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We calculate the effective resistivity of a macroscopically disordered two-dimensional conductor consisting
of two components in a perpendicular magnetic field. When the two components have equal area fractions, we
use a duality theorem to show that the magnetoresistance is nonsaturating and at high fields varies exactly
linearly with the magnetic field. At other compositions, an effective-medium calculation leads to a saturating
magnetoresistance. We briefly discuss possible connections between these results and magnetoresistance mea-
surements on heavily disordered chalcogenide semiconductors.
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The resistivity of most homogeneous materiaeetals or  ally does not remain strictly linear at higher concentrations
semiconductopsincreases quadratically with magnetic field of p. If the inclusions are strictly insulating, then the TMR
H at low fields, and generally saturates at sufficiently largedoes remain asymptotically linear if the TMR is computed
H.! Exceptions may occur for materials with Fermi surfaceswithin the effective-medium approximatidf,but its exact
allowing open orbits, or for compensated homogeneoudehavior is not known even in this case. Recent experiments
semiconductors, where the resistivity may increase withoubn homogeneous semiconductors containing a gold
saturation, usually proportional t82.12 Under some special inhomogeneit§® show a hugely enhanced but not strictly lin-
conditions, the magnetoresistance can be linear in magnet&ar room temperature geometrical TMRe., arising from
field.3 inhomogeneities this so-called extraordinary magnetoresis-

Recently, a remarkably large transverse magnetoresisance has been successfully modeled, using finite-element
tance(TMR) has been observed in the doped silver chalcotechniqueg?!
genides Ag,;Se and Ag,;Te*® In these materials, over the ~ The model of Ref. 8 also assumes a film with a spatially
temperature range from 4 to 300 K, the resistivity increasesarying conductivity. The inhomogeneities are described by
approximately linearly withH up to fields, applied perpen- an impedance network; the tensor nature of the magnetocon-
dicular to the direction of current flow, as high as 60 T.ductivity is included by making each network element a
Moreover, the TMR is especially large and most clearly lin-four-terminal impedance. Their numerical solution suggests
ear at pressures where the Hall resistivity changes®Rpr.  that, for the network to have a nonsaturating TMR one needs
cause of this linearity, these materials may be useful as magi) carriers of two different signs, an@) a suitably defined
netic field sensors even at megagauss fields. average mobility(u) ~0. When solved numerically and av-

But beyond the possible applications, the origin of theeraged over many disorder realizations, their model does in-
effect remains mysterious. According to conventional theodeed give a nonsaturating, approximately linear TMR over a
ries, such narrow gap semiconductors should have a saturdiroad field range. Obviously, it would be useful to haxact
ing TMR. Furthermore, since these materials contain nanalytical statements to compare with these numerical re-
magnetic moments, a spin-mediated mechanism seems usults.
likely. In this Rapid Communication, we present an idealized

There are presently two proposed explanations for thisnodel of a disordered semiconducting film in two dimen-
quasilinear TMR. The first is a quantum theory of magne-sions. The model assumes a macroscopically inhomogeneous
toresistancéMR).” The second proposed mecharfidgmthat  film, consisting of two different types of conducting regions,
this nonsaturating TMR arises from macroscopic sample indenotedA and B, with areal fractiong, and pg=1-pa. In
homogeneities. Such inhomogeneities could produce largeach region, the conductivity tensor is that of a Drude metal
spatial fluctuations in the conductivity tensor and hence an a transverse magnetic field, but the density andsthe of
large TMR, especially at largél. This explanation seems charge carriers can be different in the two regions. We will
plausible because the chalcogenides probably have a granshow that, whem,=1/2, and thecharge carriers have oppo-
lar microstructuré,and hence a spatially varying conductiv- site signs, the TMR is asymptoticalgxactly linearat suffi-
ity. ciently strong magnetic fields. Moreover, the linearity can

The effective conductivity of media, with a spatially vary- extend down to quite low magnetic fields. The corresponding
ing conductivity o(x), has been studied since the time of Hall coefficientRy ¢ is found to vanish. Ifo,# 1/2, the ef-
Maxwell, but a relatively few studies have considered thefective resistivity tensop, cannot be calculated exactly. An
magnetoresistande’® For a three-dimensional3D) me-  effective-medium approximatiofEMA), which agrees with
dium, the TMR of an isotropic metal does indeed vary lin-the exact result ap,=1/2, predicts that the resistivity satu-
early inH, when a small volume fractiop<1 of inclusions rates for anyp,#1/2, and thatR,, changes sign at
of a different carrier density is addé@lBut the TMR gener- p,=1/2. All these results are in rough agreement with recent
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experimentd (which are, however, carried out for 3D ber density of carriers of typg then Eqs(2)—(5) imply (i)

samples; see belgwlf the carriers have theamesign, no  that there are equareal fractionsof positive and negative

exact statements are possible, evepgat1l/2. Buteven in  charge carrier§but not that the total numbers of positive

this case the EMA predicts a linear TMR precisely atand negative charge carriers are eguahd (ii) that the

pa=1/2,though smaller than for carriers of opposite sign. mobilities u, and ug are equal and opposite, so that
We first prove the exact linearity of the TMR pk=1/2  (u)=2i-agPixi=0.

for carriers of opposite sign and opposite mobility, using a Given these assumptions, the tensegsand o satisfy

duality argument. We consider a two-dimensiofiD) con-  the remarkable relationship

ductor with a spatially varying conductivity tensatx), and

denote the effective conductivity tensor by. o, is a 2x2 o, 1+H?

tensor defined byd)=oE), whereJ andE are the position- On = o2 OB» (6)

dependent current density and electric field, ang¢t denotes

a spatial average in the limit of a large sample and suitable\/heregoz(gAyogB‘O)l/% Since we have an equal proportion

boundary conditionsas discussed, for example, in Ref)15 of componentsA and B, distributed in some symmetrical

oe is the quantity that would be measured as the sampleand isotropit fashion, the dual composite has a conductiv-
conductivity in an experiment. To calculate, we use a ity tensor

duality theorem? which states that

2
oda(x)]odo 0] =1, 1 og(x) = ! +2H F(x), (7)

Jp

wherel is the 2xX 2 unit matrix. HereoJo(x)] denotes the

effective conductivity tensor of a material whose local con-where(x) means the conductivity of a composite in which

ductivity tensor is position-dependent and equabr(). the A andB components are interchanged. Singgis just a
Thus, the product ofr for the system of interest, and that muitiple of the original conductivity tensar(x), but with A

of a hypothetical “dual composite” whose local conductivity andB components interchanged, and since by the assumption

tensoroy(x) is the local resistivity tensor of the original ma- of a symmetric composite o(x)]= o [F(x)], it follows that
terial, equals the unit tensor.

We now apply this theorem to the following special case. 1+H?2
Let the two components each have a free-electron conductiv- o oy(x)]= TGe[U(X)]- (8)
ity, but carriers of opposite signs. For the first component 0
We now apply Eq(1) to this model, with the result

_ _ _Oa0
Opaxx— ‘TA,yy_ 1 +H2’ (2) 1+ H2 )
> glo(x)]=1. 9
0
opoH
Oaxy= ~ Oayx— AL 2 (3 . .
1+H A physically acceptable solution to EQ) must have the

diagonal elements af, equal and positive, and off-diagonal
elements equal and opposite. It is readily shown algebra-
ically that the only such solution is

whereao, o is the zero-field conductivity. The dimensionless
magnetic fieldH=pu,B/c, whereup=era/m, is an effective
mobility of carriers of typeA, m, is their effective mass,
e>0 is the electron charge magnitude, anda characteris-

1
tic relaxation time. For the second component, we assume odo(x)]= 1:H200|' (10
\r’ +
= Oayy= T e (4)
TBxx= IBYY T 7 {1212 The corresponding resistivity tenspy is
I —
o5, 0kH pe= o L +HA. (1)
OBxy= ~ OByx— 1 +’k2H2’ (5)

The TMR is defined by the relatiol pgy(H) =[pexx(H)

with the dimensionless constaket 1 (i.e., the two types of  —Pexd0)]/ pexd0). For this modelApe,(H)=V1+H?-1 be-
charge carriers have opposite signdVe also introduce comes linear irH for large enougtH, and the corresponding
us=ku, as the effective mobility of typ& carriers. Finally, ~Hall coefficientR,=p,,(H)/H=0. Thus, this calculation ap-
we assume that the composite contains an areal fractiopears to reproduce the numerical results of Ref. 8,amai-
pi=1/2 (i=A or B) of each component, and that the geom-lytically.

etry is symmetric. “Symmetric’ means that, if the compo-  Since the duality argument is not sufficient to determine
nentsA andB were interchangeds, of the film will remain o, for po# 1/2, we have used the EMA for such concentra-
the same in the thermodynamic limit. There are many geomtions. The EMA is a simple mean-field approximation in
etries, both ordere(e.g., checkerboaydand random, which  which the local electric fields and currents are calculated as if
are symmetric by this definition. If we make the usual Drudea given region is surrounded by a suitably averaged environ-
assumption that, o=n;elw| (i=A,B), wheren; is the num-  ment. For the present model the EMA becofies
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FIG. 1. Calculated transverse resistivityy(H,pa) and Hall FIG. 2. Same as Fig. 1, but fay=1/2, andvarious choices of
resistivity pe «y(H,pa) (inse for a two-dimensional model inhomo-  the mobility ratiok=pug/ ua. A positive or negativée means that the
geneous semiconductor in a transverse magnetic field, as calculatedrriers have the same or opposite signs.

within the EMA for three different area fractions, of component . . . . .
riers with mobilities of the same and opposite signs.

A. Both are given in units of Idy=1/\Vop oo o. The two compo- . -
nents A and B have conductivities given by Eq$2)—5), with . _In Fig. 2 we show the EMA results for th!s model. Spe-
op0l 08,0=2. The mobilities of the two carriers are assumed to havec'f'ca”y' we showp,(H, pA_) and pxy(H +Pa) W_'th Pa= 1/,2’
the same magnitudeliy) =|ug). o0~ 080 and several choices &fcorresponding to carriers
of both opposite and the same sign. The desé actually
corresponds to a homogeneous free-electron metal. For all
> p,6oi(1 -T'607)™1=0. (12 other values ok, the TMR is asymptotically linear, the linear
i=AB behavior is evident even at moderate fieltls~1). How-
ever, the linear slope is larger when the carriers have oppo-
Here doy=0;-0,, andl is a suitable depolarization tensor. sijte signs. We emphasize that these results are obtained in the
We assume thatry and o satisfy o; = 0iyy: 0ix=—0iyx  EMA. The duality arguments do not give any predictions for
Then the components of, satisfy o ,x=0eyy, Texy==0cyx  pyx€XCEPt when the carriers have opposite signs and opposite
We also assume that the two componeiitand B are dis- mobilities.
tributed in compact, approximately circular regions. Then In Figs. 3 and 4, we plot the resistivipy, and Hall coef-
['=-1/(20¢x,).2? With these assumptions, E(L.2) reduce to ficient Ry = p,,/H as a function op, for H=1 andH=10. In
two coupled algebraic equations fag,, ando,,, which are  both cases, we assume thato=op o and|u| =|ua|. pxx has
easily solved numerically. a peak apA:_ll_Z,whlch sharpens, as a function pf, gsH
To confirm that the EMA gives reasonable results, weincreases. Similarly, the Hall coefficieR; changes sign at
have tested it fODA:pB:%, and o, and o given by Egs. pa=1/2, and thechangg occurs over a narrower and nar-
(2)«(5) with k=—1. We find that the solution to the EL2) rower regime ofp, asH increases. I . .
for the tensoro, is diagonal, and a multiple of the unit ten- The |chrEsent I|’668U|rt]$ r?grlee q#a“ta;'velﬁ V#:ClRthe eﬁ(perl-
sor; the diagonal elements are given by ELD). Thus, for ments of Leeet al,” which also show that the peaks at

DA=Pe, the EMA agrees with the exact duality arguments pressures where the Hall coefficient changes sign. But this
A_TE - 1 " agreement should be viewed cautiously. In particular, the
To illustrate the EMA predictions fap, # 3, we calculate  neasyrements of Ref. 6 are carried out on a 3D sample,

oe for o given by Egs.(2)<5). The resulting elements \yhijle our calculations are for a 2D system. The present work
of the resistivity tensor,peu=Texd/[Taxx*t Taxyh Pexy=  would also apply to a 3D system with a columnar
~ Gyl (05t 05,,) are plotted in Fig. 1 foroag/ogo=2.  microstructure—that is, a system in which the conductivity
Evidently, and as can be shown explicitly from the EMA tensora(x) is independent of the third dimensiars-and the
equations, pexx is strictly linear in H only at p,=1/2.  applied fieldB|z, but the samples of Ref. 6 if inhomoge-
At all other concentrations,pex(H) saturates (i.e.,  neous, are most likely composed of small compact grains.
approaches a constanat large H, but at a value much We have calculated, for a 3D granular sample with carriers
larger thanpex(H=0). It is easily shown that the saturation of opposite signs, using the EMA, and find results similar to
value  of Apgu(Pa) =Limy_o[pexdH,Pa)/pe(0,pa)—1]  those shown here for 2D samples. These 3D calculations will
«1/|pa—p on both sides of the percolation threshold be presented elsewhete.
p.=1/2.Figure 1 also shows that the effective Hall resistiv- The TMR of the present model is very large—
ity pexy Changes sign just at the concentration whegg, — Apxd(H,1/2~10 for H~10—and remains approximately
varies asymptotically linearly witi. linear down to fields as low ald ~1-2. By contrast, other
We have also solved the EMA for a composite describednodels of TMR that arises from inhomogeneities produce
by Egs. (2—(5) but for the more general case in which only a small TMR, or, if a large TMRAp,(H) does not vary
k#—1. Thenk>0 andk<0 correspond, respectively, to car- linearly with H.1516
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FIG. 3. Transverse resistivity,(H,pa) and Hall coefficient FIG. 4. Same as Fig. 3, but foéf=10.
Ry(H,pa) as a function o, for H=1, using the same model as in
F|g 1, with UB,O: a0 and MB="MA-
) A=1/2. Butgiven these features, the TMR, arising from a
In summary, we have presented a simple model of a 2Lyerpendicular to the sample, is asymptotically exactly linear
macroscopically inhomogeneous material, whose TMR is asiy B, This is an analytically soluble model for TMR due to

ymptotically linear in magnetic field, and whose correspond-macroscopic inhomogeneities, which produces a linear TMR
ing Hall coefficient vanishes. The model has several unusugj; high concentrations of inhomogeneities.

properties that make it likely to be realized only in special

circumstances. First, Eq&)—(5) imply that the carriers have This work was supported by the National Science Foun-
equal and opposite mobilitigs,=—ug. Secondly, the linear- dation, through Grant No. DMR04-13395. We also benefited
ity occurs only if the composite has a symmetric geometry afrom the facilities of the Ohio Supercomputer Center.

1For a discussion, see, e. g., N. W. Ashcroft and N. D. Mermin,*?G. J. C. L. Bruls, J. Bass, A. P. van Gelder, H. van Kempen, and

Solid State Physic€Saunders, Fort Worth, 19Y,5Chap. 12. P. Wyder, Phys. Rev. Let#46, 553 (1981).
’See, e. g., J. M. ZimarRrinciples of the Theory of Solid€am-  13yy. A Dreizin and A. M. Dykhne, Sov. Phys. JETBG, 127
bridge University Press, Cambridge, 197@8p. 250-254. (1973.

3For a recent short review, see, e. g., A. A. Abrikosov, Europhys.14YakOV M. Strelniker and D. J. Bergman, Phys. Rev6R 184416
Lett. 49, 789(2000, and references therein. (2003, and references cited therein '

4R. Xu, A. Husmann,_T. F. Rosenbaum, M. L. Saboungi, J. E-15D_ Stroud and E. P. Pan, Phys. Rev.18, 1434 (1976
Enderby, and P. B. Littlewood, Natufeondon 290 57 (1997. 16D, Stroud and F. P Pan, Phys RevZB, 455(1979

SA. Husmann, J. B. Betts, G. S. Boebinger, A. Migliori, T. F. 178, va. Balagurov, Sov. Phys. Solid Sta28, 1694(1986
Rosenbaum, and M. L. Saboungi, Natutendon 417, 421 T 9 ' LA ' ‘

(2002, 18, K. Sarychev, D. J. Bergman, and Y. M. Strelniker, Phys. Rev.
®M. Lee, T. F. Rosenbaum, M.-L. Saboungi, and H. S. Schnyders; B 48, 3145(1993.

Phys. Rev. Lett.88, 066602(2002. °D. J. Bergman and D. G. Stroud, Phys. Rev6B 6603(2000.
7A. A. Abrikosov, Phys. Rev. B58, 2788(1998. 203, A. Solin, T. Thio, D. R. Hines, and J. J. Heremans, Science
8M. M. Parish and P. B. Littlewood, Naturg.ondon 426, 162 289 1530(2000.

(2003. 21J. Moussa, L. R. Ram-Mohan, J. Sullivan, T. Zhou, D. R. Hines,
9C. Herring, J. Appl. Phys31, 1939(1960. and S. A. Solin, Phys. Rev. B4, 184410(2001).
10K, S. Mendelson, J. Appl. Physi6, 4740(1975. 22D, Stroud, Phys. Rev. BL2, 3368(1975.
1p. stroud and D. J. Bergman, Phys. Rev.3B, 447 (1984). 23V, Guttal and D. Stroudunpublishegl

201304-4



