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ABSTRACT 

Metallic glasses are a relatively new class of engineered material with many unique 

properties including high yield strength and easy formability.  However, they are currently 

limited by the fact that only limited compositions are known to form metallic glasses, which 

often contain expensive components.  In this work, a computational tool to assess the glass-

forming ability of an alloy was developed to help overcome that issue.  Through calculating 

the viscosity of the liquid state and the fraction of icosahedra, we are able to classify alloys 

by the relative amount of diffusion and driving force for crystallization in the liquid state.  

The first test of this system on the copper-zirconium binary system identified Cu-35.7at%Zr 

and Cu-54at%Zr as the best glass-forming alloys, which is consistent with experimental 

findings.  This tool was designed in such a way to be applicable to many different alloy 

systems and to be simple enough to enable automated testing of many possible compositions. 
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1 INTRODUCTION AND OBJECTIVES 

1.1 Motivation 

Metallic glasses are a unique class of materials for the fact that they are metallic, but lack the 

crystalline order of conventional metals.  Under typical circumstances, metals form crystals 

when cooled from the liquid state that rapidly grow to create a fully-ordered structure.  It was 

only found relatively recently (1960) that it was possible to cool a metallic liquid fast enough 

that it forms a solid and keeps its amorphous structure [1].  The first glasses needed to be 

cooled at exceptionally high rates in order to form in the amorphous state, which limited the 

casting thicknesses to less than 1 mm. In the mid-1970s, compositions were discovered that 

could be formed into larger, more commercially-useful thicknesses [2].  Since then, there has 

been much research into how to develop these “bulk metallic glasses” for use commercially. 

The unique structure of metallic glasses leads to many properties that are superior to 

conventional metal alloys and ceramics.  In particular, the absence of long-range order results 

in metallic glasses being much stronger than standard alloys because deformation by crystal 

plane slip is not available.  In addition to strength close 

to that of ceramics, these materials have inherently 

high fracture resistances, which make them interesting 

as structural materials [3].  One of the other exciting 

features of an amorphous structure is that no volume 

change occurs during the transformation from liquid to 

solid states.  For that reason, one can process metallic 

glasses with techniques usually only reserved for 

plastics [4], such as blow-molding as shown in figure 1.1. 

 

Figure 1.1: Bulk metallic glass formed by 

blow molding [4]. 



2 

The exceptional mechanical properties of metallic glasses along with easy formability 

make these materials promising choices for many applications.  For instance, the high yield 

strength of the alloy gives it very good wear resistance, which makes them an excellent 

choice for industrial wear coatings [3].  This exceptional wear-resistance and low elastic 

modulus also yields improved bio-compatibility for hard-tissue prosthesis applications [5]. In 

addition, metallic glasses have also been used for high-performance sporting equipment, fine 

jewelry, and defense applications [6]. 

While the amorphous structure of these materials gives them superb properties, it is 

also their key detriment.  Because metals are most stable in a crystalline arrangement, bulk 

metallic glasses are far from equilibrium.  Consequently, the fast cooling rates required to 

bypass crystallization limit metallic glasses to casting thickness of under 8 cm even for the 

best alloy compositions [7].  Furthermore, there are not many known metallic glass alloys 

and many contain expensive components [1].  For both of those reasons, there has been great 

interest in finding new alloys and developing rules to select the best alloy compositions. 

Over the past several decades, a series of empirical rules have been developed to aid 

in the selection of alloys.  For example, it is desirable to find a stable liquid composition 

through locating low-melting eutectics [9,10].  Liquids that stay stable to such a low 

temperature would therefore have slower diffusion in the supercooled liquid, thereby stunting 

crystal growth.  Also, it has been found that bulk metallic glasses have densities close to their 

crystalline counterparts, which indicates that the packing of atoms in this amorphous 

structure is very efficient and energetically stable [11].  The other main empirical rule is 

therefore to find a combination of atomic components that can be packed into an efficient, 

non-crystalline structure [9,11]. 
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While these empirical rules are effective in locating the general region were metallic 

glasses are formed, it is still difficult to locate the optimal composition experimentally. In 

several recent papers, finding the best alloy required an incremental search of many different 

compositions [12,13].  This method is successful, but can prove expensive and time-

consuming.  Each test of a metallic glass requires high-purity materials and proper calibration 

of the casting equipment to be successful.  Developing a computational approach to find a 

best-guess of an optimized composition could drastically reduce the number of experimental 

compositions needed to be fabricated and tested.  With a sufficiently simple, widely-

applicable computational method, it would be possible to effortlessly and cheaply scan 

compositions to give experimentation a better starting point. 

1.2 Other Empirical Rules 

Outside of the two main rules of alloy selection (deep eutectics, efficient packing) there are 

other experimental factors that are known to correlate with glass-forming ability.  Three of 

the most important factors are: reduced glass transition temperature (Trg), fragility, and 

stability in the supercooled liquid. 

Reduced glass-transition temperature (Trg), also called the Turnbull criterion, is based 

on a nucleation-growth argument and is defined as the ratio between the glass transition 

temperature (Tg) and the liquidus temperature (Tl) [10].  The basis of this idea is that the 

nucleation rate in a glass is not just dependent on the degree of undercooling (cooling below 

the melting temperature), but also the amount of diffusion in the liquid.  By making the 

assumption that there is a temperature where the diffusion in a liquid stops completely, it was 

possible to express the nucleation rate as a function of that temperature (assumed to be the 

glass-transition temperature), the melting temperature, and the current temperature of the 
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liquid [8].  With that relationship, it was possible to show that homogeneous nucleation is 

suppressed for            [8].  This analysis is also the rationale for finding glasses with 

low melting temperatures. 

The fragility of a liquid is a measure of how its viscosity changes as a function of 

temperature.  The main concept behind tying this parameter to glass-forming ability is that 

liquids with a high viscosity have slow kinetics, which inhibits the growth of crystals [1].  A 

glass with a low fragility parameter slowly changes viscosity as temperature is increased past 

the glass-transition temperature [14].  Consequently, liquids with a lower fragility reach a 

higher viscosity (with slower kinetics) at a higher temperature upon cooling and should 

therefore form crystals less easily.  This factor has been extensively studied in metallic 

glasses, and is experimentally known to correlate with glass-forming ability [15]. 

The study of stability in undercooled liquids started before 1952 [16] but has only 

been discussed in terms of metallic glass forming recently [17,18,19].  It was originally 

proposed that icosahedral ordering in the liquid are efficiently-packed and therefore 

energetically stable clusters that serve to stabilize the liquid by serving as an energetic barrier 

against nucleation [16].  These types of clusters are also known to lead to slow dynamics in 

the liquid [18].  Based on these ideas, it can be assumed that a large fraction of icosahedra in 

the liquid state can allow for a metal to more easily bypass crystallization. 

1.3 Currently Available Computational Methods 

There have already been several different studies that attempted to characterize glass-forming 

ability using computational tools [20-29].  Most commonly, metallic glasses are studied 

using various atomistic modeling strategies.  This type of simulation is well-suited for this 

problem because the amorphous structure of metallic glasses implies that they have no order 
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that persists beyond a few atoms.  So, a simulation on the size scale of less than several 

nanometers should be able to capture most key behaviors.  With molecular dynamics, in 

particular, it is possible to model the time-evolution of a collection of atoms at a specified 

temperature or for a specific temperature profile. In this way, one can create a model of a 

metallic glass by simulating the melting and quench process from experiment. 

The key issue with atomistic modeling is that it is only computationally feasible to 

simulate timescales of less than one microsecond or so because the time increments have to 

be small enough to follow the thermal oscillations of the atoms (less than 10 fs).  Calculating 

critical cooling rate, which describes the slowest cooling rate that bypasses crystallization, 

would require times scales on the order of one millisecond, which is currently impossible (or 

at least highly unpractical).  For that reason, researchers have decided to adopt simplified 

hard-sphere systems [20,21] or to use a structural analysis to find efficient, non-crystalline 

structures [22,23,24] in order to characterize glass-forming ability.  Of these, only one 

attempted to determine the optimal alloy in a real system [24], but only searched regions 

within 1-2 at% of known glass-forming compositions.  In all cases, only the structure was 

studied and no consideration was made for the dynamics of the system. 

Several other computational studies used computational thermodynamics to find an 

optimal glass-forming composition [25,26,29].  With this technique, it is possible to 

quantitatively predict the energetic driving force for nucleation of a crystal in the liquid.  In 

one study, it was found that this driving force alone is not an accurate prediction of glass-

forming ability because the most stable glasses did not necessarily have the best driving 

force [25].  For that reason, liquid fragility was used to introduce kinetics into a combined 

expression for glass-forming ability.  This study did succeed in being able to locate the 
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optimal glass-forming alloys in a system, but required fragility to be 

measured experimentally. 

A third computational method used to locate glass forming compositions is based on 

finding alloy compositions that can pack efficiently into non-crystalline arrangements [11].  

Existing metallic glass compositions are known to have compositions that are close to what 

can be predicted using this “cluster-packing” scheme [11].  This strategy can then be applied 

to assist in identifying new compositions [25,27].  One of the key issues with this strategy is 

that it only considers the simple packing of hard spheres and does not take bonding between 

the atoms into account, which is known to be a key factor in glass-forming [28]. 

1.4 Objective 

The objective of this work is to develop a method of predicting glass-forming ability in 

metallic glasses using only computational techniques.  This system must be flexible enough 

to apply to new systems.  The main impact of this work will be the creation of a tool to 

accelerate the experimental discovery of metallic glass compositions and to enable the study 

of the mechanisms behind glass-forming in metals. 
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2 COMPUTATIONAL APPROACH 

2.1 Modeling Technique 

Molecular dynamics (MD) was selected 

because it can be used to study compositions 

across many different alloy systems.  This 

simulation technique (outlined by figure 2.1) is 

based on simulating the motion of individual 

atoms over the course of time.  The energy and forces acting on each atom are determined by 

empirical functions, known as interatomic potentials, which are developed the model the 

physical properties of a particular species.  In particular, we chose to use Embedded Atom 

Method (EAM) interatomic potentials because they are known to well-describe metals [32].  

Another important advantage of molecular dynamics is that these potentials can be directly 

used for our simulations without the need for any additional, application-specific 

experimental measurements. 

 

2.2 Key Parameters 

With a molecular dynamics simulation, it is currently impossible to directly measure the 

critical cooling rate of a metallic glass.  For that reason, it will be necessary to instead 

determine factors that are known to lead to favorable glass-forming ability.  As discussed in 

Sec. 1.2, to prevent crystals from forming in a liquid, there needs to be a small driving force 

for their creation and limited atomic mobility to slow their growth.  The reduced glass-

transition temperature takes both of these factors into account to a limited degree, but is 

difficult to accurately calculate using molecular dynamics [31].  Fragility, however, can be 

 

Figure 2.1: Flow diagram that outlines molecular 

dynamics [30]. 

http://upload.wikimedia.org/wikipedia/commons/b/be/Mdalgorithm.PN
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calculated effectively using molecular dynamics [34,38] and is known to describe the 

kinetics in the liquid state [1,15].  The relative magnitude of the driving force can be 

determined by finding the fraction of icosahedra in the liquid [16], which can be 

calculated easily. 

 

2.3 Test System 

For the initial test of this methodology, we chose to predict the best glass-forming 

composition in a copper-zirconium metallic glass system.  This system was chosen for the 

presence of sufficient experimental data to validate against [36,37] and the availability of 

Embedded-Atom Method (EAM) potentials [32]. 

 

2.4 Calculation Strategy 

2.4.1 Simulation Parameters 

The Large-Scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) was used to 

run the molecular dynamics simulations.  Embedded-atom method potentials developed by 

Mendelev were used for interatomic potentials [32].  The simulation used periodic boundary 

conditions in all three directions and a timestep size of 2 fs. 

2.4.2 Model Generation 

Models of the metallic glasses were created using a technique similar to what is already 

common practice in the literature [23,24].  To create a model of a metallic glass, we started 

with a body-centered cubic copper lattice of 11,664 atoms and replaced enough copper atoms 

with zirconium to give the system the desired composition.  The system was then thermalized 

at a temperature of 300 K and heated to 3000 K at 6.75 × 10
13

 K/s.  After 40 ps of 
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equilibration at 3000 K, the system was cooled to 1500 K at 7.5 × 10
11

 K/s.  The model was 

then quenched to 200 K at a nominal rate of 1.0 × 10
11

 K/s in temperature steps of 32.5 K, 

according to the quench schedule shown in figure 2.2.  The quench rate was slowed near the 

glass transition (approximately 625 K) to allocate simulation time where the dynamics were 

slowest and then sped up once the atomic mobility abruptly slows after the transition. 

2.4.3 Fragility 

Fragility has been calculated on several occasions using molecular dynamics on model 

systems [34,38].  The method used in those papers was to calculate viscosity at several points 

and then to use an analytic relationship to model the temperature dependence of viscosity, 

which is the general principle we followed in our simulations. 

Viscosity was calculated using the Green-Kubo formula,[39] 

   
 

   
   
   

                 
 

 

 (2.1) 

 

Figure 2.2: Simulation quench schedule 
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for at least seven different temperatures above the glass transition.  The shear stress, αβ, as a 

function of time required for the Green-Kubo relation was determined in the standard way 

from atomic forces, positions, and simulation cell volume [34] for the different frames of an 

MD simulation under adiabatic conditions over 2 ns. 

The Vogel-Fulcher-Tammann (VFT) relationship, 

         
  

    
  (2.2) 

was then fit to the viscosity vs. temperature data.  This model was chosen because it is 

known to describe the experimentally-determined viscosity of metallic glasses well [41]. 

It was then possible to determine the fragility parameter from the fitted function using 

   
     

       
  (2.3) 

The glass transition temperature was determined to be the point at which the viscosity is 

10
12

 Pa-s, which is a convention borrowed from experiment [41]. 

2.4.4  Icosahedral Fraction 

Studying the structure of a supercooled liquid is complicated by the fact that the liquid 

structure changes as a function of temperature [18].  However, since the atomic structure 

freezes below the glass-transition temperature and the structure right above that transition is 

what is of interest, the glass structure at low temperature can be studied to reveal the liquid 

structure near the glass transition.  Therefore, the structure at 300 K, generated from 

quenching, was first relaxed to remove all thermal vibrations and then analyzed for 

each model. 

The first step of the local order analysis was identifying the nearest-neighbors, which 

was based on a Voronoi tessellation analysis found in the literature [42].  In short, Voronoi 
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tessellations partition the space around a set of nodes such that each node is surrounded by a 

polyhedral cell containing the space that is closest to that point.  Neighbors of a node can be 

identified by finding nodes in an adjacent cell that shares a common face [43]. 

One issue with this method is that it will identify false neighbors, which is often 

addressed by removing neighbors that have the smallest shared faces [19,42].  In this work, 

we propose selecting neighbors by using the assumption that nearest neighbors are atoms that 

would contact if all atoms were hard spheres.  If we assume the atoms are spherical (which is 

assumed in our EAM potentials), the point at which they would contact lies on a line between 

the centers.  A Voronoi face intersecting that line then indicates that the point of contact 

actually exists in the space closest to each atom. 

Once a neighbor connectivity map was produced, the local order around each atom 

was classified by the number of bonds each neighbor forms with other neighbors of that 

atom.  In this scheme, an icosahedron has twelve neighbors each connected to five others.  

The degree of icosahedral order was presented as a fraction of number of atoms with 

icosahedral neighbor coordination. 

2.5 Energy-Weighted Averaging 

For each tested composition, the fragility parameter and icosahedral ordering were 

determined for 15 independent simulations.  For each simulation, a different random 

distribution of zirconium atoms in the initial copper lattice was used.  The results were 

averaged with weighting with respect to their total energy (potential and kinetic) at 800 K 

using a Boltzmann average: 

       
  
    

 

  
  
  

 

  (2.4) 
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It is known through statistical mechanics that the probability of a system being a certain state 

is dependent on the Gibb’s factor [44].  And so, the property calculated from each system 

should be weighted by the probability of finding a system of that specific composition in 

that configuration. 

 

2.6 Combination of Factors 

We also propose a method for combining the kinetics and driving force information to create 

a single figure of merit.  To do so, the average value for each parameter across all 

compositions tested was calculated.  With this, it was possible to calculate the “average 

improvement” of an individual composition with respect to the system average.  To do so, a 

figure of merit (V) that describes the improvement in glass-forming ability over the average 

was calculated using: 

    
  

 
 

    

          
 (2.5) 

With this relation, the weight factor (α) can be used to tune the relative contribution of each 

effect on the figure of merit. 
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3 CALCULATION RESULTS 

The fragility and icosahedral fraction were calculated for ten copper-zirconium systems 

ranging from 35.7 at% to 60 at% zirconium.  This particular range was selected due to the 

presence of experimental data for fragility [36]. Table 3.1 lists systems that were chosen for 

this computational study. 

3.1 Fragility Calculations 

Viscosity was calculated for at least seven temperatures for all 150 MD runs, shown in 

table 3.1, and the VFT model was least-squares fitted to each.  An example of this is shown 

in figure 3.1.  A key limitation of the viscosity calculation is that it is computationally 

unfeasible for viscosities over 10 Pa-s due to the simulation time limitations.  For that reason, 

it was necessary to extrapolate to 10
12

 Pa-s in order to calculate fragility. 

Table 3.1: Copper-Zirconium systems used and number of iterations for each simulation. An underline 

indicates the systems for which experimental data is available. 

Number Zr [at%] Iterations Number Zr [at%] Iterations 

1 35.7 15 6 50 15 

2 38.2 15 7 52 15 

3 40 15 8 54 15 

4 44 15 9 57 15 

5 47 15 10 60 15 
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Figure 3.2 shows the calculated fragility in comparison to experimental values [36].  

Fragility is known to vary with quench rate [45], which could cause the magnitude of the 

experimental and computational values to be different.  In the case of glass-forming ability, 

only the relative magnitude between the different systems is important.  For that reason, both 

results were normalized so that the fragility at Cu-44at%Zr was equal to 1.0.  The error bars 

on figure 3.2 are the standard error of the mean for the calculated fragility. 

Figure 3.1: Example of the viscosity calculation results and a fit using the VFT equation. 
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3.2 Structural Analysis 

For each model, the polyhedra formed by the neighbors around each atom were assigned an 

index of the form             ,, where    is the number of neighbors with n bonds.  The 

total fraction of the atoms with each index was calculated, as shown in figure 3.3.  The 

fraction of icosahedra was determined by the fraction of atoms that have a nearest-neighbor 

coordination with a            index. 

Figure 3.2: Calculated and experimental [36] fragility (m) for copper-zirconium metallic glasses with 

varying composition. The fragilities are scaled. 

 

0.50

0.70

0.90

1.10

1.30

35.0 40.0 45.0 50.0 55.0 60.0

m
, s

ca
le

d

Zr [at%]

Simulation

Experiment



16 

Figure 3.4 shows the icosahedron fraction for each composition tested.  The 

difference between the iterations of each composition is rather small, so the standard error of 

the mean is particularly low in this measurement. 

  

 

Figure 3.3: Example results from local order analysis: fraction of most common nearest-neighbor 

polyhedra by shape. 

 

 

Figure 3.4: Calculated icosahedron fraction as a function of composition in copper-zirconium system. 
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3.3 Combination of Results 

Figure 3.5 shows the results of the figure of merit defined in equation 2.5.  The value of the 

weight constant (α) was varied from 0.1 to 10 to change the relative contribution of the 

fragility in glass-forming ability. 

 

Figure 3.5: Figure of merit for glass-forming ability from Eq. (2.5) with varied weight for fragility. 
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4 DISCUSSION 

4.1 Fragility Calculation 

As shown in figure 3.1, the VFT relationship (equation 2.2) seems to describe the calculated 

viscosity data well.  In this particular fit, the correlation coefficient between the function and 

calculated data was 0.996.  At least from a qualitative standpoint, the other fits were equally 

well-described by the VFT model.  This indicates that the liquid in simulation was behaving 

in a manner close to what is seen experimentally in metallic glasses [41]. 

The relative magnitudes between compositions for the experimental and calculated 

results are similar (correlation coefficient of 0.858), as shown in figure 3.2.  The relative 

magnitudes of fragility between compositions are desired for comparing the possible glass-

forming ability, which makes the actual values not particularly important.  With that notion 

in mind, the fragility calculation was able to identify the local extrema well by correctly 

locating a maximum near 45 at% Zr zirconium and two minima near 36 at% and 55 at% Zr.  

So, it is reasonable to assume that we can rely on this technique to identify the best candidate 

glasses based on fragility. 

In terms of the actual values, the calculated fragilities are roughly 2.5-3.5 times 

higher than experimental values.  This difference can be easily explained by the extreme 

quench rates used in the simulations.  Because the fragility is known experimentally to 

increase with quench rate [45], it is not surprising that the calculated fragilities are much 

higher since the quench rates are more a factor 10
5
 faster.  One of the assumptions in this 

work must be that the quench rate dependence of fragility is similar for all samples.  It would 

be particularly difficult to test this assumption because of the computation time required to 

simulate any quench rates slower than what is currently used.  A simulation of a quench rate 
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of 10
11

 K/s, which was used in this study, requires approximately 35 hours to complete on 

20 processors.  While it would not be impossible to extrapolate to quench rates used 

experimentally (less than 10
7
 K/s [1]), it may not be meaningful if the slowest computational 

rate is several orders of magnitude higher. 

 

4.2 Structural Analysis 

The structural analysis shows that in the range tested, the fraction of icosahedra 

monotonically increases with increasing copper fraction, as shown in figure 3.4.  To date, 

there have not been experimental studies that have attempted to quantify the icosahedron 

fraction as a function of composition in the copper-zirconium system.  The closest to this so 

far is a study that constructed atomistic models to fit structural information of copper-

zirconium liquids derived from x-ray analysis [18].  In this study, they were able to confirm 

the presence of ordering characteristic of icosahedra, but did not attempt to locate entire 

icosahedra or to characterize the change in behavior as a function of composition.  While 

there is no experimental data present to confirm this trend, an increase in icosahedral 

ordering with increasing copper-fraction has been found in another computational 

study [24].  With those two facts in consideration, it is reasonable to believe that the results 

from the structural analysis are acceptable. 

 

4.3 Computational Requirements 

Running the simulations to generate the required data for a fragility calculation and structural 

analysis for a single iteration requires approximately 96 hours of computation time on 

20 processors on the Glenn Cluster at the Ohio Supercomputer Center [46].  From that point, 
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calculating the fragility and icosahedron fraction requires only one additional hour of 

processing time.  Even though the scale of the computational time is large, it is easily 

manageable with the use of a supercomputer.  And, since only slight modifications are 

required for changing composition and repeatedly randomizing the input structures, it was 

possible to be automated.  Automation is a very useful tool for this class of computational 

problem because it ensures that all analyses are identical and limits the required amount of 

input from a user to manageable levels. 

 

4.4 Alloy Selection 

When taking fragility or icosahedral 

fraction into consideration alone, the results 

point to two different alloys.  For instance, 

there are two regions of low fragility, which 

should have favorable glass-forming ability: 

<44at% Zr and ≥50at% Zr (see figure 3.2).  

If one were to base the selection solely on 

fragility, the best alloys would be those in the ≥50at% Zr range and the optimal composition 

is Cu-54at%Zr.  This optimal alloy agrees with experimental findings, as indicated by 

Cu-54at%Zr being one of the alloys with highest critical casting thicknesses, shown in 

table 4.1.  However, this method alone does not identify Cu-35.5at%Zr as the other top alloy 

even though it has a lower-than-average fragility. 

Conversely, if one takes only take icosahedron fraction into account, Cu-35.7at%Zr 

would be selected as the top alloy (see figure 3.4).  This also is consistent with experimental 

Table 4.1: Casting thicknesses of Cu-Zr alloys [47]. 

Composition Critical Thickness [mm] 

Cu35.5at%Zr 2 

Cu36at%Zr 1.6 

Cu40at%Zr 1 

Cu44at%Zr 1 

Cu55at%Zr 1.5 

Cu54at%Zr 2 

Cu50at%Zr 1.2 
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findings, since Cu-35.5at%Zr is the other alloy with the best critical casting thickness.  In this 

scheme, however, Cu-54at%Zr is not even in consideration for a top alloy. 

It is therefore possible to conclude that neither explanation is suitable for identifying 

the best alloy in a particular system, as accepting solely one explanation would exclude one 

of the two best candidate alloys in a system.  For that reason, we propose using a model that 

combines the two effects to create a single figure of merit to describe glass-forming ability.  

Using an assumption that there is a combined effect and that high performance in either 

factor would imply favorable glass-forming, the method we propose is to calculate how much 

better an alloy is on average than others in its system using equation 2.5 (repeated below for 

convenience): 

    
  

 
 

    

          
 (2.5) 

Since the relative importance of each 

factor is not yet known, we have included a 

weight factor (α) to tune the combination.  

Depending on the choice of this factor, 

different alloys would be selected, as shown 

in figure 3.5 and table 4.2.  When the weight 

factor is increased, the chosen alloy changes 

from Cu-35.7at%Zr to Cu-54at%Zr as the importance is shifted from icosahedron fraction to 

fragility.  The predicted best alloy composition is consistent with experimental values except 

for weight values near three.  Even so, the incorrect alloy that is predicted (Cu-38.2at%Zr) is 

within 3 at% of an optimal alloy.  A good point of future research would be to find a 

relationship that would indicate both alloys as having close to identical glass-forming ability.  

Table 4.2: Optimal alloys from computational 
selected by combination method. Weight factor 
indicates varying importance of fragility. 

Weigh Factor (α) Best Alloy 

0.1 Cu-35.7at%Zr 

0.3 Cu-35.7at%Zr 

1 Cu-35.7at%Zr 

3 Cu-38.2at%Zr 

10 Cu-54at%Zr 
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At least by being able to identify both separately, the combined fragility/icosahedron fraction 

method is effective in at least the copper-zirconium binary system. 

 

4.5 Advantages of Method 

Our new method is an improvement of existing molecular dynamics methods because it 

includes consideration for kinetics and is proven to work on a real system.  In general, the 

use of molecular dynamics is advantageous because it allows this method to be quickly 

adapted to other systems.  The only requirement is that interatomic potentials are available, 

for which there are several databases [33,48]. 
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5 SUMMARY 

Metallic glasses are interesting engineered materials because of their atomic structure that is 

far from equilibrium.  Their amorphous structure gives them higher tensile strength and 

opens up new processing routes that are not possible with conventional metals.  However, 

one of the key issues of metallic glasses is that they only form in small, difficult to find 

composition ranges.  In order to address this issue, we have developed a technique that uses 

molecular dynamics to determine glass-forming ability purely from computational methods.  

This tool will allow for the reduction in the amount of time and effort that is needed to 

discover new metallic glass compositions. 

Our strategy for studying glass-forming ability through calculating fragility and 

icosahedron fraction of the liquid is based on techniques borrowed from experimental 

methods.  Fragility, a parameter which describes the temperature dependence of viscosity, 

describes the speed of the kinetics in the liquid state and is known to be low in glass-forming 

metal alloys.  It is also known that icosahedra in the liquid lead to slow dynamics and are 

hypothesized to serve as an energy barrier for crystallization.  Through combining the results 

of calculating these two factors, it was possible to locate two best glass-forming 

compositions in a copper-zirconium binary system: Cu-35.7at%Zr and Cu-54at%Zr.  Both of 

which are known experimentally to be the optimal glasses in the copper-zirconium system. 
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6 FUTURE WORK 

The future goal of this project is to integrate this tool into the design of new metallic glass 

systems.  To do so, we must first ensure that this system is effective for more complex 

systems.  To date, this tool has also been used to identify the best glass-forming compositions 

in a ternary, Cu-Zr-Ti, system. 

One of the other techniques being developed in this research group is a toolkit for 

designing metallic glasses with optimized physical properties using atomistic modeling.  

Currently, alloy compositions are selected without taking the ability to form a metallic glass 

into consideration.  Eventually, we want integrate to integrate the capability of predicting 

glass-forming ability with the existing property optimization techniques.  To do so, we need 

to first develop the means to compare glass-forming ability between two different 

alloy systems. 
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