Predictive Analytics of Phosphoproteins in Breast Cancer Cells

Stephen Obol Opiyo

Molecular and Cellular Imaging Center – Columbus, Ohio Agricultural Research and Development Center

Abstract

Cells respond to their environment by activating signaling networks that trigger processes such as growth, survival, apoptosis (cell death), and migration. Post-translational modifications, notably phosphorylation, play a key role in signaling. In cancer cells, signaling networks frequently become compromised, leading to abnormal behaviors and responses to external stimuli. Advancing our understanding of how these networks are deregulated across cancer cells will ultimately lead to more effective treatment strategies for patients. There is an urgent need for computational approaches that can characterize causal signaling networks using data acquired in a specific background or context of interest. There is also a need to address the related task of predicting dynamical trajectories in specific contexts and under specific perturbations. In the Dialogue on Reverse Engineering Assessment and Methods (DREAM) challenge 8, participants were given breast cancer data and asked to use the data to build models that can predict trajectories of protein levels following inhibitor perturbation(s) not included in the training data. Data were acquired under 8 stimuli (Serum, PBS, EGF, Insulin, FGF1, HGF, NRG1, IGF1), and inhibition of network nodes by one of 3 inhibitors (AKT, [AKT + MEK], [FGFR1, FGFR3]) or DMSO vehicle control (cells were serum-starved and pre-treated with inhibitor prior to ligand stimulation). The experiment was carried out on 4 breast cancer cell lines (MCF7, UACC812, BT20, and BT549), with abundance of ~45 phosphoproteins measured at 7 time points post-stimulus. This poster presents the results of the predictions using multivariate statistic (partial least squares regression), compared to other methods.

Objective

The objective is to build dynamical models that can predict trajectories of phosphoproteins. An important emphasis is on the ability of models to generalize beyond the training data by predicting trajectories under perturbations not included in the training data.

Materials and Methods

Experimental breast cancer proteomic data

Dataset was generated using Reverse Phase Protein Array (RPPA) quantitative proteomics technology. The experiment design is shown in Figure 1.

- Data were acquired under 8 stimuli (Serum, PBS, EGF, Insulin, FGF1, HGF, NRG1, IGF1)
- Inhibition by one of 3 inhibitors (AKT, [AKT + MEK], [FGFR1, FGFR3])
- 4 breast cancer cell lines (MCF7, UACC812, BT20, BT549)
- Abundance of 45 phosphoproteins (proteins phosphorylated at specific sites) measured.
- Measured at 7 time points post-stimulus (0 min, 5 min, 15 min, 1 hr, 2 hr, 4 hr).

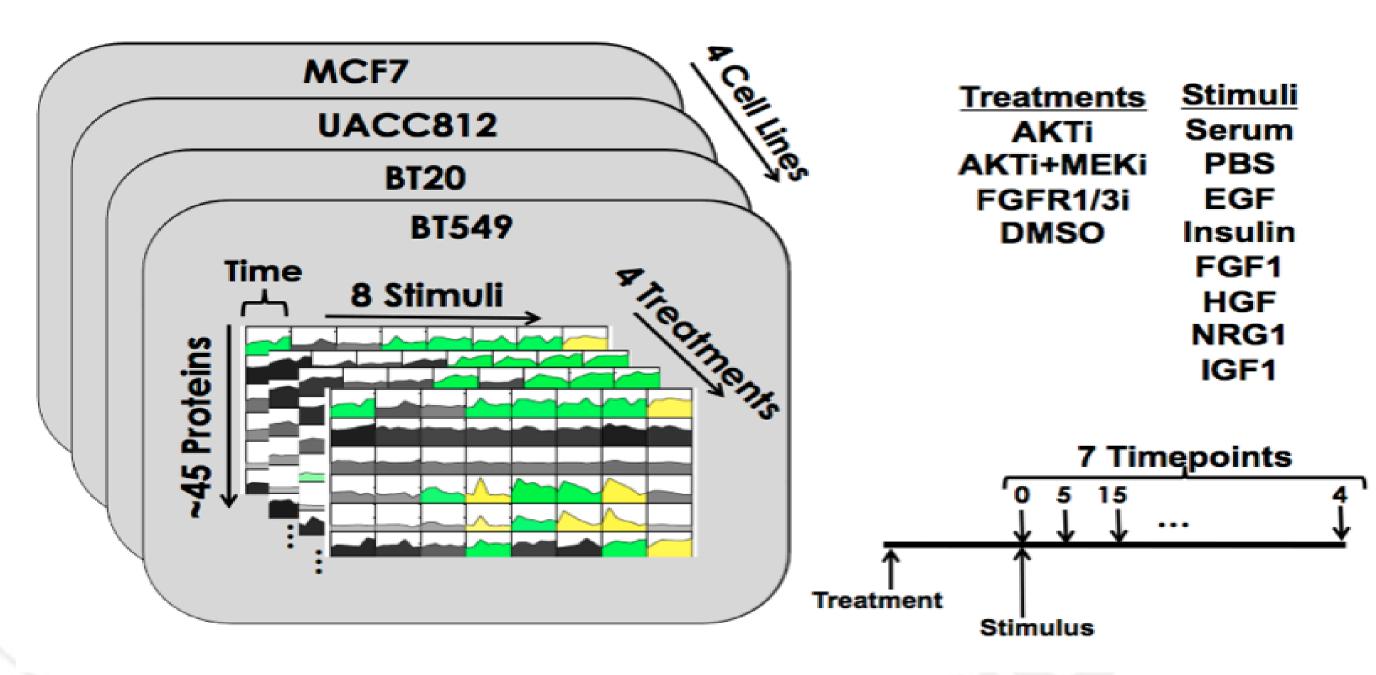


Figure 1. An overview of the experimental design to generate the dataset.

Method

Partial least squares regression (PLS) Figure 2

- PLS takes into account latent structure in both datasets
- X_i are the k explanatory variables
- Y_i are the p dependent variables
- The model is linear $y_{nj} = \sum_{i=0}^{k} \beta_i x_{ni} + \varepsilon_{nj}$
- β_i are found differently from linear regression

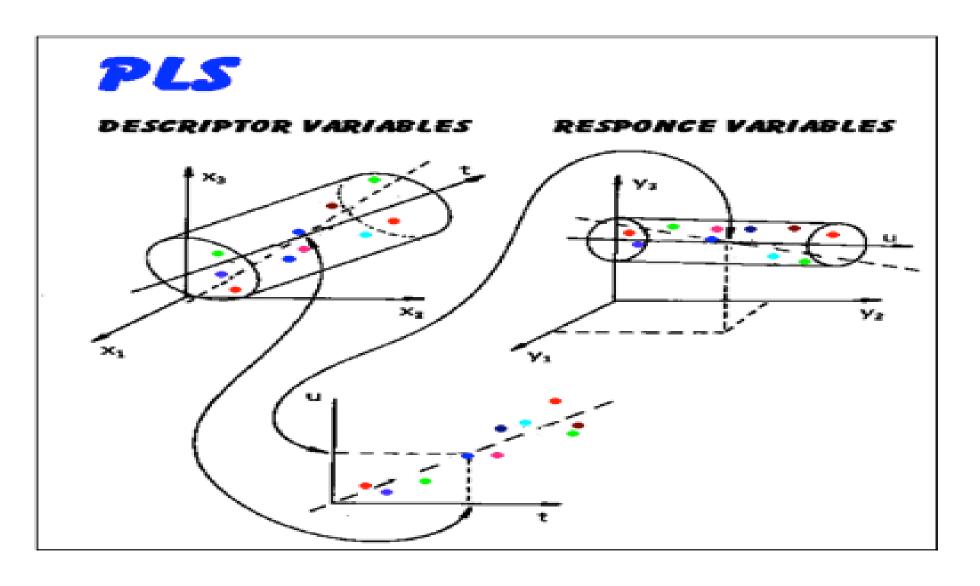


Figure 2. The overview of PLS regression

Results

Participants	Affiliation	Method	Median z-score	p-value (median z- score)
_		Singular Value		
		Decomposition		
GuanLab	University of Michigan	based on Markov	-3.5785	1.73E-04
Stochastic	New Mexico State	Time series		
Chaos	University	Analysis	-3.59	1.65E-04
Onivo	Obio State University	Partial least square	2 5000	4 605 04
Opiyo	Ohio State University	regression	-3.5989	1.60E-04
ICh a n a	Computational Biology,	Support vectot	2.022	4 COE 02
JCheng	Zurich, Switzerland	machine	-2.933	1.68E-03
a a leave	Calumbia I Iniversity	Gradient Boosted	2.0622	4 OOF O2
sakev	Columbia University	Decision Trees	-3.0633	1.09E-03
Dynama Rica	Northwestern I Injugraity	Bayesian Inference Method	-1.9511	0.0255
Dynamo Bios	Northwestern University			0.0233
Hatric	No information	No information	-1.622	0.0324
CCD	Chinese Academy of	Time series	1 1257	0 120
CGR	Medical Sciences	Analysis	-1.1357	0.128
/ 1/	Ruprecht-Karls-	Correlation based		
HD Systoms	University of Heidelberg,	Correlation-based Elimination	2 1212	0.983053792
HD_Systems	Germany	Time series	2.1213	0.903033792
StuartLab	No information		1 6465	0.950164899
No information		Analysis No information	48.0036	0.930104099
	No information			1
Freya	No information	No information	142.6412	
	University of Padova,	Sparse Ordinary Differential	7	
SBIT	Italy	Equations	185.3177	1

Conclusions

- PLS method effectively predicted phosphoproteins in cancer cells that were not included in the training data.
- PLS method was among the best methods for phosphoproteins predictions.

References

- Neve et al. 2006, Cancer Cell.
- Hill et al, (The HPN-DREAM Consortium [Opiyo, SO]) (2016). Inferring causal molecular networks: empirical assessment through a community-based effort. Nature Methods. doi:10.1038/nmeth.3773
- Federica Eduati et al. (The NIEHS-NCATS-UNC DREAM Toxicogenetics Collaboration [Opiyo, S.O]) (2015). Prediction of human population responses to toxic compounds by a collaborative competition. Nature Biotechnology 33, 933–940