The ammonia dimer revisited

Richard Dawes (Missouri)

Ad van der Avoird (Nijmegen)

Ammonia dimer, a surprising structure

Nelson, Fraser, and Klemperer, J. Chem. Phys. 83, 6201 (1985)

- MBER spectrum, ¹⁴N quadrupole splittings \Rightarrow nearly cyclic structure
- Small dipole moment: 0.75 Debye (NH₃ monomer 1.47 D)
- Ab initio calculations had predicted a nearly linear N-H···N hydrogen-bonded structure
- Equivalent H-bonded structures with donor/acceptor interchanged vibrational averaging ?
- Structure similar for $^{14}\rm NH_3-^{14}\rm NH_3,~^{14}\rm ND_3-^{14}\rm ND_3,~^{15}\rm NH_3-^{14}\rm NH_3$ \Rightarrow nearly rigid

NH_3-NH_3

Hydrogen-bonded structure

Structure of Klemperer et al.

Contradictory evidence

Havenith, Cohen, Busarow, Gwo, Lee, and Saykally

J. Chem. Phys. 94,4776 (1991)

Loeser, Schmuttenmaer, Cohen, Elrod, Steyert, Saykally, Bumgarner, and Blake J. Chem. Phys. 97,4727 (1992)

• Large tunneling splittings observed in THz spectra \Rightarrow NH₃-NH₃ must be floppy

Compare with high-resolution THz and microwave spectra

Empirical model potential

Electrostatic interactions favor H-bonded structures

Dispersion and exchange interactions added

Donor-acceptor interchange pathway

Barrier $\approx 6 \text{ cm}^{-1}$ (after fit to THz spectra)

Calculation of VRT states

Hamiltonian

$$H = \left[Aj_{A_{a}}^{2} + Bj_{A_{b}}^{2} + Cj_{A_{c}}^{2}\right] + \left[Aj_{B_{a}}^{2} + Bj_{B_{b}}^{2} + Cj_{B_{c}}^{2}\right] - \frac{\hbar^{2}}{2\mu_{AB}R} \frac{\partial^{2}}{\partial R^{2}}R + \frac{1}{2\mu_{AB}R^{2}}\left[J^{2} + j_{AB}^{2} - 2j_{AB} \cdot J\right] + V(R, \omega_{A}, \omega_{B})$$

Analytic basis

$$\chi_n(R) \sum_{m_A m_B} D_{m_A k_A}^{(j_A)}(\boldsymbol{\omega}_A)^* D_{m_B k_B}^{(j_B)}(\boldsymbol{\omega}_B)^* \langle j_A m_A; j_B m_B \mid j_{AB} K \rangle D_{MK}^{(J)}(\alpha, \beta, 0)^*$$

contracted DVR for $\chi_n(R)$

Basis adapted to irreps of PI group G_{36}

Permutation-inversion symmetry group G_{36}

G_{36}		statistical weight	
irrep	dim.	$(NH_3)_2$	$(ND_3)_2$
A_1	1	66	561
A_2	1	78	528
A_{3}	1	66	561
A_{4}	1	78	528
E_1	2	36	576
E_2	2	36	576
E_{3}	2	30	600
E_{4}	2	42	552
G	4	144	1584

Calculated and measured energy levels (J = 0, 1)

Wave functions of oNH_3-oNH_3 (J = 0)

Wave functions of pNH_3-oNH_3 (J = 0)

Conclusions

- Good agreement with both MBER and THz spectra
- Dipole moment also agrees with experiment
- Ammonia dimer is very floppy
- Isotope substitution effects explained

Large amplitude internal motions

Why does the vibrationally averaged structure not change by isotope substitution?

Explanation

Only states of G symmetry observed by Klemperer *et al.* mixed ortho NH₃ - para NH₃, non-zero dipole moment

Two effects working in opposite direction

- 1. ND₃ orientations more localized in well region than NH₃ \Rightarrow larger dipole moment
- 2. ortho-para difference smaller for ND₃ than for NH₃ \Rightarrow more symmetric behavior of mixed ortho-para dimer \Rightarrow smaller dipole moment

Result: near cancelation of isotope effects on geometry

Revisiting

- Accurate potential surface calculated *ab initio* by Richard Dawes
- CCSD(T)-F12b(AE)/VTZ-F12 method; more than 22000 geometries for R = 2.5 - 20 A
- D_0 measured by Crim *et al.*: 660 ±20 cm⁻¹

Ab initio:

Minimum -1111.9 cm⁻¹ ($\theta_A = 43^\circ$, $180^\circ - \theta_B = 87^\circ$) (-1018 cm⁻¹ in model potential, at nearly the same geometry)

Cyclic saddle point -1107.5 cm⁻¹ (
$$\theta_A = 180^\circ - \theta_B = 67^\circ$$
)

Interchange barrier: 4.4 cm^{-1} , very similar to model potential

Current status:

- VRT levels calculated from fitted potential surface
- First results: $D_0 = 665 \text{ cm}^{-1}$ (for oNH₃-oNH₃) experiment 660 ±20 cm⁻¹
- VRT level pattern OK, tunneling splittings too small
- Splittings depend very sensitively on the potential; role of NH₃ umbrella mode dependence?
- Global fit of the *ab initio* data to accurate site-site model cf. water dimer CCpol-8s potential, which produced accurate tunneling splittings and intermolecular vibrational frequencies

Acknowledgement

Alexander von Humboldt Foundation: Senior Research Award