization is accomplished with nodes by correlating their

reference broadcast recording with the reference broadcast recordings of other nodes.

Since FM radio is prevalent in America and FM receivers are inexpensive, an FM radio

signal is a practical choice for an RF reference.

In the following example, a sensor node is represented by a dual-channel recorder.

The Left (L) channel is designated for the reference broadcast while the Right (R)

channel is reserved for any signals of interest. This example pertains to an audio

application, but Opportunistic RF Synchronization can be used with many other sensors.

The only requirement is that an RF signal must be recorded at every node while the event

of significance is recorded / time stamped.

When a data event occurs, a small snippet of the FM Radio broadcast is recorded

and saved to the L Channel of a recorder. This is done for both sensors (refer to Figure

6). To synchronize the two nodes, a time offset has to be calculated. This is done by

correlation of the L Channel data (refer to

used to synchronize the data events recorded by the R Channel

Figure 6: Unsynchronized Nodes (Recorders) with FM Radio Data

Figure 7: Synchronized Nodes (Recorders) with FM Radio Data. Notice how L Channels are “lined up”. This is

done by correlation and produces the offset necessary to synchronize R Chan

12

). To synchronize the two nodes, a time offset has to be calculated. This is done by

of the L Channel data (refer to Figure 7). The time offset produced is then

the data events recorded by the R Channels.

: Unsynchronized Nodes (Recorders) with FM Radio Data and a Channel Recording Signal of Interest

: Synchronized Nodes (Recorders) with FM Radio Data. Notice how L Channels are “lined up”. This is

done by correlation and produces the offset necessary to synchronize R Channel data.

). To synchronize the two nodes, a time offset has to be calculated. This is done by

. The time offset produced is then

and a Channel Recording Signal of Interest

: Synchronized Nodes (Recorders) with FM Radio Data. Notice how L Channels are “lined up”. This is

nel data.

4.1. FM RADIO SYNCHRONIZA

The following experiment

was conducted to quantify the error associated with FM Radio synchronization. It

conducted with two Audio MicroTrack II Portable Digital 2 Track Recorder

FM radios and a function generator.

was generated and simultaneously recorded

common reference was gene

Right Channel of each recorder.

arrived at both recorders at the exact same instant, correlating the two R Channel audio

tracks with each other would produce the time offset necessary for time synchronization.

(Patwari, Ash, Kyperountas, Hero III, Moses, & Correal, 2005)

Figure 8

 At the same time, FM r

recorders. In the ideal situation, the time

correlation and from Left Channel correlation would

found between the two offsets was

13

FM RADIO SYNCHRONIZATION ERROR EXPERIMENT

The following experiment (refer to Figure 8 for diagram of experimental setup)

was conducted to quantify the error associated with FM Radio synchronization. It

Audio MicroTrack II Portable Digital 2 Track Recorder

FM radios and a function generator. To measure the error, a common reference signal

generated and simultaneously recorded (48000 sample rate) by both

generated as a 10 VPP random signal which was

Right Channel of each recorder. This acted as the control variable. Since the same signal

arrived at both recorders at the exact same instant, correlating the two R Channel audio

with each other would produce the time offset necessary for time synchronization.

(Patwari, Ash, Kyperountas, Hero III, Moses, & Correal, 2005)

8: Experimental Setup for FM Radio Sync Error Analysis

At the same time, FM radio audio data was fed to the Left Channels of the

recorders. In the ideal situation, the time offsets calculated from Right Channel

from Left Channel correlation would both be the same. The difference

offsets was the time synchronization error.

T

of experimental setup)

was conducted to quantify the error associated with FM Radio synchronization. It was

Audio MicroTrack II Portable Digital 2 Track Recorders, two Sanyo

common reference signal

 recorders. The

rated as a 10 VPP random signal which was fed into the

This acted as the control variable. Since the same signal

arrived at both recorders at the exact same instant, correlating the two R Channel audio

with each other would produce the time offset necessary for time synchronization.

Left Channels of the

calculated from Right Channel

both be the same. The difference

14

4.2. RESULTS

Matlab was used to gather and analyze the data for the experiment. Left Channel

Data for both recorders was correlated to produce a time offset for time synchronization.

The same was done with Right Channel data for both recorders. The two offsets

calculated were then compared with each other to find the time difference or sync error.

The correlation command used to do this (xcorr) returned results based on samples. The

sample rate for all of the data recorded was consistent at 48000 samples per second.

Many local radio stations were tested at differing lengths of FM Radio segments. For

convenience sake, the error results in Figure 9 were converted from samples to time

(microseconds). Each average was calculated with 100 trials.

Figure 9: Average Time Sync Errors for Local FM Radio Stations. FM Radio correlations were done with

increasing lengths of FM segments. Average calculated with 100 trials.

0

1

2

3

4

5

6

0 1 2 3 4 5

A
v

e
ra

g
e

 S
y

n
c

E
rr

o
r

(µ
s)

Length of FM Segment (s)

Average Time Sync Errors for Local FM Radio

Stations

89.9FM Noise

90.5FM Talk Radio

92.3FM Country

96.3FM Rock

99.7FM Rock

105.7FM Classic Rock

4.3. DISCUSSION

 The results of this experiment were very favorable. Average errors were

calculated to be less than 5

for correlation, total error was found to be 0

average error was -2.33 ±

calculated to be -4.76 ± 8.835

can readily see that FM Radio Synchronization is a viable synchronization method.

Elson showed that in a user

11Mbit 802.11 network)

timestamps were used instead, performance of RBS improved to 1.85

results are still very comparable to

5. TIME DIFFERENCE OF ARRI

Figure 10: Diagram of Two Microphones listening to an Audio Source

 Time Difference of Arrival

the direction (one microphone pair) or the

audio source (refer to Figure

uses the measured time differences for all combinations of local microphone pairs which

15

this experiment were very favorable. Average errors were

calculated to be less than 5µs for segments greater than 400ms. Using 5 second segments

total error was found to be 0.208±4.499µs. Using 3 second segments,

± 6.784µs. Using 400ms segments, synchronization error was

8.835µs. Comparing this to error results calculated by Elson, we

can readily see that FM Radio Synchronization is a viable synchronization method.

Elson showed that in a user-space implementation (he used two Compaq IPAQs using an

) that RBS produced an error of 6.29 ± 6.45µs. When kernel

timestamps were used instead, performance of RBS improved to 1.85 ± 1.28

very comparable to our results. (Elson, Girod, & Estring, 2002)

E DIFFERENCE OF ARRIVAL LOCALIZATION

: Diagram of Two Microphones listening to an Audio Source

Time Difference of Arrival (TDOA) Localization is a method which can estimate

direction (one microphone pair) or the coordinates (multiple microphone pairs)

Figure 10) by using a least squares cost function. This function

uses the measured time differences for all combinations of local microphone pairs which

this experiment were very favorable. Average errors were

. Using 5 second segments

3 second segments,

Using 400ms segments, synchronization error was

Comparing this to error results calculated by Elson, we

can readily see that FM Radio Synchronization is a viable synchronization method.

Compaq IPAQs using an

s. When kernel

1.28µs. These

(Elson, Girod, & Estring, 2002)

: Diagram of Two Microphones listening to an Audio Source

Localization is a method which can estimate

(multiple microphone pairs) of an

by using a least squares cost function. This function

uses the measured time differences for all combinations of local microphone pairs which

16

have recorded the audio source signal. (Patwari, Ash, Kyperountas, Hero III, Moses, &

Correal, 2005)

 In Figure 10 the time of arrival calculated at M1 for the signal emitted by S can be

represented by the following equation:

����� =
‖����‖

�
+ �� (2)

where:

 �� = emission time of Audio Source

� = vector representing position of Audio Source

��= vector representing position of microphone 1

� = speed of sound

 Notice that the Time of Arrival is simply the sum of the emission time and the

propagation time from source to sensor. The Time of Arrival at microphone 2 is

calculated similarly.

����� =
‖����‖

�
+ �� (3)

 By taking the difference between both Time of Arrivals, �� is then cancelled.

TDOA for any two microphones can then be represented by the following equation:

������ = ����� − ����� =
‖� ��‖

�
−

!�"��!

�
 (4)

 This equation is then applied to a least squares cost function:

�# =

where:

�# = Estimated Audio Source Position

$�� = measured time difference between microphone

������ = expected time difference between microphone

5.1. LOCALIZATION APP

The following experiment was conducted to demonstrate the use of

RF Synchronization in a real world application of wireless sensor networks, audio

localization. In this experiment, the

by using five sensor nodes.

11.

Figure 11: Sensor Node Configuration for TDOA Localization Experiment

Each recorder was connected to its

Radio. FM Radio data was fed into the Left channel of recorder while

was fed into the Right channel of the recorder.

locations (refer to Figure

gunshot blasts by clapping

17

= arg min ∑ ������� − $����
�� (5)

= Estimated Audio Source Position

measured time difference between microphone i and microphone j

expected time difference between microphone i and microphone

LOCALIZATION APPLICATION

The following experiment was conducted to demonstrate the use of

Synchronization in a real world application of wireless sensor networks, audio

In this experiment, the location of a pre-defined audio source

sensor nodes. Each sensor node was configured as represented by

: Sensor Node Configuration for TDOA Localization Experiment

was connected to its own microphone and to its own FM Sanyo

FM Radio data was fed into the Left channel of recorder while microphone

was fed into the Right channel of the recorder. Recorders were then set out at preset

Figure 12). At each source location, the experimenter

by clapping two pieces of plywood together in 5 second intervals.

and microphone j

The following experiment was conducted to demonstrate the use of Opportunistic

Synchronization in a real world application of wireless sensor networks, audio

defined audio source was estimated

Each sensor node was configured as represented by Figure

: Sensor Node Configuration for TDOA Localization Experiment

its own FM Sanyo

microphone data

were then set out at preset

 simulated

second intervals. This

was done at each location 30 times. After the experiment, all .wav files recorded were

downloaded to a computer for post processing by Matlab.

Figure 12: Layout of Sensor Node and Audio Source Locations. M numbered nodes are microphones. S

numbered nodes are Audio Sources.

5.2. DATA

 Using Matlab, the TDOA’s for all combinations of microphone pairs were

measured for each clap. Correlations were taken from both L Channel and R Channel

tracks to find the measured time difference between microphones.

$

where:

,�= Right Channel Data for node

-�= Left Channel Data for node

sRate = sample rate of data track (48000 samples / second)

18

was done at each location 30 times. After the experiment, all .wav files recorded were

a computer for post processing by Matlab.

: Layout of Sensor Node and Audio Source Locations. M numbered nodes are microphones. S

numbered nodes are Audio Sources. One sensor node failed in the field.

ab, the TDOA’s for all combinations of microphone pairs were

Correlations were taken from both L Channel and R Channel

tracks to find the measured time difference between microphones.

$�� =
./001�2,�45�./00162,645

7�89:
 (6)

= Right Channel Data for node i

= Left Channel Data for node i

sRate = sample rate of data track (48000 samples / second)

was done at each location 30 times. After the experiment, all .wav files recorded were

: Layout of Sensor Node and Audio Source Locations. M numbered nodes are microphones. S

One sensor node failed in the field.

ab, the TDOA’s for all combinations of microphone pairs were

Correlations were taken from both L Channel and R Channel

 These measurements were then used

estimate of the audio source. Those results can be seen in

Figure

19

These measurements were then used in the least squares cost functio

estimate of the audio source. Those results can be seen in Figure 13.

Figure 13: Results for TDOA Localization Experiment

in the least squares cost function to find an

Figure 14: Histogram of Measured TDOA Error

5.3. DISCUSSION

 As can be seen from

microphone topology, estimates

Kyperountas, Hero III, Moses, & Correal, 2005)

(average temperature for Columbus, OH was 53.9

for the speed of sound. Mean error was

was 0.002s. When applying

the standard deviation from the synchronization error

the error can be seen being contributed by

20

: Histogram of Measured TDOA Error using buckets of size 120

As can be seen from Figure 13, the results were also very favorable.

microphone topology, estimates fell within expected thresholds. (Patwari, Ash,

Kyperountas, Hero III, Moses, & Correal, 2005) Based on temperature estimates

(average temperature for Columbus, OH was 53.9 ˚F), a value of 338.599 m/s was used

for the speed of sound. Mean error was 0.63052 ms while the standard deviation for error

When applying the standard deviation from this experiment to

the standard deviation from the synchronization error ���� to Equation 6

can be seen being contributed by �����. (Because of the small distances

using buckets of size 120µs

very favorable. Based upon

(Patwari, Ash,

Based on temperature estimates

338.599 m/s was used

ms while the standard deviation for error

from this experiment to ��;��6 and

6, the majority of

(Because of the small distances

21

between sensor nodes, any propagation delay error would equate to the tenths of a

microsecond and is considered negligible compared to ��;��6)

��;��6 = ���� + ����� (6)

2.0ms = 0.0068ms + �����

�����=1.993ms >> ����

 This further validates the use of Opportunistic RF Synchronization and shows that

any error found is negligible compared to measurement error. Encouraged by these

results, the next phase of the project was undertaken.

6. IMPLEMENTATION USING ANDROID SMART PHONES

6.1. DESIGN PROCESS

 The vision for the Android implementation was to have a wireless sensor network

composed of Android mobile phones as sensor nodes. To achieve this, two objectives

were set forth at the beginning of the design process (refer to Figure 15). First, the smart

phones needed the capability to be controlled remotely by a master program installed on a

laptop. Second, the phones had to record audio and FM radio simultaneously onto

separate audio tracks. The phone was required to place all recorded mono audio data into

the R Channel of a .wav file and it had to place all recorded FM radio data into the L

Channel of a .wav file.

Figure 15: Design Process for OSU Recorder

 To proceed with this type of implementation, the development portion of the

project was divided up into three phases. Each phase or module would be programmed

using the Android Java API (if possib

application called OSU Recorder

Remote Control Socket support for the program. The second phase was the development

of the Audio Recording Module. This m

recording capability of the project. The last phase was programming the FM Radio

Recording Module. This mo

there wasn’t any direct programming access (Java API

Android Operating System) to any recording capabilities of the FM Radio.

modules were completed, integration and testing would then have commenced.

22

: Design Process for OSU Recorder - Audio Localization Application for Android Smart Phone

To proceed with this type of implementation, the development portion of the

project was divided up into three phases. Each phase or module would be programmed

using the Android Java API (if possible) and all three would be integrated into a single

application called OSU Recorder. The first module was the development of TCP/IP

Socket support for the program. The second phase was the development

of the Audio Recording Module. This module was responsible for the microphone

recording capability of the project. The last phase was programming the FM Radio

Recording Module. This module was known to be more difficult to develop because

there wasn’t any direct programming access (Java API encapsulates internal functions of

Android Operating System) to any recording capabilities of the FM Radio.

modules were completed, integration and testing would then have commenced.

Audio Localization Application for Android Smart Phone

To proceed with this type of implementation, the development portion of the

project was divided up into three phases. Each phase or module would be programmed

and all three would be integrated into a single

. The first module was the development of TCP/IP

Socket support for the program. The second phase was the development

the microphone

recording capability of the project. The last phase was programming the FM Radio

dule was known to be more difficult to develop because

encapsulates internal functions of

Android Operating System) to any recording capabilities of the FM Radio. After all

modules were completed, integration and testing would then have commenced.

6.2. TCP / IP MODULE

Figure 16: Diagram

The TCP/IP Module was

(laptop) computer and a client android device. The TCP/IP Module had two components.

Server side software created a unique thread

each mobile device. Server sockets allow

and the mobile devices. The client side software (installed on the phone) automatically

attempted to connect to a default I

IP address as well. Once a client connected to the server, the serve

control the recording capabilities of the devices

Java API.

23

TCP / IP MODULE

: Diagram of Server / Client relationship used by OSU Recorder

The TCP/IP Module was responsible for communication between

a client android device. The TCP/IP Module had two components.

Server side software created a unique thread that opened a server socket connection

each mobile device. Server sockets allowed data transmission between the server (laptop)

The client side software (installed on the phone) automatically

to a default IP address. The user also had the option of changing the

IP address as well. Once a client connected to the server, the server could

control the recording capabilities of the devices. Implementation was completed using

of Server / Client relationship used by OSU Recorder

responsible for communication between the server

a client android device. The TCP/IP Module had two components.

that opened a server socket connection for

data transmission between the server (laptop)

The client side software (installed on the phone) automatically

. The user also had the option of changing the

could remotely

. Implementation was completed using

6.3. AUDIO RECORDING

The Audio Recording Module was

audio data using the microphone built into the m

Interface (GUI) (refer to Figure

push of a button. OSU Recorder would store

.WAV formatted file for data analysis.

API.

6.4. FM RADIO RECORDING M

 The FM Radio Recording Module proved to be the most difficult part of the

design process. This module was responsible for recording an FM radio signal into the R

Channel of a .wav file. Since the Java API use

24

AUDIO RECORDING MODULE

Figure 17: User Interface for OSU Recorder

The Audio Recording Module was the segment of code responsible for capturing

audio data using the microphone built into the mobile device. First a Graphical User

Figure 17) was developed to allow the user to record audio at the

push of a button. OSU Recorder would store the audio as raw PCM data

WAV formatted file for data analysis. Implementation was completed u

FM RADIO RECORDING MODULE

The FM Radio Recording Module proved to be the most difficult part of the

design process. This module was responsible for recording an FM radio signal into the R

Since the Java API used by HTC to control the radio was

responsible for capturing

obile device. First a Graphical User

) was developed to allow the user to record audio at the

audio as raw PCM data written to a

Implementation was completed using the Java

The FM Radio Recording Module proved to be the most difficult part of the

design process. This module was responsible for recording an FM radio signal into the R

d by HTC to control the radio was

25

insufficient for recording, a more in depth look at the FM radio process of the HTC EVO

4G was needed.

 The FM Radio capability of the HTC EVO 4G comes from the Broadcom

BCM4329 integrated chip. This chip is responsible for Bluetooth, Wi-Fi, and FM Radio

capabilities. (See Figure 19) At the highest level, the FM Radio is controlled through a

program called HTCFMRadio.apk, a system application preinstalled on the mobile

device. Files with an .apk extension are Android's version of a Java .jar file.

HTCFMRadio.apk was written in Java, but the program acted as a "wrapper" program

that simply called corresponding functions programmed in C, otherwise known as

“native” code. (For a better idea of the Android OS Architecture, refer to Figure 20)

 Even though Android was purported to be an open source platform, Google still

gave 3rd party developers the ability to “hide” their code as compiled .so library files

located within the Android framework. Since these files were HTC proprietary files, no

source code was available to the public. On top of this no instruction set was publically

available for the BCM4329. Getting access to the audio stream produced by the

BCM4329 seemed like an impossibility. (Disassembling .so binary files by hand did not

seem a practical solution.)

 Fortunately, a solution was paved by the MIUI developer group, a hacker team

dedicated to open source implementation of the MIUI ROM. ROM stands for “Read

Only Memory”, but in regards to Android development, a ROM is a custom version of

the Android Operating System. They are very popular within the Android community

because they personalize the user experience, and at times unlock features that are not

26

implemented or supported by commercial developers. The MIUI group modified an

existing FM Radio program called FM.apk so that it could work with the BCM4325 (the

predecessor to the BCM4329). FM.apk called its own open-source version of native

code. Because of this source code, rudimentary access to radio functions within the

BCM4329 became available. Unfortunately the MIUI ROM was in Chinese, but the

program and code was quickly ported over to an American based MOD, CyanogenMOD.

After installing CyanogenMOD and downloading the source code for the CyanogenMOD

build, the FM Radio was open for study and manipulation.

 In likewise fashion as the HTC versions, FM.apk acted as a "wrapper" program

that called java methods in package android.hardware.fmradio. This package in turn

called functions programmed in native code (C++) located in a library filed named

AndroidRuntime.so. This library file was responsible for runtime operations and 3rd

party implementations of hardware.

 AndroidRuntime.so was compiled from Android_Runtime.cpp and a multitude of

other C++ files. One of those files was android_hardware_fm.cpp. This file was

responsible for the low-level commands that controlled the BCM4329 chip. In essence,

AndroidRuntime.so was used to translate high level queries made by the user to low-level

commands used by the HCI and I2s/PCM ports of the BCM4329 (Refer to Figure 8).

Figure 18: Process Flow for Software Operation of FM Radio implemented in CyanogenMod v6.0.1

 Because of the complete

System framework (thanks to

that the AudioRecord Java API could access FM Radio output as a recording input.

was done by following the chain of software beginning from the AudioRecord API down

to the Audio Hardware Interface (refer to

references to the microphone of a connected headset. Since FM Radio on the H

4G requires a headset to act as an antenna, the idea was to trick the software into thinking

that a headset with a microphone was attached to the mobile device

microphone was connected). With these tweaks, FM Radio recording was a s

27

for Software Operation of FM Radio implemented in CyanogenMod v6.0.1

complete access to the infrastructure of the Android Operating

thanks to CyanogenMOD), changes were then made to the files so

that the AudioRecord Java API could access FM Radio output as a recording input.

y following the chain of software beginning from the AudioRecord API down

to the Audio Hardware Interface (refer to Figure 20) and enabling all recording

references to the microphone of a connected headset. Since FM Radio on the H

4G requires a headset to act as an antenna, the idea was to trick the software into thinking

microphone was attached to the mobile device (even though no

microphone was connected). With these tweaks, FM Radio recording was a s

for Software Operation of FM Radio implemented in CyanogenMod v6.0.1

access to the infrastructure of the Android Operating

made to the files so

that the AudioRecord Java API could access FM Radio output as a recording input. This

y following the chain of software beginning from the AudioRecord API down

) and enabling all recording

references to the microphone of a connected headset. Since FM Radio on the HTC Evo

4G requires a headset to act as an antenna, the idea was to trick the software into thinking

(even though no

microphone was connected). With these tweaks, FM Radio recording was a success!

28

Figure 19: - Hardware Block Diagram for BCM4329 - Ports for FM Radio control are at bottom of figure.

6.5. INTEGRATION

 After months of researching (the majority for FM Radio recording), all three

components were finally completed. Integration was finally attempted. Unfortunately

integration proved to be an impassable roadblock. The Android Operating System runs a

service called AudioFlinger which directs all streaming inputs and outputs within the

mobile device (refer to Figure 20 for Android Audio Architecture).

Figure 20: FM Radio and Audio Architecture

 The Audio Flinger service controls multiple streams of output simultaneously, but

the Android developers placed code in AudioFlinger.cpp which prevented more than one

instance of an AudioRecord class from recording. The code was commented out and

simultaneous recording was attempted anyway. Unfortunately, either one stream or the

other would record, but not both simultaneously. After further research the task was

deemed too cumbersome (multithreaded programming was essentially needed

buffer could alternately record FM Radio and audio

29

: FM Radio and Audio Architecture within CyanogenMod v6.0.1

The Audio Flinger service controls multiple streams of output simultaneously, but

droid developers placed code in AudioFlinger.cpp which prevented more than one

instance of an AudioRecord class from recording. The code was commented out and

simultaneous recording was attempted anyway. Unfortunately, either one stream or the

d record, but not both simultaneously. After further research the task was

deemed too cumbersome (multithreaded programming was essentially needed

buffer could alternately record FM Radio and audio) given the time constraints.

CyanogenMod v6.0.1

The Audio Flinger service controls multiple streams of output simultaneously, but

droid developers placed code in AudioFlinger.cpp which prevented more than one

instance of an AudioRecord class from recording. The code was commented out and

simultaneous recording was attempted anyway. Unfortunately, either one stream or the

d record, but not both simultaneously. After further research the task was

deemed too cumbersome (multithreaded programming was essentially needed so that the

) given the time constraints.

7. CONCLUSION

Figure

 Many of the objectives for the project were successfully completed (refer to

Figure 21). FM Radio Synchronization error was quantified.

length used for time synchronization, sync error ranged from 5

1µs (5 second lengths). These results supported the use of Opportunistic RF

Synchronization.

 It was also shown that FM Radio Synchronization could be used in real world

applications with accuracy. FM Radio Synchronization was

Localization experiment composed of five sensor nodes and three audio sources. The

results were also favorable (refer to

 Implementation of an Android Wireless Sensor Network according to our

specifications could not be achieved, however. Developing a TCP/IP Socket Remote

Control module, an Audio Recording Module, and an FM Radio Recording Module were

all successful, but integration could not be completed. Unfortunately, either one stream

30

igure 21: Checklist of Objectives Successfully Completed

Many of the objectives for the project were successfully completed (refer to

). FM Radio Synchronization error was quantified. Depending on the segment

length used for time synchronization, sync error ranged from 5µs (400 ms) to less than

These results supported the use of Opportunistic RF

shown that FM Radio Synchronization could be used in real world

applications with accuracy. FM Radio Synchronization was used in an Audio

Localization experiment composed of five sensor nodes and three audio sources. The

results were also favorable (refer to Figure 13).

tation of an Android Wireless Sensor Network according to our

ications could not be achieved, however. Developing a TCP/IP Socket Remote

Control module, an Audio Recording Module, and an FM Radio Recording Module were

all successful, but integration could not be completed. Unfortunately, either one stream

Many of the objectives for the project were successfully completed (refer to

g on the segment

s (400 ms) to less than

These results supported the use of Opportunistic RF

shown that FM Radio Synchronization could be used in real world

used in an Audio

Localization experiment composed of five sensor nodes and three audio sources. The

tation of an Android Wireless Sensor Network according to our

ications could not be achieved, however. Developing a TCP/IP Socket Remote

Control module, an Audio Recording Module, and an FM Radio Recording Module were

all successful, but integration could not be completed. Unfortunately, either one stream

31

or the other would record, but not both simultaneously. After further research the task

was deemed too difficult and cumbersome given the time constraints.

 Although the end goal of Android implementation was not reached, results clearly

showed the viability of using Opportunistic RF Synchronization. It is not only cost

effective, but the accuracy of the system is comparable with other techniques currently in

use.

IEEE STANDARDS

The BCM4329 comes equipped with Wi-Fi, Bluetooth, and FM receiver, all compliant

with IEEE standards.

32

BIBLIOGRAPHY

Elson, J. (2003). Time Synchronization in Wireless Sensor Networks. PhD Thesis,

University of California, Los Angeles.

Elson, J., Girod, L., & Estring, D. (2002). Fine-grained network time synchronization

using reference broadcasts. ACM SIGOPS Operating Systems Review - OSDI '02:

Proceedings of the 5th symposium on Operating systems design and implementation , 36

(SI), 147 - 163.

Ganeriwal, S., Kumar, R., & Srivastava, M. B. (November 5-7, 2003). Timing-sync

protocol for sensor networks. SenSys '03: Proceedings of the 1st international conference

on Embedded networked sensor systems. Los Angeles: ACM.

Kirkwood, B. (2003). Acoustic Source Localization Using Time-Delay Estimation. M.Sc.

thesis, Technical University of Denmark, Denmark.

Patwari, N., Ash, J., Kyperountas, S., Hero III, A., Moses, R., & Correal, N. (2005).

Locating the nodes: cooperative localization in wireless sensor networks. IEEE Signal

Processing Magazine , 22 (4), pp. 54–69.

Roche, M. (2006, April 23). Time Synchronization in Wireless Networks. Retrieved May

11, 2011, from CSE574S: Advanced Topics in Networking: Wireless and Mobile

Networking (Spring 2006) Website

Sivrikaya, F., & Yener, B. (2004). Time Synchronization in Sensor Networks: A Survey.

IEEE Network , 18 (4), 45-50.

