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One of the most important mechanisms driving cellular functions is 

transcriptional regulation of gene expression.  Changes in gene expression are responsible 

for driving adaptations to environmental changes, as well as driving development and 

cellular differentiation.  Transcriptional regulation is one of the important ways by which 

cells control their protein levels, so understanding the many mechanisms that cells use to 

control gene expression at the transcriptional level is paramount to figuring out how a cell 

works.  Transcription involves the recruitment of RNA polymerase to the promoter of a 

gene to facilitate the creation of an mRNA copy of the gene.  Regulation of this process is 

necessary to stop unneeded genes from being transcribed and to make sure that required 

genes continue to be transcribed. 

Our lab works on a transcriptional regulator switch in the eukaryotic budding 

yeast, Saccharomyces cerevisiae.  The yeast have both asexual and sexual modes of 

reproduction, resulting in haploid and diploid life cycles, respectively.  The facile 

genetics offered by haploid and diploid yeast provide powerful analytical approaches.  

Moreover, powerful molecular genetic tools such as targeted gene replacement make 

budding yeast an excellent model organism for studying transcriptional regulation.  

Research in this area is relevant to medicine since the mechanisms of transcription are 

mainly conserved from yeast to humans. 

One of the most genetically well-studied transcriptional switches is the galactose 

(GAL) gene switch in S. cerevisiae (1, 2, 3, 4).  This gene switch controls the expression 

of twelve genes involved in galactose metabolism, with most encoding for enzymes.  All 

GAL genes are transcribed at very low levels in the absence of galactose, and are rapidly 

induced (within 4 minutes) in the presence of galactose only if glucose is absent.  
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Glucose inhibits activation of the GAL genes, as yeast, as well as many other organisms, 

have evolved to utilize the preferred carbon source first (Fig 1).  

The GAL gene switch is composed of three proteins: Gal4p, Gal80p, and Gal3p.    

Gal4p specifically binds to a 17 base-pair sequence in the upstream activator 

sequence of the galactose gene promoter (UASgal), and also contains an activation domain  

(AD) required for recruitment of transcription machinery to the promoter.  The Gal4AD 

has been shown to bind to SAGA, TBP, TFIIB, and other mediator proteins of the 

transcriptional machinery (5, 6, 7).  SAGA and other transcription factors assemble at the 

promoter to form a pre-initiation complex (PIC) (6).  The PIC is required for RNA 

polymerase II recruitment (6).  Gal80p is bound to Gal4p in the absence of galactose and 

blocks the AD of Gal4p, inhibiting the binding events required for recruitment of RNA 

polymerase.  GAL genes are activated by a series of events involving the three regulator 

proteins, beginning with the binding of a galactose molecule and ATP to Gal3p.  

Galactose-and-ATP-bound Gal3p relieves Gal80p’s inhibition of Gal4p (8, 9, 10).  The 

GAL switch controls the expression levels of Gal80p and Gal3p, which are upregulated 

in the presence of galactose (2). 

How Gal3p relieves Gal80p’s inhibition of Gal4p is controversial.  Since the first 

evidence from Leuther and Johnston in 1992 suggesting non-dissociation, a non-

dissociation model has been widely accepted, based on the idea that Gal3p can enter  the  

nucleus  and  bind  to   the Gal4p-bound Gal80p (Fig 2) (11).  According to the non-

dissociation model, the binding of Gal3p changes Gal80p’s conformation and Gal80p 

shifts to an alternate binding site on Gal4p, relieving inhibition of Gal4p’s activation 

domain (11).  This model predicts an activated three-protein complex, in which Gal4p 
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would be actively recruiting RNA polymerase and promoting transcription of the GAL 

genes.  A Gal3p-Gal80p-Gal4p tripartite complex was demonstrated in vitro by Platt and 

Reece in 1998 using an electrophoretic mobility shift assay (EMSA) with 30-fold excess 

of a Gal3 mutant protein (12).  This non-dissociation model has been widely featured in 

review articles and textbooks (13). 

Beginning in 2000, published work from our lab has suggested a different model 

for the GAL gene switch mechanism.  Gang Peng, a former graduate student in Dr. 

Hopper’s lab, showed through indirect immuno-fluorescence experiments and by cell 

fractionation analysis that Gal3p is detectable only in the cytoplasm and that Gal80p is in 

both the cytoplasm and the nucleus (14). Gang Peng also demonstrated that induction was 

not impaired by the anchoring of Gal3 protein to the inner plasma membrane and 

intracellular vesicle membranes with a N-myristoylation sequence (Myr-Gal3p), or by 

anchoring Gal3p to the outer mitochondrial membranes using a signal anchor sequence 

(Mom-Gal3p) (15).  By tagging Gal80p with green fluorescent protein (GFP) and a 

nuclear localization sequence (NLS), he also showed by creating heterokaryons (diploids 

with two, non-fused haploid nuclei) that Gal80p could shuttle between the nucleus and 

cytoplasm (14).  The heterokaryon data suggests that Gal80 contains a nuclear export 

signal (NES) in addition to an NLS, since Gal80 was able to cross the nuclear membrane 

in both directions.  Vepkhia Pilauri, another member of Dr. Hopper’s Lab, also 

demonstrated using fluorescence recovery after photobleaching (FRAP), that Gal80p 

shuttling between the nucleus and cytoplasm is rapid (Pilauri and Hopper, unpublished 

data). 
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The data from Gang Peng’s work (14, 15) argue against the current textbook non-

dissociation model, as Gal3p could not directly bind to the Gal80-Gal4 protein complex 

in vivo if Gal3p was present only in the cytoplasm.  Gang Peng also showed by making 

Gal80p more nuclear by addition of an SV40-NLS, that induction was impaired (14).  

Moreover, he showed by chromatin immunoprecipitation (ChIP) that the occupancy of 

Gal80p on Gal4p at the promoter decreases substantially in response to galactose (15). 

The results of Gang Peng’s experiments, cited above, support a dissociation 

model, in that binding of galactose-induced Gal3p to free-floating Gal80p in the 

cytoplasm shifts the equilibrium of Gal80p to make it more cytoplasmic and less 

nuclear. Such a decrease in the steady-state concentration of Gal80p in the nucleus would 

make Gal80p less likely to be associated with DNA-bound Gal4p, relieving Gal80p’s 

inhibition of Gal4p’s transcription activation domain. This dissociation model was 

published in PNAS in 2002 (15) (Fig 3). 

 My project was aimed at testing the idea that the concentrations of Gal80p in the 

cytoplasm and nucleus change when the cells are exposed to galactose.  My approach has 

been to use the intensity of light emitted by double-mCitrine-tagged Gal80p in 

fluorescence microscopy to measure nuclear and cytoplasmic concentrations of Gal80p 

before and after induction.  By defining the nucleus and cytoplasm using a nuclear 

marker, H2B-mCherry, I aim to assess whether Gal80p does indeed redistribute to 

become more cytoplasmic and less nuclear upon induction, as predicted by our model. 

Materials and Methods 

The yeast strains used in this project were derived from lab strain Sc723 (MATa 

ade1 ile leu2-3,112 ura3-52 trp-HIII his3-Δ1 MEL1 LYS2::GAL1UAS-GAL1TATA-HIS3) as 
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previously described by Blank et al. 1997 (8) including gal3Δ strain Sc724 (MATa ade1 

ile leu2-3,112 ura3-52 trp-HIII his3-Δ1 MEL1 LYS2::GAL1UAS-GAL1TATA-HIS3 gal3-

Δ3::LEU2) and GAL80s-2 mutant strain Sc729 (MATa ade1 ile leu2-3,112 ura3-52 trp-

HIII his3-Δ1 MEL1 LYS2::GAL1UAS-GAL1TATA-HIS3 GAL80s-2).  Sc723, Sc724, and 

Sc729 were transformed by Dr. Fenglei Jiang with a ~3.6kb SmaI-SnaBI cassette from 

pFJ46KAN containing two copies of mCitrine (YFP) along with a kanamycin resistance 

marker flanked by regions of homology for the endogenous GAL80 locus.  Sc723-46K 

named as Sc856, Sc724-46K named as Sc857, and Sc729-46K named as Sc868.  Sc856, 

Sc857, and Sc868 were the strains used in my project. 

I transformed the yeast strains with a plasmid carrying a gene for mCherry-tagged 

DNA histone H2B and a tryptophan selectable marker (gift from Dr. Fenglei Jiang).    For 

imaging, yeast cells were grown to mid-log phase at 30°C in synthetic tryptophan 

dropout media with 3% v/v glycerol, 2% w/v lactic acid, extra adenine (.001% w/v), 1% 

w/v raffinose, and 0.05% w/v glucose (16). 

PCR-based confirmation of the strains used in this study was performed using 

yeast colony PCR based on a protocol from the Amberg Lab at SUNY Upstate Medical 

University.  Primers used were specific for the 3` end of the GAL80 locus (G80seq1) and 

the 5` end of the fluorescent tag (FP-int).  The G80seq1 primer sequence was 

GTTCCAGTGTCATGCAGT and the FP-int primer sequence was 

CTTCACCTTCACCGGAGACAG.  PCR conditions were as follows: one yeast colony, 

200 µl/ml Zymolyase 100T, 625 µM of each primer, 200 µM each dNTP, and 100 µg/ml 

BSA in a 50µl Taq reaction mixture.  The PCR cycles were as follows: 4 min at 94°C, 

followed by 35 cycles of 1 min at 94°C, 1 min at 55°C, and 1 min 
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at 72°C, and then an extra 10 min at 72°C. 

Semi-quantitative yeast colony growth assays were conducted using yeast bearing 

the HIS3-reporter under the control of the GAL1 promoter.  Growth was assayed on 

synthetic histidine dropout plates at 30°C with 10 mM 3-AT, 2% w/v lactic acid, 3% v/v 

glycerol, 0.05% w/v glucose (16).  The +gal plates also contained 2% w/v galactose. 

For fluorescence microscopy, cells were incubated with 25 µg/ml cycloheximide 

for 10 min prior to addition of galactose for induced samples.  Induced samples were 

incubated in 2% w/v galactose for 15 min.  Non-induced samples were incubated for 15 

minutes without the addition of galactose after 10 minute incubation in cycloheximide.   

After incubation, induced and non-induced cells were spun down to increase cell 

density and then wet mounted onto a thin pad of 2% w/v agarose to reduce random cell 

motion during imaging.  Images were acquired using a Zeiss Axioplan 2 microscope 

using a digital-imaging system designed by 3I Imaging of Colorado.  Images were 

captured and analyzed using Slidebook 4.2 software for PC.  Images were captured 

between 15 and 25 minutes of induction to minimize temporal variation of Gal80p 

expression.  

When using the Slidebook 4.2’s image-analysis capability to obtain data, it was 

necessary to consistently and accurately define the nucleus and cytoplasm in each 

analyzed cell using two separate masks, one for each defined area.  A mask is a virtual 

overlay of an image that is used to isolate specific areas of the image without modifying 

the original image.  I defined the nuclear mask as the area of the cell expressing mCherry 

above a minimum threshold.  The cytoplasmic mask was defined as the area of the cell 

below the mCherry threshold but with expression of YFP above a minimum threshold 
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intensity.  This minimum threshold of YFP for the cytoplasm is needed to exclude the 

cells’ environment from the measurements.  In other words, I used mCherry expression to 

define the nucleus, while using the YFP minimum threshold intensity to exclude the 

extracellular space and define the cytosol.  Because of the variation between slides and 

cultures, minimum thresholds were based on the intensity of the fluorescence in each 

image. 

Results 

 My first attempts to measure Gal80p levels in the nucleus and cytoplasm relied on 

Gal80p tagged with mCitrine (a variant of yellow fluorescent protein or YFP) expressed 

from a plasmid.  To clarify, I will refer to mCitrine as YFP for the remainder of this 

paper.  Expression from a plasmid yielded inconsistent results due to variations in 

plasmid copy number per cell.  To obtain more consistent expression levels of double-

YFP-tagged GAL80p, I elected to use a yeast strain with a 2YFP GAL80 fusion gene 

cassette integrated into the yeast chromosome via homologous recombination onto the 3` 

end of the endogenous copy of GAL80 (gift from Dr. Fenglei Jiang).   

Parallel experiments performed independently by myself and Dr. Fenglei Jiang 

have determined that double-YFP gives a brighter signal than a single copy of YFP in 

microscopy experiments.  Incorporating the gene into the genome negates the need for 

the cells to carry a plasmid carrying the GAL80-2YFP.  This makes Gal80-2YFP protein 

concentrations among cells more consistent, since gene expression from a plasmid can be 

quite variable.  Genomic integration of the fluorescent tag was confirmed by PCR 

analysis and fluorescence microscopy. Also, I performed galactose-induction HIS3-

reporter spotting growth assays to assess whether the relatively large fluorescent tag 
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interferes with Gal80p’s function.  Fortunately, tagging Gal80p with two copies of YFP 

does not affect the function of the GAL switch as a whole. 

It was important for my measurements that I could determine the location of the 

nucleus in each cell.  Because I was only concerned with measuring the intensity of YFP 

from Gal80p, it was not necessary to integrate the mCherry into the H2B locus to 

improve consistency among cells.  Successful identification of the nucleus with mCherry 

allowed me to begin collecting data. 

Variations in plasmid copy number of H2B-mCherry between cells made it 

necessary to create three to five separate masks defining the nuclei.  This made the nuclei 

more sharply defined overall, and made it easier to include more cells within the summed 

nuclear mask, created by combining the three to five separate masks. 

Because Gal80p expression is controlled by the GAL switch, nacent Gal80p 

protein being produced on the ribosomes in the cytoplasm between the time of induction 

and image acquisition could artificially increase the Gal80p intensity in the cytoplasm.  

Cycloheximide was used to inhibit all protein synthesis in the yeast cells.  Margery 

Evans, a member of Dr. Hopper’s Lab, has demonstrated by western blots that 

cycloheximide does indeed halt production of Gal80p, as well as other proteins (Evans 

and Hopper, unpublished data). 

The GAL80-2YFP (GAL3 WT) test strain exhibited a nuclear to cytoplasmic YFP 

intensity ratio that was 15-22% lower in induced cells than in non-induced cells (Figs. 4 

and 5) (p < 10-14, Student’s t-test).  Though modest, the difference in nuclear intensity 

between induced and uninduced cells is detectable by eye (Fig 6).  This change in the 

intensity ratio was similar in cells treated with cycloheximide (p < 10-6, Student’s t-test), 
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suggesting that during 15-25 minutes of induction, in non-treated cells, newly 

synthesized Gal80-2YFPp does not have a noticable effect on measured intensity.  I also 

tested negative control strains including a gal3Δ deletion strain and GAL80s-2 super-

repressor mutant, which are both defective for the Gal3p-Gal80p interaction (Fig 4 and 

5). 

 The gal3Δ deletion strain (8, 14) contains GAL3 with a CaURA insertion that 

makes the protein non-functional.  Yeast with a gal3Δ deletion demonstrates a non-

inducible phenotype, as the non-functional Gal3p is unable to bind Gal80p in the 

presence of galactose.  The fluorescent gal3Δ strain demonstrated a negligible intensity 

difference between induced and non-induced cells. The GAL80s-2 mutant is a dominant, 

non-inducible mutant that is able to bind to Gal4p but not to Gal3p (17, 18, 19, 20).  Like 

the gal3Δ deletion strain, GAL80s-2 did not demonstrate an appreciable redistribution of 

Gal80p.  Importantly, this observed lack of a redistribution in the two control strains 

establishes that the redistribution of Gal80p is dependent on the Gal3p-Gal80p 

interaction. 

Discussion 

 The data presented here leads to two important conclusions: Gal80p redistributes 

to become less nuclear upon induction with galactose, and the Gal80p redistribution is 

dependent upon the Gal3p-Gal80p interaction.  Also, observation of a redistribution of 

Gal80p upon galactose induction in the presence of cycloheximide suggests an increase 

in Gal3p, Gap80p, and Gal4p expression is not required for the GAL switch to remain 

active 15-25 minutes after induction, though as the proteins degrade over time, GAL 
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switch function may become highly variable, depending on which proteins in the switch 

degrade more quickly. 

To express the differences in intensity, I have elected to report the data as a 

nuclear to cytoplasmic ratio.  It has been shown that the size of the nucleus of an average 

S. cerevisiae cell tends to be consistent at 7% of total cell volume (21).  This suggests 

that a decrease in the fluorescence intensity of the nucleus would result in a relatively 

small increase in the cytoplasmic intensity.  In 2006, Ramsey et al. reported that there is a 

7-fold excess of Gal3p over total cellular Gal80p (22).  Using a GFP-reporter, Gang Peng 

demonstrated with western blots using antibody against GFP that there was an 

approximate 8- to 12-fold excess of Gal3p over Gal80p (Peng and Hopper, unpublished 

data).  Dr. Xiaorong Tao, another member in the Hopper Laboratory, also did the same 

experiment using a 6HIS tag.  He also found an approximate 8-fold excess of Gal3p (Tao 

and Hopper, unpublished data).   

Data from Ramsey et al. also indicates that the steady-state distribution of Gal80p 

is 50% nuclear and 50% cytoplasmic (22).  Assuming Gal3p is only cytoplasmic and that 

Gal3p binds Gal80p in a 1:1 monomer-to-monomer ratio (23), data from Ramsey et al. 

suggests that there is roughly a 14-fold excess of Gal3p over Gal80p in the cytoplasm.  

My results suggest that roughly 22% of nuclear Gal80p becomes cytoplasmic upon 

induction, so overall distribution of Gal80p in the cell would become 39% nuclear and 

61% cytoplasmic.  Correcting for the volume difference between the cytoplasmic space 

and the nucleus—assuming the cytoplasm is 93% of the cell volume—a 22% drop in 

intensity in the nucleus after induction translates to only a 1.56% increase in intensity in 

the cytoplasm.  Also, because the cytoplasmic space is so much larger than the nucleus, 
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images of a single cross-section of the yeast cell reveal a higher percentage of the total 

nuclear size than of the total cytoplasmic size, which would make the intensity decrease 

detected in the cytoplasm even less than the estimated 1.56%.   

However, this estimate assumes that 93% of the cell is cytoplasm.  Because of the 

cell volume taken up by other organelles and membranes, namely the vacuole, the 

cytoplasmic volume would be only a fraction of the non-nuclear volume.  Measurements 

of the vacuole put it at about 25% of total cell volume (24).  This would shift the 

estimated cytoplasmic volume to about 68% of the cell volume.  This means the increase 

in cytoplasmic intensity would be closer to 2.27%.  So in reporting my data, I should be 

able to use the relatively constant cytoplasmic intensity to correct for differences in total 

Gal80p intensity between cells and between images.  Importantly, the fact that there is 

only an estimated 2.27% increase in cytoplasmic intensity indicates that the intensity 

increase in the cytoplasm predicted by our model cannot be detected using this method. 

It is critical to determine whether the redistribution of Gal80p observed in my 

experiments would be significant enough to allow DNA-bound Gal4p to become 

activated.  However there is a wide range of estimates of the concentrations of Gal4p and 

Gal80p in the nucleus, as well as different measurements of the KD for Gal80p’s binding 

to Gal4p.  For example, using the estimates from Ramsey et al., I calculated a Gal4p 

nuclear concentration, both DNA-bound and free-floating, of about 205 nM (22).  In 

contrast, Anders et al. estimate the Gal4p concentration in the nucleus to be about 80 nM 

(25). According to titration experiments performed by Melcher and Xu, the KD of 

Gal80p, when allowed to bind to 0.09nM DNA-bound Gal4p, was 0.3 nM (26).  

However, Lohr et al. note the KD of Gal80p for DNA-bound Gal4p to be 5 nM (2).   
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It is also important to point out that it is unknown whether the dimer, monomer, 

or both forms of Gal80p are able to shuttle, and that it is also unknown what form of 

Gal80p is able to bind to Gal4p.  Without knowing these details, it is not feasible to 

calculate the affect of a 22% drop in nuclear Gal80p concentration on the GAL switch, 

due to the lack of measurements made under similar conditions for all the necessary data, 

namely the KD of Gal80p for Gal4p, concentrations of Gal80p and Gal4p, and the number 

of Gal4p associated with the DNA at any one time. 

Future Work and Acknowledgements 

 Future work could include extensions of the experiments, taking advantage of 

additional genetic controls.  For example, deletion of GAL4 should render the gene 

switch inactive, but would be expected to result in an observable redistribution after 

galactose induction, allowing us to view the redistribution without an increase in protein 

levels due to GAL gene transcription, and without using cycloheximide.  One could also 

take advantage of Gal3p anchored to membranes within the cytoplasm using the N-Myr 

and Mom tags discussed earlier on the redistribution of Gal80p.  The prediction is that 

Gal80p redistribution would still occur with anchored Gal3p.  Additional negative 

controls could include mutants of Gal3p that fail to bind to Gal80p (Gal380NB) as an 

alternative to deletion of GAL3, and testing of additional GAL80s super-repressor mutants 

using cycloheximide. 

 Another major experiment would be to capture the redistribution of Gal80p in 

real-time using confocal microscopy looking at early induction.  This could be done using 

the strains similar to the one used in my experiments.  However, this would have to be 

done with a more stable fluorophore than mCitrine, as mCitrine becomes photobleached 
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easily (27).  Using a more photostable fluorescent tag would allow many pictures of the 

same cell without a major loss in fluorescence intensity due to photobleaching. 

A very informative experiment to test a key prediction of our model would be to 

use fluorescence resonance energy transfer (FRET) to observe the Gal3p-Gal80p 

interaction before, during, and after induction.  According to our dissociation model, the 

FRET signal should initially occur only in the cytoplasm.  The possible ability of Gal80p 

to pull Gal3p into the nucleus when they are bound after galactose induction has not been 

tested.  If Gal80p could in fact pull Gal3p into the nucleus, the FRET signal would also 

be visible in the nucleus after a time. 

 It would be very informative to measure the concentrations of free-floating Gal4p 

in the nucleus, DNA-bound Gal4p, as well as Gal80 and Gal3 concentrations in vivo, to 

allow for a calculation of the affect a redistribution of Gal80p on the GAL switch. 

 This project was conducted in the lab of my advisor, Dr. James E. Hopper.  My 

experiments are to be contributed as part of a broader-content manuscript that will be 

submitted for publication by Dr. Fenglei Jiang, who is doing her post-doctoral work in 

Dr. Hopper’s lab.  I wish to thank Dr. Fenglei Jiang for her invaluable guidance during 

my time in the lab and also for her gifts of strains and plasmids used in my research.  I 

would also like to thank Dr. James E. Hopper for allowing me to work in his lab, for 

providing the funds for my research through NIH, and for critical evaluation of the 

manuscript.  Finally, I wish to thank my colleagues Margery Evans, Onur Egriboz, and 

Dr. Xiaorong Tao for stimulating discussions and encouragement, and the College of Arts 

and Sciences Honors Committee at The Ohio State University for the ASC Research 

Scholarship given in recognition of my research. 
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