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We calculate the effective resistivity of a macroscopically disordered two-dimensional conductor consisting
of two components in a perpendicular magnetic field. When the two components have equal area fractions, we
use a duality theorem to show that the magnetoresistance is nonsaturating and at high fields varies exactly
linearly with the magnetic field. At other compositions, an effective-medium calculation leads to a saturating
magnetoresistance. We briefly discuss possible connections between these results and magnetoresistance mea-
surements on heavily disordered chalcogenide semiconductors.
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The resistivity of most homogeneous materialssmetals or
semiconductorsd increases quadratically with magnetic field
H at low fields, and generally saturates at sufficiently large
H.1 Exceptions may occur for materials with Fermi surfaces
allowing open orbits, or for compensated homogeneous
semiconductors, where the resistivity may increase without
saturation, usually proportional toH2.1,2 Under some special
conditions, the magnetoresistance can be linear in magnetic
field.3

Recently, a remarkably large transverse magnetoresis-
tancesTMRd has been observed in the doped silver chalco-
genides Ag2+dSe and Ag2+dTe.4,5 In these materials, over the
temperature range from 4 to 300 K, the resistivity increases
approximately linearly withH up to fields, applied perpen-
dicular to the direction of current flow, as high as 60 T.
Moreover, the TMR is especially large and most clearly lin-
ear at pressures where the Hall resistivity changes sign.6 Be-
cause of this linearity, these materials may be useful as mag-
netic field sensors even at megagauss fields.

But beyond the possible applications, the origin of the
effect remains mysterious. According to conventional theo-
ries, such narrow gap semiconductors should have a saturat-
ing TMR. Furthermore, since these materials contain no
magnetic moments, a spin-mediated mechanism seems un-
likely.

There are presently two proposed explanations for this
quasilinear TMR. The first is a quantum theory of magne-
toresistancesMRd.7 The second proposed mechanism8 is that
this nonsaturating TMR arises from macroscopic sample in-
homogeneities. Such inhomogeneities could produce large
spatial fluctuations in the conductivity tensor and hence a
large TMR, especially at largeH. This explanation seems
plausible because the chalcogenides probably have a granu-
lar microstructure,6 and hence a spatially varying conductiv-
ity.

The effective conductivity of media, with a spatially vary-
ing conductivity ssxd, has been studied since the time of
Maxwell, but a relatively few studies have considered the
magnetoresistance.9–18 For a three-dimensionals3Dd me-
dium, the TMR of an isotropic metal does indeed vary lin-
early inH, when a small volume fractionp!1 of inclusions
of a different carrier density is added.15 But the TMR gener-

ally does not remain strictly linear at higher concentrations
of p. If the inclusions are strictly insulating, then the TMR
does remain asymptotically linear if the TMR is computed
within the effective-medium approximation,19 but its exact
behavior is not known even in this case. Recent experiments
on homogeneous semiconductors containing a gold
inhomogeneity20 show a hugely enhanced but not strictly lin-
ear room temperature geometrical TMRsi.e., arising from
inhomogeneitiesd; this so-called extraordinary magnetoresis-
tance has been successfully modeled, using finite-element
techniques.21

The model of Ref. 8 also assumes a film with a spatially
varying conductivity. The inhomogeneities are described by
an impedance network; the tensor nature of the magnetocon-
ductivity is included by making each network element a
four-terminal impedance. Their numerical solution suggests
that, for the network to have a nonsaturating TMR one needs
sid carriers of two different signs, andsii d a suitably defined
average mobilitykml,0. When solved numerically and av-
eraged over many disorder realizations, their model does in-
deed give a nonsaturating, approximately linear TMR over a
broad field range. Obviously, it would be useful to haveexact
analytical statements to compare with these numerical re-
sults.

In this Rapid Communication, we present an idealized
model of a disordered semiconducting film in two dimen-
sions. The model assumes a macroscopically inhomogeneous
film, consisting of two different types of conducting regions,
denotedA and B, with areal fractionspA and pB=1−pA. In
each region, the conductivity tensor is that of a Drude metal
in a transverse magnetic field, but the density and thesignof
charge carriers can be different in the two regions. We will
show that, whenpA=1/2, and thecharge carriers have oppo-
site signs, the TMR is asymptoticallyexactly linearat suffi-
ciently strong magnetic fields. Moreover, the linearity can
extend down to quite low magnetic fields. The corresponding
Hall coefficientRH,e is found to vanish. IfpAÞ1/2, the ef-
fective resistivity tensorre cannot be calculated exactly. An
effective-medium approximationsEMAd, which agrees with
the exact result atpA=1/2, predicts that the resistivity satu-
rates for any pAÞ1/2, and that RH,e changes sign at
pA=1/2. All these results are in rough agreement with recent
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experiments6 swhich are, however, carried out for 3D
samples; see belowd. If the carriers have thesamesign, no
exact statements are possible, even atpA=1/2. But even in
this case the EMA predicts a linear TMR precisely at
pA=1/2, though smaller than for carriers of opposite sign.

We first prove the exact linearity of the TMR atpA=1/2
for carriers of opposite sign and opposite mobility, using a
duality argument. We consider a two-dimensionals2Dd con-
ductor with a spatially varying conductivity tensorssxd, and
denote the effective conductivity tensor byse. se is a 232
tensor defined bykJl=sekEl, whereJ andE are the position-
dependent current density and electric field, andk¯l denotes
a spatial average in the limit of a large sample and suitable
boundary conditionssas discussed, for example, in Ref. 15d.
se is the quantity that would be measured as the sample
conductivity in an experiment. To calculatese, we use a
duality theorem,10 which states that

sefssxdgsefs−1sxdg = I , s1d

where I is the 232 unit matrix. Heresefssxdg denotes the
effective conductivity tensor of a material whose local con-
ductivity tensor is position-dependent and equal tossxd.

Thus, the product ofse for the system of interest, and that
of a hypothetical “dual composite” whose local conductivity
tensorsdsxd is the local resistivity tensor of the original ma-
terial, equals the unit tensor.

We now apply this theorem to the following special case.
Let the two components each have a free-electron conductiv-
ity, but carriers of opposite signs. For the first component

sA,xx = sA,yy =
sA,0

1 + H2 , s2d

sA,xy = − sA,yx =
sA,0H

1 + H2 , s3d

wheresA,0 is the zero-field conductivity. The dimensionless
magnetic fieldH=mAB/c, wheremA=etA/mA is an effective
mobility of carriers of typeA, mA is their effective mass,
e.0 is the electron charge magnitude, andtA a characteris-
tic relaxation time. For the second component, we assume

sB,xx = sB,yy =
sB,0

1 + k2H2 . s4d

sB,xy = − sB,yx =
sB,0kH

1 + k2H2 , s5d

with the dimensionless constantk=−1 si.e., the two types of
charge carriers have opposite signsd. We also introduce
mB=kmA as the effective mobility of type-B carriers. Finally,
we assume that the composite contains an areal fraction
pi =1/2 si =A or Bd of each component, and that the geom-
etry is symmetric. “Symmetric” means that, if the compo-
nentsA andB were interchanged,se of the film will remain
the same in the thermodynamic limit. There are many geom-
etries, both orderedse.g., checkerboardd and random, which
are symmetric by this definition. If we make the usual Drude
assumption thatsi,0=nieumiu si =A,Bd, whereni is the num-

ber density of carriers of typei, then Eqs.s2d–s5d imply sid
that there are equalareal fractionsof positive and negative
charge carrierssbut not that the total numbers of positive
and negative charge carriers are equald; and sii d that the
mobilities mA and mB are equal and opposite, so that
kml=oi=A,Bpimi =0.

Given these assumptions, the tensorssA and sB satisfy
the remarkable relationship

sA
−1 =

1 + H2

s0
2 sB, s6d

wheres0=ssA,0sB,0d1/2. Since we have an equal proportion
of componentsA and B, distributed in some symmetrical
sand isotropicd fashion, the dual composite has a conductiv-
ity tensor

sdsxd =
1 + H2

s0
2 s̃sxd, s7d

wheres̃sxd means the conductivity of a composite in which
the A andB components are interchanged. Sincesd is just a
multiple of the original conductivity tensorssxd, but with A
andB components interchanged, and since by the assumption
of a symmetric compositesefssxdg=sefs̃sxdg, it follows that

sefsdsxdg =
1 + H2

s0
2 sefssxdg. s8d

We now apply Eq.s1d to this model, with the result

1 + H2

s0
2 se

2fssxdg = I . s9d

A physically acceptable solution to Eq.s9d must have the
diagonal elements ofse equal and positive, and off-diagonal
elements equal and opposite. It is readily shown algebra-
ically that the only such solution is

sefssxdg =
1

Î1 + H2
s0I . s10d

The corresponding resistivity tensorre is

re = s0
−1Î1 + H2I . s11d

The TMR is defined by the relationDre,xxsHd=fre,xxsHd
−re,xxs0dg /re,xxs0d. For this model,Dre,xxsHd=Î1+H2−1 be-
comes linear inH for large enoughH, and the corresponding
Hall coefficientRH=rxysHd /H=0. Thus, this calculation ap-
pears to reproduce the numerical results of Ref. 8, butana-
lytically.

Since the duality argument is not sufficient to determine
se for pAÞ1/2, we have used the EMA for such concentra-
tions. The EMA is a simple mean-field approximation in
which the local electric fields and currents are calculated as if
a given region is surrounded by a suitably averaged environ-
ment. For the present model the EMA becomes22
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o
i=A,B

pidsisI − Gdsid−1 = 0. s12d

Here dsi =si −se, andG is a suitable depolarization tensor.
We assume thatsA and sB satisfy si,xx=si,yy; si,xy=−si,yx.
Then the components ofse satisfyse,xx=se,yy, se,xy=−se,yx.
We also assume that the two componentsA and B are dis-
tributed in compact, approximately circular regions. Then
G=−I / s2se,xxd.22 With these assumptions, Eq.s12d reduce to
two coupled algebraic equations forse,xx andse,xy which are
easily solved numerically.

To confirm that the EMA gives reasonable results, we
have tested it forpA=pB= 1

2, and sA and sB given by Eqs.
s2d–s5d with k=−1. We find that the solution to the Eq.s12d
for the tensorse is diagonal, and a multiple of the unit ten-
sor; the diagonal elements are given by Eq.s10d. Thus, for
pA=pB, the EMA agrees with the exact duality arguments.

To illustrate the EMA predictions forpAÞ 1
2, we calculate

se for si given by Eqs.s2d–s5d. The resulting elements
of the resistivity tensor,re,xx=se,xx/ fse,xx

2 +se,xy
2 g, re,xy=

−se,xy/ fse,xx
2 +se,xy

2 g, are plotted in Fig. 1 forsA0/sB0=2.
Evidently, and as can be shown explicitly from the EMA
equations,re,xx is strictly linear in H only at pA=1/2.
At all other concentrations, re,xxsHd saturates si.e.,
approaches a constantd at large H, but at a value much
larger thanre,xxsH=0d. It is easily shown that the saturation
value of Dre,xxspAd;LimH→`fre,xxsH ,pAd /res0,pAd−1g
~1/upA−pcu on both sides of the percolation threshold
pc=1/2. Figure 1 also shows that the effective Hall resistiv-
ity re,xy changes sign just at the concentration wherere,xx
varies asymptotically linearly withH.

We have also solved the EMA for a composite described
by Eqs. s2d–s5d but for the more general case in which
kÞ−1. Thenk.0 andk,0 correspond, respectively, to car-

riers with mobilities of the same and opposite signs.
In Fig. 2 we show the EMA results for this model. Spe-

cifically, we showrxxsH ,pAd and rxysH ,pAd with pA=1/2,
sA,0=sB,0, and several choices ofk corresponding to carriers
of both opposite and the same sign. The casek=1 actually
corresponds to a homogeneous free-electron metal. For all
other values ofk, the TMR is asymptotically linear, the linear
behavior is evident even at moderate fieldssH,1d. How-
ever, the linear slope is larger when the carriers have oppo-
site signs. We emphasize that these results are obtained in the
EMA. The duality arguments do not give any predictions for
rxx except when the carriers have opposite signs and opposite
mobilities.

In Figs. 3 and 4, we plot the resistivityrxx and Hall coef-
ficient RH;rxy/H as a function ofpA for H=1 andH=10. In
both cases, we assume thatsA,0=sB,0 and umAu= umBu. rxx has
a peak atpA=1/2, which sharpens, as a function ofpA, asH
increases. Similarly, the Hall coefficientRH changes sign at
pA=1/2, and thechange occurs over a narrower and nar-
rower regime ofpA asH increases.

The present results agree qualitatively with the experi-
ments of Leeet al.,6 which also show that the TMR peaks at
pressures where the Hall coefficient changes sign. But this
agreement should be viewed cautiously. In particular, the
measurements of Ref. 6 are carried out on a 3D sample,
while our calculations are for a 2D system. The present work
would also apply to a 3D system with a columnar
microstructure—that is, a system in which the conductivity
tensorssxd is independent of the third dimension,z—and the
applied fieldBiz, but the samples of Ref. 6 if inhomoge-
neous, are most likely composed of small compact grains.
We have calculatedse for a 3D granular sample with carriers
of opposite signs, using the EMA, and find results similar to
those shown here for 2D samples. These 3D calculations will
be presented elsewhere.23

The TMR of the present model is very large—
DrxxsH ,1 /2d,10 for H,10—and remains approximately
linear down to fields as low asH,1–2. By contrast, other
models of TMR that arises from inhomogeneities produce
only a small TMR, or, if a large TMR,DrxxsHd does not vary
linearly with H.15,16

FIG. 1. Calculated transverse resistivityre,xxsH ,pAd and Hall
resistivityre,xysH ,pAd sinsetd for a two-dimensional model inhomo-
geneous semiconductor in a transverse magnetic field, as calculated
within the EMA for three different area fractionspA of component
A. Both are given in units of 1/s0;1/ÎsA,0sB,0. The two compo-
nents A and B have conductivities given by Eqs.s2d–s5d, with
sA,0/sB,0=2. The mobilities of the two carriers are assumed to have
the same magnitudes:umAu= umBu.

FIG. 2. Same as Fig. 1, but forpA=1/2, andvarious choices of
the mobility ratiok=mB/mA. A positive or negativek means that the
carriers have the same or opposite signs.
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In summary, we have presented a simple model of a 2D
macroscopically inhomogeneous material, whose TMR is as-
ymptotically linear in magnetic field, and whose correspond-
ing Hall coefficient vanishes. The model has several unusual
properties that make it likely to be realized only in special
circumstances. First, Eqs.s2d–s5d imply that the carriers have
equal and opposite mobilitiesmA=−mB. Secondly, the linear-
ity occurs only if the composite has a symmetric geometry at

pA=1/2. But given these features, the TMR, arising from a
perpendicular to the sample, is asymptotically exactly linear
in B. This is an analytically soluble model for TMR due to
macroscopic inhomogeneities, which produces a linear TMR
at high concentrations of inhomogeneities.
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FIG. 3. Transverse resistivityrxxsH ,pAd and Hall coefficient
RHsH ,pAd as a function ofpA for H=1, using the same model as in
Fig. 1, with sB,0=sA,0 andmB=−mA.

FIG. 4. Same as Fig. 3, but forH=10.
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