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Abstract 

 

Cochlear implants (CIs) are devices used by individuals with hearing loss to improve 

communication through the use of an electrode array that directly stimulates the auditory 

nerve.  Existing signal processing strategies utilize a logarithmic frequency-to-electrode 

allocation, mimicking the representation of frequencies along the basilar membrane (high 

frequencies at the base and low frequencies at the apex).  These strategies support some 

degree of open-set speech recognition for CI users; however, average speech recognition 

remains well below that of normal-hearing adults.  To enhance speech recognition by adult CI 

users, this study examined one promising alternative to the standard logarithmic frequency-to-

electrode allocation.  The allocation map was modified to provide more refined representations 

of the first two (and most important) vowel formant frequencies (energy peaks vowel spectra 

that are critical to speech perception).  Twelve participants were tested using two different CI 

maps: one based on existing clinical frequency-to-electrode allocation strategies (Standard) and 

one designed to improve the resolution of the first two formants, which should especially 

enhance vowel recognition (Speech).  Alternating between these maps, participants listened to 

and repeated three kinds of stimulus materials: (1) highly meaningful five-word sentences, (2) 

syntactically correct but not meaningful four-word sentences, and (3) phonetically balanced 

consonant-vowel-consonant words in isolation.  Analyses revealed that some participants 

benefitted from the Speech strategy.  Moreover, an improvement in vowel recognition within 

words strongly predicted an improvement in recognition of words in sentences. These findings 

suggest that optimizing the representation of the first two formants could enhance speech 

recognition for CI users.  Future efforts should focus on better representing this speech-specific 

information in modern-day signal processing strategies.   
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Introduction 

Considered one of the most successful neural prosthetics, cochlear implants (CIs) have 

improved the lives of almost 200,000 people to date (Cochlear, 2015).  Advances in CI 

technology aid communication for profoundly deaf individuals; however, average speech 

recognition scores are still not equivalent to normal-hearing adults.  Previous studies have tried   

to improve speech recognition scores by altering the way frequencies are allocated to the CI 

electrodes, with mixed results.  This study attempts to improve speech recognition scores by 

examining whether the speech recognition performance of CI users might be improved by 

modifying their frequency-to-electrode allocation maps.  Participants were tested while 

listening to two maps: one which focused on improving delivery of the acoustic information 

classically thought to underlie speech perception, and one representing a more typical clinical 

frequency-to-electrode allocation.   

Speech sounds are generated during complex, coordinated patterns of articulatory 

activity.  The resulting sounds are acoustic representations of gestures occurring in the oral, 

nasal, and pharyngeal cavities.  These gestures are reflected in a number of properties of the 

acoustic signal, including acoustic structure in the frequency, duration, and intensity domains, 

which co-vary over time.  These co-varying properties result in acoustic cues for speech 

perception, and some are more effective than others for a given language.  Specifically, the 

general spectral structure of speech (the frequency-specific information) carries especially 

important acoustic and phonetic information that is used by a listener to understand speech 

(Studdert-Kennedy, 1983).  For example, formant peaks (the resonant harmonic peaks that are 

formed as sound from the glottal source travels through the pharyngeal, oral, and nasal 
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cavities) play a crucial role in the perception of vowels.  Formant transitions, the relative 

changes over time of those formant peaks, underlie perception of many consonant-vowel and 

vowel-consonant transitions or glides. 

The process of hearing and understanding these acoustic cues begins in the outer ear 

and ends in the brain.  When a sound is produced, a wave is propagated through a medium and 

enters the external auditory canal.  Subsequently, the tympanic membrane is set into motion, 

causing the ossicles to move and further propagate the sound energy through the oval window 

and into the fluid-filled cochlea.  Together the outer and middle ear work to selectively transmit 

certain frequencies, as well as overcome the impedance mismatch from the air-filled middle ear 

to the fluid-filled cochlea.   Within the cochlea, the fluid wave then stimulates movement of the 

basilar membrane in the cochlea, and triggers activation of hair cells.  In general, these cells 

encode sounds according to frequency: hair cells at the base of the cochlea encode higher 

frequencies, and hair cells at the apex encode lower frequencies.  Once the hair cells are 

stimulated, they produce electrical signals and send those signals to the brain via the auditory 

nerve (Yost, 2006).   

 In individuals with sensorineural hearing loss, certain parts of this process do not 

function as well as others.  The waveform follows the same path as it does for normal-hearing 

individuals, but upon arriving at the cochlea, the hair cells are less able to transmit signals to 

the brain.  The weakened signals can be due to damaged hair cells, as a result of age, disease, 

noise exposure, heredity, infections, trauma, or ototoxic drugs.  Human hair cells do not 

regenerate, and any damage to these cells is irreversible.  Upon the detection of a permanent 

hearing loss, a hearing aid may be recommended, depending on the degree and type of hearing 
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loss (Yost, 2006).  For individuals with more severe-to-profound hearing loss, a CI may be 

recommended. 

A CI is a device that consists of two components: an external piece that is worn behind 

the ear and an internal piece that is surgically implanted.  The external piece consists of a 

microphone and battery pack, as well as a sound processor, which are worn behind the ear, and 

an external transmitter that is held in place above the ear by an external magnet.  The internal 

portion consists of a receiver/stimulator attached to an internal magnet and an electrode array.  

Sounds are detected by one or more microphones located on the external piece of the implant, 

after which signals are sent to the sound processor.  This processor is a battery-powered digital 

signal processing unit that converts the acoustic sound signals into electrical stimulation.  The 

electrical stimulation is transformed into radio-frequency signal, which is transmitted through 

the skin to the internal receiver/stimulator.  The signals are then decoded by the internal 

receiver, which sends electrical stimulation to the surgically inserted electrode array in the 

cochlea.  The electrode array has a length of about 2cm, which covers approximately the first 

one-and-a-half turns of the cochlea.  Upon implant activation postoperatively, each electrode is 

assigned a certain range of frequencies to represent electrically.  Electrical impulses are then 

delivered to stimulate auditory nerve fibers that exist near the electrodes, resulting in the 

production of action potentials that are delivered via the auditory nerve to the auditory cortex 

for processing (Macherey & Carlyon, 2014).   

 Although these complex devices are extremely helpful in many cases of hearing loss 

today, they are a relatively recent development.  The first cochlear implantation in the United 

States occurred in 1961, by William House and John Doyle (Mudry & Mills, 2013).  This original 
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implant had a grounding electrode and one stimulating electrode (a single channel device), with 

a primary purpose of providing environmental sound awareness in deaf individuals (Moller, 

2006).  In terms of speech perception, the first few implants were primarily useful as aids to lip 

reading, because they provided little more than a sensation of sound and very gross envelope 

cues, with highly degraded spectral representations (Wilson & Dorman, 2008).  However, even 

with these degraded signals, a few individuals were able to understand some speech.  Because 

the single electrode was only capable of transmitting the temporal envelope (the broad 

amplitude structure of the entire frequency range of the acoustic signal), users had access to 

enough acoustic information to perceive voicing, but not much more (Clark, 2014).  In order to 

improve speech understanding, including the perception of vowels and the glides connecting 

consonants and vowels, it was necessary to have better spectral resolution.  

Improving spectral resolution of implants occurred through taking advantage of the 

tonotopicity of the cochlea.  Advances in technology permitted the development of CIs with 

multiple stimulating electrodes and, therefore, multiple channels of processing and stimulation 

in the cochlea.  Current multi-channel devices include up to 22 electrodes on a single electrode 

array (Macherey & Carlyton, 2014).  This new technology has greatly improved speech 

recognition in CI users, and implants are no longer just for aiding lip reading and environmental 

awareness (Wilson & Dorman, 2008).   

Although the number of electrodes inserted is now greater than with single-channel 

devices, spread of electrical excitation within the cochlea, as well as overlapping regions of 

neural stimulation, effectively lead to delivery of only about 6-8 independent channels of 

information (Friesen et al., 2001).  Therefore, a large amount of spectral detail inherent in the 
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speech signal is still lost. This signal degradation certainly plays a role in the imperfect speech 

recognition exhibited by CI users, especially under noisy conditions.  It is still unclear which 

acoustic cues through an implant best support speech perception for CI users.  Formants 

provide the necessary cues for people with normal hearing to identify articulator placement for 

vowels, while formant transitions into and out of the vowels help to identify the placement for 

consonants.  Studies of normal-hearing individuals listening to degraded speech sound 

representations that preserve certain speech features have shed some light on how these cues 

are received by listeners using CIs.  Remez et al. (1981) provided evidence that three sine waves 

replicating the time-varying spectral structure of the first three formants is enough for listeners 

to accurately repeat sentences, suggesting that this type of broad spectral structure can 

support accurate speech recognition.  Studdert-Kennedy (1983) suggested that speech 

recognition is possible as long as the listener can identify instantaneous articulator placement, 

and claimed that the function of the speech signal is to specify articulation.  In order to identify 

the instantaneous articulator placement, a user needs to accurately perceive not only formant 

information, but temporal patterns of spectral change, as well.  The formants allow the listener 

to perceive exact articulator placement, and the spectral changes over time that underlie 

perception of connected speech.   

Based on these classical premises of speech perception, early processing strategies of 

CIs attempted to provide representations of the formant frequencies of speech sounds.  These 

processing strategies refer to the number and location of the electrodes stimulated, the 

frequency-to-electrode allocation, the type of stimulus, and the rate and amplitude of 

stimulation.  An early processing strategy focused on representing just the fundamental 
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frequency (F0), the second formant (F2), and the amplitude envelope of the speech.  This 

strategy, known as F0F2, showed significant improvement of consonant recognition as well as 

overall speech recognition over the F0 strategy, which only represented the fundamental 

frequency (Clark, Tong & Dowell, 1984).  The purpose of the F0F2 strategy was to improve lip 

reading, which it did by focusing on the fundamental frequency and second formant.  Both the 

fundamental frequency and the second formant are very difficult or even impossible to see, 

because they are dictated by the vocal folds and tongue advancement, whereas the first 

formant is the easiest formant to see, because it is dictated by jaw height.  The F0F2 strategy 

did not include the first formant because it is easily visible, but in an effort to further improve 

vowel perception, F1 was added to form the F0F1F2 strategy (Tye-Murray et al., 1990).   Blamey 

et al. (1987) tested the F0F2 strategy against the F0F1F2 strategy and found that CI users 

preformed much better for prosodic and phonetic tasks with the F0F1F2 strategy.  The authors 

also found that adding in F1 greatly improved vowel recognition, but consonant recognition 

was similar between the two programs (Blamey et al., 1987).  To improve consonant 

recognition, MPEAK was created, which added 3 additional high frequency bands to the F0F1F2 

processing strategy.  This increase of consonant information greatly improved overall open set 

speech recognition (Skinner et al., 1991).   

Cochlear implants utilize three main categories of processing strategies: feature 

extraction, waveform representation, and a mix of feature extraction and waveform.  The 

strategies discussed earlier all were feature extraction strategies, in which the programmer 

decided what aspects of speech are most important and focuses on delivery of those aspects 

instead of the whole waveform.  The previous strategies all focused on delivering formant 
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information, which in turn nominally improved speech recognition.  No current processing 

strategies rely on feature extraction.  Waveform representation strategies attempt to maintain 

and deliver all of the waveform information found in the speech signal.  Some examples of 

waveform strategies include Compressed Analog, Simultaneous Analog Simulation (SAS) and 

Continuous Interleaved Sampling (CIS).  The first iteration of the Compressed Analog strategy 

delivered band-specific, compressed amplitude waveforms to different electrodes, and 

therefore different locations in the cochlea.  The main limitation of the Compressed Analog 

strategy was the cross-channel interactions, which was solved for the most part with the SAS 

strategy.  At the end of each band-pass channel, SAS uses a logarithmic mapping function, 

which allows each channel to be mapped individually (Zeng, 2004).  The CIS strategy is similar to 

the Compressed Analog strategy, but it uses more manipulations, a higher rate of stimulation, 

compression of envelopes occurs after filtering (as opposed to before filtering with the 

Compression Analog strategy), and it uses pulsatile stimulation (as opposed to analog).  CIS 

begins by increasing the amplitude of higher frequency sounds (where consonant information is 

located), which usually have lower intensities in speech.  Compression still occurs, but the 

amount of compression varies for low- and high-amplitude signals, while still preserving 

important changes in the temporal envelopes, resulting in high speech recognition in quiet 

(Shannon et al., 1995).  Two recent variations of the CIS strategy are the Paired Pulsatile 

Stimulation strategy and the HiRes strategy.  The PPS strategy pairs distant electrodes which 

are stimulated simultaneously, with each pair stimulated nonsimultaneously.  This doubles the 

rate of stimulation across all electrodes while minimizing interactions between simultaneously 

stimulated electrodes (Loizou et al., 2003).  The HiRes strategy is another variation of the CIS 
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strategy but instead of pairing electrodes to increase stimulation, it increases the pulse rate and 

the number of channels used.  The increase in pulse rate and channels led to improvement of 

speech recognition in noise for adults with cochlear implants (Firszt et al., 2009).   

 Two types of n-of-m strategies are the SPEAK strategy and the Advanced Combination 

Encoder strategy.  The SPEAK strategy uses multiple band pass filters and then selects the filters 

with the largest output amplitudes, depending on the incoming signal.  These amplitudes are 

then compressed into the listener’s dynamic range, and the digitally encoded pulses get sent to 

the electrodes (Loizou, 1998).  The ACE stimulation strategy is very similar to the SPEAK 

strategy, but the main difference is the ACE strategy uses a stimulation rate, about 800 to 1600 

pps, which is much higher than SPEAK’s stimulation rate, which is about 180 to 300 pps.   

Regardless of which processing strategy is used, the sound processor is programmed 

through mapping, which allocates specific frequency ranges to each electrode on the electrode 

array.  Roughly, current mapping techniques follow the tonotopic organization of the cochlea 

and represent high frequencies at more basal electrodes, whereas low frequencies are 

represented at the more apical electrodes.  Moreover, frequency bands are assigned more 

widely at the base and more narrowly at the apex, based on a logarithmic scale and the known 

tonotopic arrangement of the cochlea.  The frequency which produces the largest response 

with the smallest stimulation is the characteristic frequency, which is organized in a logarithmic 

scale in the cochlea (Gray, 1997).  Although the clinical maps follow this logarithmic 

arrangement, the clinical technique does not specifically focus on the frequencies where 

speech sounds, and more specifically, formant peaks and transitions occur.  Thus, current maps 

typically do not emphasize the representation of speech-specific information.  
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Previous studies have experimented with improving representation of the low-

frequency speech structure, with mixed results.  Skinner et al. (1995) extended the low 

frequency set of filters from a default filter set to one that provided one or two more filters to 

the area under 800 HZ, thus providing improved resolution in the F1 formant region of speech.   

After 3 weeks of experience listening to the device at home, participants were tested in the 

laboratory, and were found to have improved perception of vowels and nasality in consonants.  

These results showed that improving resolution of the lower frequencies, specifically the F1 

region, could significantly improve vowel perception.   

Fu and Shannon (1999a,b) carried out a series of experiments that examined 

relationships among frequency allocation, electrode location, and speech perception.  In the 

first experiment, four electrode maps were tested with alterations of either electrode location 

or frequency allocation.  Participants’ consonant and vowel recognition was then assessed. 

They found that frequency range and electrode location had a significant effect on the 

perception of vowels and consonants.  Vowel and consonant recognition was best when more 

filters and more electrodes were used to represent the lower frequencies.  Vowel recognition 

and recognizing consonant place of articulation were strongly affected by the changes, whereas 

voicing and manner were not strongly affected by changes in electrode location and spacing, 

probably because they are largely based on temporal cues.  The results of their second study 

(Fu & Shannon, 1999a) suggested that vowel discrimination was best when the frequency-to-

electrode allocation was most similar to their clinical map.    

One way to alter listeners’ maps would be to allocate more electrodes to lower 

frequencies, which would allow more formant information to fall across adjacent channels in 
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the low-to-mid frequency range, instead of within a single channel.  Henry (2000) found that CI 

users’ ability to discriminate between adjacent electrodes below 2.6 kHz was positively 

correlated with their speech recognition, suggesting that fine spectral discrimination is more 

important in vowel formant regions than higher frequency regions.  McKay and Henshall (2002) 

altered the frequency information given to a CI user through the creation of two maps: one 

with evenly spaced allocations of frequency from 200-10,513 Hz across 10 electrodes; and one 

with 9 out of 10 electrodes allocated below 2,600 Hz.  After wearing the new maps outside the 

clinic for two weeks, participants were tested using words in quiet and sentences in noise.  The 

low-frequency allocation map led to improved sentence recognition in noise, as well as vowel 

recognition in quiet, but some users showed degraded consonant perception in quiet.  

Furthermore, users with poor speech perception to begin with did not show much of a 

difference between the two maps; the authors suggested that this might be due to the fact that 

those users might rely more on temporal cues than spectral cues.  They concluded that vowel 

recognition could be improved by allocating more electrodes to lower frequencies without a 

detrimental effect on consonant recognition.  

Similarly, Nittrouer (2014a) found that improving representation of low-to-mid 

frequencies might benefit CI users of all ages.  Normal-hearing participants listened to vocoded 

(CI-simulation) stimuli that were processed to represent either a standard clinical CI map or an 

experimental map that represents the low-frequency formant information with greater 

resolution.  Results demonstrated that speech recognition improved when the electrodes were 

organized so that the first and second formants were presented in separate channels 

(experimental map), as opposed to falling within the same channel (standard clinical map).  This 
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improved low-frequency resolution allowed representation of sound by CIs to specify 

instantaneous articulatory placement, as well as formant transitions, as deemed necessary by 

Studdert-Kennedy (1983).  

The current study expands upon Nittrouer (2014b).  The purpose was to determine 

whether changing the frequency allocation of a listener’s map to better represent formant 

peaks (i.e., improve the resolution of low-frequency formants and their transitions) would 

improve speech recognition in adult, postlingually deafened patients with CIs.  Two maps 

comprised of five electrodes were used.  The first map, the “standard” map, was similar to a 

typical clinical map, with logarithmic frequency allocation.  The second map, the “speech” map, 

consisted of allocating narrower low-frequency bands to the more apical electrodes in order to 

improve the resolution of the speech formant frequencies.  Participants were tested for word 

and sentence recognition while listening using the standard and speech maps.  It was 

hypothesized that speech recognition would be better with the speech map compared to the 

standard map.  A second hypothesis was that better resolution of the formant information 

through the speech map, as evidenced by improved vowel recognition, should predict improved 

access to time-varying formant structure leading to improved sentence recognition. 

 

Method 

Participants  

 Twelve adults who wore CIs were recruited for this study from a pool of departmental 

patients.  All of the participants were native speakers of English and were between the ages of 
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23 and 77 years, with various etiologies of hearing loss and ages of implantation.  All 

participants had a progressive hearing loss and qualified for cochlear implantation at age 13 

years or later (Table 1).  Within the year prior to enrollment in the study, all participants were 

found to have CI-aided thresholds of 35 dB HL or better for all frequencies between .25 and 4 

kHz, as measured by their clinical audiologists.  All participants had at least one year of 

experience with their CIs, and all used Cochlear devices with an ACE processing strategy for 

normal everyday use.  Six participants were implanted in their right ear, four in their left, and 

two were implanted bilaterally.  Of the ten who had a single implant, five used a contralateral 

hearing aid.  For the purpose of this study, all participants used a single Freedom processor on 

the ear which had been implanted first, and the contralateral ear was unaided.  To ensure that 

none of the participants was cognitively impaired, all participants underwent a screening to rule 

out dementia using the Mini-Mental State Examination (MMSE).  This test is a validated 

screening assessment of memory, attention, and the ability to follow instructions (Folstein et 

al., 1975).  Results of this screening showed that none of the participants showed evidence of 

cognitive impairment.   

Equipment and Materials  

 All testing for this study was done in a sound proof booth with stimuli presented 

through a loudspeaker at 68 dB SPL, with the loudspeaker positioned one meter from the 

participant at zero degrees azimuth.  All responses were video- and audio-recorded using a 

Sony video recorder and a Sony FM microphone to ensure good sound quality for later scoring.  

Participants wore specially designed vests that held the FM transmitters, which sent the speech 
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signals to the receiver, which had direct input into the camera.  All scoring was done at a later 

time by the first author.   

 All participants used the same processor that was programmed using an ACE strategy to 

stimulate only five electrodes during testing.  All other electrodes were not stimulated.  For 

each participant, a clinical audiologist programmed the processor to identify the T-level (the 

threshold) and the C-level (the maximum comfortable level) for electrodes 4, 8, 12, 16, and 20 

(which were all inserted into the cochlea for all participants).  The processor was programmed 

such that the first program was always designated as the speech program, and the second 

program was always designated as the standard program.  The speech program was designed 

to split the frequency ranges for F1 and F2 across two electrodes each, and the last electrode 

allocated for the higher frequencies containing the consonant information.  For the speech 

program, electrode 20 was allocated the frequency range of 250 to 550 Hz; for electrode 16, 

550 to 936 Hz; for electrode 12, 936 to 1528 Hz; for electrode 8, 1528 to 2440 Hz; and for 

electrode 4, 2440 to 7938 Hz.  For the standard program, electrode 20 was allocated the 

frequency range of 250 to 722 Hz; for electrode 16, 722 to 1528 Hz; for electrode 12, 1528 to 

3066 Hz; for electrode 8, 3066 to 6000 Hz; and for electrode 4, 6000 to 7938 Hz.  As such, the 

speech program divided the range of critical frequency information for formants one and two 

(250 to 1528 Hz) across four electrodes, whereas the standard program divided that same 

frequency range over only three electrodes.  Thus, more refined information about formant 

energy should have been represented by the speech program compared to the standard 

program. 
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Stimuli 

 Three types of speech stimuli were used: highly meaningful five-word sentences, 

syntactically correct but not meaningful four-word sentences, and phonetically balanced 

consonant-vowel-consonant words.  Two different kinds of sentences were used to ensure that 

any effects observed were not due to the participant’s understanding of the semantic context 

of the words within the sentences.  This experiment used both words and sentences in order to 

see if any observed benefits might be greater in the sentences for the speech program, which 

would suggest that participants benefitted from receiving more information about the time-

varying formant structure across word boundaries.  Both meaningful and syntax-only sentences 

were used in this experiment to ensure that any results found were due to time-varying 

formant structure and not to context cues.  The meaningful sentences were composed of 56 

sentences from the Hearing in Noise Test (HINT) (Nilsson, Soli and Sullivan, 1994).  All were five 

words in length, follow a subject-predicate structure, are syntactically correct, and semantically 

predictable.  Half of the sentences were heard using the speech program, and the other half 

were heard using the standard program, with 3 for practice and 25 for testing using each 

program.  Fifty-six syntax-only sentences, which were used in Nittrouer et al. (2014a), were also 

used in this experiment.  These sentences are syntactically correct but semantically anomalous, 

and contained only monosyllabic content words (e.g., “Ducks teach sore camps”).  Again, half of 

the sentences were heard using the speech program, and the other half were heard using the 

standard program, with 3 for practice and 25 for testing using each program.  The last type of 

stimuli included was individual words, presented in lists, which were developed by Mackersie, 

Boothroyd, and Minnear (2001).  Each list consisted of ten phonetically balanced CVC words.  
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Nine lists were heard using the speech program, and the other nine lists were heard using the 

standard program, with an extra five words for practice with each program.  All sentences and 

words were recorded by an adult male talker of American English at 44.1 kHz sampling rate 

with 16 bit digitization.   

General Procedures 

 Testing took place at the Ear and Eye Institute (EEI) of The Ohio State University Wexner 

Medical Center.  Approval was obtained from the Institutional Review Board of the Ohio State 

University, and informed written consent was obtained from all participants before beginning 

testing.  Participants were tested during a single two-hour session.   

Prior to testing, an audiologist programmed the Freedom processor for each individual 

participant.  Of note, during this process, the participant had minimal exposure to speech using 

either program; that exposure was only sufficient to confirm T- and C-levels.  The participant 

then entered the soundproof booth where testing was done.   

Each stimulus was played only once, and the listener was asked to repeat what was 

heard.  Measures were collected in the following order for each participant: (1) Meaningful five-

word sentences (meaningful sentences), (2) words in isolation and (3) not meaningful but 

syntactically correct four-word sentences (syntax-only sentences).  The order of programs was 

alternated based on enrollment in the study, such that half of the participants were tested with 

the speech program first and the other half with the standard program first. 

Data included in analyses were collected from 5 pilot participants and 7 other 

participants.  For the pilot participants, listeners heard the meaningful sentences, words, and 
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syntax-only sentences, all presented in the same order, while switching between the speech 

and standard programs during testing.  Following pilot testing, a randomization program was 

developed in MATLAB, so that sentences or words were presented in random fashion, but still 

divided into testing blocks of meaningful sentences, words, or syntax-only sentences.  Again, 

participants were assigned to begin listening using either the speech program or the standard 

program first. 

 

Results 

 For both meaningful and syntax-only sentences, percent total (not key) words correct 

was computed, whereas percent phonemes correct and percent whole words correct were 

computed for the word lists.  Percent phonemes correct for the words was further examined as 

percent correct first consonant, vowel, and final consonant to better examine the effect of the 

speech and standard programs on phoneme recognition, particularly vowel recognition, as the 

speech program was designed to benefit vowel recognition most strongly.  Arc sine 

transformations of the percent correct scores were computed to give the data a normal 

distribution, and these arc sine transformed values were used as dependent measures in 

analyses. 

To analyze the differences in mean scores between the speech and standard programs, 

paired t-tests were used.  Difference scores for each of the transformed percent correct scores 

(speech minus standard) were also computed.  A series of linear regression analyses was 

performed to examine whether differences in some scores between the two programs (i.e., 
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correct phonemes, first consonant, vowel, or final consonant) would predict differences in 

sentence score (i.e., meaningful and syntax-only sentences).  

 Prior to analyzing the data for the group as a whole, data were analyzed and compared 

between the pilot participants and the other participants. Based on independent-samples t-

tests, no significant differences were found in mean sentence or word recognition scores using 

either the speech or standard programs. Therefore, data for all 12 participants (pilot and other) 

were included together in further analyses.   

A few general impressions can be made by inspection of the individual participant 

scores for the speech and standard programs, reported in Table 2.  A wide range of scores was 

seen among participants for each task, in both conditions.  It is difficult to determine the 

difference between the scores for the speech and standard program that would lead to a 

noticeable improvement in speech recognition in real life situations, but for the purposes of this 

study, participants who benefited more than five percentage points from either program were 

considered to have benefitted from that program.  Five out of 12 participants had better scores 

using the speech program over the standard program for the meaningful sentences, with the 

largest benefit being 47 percentage points.  Additionally, half of the participants benefitted 

from the speech program for vowel recognition from the word lists.  It is interesting to note 

that these four are not the same four who benefitted from the speech program during 

meaningful sentence recognition, although one participant did improve by at least 5 percentage 

points for both the meaningful sentences and vowel stimuli.  Out of the 9 participants who 

were able to complete the syntax-only sentences, 5 participants benefited by at least five 

percentage points using the speech program.  For the word lists, only 1 participant benefited by 
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at least 5 percentage points for the speech program; on the other hand, 5 participants 

benefited by more than 5 points for the standard program, and the rest did not have a 5-

percentage point difference between scores.   

The main question of interest for this study was whether a group benefit would be seen 

in speech recognition scores using the speech program over the standard program.  

Examination of the group mean scores in Table 2 revealed a larger mean score on meaningful 

sentences while using the speech program than using the standard program (69.2% versus 

62.8%), but a paired t-test analysis revealed the difference did not reach statistical significance.  

Better scores for the speech program over the standard program were also seen for syntax-only 

sentences (20.5% versus 19.9%) and vowels (41.0% versus 37.5%); however the paired t-test 

analysis revealed that these differences were not statistically significant.  Significant results 

favoring the standard program were found for words in isolation (19.6% versus 14.7%; t = 3.09, 

p = .01), and first consonant recognition (43.0% versus 37.2%; t = 2.44, p = .03).  There also 

were higher scores for the standard program over the speech program for last consonant 

recognition (36.3% versus 33.3%), but those results were found not to be statistically 

significant.      

The second question of interest was whether increased resolution of formant 

information (as measured by vowel recognition) would improve sentence recognition in adults 

with cochlear implants.  To answer this question, linear regressions were used to determine if 

improved vowel recognition performance predicted improved scores on the meaningful and 

syntax-only sentence recognition.  Analyses revealed that improvements in vowel scores 

strongly predicted improvements in meaningful sentence recognition, β = .84, F = 23.38, p = 
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.001, as well as syntax-only sentence recognition, β = .67, F =7.85, p = .026. These findings 

suggest that if improvements can be made in vowel recognition by CI users, this will likely result 

in improved sentence recognition as well.   

Discussion 

 The described experiment was undertaken to test two hypotheses: (1) Adults with 

cochlear implants would show improved speech recognition when using a modified frequency-

to-electrode allocation program with improved resolution of formant information; and (2) 

Improved access to formant information, represented by improved vowel recognition, would 

predict better recognition of time-varying formant structure, as evidenced by better 

recognition of sentences.   

 The results of this study did not fully support the first hypothesis: the only significant 

improvement in speech recognition scores was seen for words in isolation using the standard 

program.  It is important to note that one-third of participants showed substantial 

improvement using the speech program, suggesting that it is possible that there is a certain 

type of CI user that could benefit from the speech program.  The group means for recognition 

scores of both meaningful and syntax-only sentences were higher for the speech program; 

however those results were not statistically significant.  The higher group means using the 

speech program for the sentence stimuli suggest that the participants might benefit from the 

improved time-varying formant structure received through the speech program.  Nonetheless, 

these results suggest that some adults with cochlear implants might benefit from increased 

resolution of information about time-varying formant structure across word boundaries.  
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 The second hypothesis was supported by the results.  Improvements in vowel 

recognition predicted improvements in syntax-only and meaningful sentence recognition, 

suggesting that improved access to formant information might support better information of 

the time-varying formant structure of running speech.  These results stress the importance of 

formant information and time-varying spectral structure of running speech for speech 

recognition by CI users.  This suggests that it might be worthwhile to focus future processing 

strategies on improved delivery of formant information in order to improve speech recognition.  

A possible reason why some CI users did not show a benefit for the speech program 

over the standard program is the mismatch between the frequency allocation of the electrodes 

and the tonotopic arrangement of the cochlea.  In an ideal situation, the frequency allocation of 

the electrodes would line up perfectly with the corresponding parts of the neural elements to 

be stimulated; however this is not yet possible.  This mismatch is typically due to not knowing 

how deep the electrode array is inserted, or what part of the cochlea each electrode is 

stimulating.   

A typical clinical map attempts to minimize this mismatch by allocating its electrode 

frequencies logarithmically to try and best match the tonotopicity of the basilar membrane, but 

this does not allocate many electrodes to the critical lower frequencies where formant 

frequencies are located.  The speech map attempts to allocate more electrodes to the lower 

frequencies, but the frequency mismatch remains.  Whitford et al. (1995) found improvements 

attributed to the experimental maps even when the experimental maps were substantially 

different from the clinical maps, suggesting that improvement with different maps is possible if 

the participants are given time to adjust.  McKay and Hanshall (2002) also found some 
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improvement with the clinical map when the participants were given a two-week adjustment 

period to get used to their new maps.  Participants in this study did not have an adjustment 

period, and only had about 2 hours of total experience with the experimental maps, which 

might be the reason why there was not a significant improvement with the speech map.   

An in-depth understanding of speech perception is an essential component in devising 

studies that will yield insight into the variable performance of CI users.  Another consideration is 

the variability of the patients included.  There were varying etiologies of hearing loss, ages of 

implantation, and degrees of residual hearing, as well as likely variability in CI electrode array 

placement within the cochlea; all of these factors might contribute to user performance.  

Future methods to improve apical stimulation and decrease frequency-to-place mismatch are 

needed.  In the meantime, reallocation of frequencies to better represent the acoustic 

structure that underlies successful speech perception holds promise for patients with cochlear 

implants. 
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Tables  

Table 1. Cochlear implant participant demographics. PTA: Unaided four-tone pure tone average 

at .5, 1, 2, and 4 kHz 

 

Table 2. Individual participant scores for each task. 

Participant 
Meaningful 

SPEECH 
Meaningful 
STANDARD 

Words 
SPEECH 

Words 
STANDARD 

Vowels 
SPEECH 

Vowels 
STANDARD 

Syntax-
only 

SPEECH 

Syntax-
only 

STANDARD 

100001 99 94 48 48 72.2 66.7 60 52 

100002 41 40 2.2 5.6 40 15.56 0 0 

100003 75 28 13 6.7 47.8 56.7 0 0 

100006 52 62 10 17 43.3 36.7 0 0 

10007 79 77 16 17 27.8 20 28 22 

100008 92 90 27 36 30 35.6 33 62 

100009 86 65 17 20 25.56 23.3 27 16 

100010 84 88 13 34 35.5 30 23 44 

100016 15 8 0 3.3 48.9 35.6 24 4 

100017 62 46 2.2 8.9 56.7 58.9 15 5 

100019 90 88 27 33 14.4 14.4 33 31 

100025 56 67 2.2 6.7 50 56.7 3 3 
Mean 

Performance 69.23 62.8 14.73 19.63 41.01 37.51 20.5 19.92 

Participant Gender 
Age 

(years) 
Implantation 
Age (years) 

Side of 
Implant 

Heari
ng Aid 

Etiology of Hearing 
Loss 

Better Ear 
PTA (dB 

HL) 

1 F 62 54 B N Genetic 105 

2 F 64 62 R Y 
Genetic, progressive as 

adult 
75 

3 M 64 61 L N Noise, Meniere's 80 

6 M 67 65 R N 
Genetic, progressive as 

adult 
84 

7 M 56 52 B N Rubella, progressive 105 

8 F 54 48 R Y Genetic, progressive 105 

9 M 77 67 L N Genetic, progressive 93 

10 M 77 76 R Y 
Progressive as adult, 

noise, sudden 
71 

16 F 61 59 R N Progressive as adult 105 

17 M 23 14 L Y Congenital, progressive 100 

19 F 73 67 L N Genetic, autoimmune 105 

25 M 57 56 R Y Autoimmune, sudden 76 
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