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Abstract. Achieving sustainable prey fish assemblages that support sport fish predator populations is a fundamental 
challenge to fisheries managers. Among Midwestern and Southeastern (USA) reservoirs, gizzard shad, Dorosoma 
cepedianum, have been widely stocked to improve predator growth. However, these stockings have yielded highly 
variable effects on sport fish, due in part to highly variable recruitment of gizzard shad. To determine whether 
reservoir productivity can be used to classify reservoirs according to recruitment of gizzard shad, we quantified 
gizzard shad recruitment along a mesotrophic to hypereutrophic productivity gradient. We sampled 12 reservoirs 
during May through June 1993, to evaluate the hypothesis that larval gizzard shad foraging success and survival 
increase with reservoir productivity. Both hatch abundance and survival of larval gizzard shad correlated positively 
with total phosphorus concentrations (TP), an indicator of reservoir productivity. Abundance of 15-mm (total 
length) larval gizzard shad survivors, an indicator of age-0 year class strength, increased by two orders of magnitude 
across TP concentrations. Larval gizzard shad foraging success increased with availability of preferred, small 
zooplankton prey. However, abundance of small zooplankton did not increase with reservoir TP concentrations, and 
larval survival did not increase with foraging success. These results provide mechanistic understanding for the 
relative lack of gizzard shad in mesotrophic reservoirs, and the dominance of gizzard shad in hypereutrophic 
reservoirs. In hypereutrophic reservoirs, negative effects of gizzard shad on sport fish may be alleviated by reducing 
phosphorus loading from the watershed, suggesting a watershed approach to this fishery and water quality problem. 

INTRODUCTION 
Achieving sustainable prey fish assemblages that support sport fish predator populations 

remains a fundamental challenge to fisheries managers (Noble 1981, DeVries and Stein 1990). 
Consequently, predator–prey interactions in fish communities have a rich history of study in a 
wide variety of systems. For example, in small ponds, pioneering research related the relative 
abundances of predator and prey (i.e., ‘‘balance’’) to the sustainability of quality fishing 
(Swingle 1949). Currently in the Great Lakes, identification of salmonid stock levels that can be 
supported by fluctuating alewife populations has large economic implications (Jones et al. 1993). 

Availability of prey fishes to their predators can determine predator consumption, 
growth, and survival (Hart and Connellan 1984, Storck 1986, Kerfoot and Sih 1987, Wahl and 
Stein 1988, Olson 1996, Ludsin and DeVries 1997). However, effects of prey fish availability on 
predators can be complicated by a variety of food web interactions. First, prey may be 
competitors both with earlier life stages of the predator and with alternative prey of the predator 
(Werner and Gilliam 1984, Olson et al. 1995). Second, variability in prey fish recruitment can be 
large both among systems and among years within a system. Unfortunately, this variability 
makes prediction of prey fish effects on predators very difficult, and can severely limit a 
manager’s ability to manage multiple systems over multiple years.  

One way to improve our understanding of these complex predator–prey relationships is to 
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identify the processes that determine prey fish recruitment. This understanding will allow more 
effective management, particularly when the predator’s primary prey are age-0 fishes. 
Interannual variability in prey fish recruitment, and its effects on predator population abundance 
and consumptive demand, has been demonstrated by detailed measurements (Mills and Forney 
1988). However, intersystem variability in prey fish recruitment has received little investigation. 
Identifying predictable intersystem patterns of prey fish recruitment could greatly aid managers 
in their quest for improving piscivore fishery yield. These patterns would allow managers to 
classify systems into groups that can be managed similarly, given similar prey populations, and 
presumably, similar effects of prey fish on predator growth. 

We seek to determine whether recruitment of gizzard shad, Dorosoma cepedianum, 
varies predictably across a productivity gradient in midwestern U.S. reservoirs. Gizzard shad are 
zooplanktivorous as larvae (age-0 <25 mm total length [TL]) and omnivorous in post-larval 
stages (Bodola 1966, Noble 1981, Drenner et al. 1986, Mundahl and Wissing 1987, Dettmers 
and Stein 1992). Within midwestern and southeastern U.S. reservoirs, prey fish communities are 
typically dominated by gizzard shad or threadfin shad (D. petenense; Noble 1981, DeVries and 
Stein 1990). Widespread stocking of both gizzard shad and threadfin shad to enhance predator 
growth rates has yielded highly variable results, with evidence for positive, negative, and no 
effects of shad on predator growth (DeVries and Stein 1990). In particular, age-0 gizzard shad 
can positively affect growth of age-0 largemouth bass, Micropterus salmoides, when gizzard 
shad remain vulnerable to this predator throughout its first summer (Storck 1986, Adams and 
DeAngelis 1987, Garvey and Stein 1998). Conversely, age-0 gizzard shad can negatively affect 
recruitment of bluegill, Lepomis macrochirus, an alternative prey of age-0 largemouth bass 
(Stein et al. 1995, 1996). When consumption of zooplankton by post-larval gizzard shad causes 
severe midsummer zooplankton declines (Dettmers and Stein 1992, DeVries and Stein 1992), 
exploitative competition with and poor recruitment of zooplanktivorous larval bluegill result 
(DeVries et al. 1991). In turn, fewer age-0 bluegill leads to slower growth of their age-0 
largemouth bass predators (DeVries et al. 1991, Stein et al. 1995, Garvey et al. 1998). We seek 
to improve our ability to predict these variable effects of age-0 gizzard shad on age-0 sport fish 
by considering recruitment processes along the gradient of reservoir productivity. 

Although we know that gizzard shad population abundance increases with reservoir 
productivity (Bachman et al. 1996, DiCenzo et al. 1996), the extent to which gizzard shad 
recruitment varies with productivity has not been established. We are interested in determining 
whether reservoir productivity can be used to classify reservoirs according to their potential for 
age-0 gizzard shad effects on age-0 sport fish. Further, the mechanisms driving gizzard shad 
recruitment have not been identified. We seek to identify the relative importance of factors 
influencing hatch and survival to determine whether gizzard shad recruitment can be predicted 
and perhaps manipulated by reservoir managers. 

In this manuscript, we extend our experimentally evaluated hypothesis, linking 
availability of small zooplankton prey to larval gizzard shad foraging and survival (Bremigan 
and Stein 1994, 1997), to the scale of whole reservoirs. We examine the relationships among 
nutrients, chlorophyll a, zooplankton, and larval gizzard shad hatching abundance, foraging 
success and survival across a productivity gradient in 12 reservoirs ranging from mesotrophic to 
hypereutrophic. We hypothesize that nutrient levels (total phosphorus [TP]) are positively 
correlated with both chlorophyll a and small zooplankton abundance during May through June 
when larval gizzard shad recruit. We reason that hatch abundance of larval gizzard shad should 
not limit recruitment because adult gizzard shad are extremely fecund (Bodola 1966, Parrish and 
Vondracek 1989, Miranda et al. 1994). Rather, we expect larval survival to determine gizzard 
shad recruitment, reflecting positive effects of small zooplankton on larval gizzard shad foraging 



 
 

 

 

 
 

 

 

 

 
 
 

 
 
 

  
 

 
  

 

success and survival, which will increase with increasing reservoir productivity. Thus, with 
increasing reservoir productivity, gizzard shad should establish increasingly stronger year 
classes, due primarily to the recruitment environment that they experience as larvae. 

METHODS 
Reservoir productivity and larval gizzard shad density 

We sampled larval gizzard shad in 12 reservoirs of differing productivities (Table 1). 
Smallest reservoirs were hypereutrophic, whereas larger reservoirs were mesotrophic to 
hypereutrophic (based on TP and chlorophyll a values, see Results). Reservoirs were sampled 
weekly during May through June to evaluate relationships among larval gizzard shad abundance, 
foraging, and survival, zooplankton assemblages, chlorophyll a concentration, and nutrient 
levels. A subset of reservoirs was also sampled weekly during July and August, primarily to 
evaluate whether larval gizzard shad hatching was concentrated in May and June. 

Larval gizzard shad 
Larval gizzard shad were collected offshore using two replicate surface tows of a 0.75-m 

diameter ichthyoplankton net (500-µm mesh) towed for 5 min at 1-1.5 m/s. Larvae were 
preserved in 95% ethanol. A flow meter mounted in the mouth of the net provided estimates of 
the water volume filtered to estimate larval gizzard shad density. 

Larval gizzard shad were counted in each ichthyoplankton sample to estimate their 
density. We measured total length (nearest 0.1 mm) of 50 larval gizzard shad from one randomly 
chosen replicate per date. On four dates, we analyzed larval gizzard shad diets by counting and 
identifying prey from the entire digestive tract of up to five larvae from each of two size classes 
(5-9.9 and 10-14.9 mm TL). We identified cladocerans to genus, copepod adults and copepodids 
as calanoid or cyclopoid, and immature copepods as nauplii. Rotifers were counted and treated as 
one taxonomic group. We assumed that number of prey items per larval gut reflected foraging 
success. 

TABLE 1.    Comparison of  abiotic characteristics of 12 Ohio reservoirs sampled in 1993. Identification number (ID) 
ranks reservoirs from shallow to deep Secchi depth. 

Notes: We quantified larval gizzard shad, zooplankton, and Secchi depth in all reservoirs during May through June. 
In ‘‘A’’ (sampling regime) reservoirs, we also determined chlorophyll a and nutrient (total nitrogen and total 
phosphorus) levels, and we continued to sample larval gizzard shad through August; in ‘‘B’’ reservoirs, we 
measured Secchi depth, but not chlorophyll a or nutrient levels, and we collected zooplankton and larval gizzard 
shad during May through June. Reservoir 5 was an upground reservoir; all others were onstream impoundments. 
Turnover was calculated as inflow (cubic meters per year) divided by capacity (cubic meters). NA = not available. 



 
 

 
 
 

 

 
 

 

 

 
 

 

 
 
 

 

On each date, we calculated mean larval gizzard shad density across the two replicate 
tows. We generated indices of larval gizzard shad hatch abundance and large larval gizzard shad 
survivor abundance by combining density and length data. The index of larval gizzard shad hatch 
was calculated as the cumulative abundance (May through June) of 5-6 mm TL larvae. The index 
of large larval gizzard shad survivors was calculated as the cumulative abundance of larvae that 
reached ~15 mm TL. 

We attempted to account for the potential for larval growth rate differences across 
reservoirs to influence index estimates. Slow-growing larvae will remain in a particular size class 
longer than will fast-growing larvae. As a result, a slow-growing population of larvae could yield 
a higher estimate of cumulative density over time than would a fast-growing one, even if the 
actual densities were similar. We identified minimum and maximum growth rates (0.66 and 0.94 
mm/d, respectively) for larval gizzard shad <15 mm TL based on otolith analysis of 9-15 mm TL 
larval gizzard shad (Bremigan and Stein 1999). Minimum and maximum growth rates were not 
reservoir specific. Using these extreme growth rates, we generated minimum and maximum 
hatch abundance and large larval survivor abundance estimates for each reservoir. 

We used the abundance of 5-6 mm TL larvae as our estimate of the hatch index because 5 
mm is the smallest size that are fully vulnerable to our nets, and using larger sizes would 
introduce the effects of mortality from hatching at 3.5 mm TL (Carlander 1969) to the larger 
size. To calculate our index of cumulative hatch abundance, we estimated the abundance of 5-6 
mm TL larvae produced each week based on our weekly point-in-time estimates. We accounted 
for the fact that larvae could grow into and out of the 5-6 mm TL interval between weekly 
sampling dates, by using the equation: 

where 

and number of days to grow 1 mm = 1.52 d and 1.06 d, based on minimum and maximum 
growth rate scenarios, respectively. We summed these weekly hatch abundance estimates to 
generate minimum and maximum index estimates for May through June hatch abundance in each 
reservoir. 

We used abundance of 15 mm TL fish for our index of large larval survivor abundance 
because preliminary analysis indicated that the majority of larval mortality occurred for 
individuals < 11 mm TL, and because vulnerability to our ichthyoplankton net declines for larvae 
>15 mm TL. We calculated the production of 15 mm TL survivors each week, based on weekly 
point-in-time estimates. Based on the absolute amount that a larval fish grows during 1 wk (4.5 
mm and 6.5 mm for minimum and maximum growth rate scenarios, respectively), we calculated 



 
 
 
 

 
 

 
  

 
 

  
 

 

 

 

 

 
 
 
 

 

weekly growth increments (10.5-15 mm TL and 8.5-15 mm TL for minimum and maximum 
growth rate scenarios, respectively). For any weekly point-in-time estimate, all larvae within the 
weekly growth increment would grow to 15 mm TL prior to the next sampling date. We 
calculated the density of larvae in the weekly growth increments on each sampling date, and then 
summed the weekly densities to estimate the cumulative May through June abundance of large 
larval survivors. These calculations assumed that all larvae in the weekly growth increment 
survive to 15 mm. This approach provides a conservative estimate of differences in large larval 
survivor abundance across reservoirs because it overestimates abundance of survivors produced 
in reservoirs with relatively high mortality rates of individuals within the weekly growth 
increment. Therefore, differences among reservoirs in the number of large larval survivors 
produced are likely greater than those calculated. 

We calculated larval survival as a range of values. The endpoints of each range were 
generated by dividing the cumulative survivor abundance by cumulative hatch abundance, first 
with both values based on minimum growth rates, and next with both values based on maximum 
growth rates. 

Zooplankton 
Zooplankton were sampled at 2-3 sites per reservoir near the areas sampled for larval 

gizzard shad. In 11 of 12 reservoirs, zooplankton were collected using vertical net hauls from 
bottom to surface with a simple cone net, 98 cm long × 35 cm diameter (54-µm mesh). In 
Reservoir 1 (Clark), which was relatively shallow, we collected zooplankton with a 7.3 cm 
diameter tube sampler using four 1-m hauls or two 2-m hauls (depending on site depth). Once 
collected, all zooplankton retained by a 54- µm mesh were preserved in 70% ethanol. 

To quantify crustacean zooplankton, we identified, counted, and measured crustacean 
zooplankton using a digitizing tablet viewed through a dissecting microscope drawing tube. 
Zooplankton were identified to taxa as follows: cladocerans to genus; copepod adults and 
copepodids as calanoid or cyclopoid; immature copepods as nauplii. Each zooplankton sample 
was placed in a dish divided into 16 equal-sized wedges. All individuals were counted from two 
opposite wedges of the dish. From these counts, the total number of individuals within each 
taxon in the entire sample was estimated. If this number was ≥25, then counting of complete 
wedges continued until at least 50 individuals of that taxon were counted and the total body 
length (excluding spines, helmets, and caudal rami) of the first 22 individuals encountered was 
measured. If the total number of individuals of a taxon, as estimated from the first two wedges, 
was <25, then counting of that taxon stopped because it contributed so little to the entire sample, 
and the original estimate of abundance was retained. We assumed the zooplankton net was 100% 
efficient, and converted zooplankton densities from Reservoir 1 (Clark), sampled with a tube 
sampler, to equivalent net densities using the conversions of DeVries and Stein (1991). We 
calculated crustacean zooplankton biomass using taxon-specific length-dry mass regressions 
(Dumont et al. 1975, Bottrell et al. 1976; G. G. Mittelbach, Kellogg Biological Station, Michigan 
State University, unpublished data). 

To calculate crustacean zooplankton production rates (Culver and DeMott 1978), we 
quantified, for each sample, the percentage of females in each taxon bearing eggs, and the mean 
number of eggs per egg-bearing female. We then summed the rate of increase in mass of existing 
individuals (growth in mg dry mass·L-1·d-1) and the rate at which zooplankton mass was 
generated through births of new individuals (reproduction in mg dry mass·L-1·d-1). We used 
taxon- and temperature-dependent zooplankton development rates (DeMott 1976, Bean 1980). 
The sum of the growth and reproduction estimates yielded taxon-specific production estimates. 
We summed these estimates across taxa to calculate total crustacean zooplankton production per 



  

 

 
 

 
 

  

 
 

 
 

 
 
 

 
  

 
 

  
 
 

 
 

 

sample. For each zooplankton parameter (density, size, biomass, and production), we first 
calculated daily means by averaging across sites; we then generated an overall mean by 
averaging across dates during May through June. 

Chlorophyll a, nutrients, water clarity, and temperature 
At each zooplankton collection site, we measured Secchi depth. At the most downstream 

site in each reservoir, we measured surface water temperature. In 7 of 12 reservoirs (Table 1), we 
collected a water sample from the euphotic zone (calculated as 1.5 times the Secchi depth), using 
an integrated tube sampler (2.5 cm diameter), for laboratory determination of chlorophyll a, total 
nitrogen (TN), and TP. Total N and TP samples were collected about once every two weeks. 
Water samples were transported to the laboratory in a cooler on ice. 

To measure the concentration of chlorophyll a from phytoplankton edible to zooplankton, 
we filtered the water samples (typically 50 mL) in a darkened room through 35-µm mesh 
(Gliwicz 1975, Porter 1977). The samples were then filtered onto Whatman GF/C glass fiber 
filters and frozen. Chlorophyll a concentrations (corrected for pheopigments) were determined 
fluorometrically, after extraction in methanol (Soranno 1990). 

Total N and TP concentration samples were frozen in Nalgene bottles immediately upon 
return to the laboratory. Total N was determined by second-derivative spectroscopy after 
persulfate digestion (Crampton et al. 1992), and TP was determined by spectroscopic analysis 
using the acid molybdate method after persulfate digestion. 

TABLE 2. Response variable, explanatory variable, and predicted relationship for simple linear regression analysis. 

Notes: Analyses first evaluated how aspects of gizzard shad recruitment (hatch, survivor abundance, survival) varied 
with reservoir productivity. Subsequent analyses sought mechanistic insights underlying the documented 
recruitment patterns. TP = total phosphorus. 

We calculated daily means of edible chlorophyll a by averaging across sites. Next, we 
generated an overall mean value for edible chlorophyll a in each reservoir by averaging across 
dates during May through June. Mean May through June values of TN, TP, and Secchi depth 
were calculated by averaging across sample dates. 

Statistical analyses 
We used linear regression to evaluate relationships between gizzard shad-related 

variables and measures of reservoir productivity (Table 2). The majority of our regressions 
consisted of single observations per reservoir (N = 12) because we generated single estimates of 
larval hatch abundance, larval survival, and production of large larval survivors in each reservoir. 
Unless otherwise noted, data transformations were not needed. 



 

 

 
 

 

 

  

 
 

 
 

 

 

We also compared larval gizzard shad foraging success to zooplankton availability at a 
finer, weekly time scale to determine if larval foraging success increased with availability of 
small crustacean zooplankton prey (Bremigan and Stein 1994, 1997). We estimated the density 
of preferred, small crustacean zooplankton prey (small copepods and nauplii <0.40 mm) in each 
reservoir on each sampling date. We combined larvae from dates with similar reservoir densities 
of small copepods. Overall, 488 larvae were grouped into five categories of small copepod 
density: <10/L, 10 to <20/ L, 20 to <40/L, 40 to <60/L, and ≥60/L. We compared the mean 
number of small copepods per larval gut among the five small copepod density categories using 
analysis of variance, followed by Tukey’s pairwise comparisons. 

RESULTS 
Reservoir productivity and larval gizzard shad density 

Across seven reservoirs, mean TP ranged from 28-328 (µg/L and mean TN ranged from 
8990-9981 µg/L. Total N:TP ratios ranged from 25 to 400 by mass, always exceeding the 
Redfield ratio (7:1 ratio by mass; Lind 1985), indicating that phytoplankton in these reservoirs 
likely were phosphorus limited. Therefore, we used mean TP as a measure of reservoir 
productivity. Because mean Secchi depth and mean TP were significantly correlated, we 
estimated TP in the five reservoirs in which only Secchi depth was measured using the Secchi-
TP regression equation (Fig. 1). 

Hatching of larval gizzard shad began the second week of May, and continued through 
June, except in Reservoir 4 (Stonelick), where hatching was delayed. By June 15, typically >70% 
of the May through June hatching had occurred, although in Reservoir 4 only 40% had occurred. 
In five of the seven reservoirs (3, 6, 7, 11, 12) that we sampled through the summer, few larval 
gizzard shad hatched (i.e., <0.1 larvae/m3) after 30 June. However, in two small, hypereutrophic 
reservoirs (1, 4) up to 15 larvae/m3 hatched after June 30. 

Overall, hatch abundance, abundance of large larval gizzard shad survivors, and larval 
gizzard shad survival all varied more extensively among reservoirs than did the within-reservoir 
estimates based on minimum and maximum growth rate scenarios, and all three variables were 
positively correlated with TP (Fig. 2). In contrast to our prediction that larval gizzard shad hatch 
abundance would be consistently high, regardless of reservoir productivity, mean cumulative 
larval hatch increased from 2 to 77 larvae/m3 with increasing mean TP (Fig. 2A). Both hatch 
abundance and survival contributed to increasing abundance of large larval survivors with 
increasing productivity (Fig. 2B, C). 

Larval recruitment environments: nutrient, chlorophyll a, and zooplankton relationships 
As we expected, mean edible chlorophyll a, which ranged from 5-100 (µg/L, was 

positively correlated with mean TP (Fig. 3A). Contrary to our expectations, crustacean 
zooplankton production, which ranged from 0.01-0.08 mg dry mass·L-11d-1 across reservoirs, 
was not correlated to mean TP (Fig. 3B). 

Taxonomic composition of crustacean zooplankton assemblages varied across reservoirs. 
Typically, copepods were most prevalent. Across reservoirs, mean proportion of crustacean 
zooplankton biomass comprised of copepods ranged from 2-60% for calanoid copepods and 
from 4-52% for cyclopoid copepods. 



 
 
 

   
    

  
 

 

 

 

 
 

 

 
 

  

 
 

 

 

FIG. 1. Relationship between mean total epilimnetic phosphorus concentration (TP) and Secchi depth in Ohio 
reservoirs, sampled during May through June 1993. Secchi depth was measured weekly in all 12 reservoirs, whereas 
TP was measured in seven reservoirs (open circles) once every two weeks. Regression analysis on natural-log
transformed data from the seven reservoirs allowed estimation of TP in the five reservoirs in which only Secchi 
depth was measured (open squares). Reservoirs were ranked from shallowest (1) to deepest (12) Secchi depth (see 
Table 1). 

Copepod nauplii also contributed from 2-19% of crustacean zooplankton biomass. The 
proportion of zooplankton biomass attributable to cladocerans ranged widely (<1–15% for 
Bosmina spp., 10-74% for Daphnia spp., and <1–14% for Diaphanosoma spp.). Mean crustacean 
zooplankton length ranged 0.46-0.70 mm across reservoirs, but was unrelated to TP (r2 = 0.16, P 
= 0.22, N = 12 reservoirs). 

Larval gizzard shad foraging on zooplankton 
Larval gizzard shad primarily consumed copepod nauplii and copepods <0.40 mm 

(hereafter, small copepods). For small larvae (5-9.9 mm TL), 70% of all prey items were small 
copepods. For large larvae (10-14.9 mm TL), 79% of all prey items were small copepods. Larvae 
occasionally consumed rotifers (29% and 16% of all prey in small and large larvae, respectively). 
Small cladocerans, which typically are preferred by larvae >15 mm TL (Dettmers and Stein 
1992, Bremigan and Stein 1994), were quite rare in the small and large larval guts sampled here 
(<5% in both size classes). Many larval gizzard shad contained no prey (percentage empty: small 
larvae = 57%, large larvae = 36%). 

Mean May through June density of small copepods was unrelated to mean TP (Fig. 3C). 
For small larvae, mean May through June density of small copepods per larval gut increased with 
reservoir mean density of small copepods (Fig. 4A); rotifers were only abundant in larval guts in 
reservoirs where small copepods were rare (Fig. 4B). For large larvae, small copepods in the diet 
were not related to reservoir density of small copepods (Fig. 4C); rotifers per large larval gut 
were generally low (Fig. 4D). The number of small copepods per larval gut did not explain larval 
survival for either small or large larvae (P > 0.5 for both larval size classes). 

A stronger relationship between larval foraging success and small copepod density was 
evident for both small and large larvae, when viewed at a weekly time scale (Fig. 5). For <20 
small copepods/L, the percentage of larvae with empty guts was quite high (62% and 50% for 
small and large larvae, respectively), whereas for ≥60 small copepods/L, fewer larvae had empty 
guts (35% and 16% for small and large larvae, respectively). Overall, large larvae consumed 



 
 

 

 

 

 
 

 

 

  
 

 

 

more small copepods than small larvae; for both size classes, number of small copepods 
consumed increased with reservoir density of small copepods (Fig. 5). 

DISCUSSION 
Our research explores how the mechanisms driving community structure and function in 

reservoirs vary along a productivity gradient. This pattern hinges on the success of a particular 
species, gizzard shad (Stein et al. 1995). We sought to explain among-system patterns of gizzard 
shad abundance by improving our mechanistic understanding of gizzard shad recruitment along a 
productivity gradient. By mechanistically understanding recruitment of this strong interactor 
(sensu Paine 1980), we gain insight into the variability surrounding community structure and 
nutrient dynamics in reservoirs. Such understanding is useful to the development of broadscale, 
multisystem management strategies. Below, we discuss our results in the context of factors 
affecting gizzard shad recruitment across reservoirs, and use of these results to improve reservoir 
management. 

Relative importance of hatch abundance and survival 
We explored if and when hatch abundance of larval gizzard shad limited recruitment in a 

subset of reservoirs that spanned the full range of TP (1, 4, 8, and 12). We estimated the number 
of larval survivors that could be produced if reservoirs with low larval gizzard shad hatch 
abundance (8 and 12) had supported high survival (values from 1 and 4) and vice versa (Table 
3). Given all else being equal, abundant large larval survivors neither could be produced in low 
productivity/low hatch reservoirs, even if survival were high, nor in high productivity/high 
survival reservoirs, if hatch abundance were low. Hatch abundance likely limited recruitment in 
mesotrophic reservoirs (≤7 µg/L chlorophyll a; trophic classification per Bachman et al. [1996]). 
In contrast, among eutrophic (8-40 (µg/L chlorophyll a) and hypereutrophic (>40 (µg/L 
chlorophyll a) reservoirs that supported moderate to high hatch abundance, survival determined 
recruitment. Thus, high hatch abundance appears necessary, but not sufficient, to produce 
abundant large larval gizzard shad survivors. Our data suggest that as reservoir productivity 
increases, hatch abundance increases, and correspondingly the potential for variability in the 
number of large larval survivors increases. However, if hypereutrophic reservoirs consistently 
support the highest hatches and survival (as documented here), then we expect consistently high 
recruitment in hypereutrophic reservoirs, consistently low recruitment in mesotrophic reservoirs, 
and variable recruitment in eutrophic reservoirs. We surmise that the factors underlying the 
positive relationship between hatch abundance and reservoir productivity reflect increasing adult 
abundance and/or condition. 



 
 
 

 
      

  
 

 
  

  
 

 
  

  
   

 

FIG. 2. (A) Positive relationship between the index of larval gizzard shad hatch abundance (total density of 5–6 mm 
TL larvae produced during May through June) and mean total epilimnetic phosphorus concentration in 12 Ohio 
reservoirs, 1993. (B) Positive relationship between cumulative abundance (May through June) of large larval gizzard 
shad survivors (larvae reaching ~15 mm TL) and mean epilimnetic total phosphorus concentration in 12 Ohio 
reservoirs, sampled during May through June 1993. (C) Positive relationship between larval gizzard shad survival 
and mean epilimnetic total phosphorus concentration in 12 Ohio reservoirs. Survival represents the ratio of 
cumulative abundance of larval survivors (larvae reaching ~ 15 mm TL) to cumulative hatch of larval gizzard shad. 
Reservoirs are ranked from shallowest (1) to deepest (12) Secchi depth (Table 1). For each response parameter 
(larval hatch abundance, survivor abundance, and survival), we estimated the range within which the actual value 
falls, accounting for the potential for larval growth rate differences across reservoirs to influence density estimates. 
Endpoints of each range were generated using minimum and maximum larval gizzard shad growth rates (see 
Methods: Larval gizzard shad for explanation). We used mean value for each response parameter (larval hatch 
abundance, survivor abundance, and survival; calculated as the average of the values generated from minimum and 
maximum growth rates) in the regression analysis. 



 
 
 

 

 

 
    

  
 

 
 

 

FIG. 3. (A) Positive relationship between mean epilimnetic edible chlorophyll a concentration and mean epilimnetic 
total phosphorus concentration in seven Ohio reservoirs, 1993. Chlorophyll a was measured weekly during May 
through June, except in reservoir 7, for which chlorophyll a was sampled on only one date. Reservoirs were ranked 
from shallowest (1) to deepest (12) Secchi depth (see Table 1). (B) Comparison of mean crustacean zooplankton 
production and mean epilimnetic total phosphorus concentration in 12 Ohio reservoirs, 1993. Zooplankton were 
sampled weekly during May through June, 1993. (C) Comparison of mean density of small copepods (nauplii and 
individuals <0.40 mm) and mean epilimnetic total phosphorus in 12 Ohio reservoirs, sampled weekly during May 
through June 1993. Error bars represent ± 1 SE; NS = nonsignificant. 



 
   

    

 

 
  

 

 
 
 

 
 

 
 
 

 
 

 

 
 

 

FIG. 4. Prevalence of zooplankton in larval guts and mean reservoir density of small copepods (nauplii and 
individuals <0.40 mm) for 11 reservoirs sampled during May through June 1993. Mean reservoir density of small 
copepods was estimated for dates on which larval guts were analyzed. Reservoirs were ranked from shallowest (1) 
to deepest (12) Secchi depth (Table 1). (A) Significant positive correlation between mean number of small copepods 
per small larval gizzard shad gut vs. mean reservoir density of small copepods. (B) Mean number of rotifers per 
small larval gizzard shad gut vs. mean reservoir density of small copepods. (C) Nonsignificant relationship between 
mean number of small copepods per large larval gizzard shad gut and mean reservoir density of small copepods. (D) 
Mean number of rotifers per large larval gizzard shad gut vs. mean reservoir density of small copepods. Error bars 
represent ± 1 SE; NS = nonsignificant. 

We predicted that larval survival would increase with reservoir productivity, due to 
increasing availability of small zooplankton. As predicted, larval gizzard shad survival increased 
with reservoir TP, and larval foraging success increased with small zooplankton abundance. 
However, the extent to which these patterns reflected positive effects of small crustacean 
zooplankton on larval gizzard shad survival was difficult to discern because (1) small crustacean 
zooplankton productivity did not increase with reservoir productivity and (2) larval survival did 
not increase with larval foraging success. We consider these relationships in turn. 

FIG. 5. Relationship between mean number of small copepods (nauplii and individuals <0.40 mm) per larval gizzard 
shad gut and reservoir density of small copepods for (A) small and (B) large larvae sampled during May through 
June 1993. Larvae were grouped according to reservoir density of small copepods. Letters signify significant 
differences (Tukey’s pairwise comparisons, a = 0.05) among pairwise comparisons. The number of larval guts 
analyzed is shown above each bar. 

Zooplankton and system productivity 
We expected zooplankton production to increase and zooplankton size to decline with 

increasing reservoir TP and turbidity because high turbidity can negatively affect large 
zooplankton (Arruda et al. 1983). However, multisystem surveys of zooplankton size vs. lake or 
reservoir productivity have shown equivocal results (Table 4). In Ontario lakes (Sprules 1980) 



 

 

 
 

 
 

 

 
 
 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

and Florida lakes (Bays and Crisman 1983) zooplankton size declined with increasing 
productivity. Yet, across a relatively narrow productivity range in Quebec lakes (Pace 1986), and 
a much wider productivity range in midwestern reservoirs (Canfield 1988), zooplankton size did 
not change with productivity. Although we detected no change in crustacean zooplankton size 
with increasing productivity, mean crustacean zooplankton size was consistently small (0.46 to 
0.70 mm) relative to north temperate lakes (>0.70 mm in 22 of 36 New York lakes; Mills et al. 
1987). Further, Daphnia spp., often the dominant zooplankton grazer in north temperate lakes, 
was only abundant (i.e., >60% of crustacean zooplankton biomass) in our two reservoirs with 
edible chlorophyll a <20 µg/L. Taken together, these patterns suggest that a reduction in 
zooplankton size with increasing productivity, if observed, occurs most markedly at ~20 µg/L 
chlorophyll a, due to rarity of large Daphnia spp. and/or predominance of microzooplankton in 
systems with >20 µg/L chlorophyll a. 

In contrast to other multisystem surveys (Table 4), zooplankton biomass in our study did 
not increase with reservoir productivity. This suggests that zooplankton biomass was not 
determined by abundance of edible algae, which did increase with reservoir productivity. Rather, 
zooplankton biomass in our study reservoirs may be better predicted from differences in 
planktivory across reservoirs, abiotic differences, such as flow rate and turbidity, or differences 
in the quality of algal resources. 

Foraging by larval gizzard shad linked to survival? 
Mismatches in scale likely caused our measures of larval foraging success and survival to 

be unrelated. For example, the positive relationship between foraging success and small copepod 
density that was evident when individual sampling dates were considered (Fig. 5) was less 
evident, particularly for large larvae, when mean May through June values were analyzed (Fig. 
4). Because we treated all larvae within a reservoir as a single cohort with a single survival rate, 
our survival estimates were insensitive to variability in larval survival across time. As is the case 
for other fishes (Crecco and Savoy 1985, Mion et al. 1998), high survival over short time 
intervals (i.e., days) could produce the majority of gizzard shad survivors, particularly if 
hypereutrophic reservoirs support temporally variable densities of small zooplankton during 
periods critical to larvae. Under this scenario, foraging success over a short time interval by 
gizzard shad larvae would drive recruitment, but would preclude a strong relationship between 
mean foraging success and survival calculated over the broader time interval during which 
hatching occurs. 



 
 

 

 
 
 

 

   
 

 
 

 
 

 
 
 

 

 

 

TABLE 3. Predicting large larval survivors by combining larval gizzard shad hatch abundance with survival estimates 
from four Ohio reservoirs (reservoir identification numbers from Table 1), sampled during May through June 1993. 

Notes: (A) In each reservoir, observed number of large larval survivors (cumulative abundance per cubic meter dur
ing May through June) was divided by hatch abundance (cumulative abundance per cubic meter during May through 
June) to determine survival. Entries in (B) are products of survival and hatch corresponding to each pair of 
reservoirs. The numbers in bold along the diagonal correspond to observed values. Other entries are predicted 
numbers of large larval survivors for combinations of hatch abundance (columns) and survival probability (rows). 

TABLE 4. Comparison of multisystem studies of zooplankton (ZP) size and biomass vs. lake and reservoir 
productivity. 

Reservoir management 
Documented positive relationships between metrics of fish abundance (e.g., biomass or 

fishery yield) and system productivity (e.g., TP, total dissolved solids/ mean lake depth, or 
chlorophyll a) are well known in fisheries literature (Oglesby 1977, 1982, Jones and Hoyer 
1982). Additionally, as productivity increases, so does the proportion of total fish biomass 
accounted for by ‘‘nonsport fish’’ (including gizzard shad; Ney 1996). This pattern underscores 
the need to understand how species such as gizzard shad are influenced by system productivity, 
and in turn, how they affect sport fishes and water clarity. Our study provides mechanistic 
insights, which we believe are critically important if managers are to develop tools for 
manipulating gizzard shad populations and hence their effects on sport fish recruitment and 
nutrient dynamics. 



 

 

 

 

 
 

 

  

 

 

 

 

 
 

   
 

By classifying reservoirs according to their level of gizzard shad recruitment, managers 
can develop short-term management strategies specific to the anticipated effects of gizzard shad 
on sport fish recruitment and water clarity. For example, the negative effects of gizzard shad 
depletion of zooplankton on age-0 bluegill and age-0 largemouth bass are most likely in hyper-
eutrophic systems with very abundant gizzard shad (given that zooplankton production does not 
increase with TP). These negative effects are less likely in mesotrophic systems with relatively 
few gizzard shad. If eutrophic systems support moderate densities of slow-growing gizzard shad 
(which remain vulnerable to age-0 predators through midsummer), these reservoirs may be most 
likely to enjoy positive effects of gizzard shad on sport fish production (Dettmers and Stein 
1996, DiCenzo et al. 1996, Stein et al. 1996, Bremigan and Stein 1999). Land-use practices 
could be altered to reduce reservoir productivity from hypereutrophic to eutrophic. By reducing 
TP loading to hypereutrophic systems, managers could shift reservoir environments from ones 
supporting gizzard shad recruitment and dominance to ones favoring sport fish recruitment (Stein 
et al. 1996). 

Managers faced with managing multiple systems across many years should consider the 
relative importance of intersystem and interannual variability in prey fish recruitment. Patterns 
from previous field studies reveal that (1) as reservoir productivity increases, the probability that 
gizzard shad will dominate increases and (2) interannual variability in gizzard shad recruitment 
within mesotrophic and hypereutrophic systems is small relative to its variability between 
mesotrophic and hypereutrophic reservoirs (M. T. Bremigan and R. A. Stein, unpublished data). 
For example, gizzard shad first were stocked in reservoirs 1 and 4 in 1988. By 1990, peak 
densities of larval gizzard shad exceeded 20/m3 in these shallow, hypereutrophic systems, and 
reached 5-84 larvae/m3 in subsequent years (peak densities >20/m3 in 9 of 10 reservoir-years). In 
contrast, gizzard shad populations have occurred in this study’s low productivity reservoirs 
typically for >20 yr (D. Bright, Ohio Division of Wildlife, Athens, Ohio, personal 
communication); yet, in these systems, they have remained at consistently low levels (peak 
densities in reservoirs 8 and 12 during 1992-1995 were <3 larvae/ m3). 

Consideration of interannual and intersystem components of recruitment variability may 
be integrated with other efforts to develop a ‘‘multispecies’’ framework for understanding 
recruitment. For example, Miller et al. (1988) adopted a size-based perspective to conclude that 
size at hatch influences the relative importance of starvation and predation in determining 
recruitment across fish species. This perspective can be extended to suggest that freshwater 
fishes, which generally hatch at a large size relative to marine species, are more likely to have 
recruitment driven by predation, whereas marine species, with a generally small hatch size, are 
more likely to have recruitment driven by starvation (Houde 1994). We suggest building upon 
this approach by evaluating how life history characteristics influence the relative importance of 
intersystem and interannual variability in recruitment. For example, if weather at hatch is most 
important in driving recruitment (likely corresponding to a life history with small hatch size, no 
parental care, and fluctuating environmental conditions) then we would hypothesize that 
interannual variability in recruitment will be more extensive than intersystem variability. 
Generalizations gleaned from this work should contribute to our understanding of variability not 
only in fish populations but also in food web dynamics, because for fish species such as gizzard 
shad that function as strong interactors, factors underlying variability in their recruitment should 
also underlie variability in food web dynamics. 
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