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Abstract 

 

The Gram-negative pathogen Salmonella enterica serovar Typhi is the etiologic 

agent of human typhoid fever, a systemic illness characterized by high fever, bradycardia, 

and muscle pain.  A percentage of these infections can result in asymptomatic carriage of 

salmonellae in the bile-rich gallbladder, and we have previously demonstrated that 

salmonellae can form biofilms on the surface of human cholesterol gallstones as a 

mechanism that contributes to the development of the carrier state.  To determine which 

genes/ligands mediate the ability of Salmonella to bind and form biofilms on cholesterol, 

mutants of S. enterica serovar Typhimurium were created through random transposon 

mutagenesis.  These mutants were screened for impaired biofilm formation on 

cholesterol-coated Eppendorf tubes in the Tube Biofilm Assay (TBA) but normal biofilm 

formation on glass and plastic surfaces.  Of the 49 mutants with this phenotype, 70% of 

the disrupted genes were involved in flagella or fimbriae biosynthesis. Independent 

assays demonstrated that the presence of flagella were important for adherence to 

cholesterol and biofilm initiation, while over-expression of fimbriae was inhibitory.  The 

remaining transposon insertions, located in sseI and ompC, had no effect on cellular 

motility, suggesting a mechanism of action independent of flagellar-mediated adherence 

to cholesterol.  Subsequent analysis of sseI and related mutations in the TBA suggested 

that SPI-2 genes are important for the formation of biofilms in the presence of bile, but 

unimportant for biofilm formation in the absence of bile.  Similar analysis of ompC in the 

TBA demonstrated that the observed loss of biofilm formation was not due to changes in 

the osmolarity of the extracellular environment.  These studies provide a better 
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understanding of how salmonellae form biofilms in the presence of bile and suggest a 

target for therapies that may alleviate biofilm formation on cholesterol gallstones and the 

chronic carrier state. 
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Chapter 1 

Introduction 

 

1.1 Problem Statement 

Salmonella enterica is a diverse gram-negative bacterial species with many 

serovars and variations in host specificity.  One of the most well-known serovars is 

Salmonella enterica serovar Typhi, which causes an acute systemic infection known as 

Typhoid fever and can, after overt symptoms wane, persist asymptomatically in the 

human gallbladder in a chronic carrier state (Prouty and Gunn, 2003; Prouty et al., 2002).  

The bacteria are able to survive in the gallbladder, which is also the storage site for bile, a 

detergent-like substance that aids in dispersal of lipids during digestion and acts as a 

potent anti-microbial in the gastrointestinal tract (Prouty et al., 2002).  Although the 

infected individual does not show any signs of illness, they can still infect others through 

fecal-oral transmission (Prouty and Gunn, 2003; Prouty et al., 2002). 

It is not known how Salmonella colonize and persist in the gallbladder to establish 

this asymptomatic, chronic carrier state.  This thesis project sought to characterize 

Salmonella genes that mediate cholesterol binding and subsequent biofilm formation.  

We compared biofilm formation between wild-type salmonellae and mutants to identify 

those with impaired biofilm-forming abilities specifically on cholesterol, and these assays 

were performed in the presence and absence of bile.  Results from a screen for S. 

Typhimurium mutants deficient in binding to cholesterol-coated surfaces but not glass or 

plastic surfaces focused on four groups of genes.  Potential applications of our research 
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include targeted drug therapy, which could be used to reduce or eliminate the number of 

chronic carriers of S. Typhi. 

 

1.2 Review of Literature 

The Salmonella enterica species includes many different serovars, including 

Typhi and Typhimurium.  S. Typhimurium causes gastroenteritis in humans, symptoms 

of which include cramping, nausea, vomiting, and diarrhea (Coburn, et al., 2007).  S. 

Typhi is the etiological agent of typhoid fever, a systemic infection resulting in high 

fever, bradycardia, and bacteremia (Tsolis, et al., 2008;).  It is also a human-specific 

pathogen (Tsolis, et al., 2008). S. Typhimurium is well understood at the genetic level, 

induces an enteric fever-like illness in murine mammals, and is thus used in the 

laboratory as a model for S. Typhi (Crawford, et al., 2008; Prouty and Gunn, 2003; 

Prouty et al., 2002).  

S. Typhi and S. Typhimurium infections are global health concerns.  S. 

Typhimurium-induced gastroenteritis is generally cleared within 7-10 days, but can cause 

death in immunocompromised individuals (Crawford, et al., 2008).  S. Typhi infections 

cause approximately 17 million cases of typhoid fever and 600,000 deaths worldwide 

every year (Crump, et al., 2004).  The chronic carrier state of S. Typhi, occurring in 

approximately 5 – 10% of infected individuals, is dangerous because carriers can still 

infect others and are often unaware that they are carrying a deadly organism (Prouty and 

Gunn, 2003). The bacteria persist in the gallbladder, despite the caustic nature of bile in 

the gallbladder and the gallbladder’s continuous cycle of bile excretion (Lai, et al., 1992).  

Antibiotic therapy is often ineffective in treating chronic gallbladder carriage of S. Typhi 
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(Lai, et al., 1992). Additionally, there is an increased risk of gallbladder cancer for 

chronic carriers (Lai, et al., 1992).   

It has been shown that gallstones are the most significant risk factor for becoming 

a chronic carrier of S. Typhi (Lai, et al., 1992).  Human gallstones are primarily 

comprised of either cholesterol or calcium bilirubinate, and previous research in our 

laboratory has demonstrated that salmonellae form mature biofilms specifically on 

cholesterol human gallstones in vitro (Prouty, et al., 2002) and on cholesterol mouse 

gallstones in vivo (Crawford, et al., 2010b). A mature biofilm, as previously defined, is a 

multilayer bacterial community over 15 times thicker than a monolayer of cells (~31 μm 

compared to ~2 μm) and possessing a copious extracellular matrix (Prouty, et al., 2002). 

These results were confirmed with the Tube Biofilm Assay (TBA), an assay used to study 

biofilm formation in an in vitro, standardized environment (Crawford, et al., 2008). The 

TBA utilizes siliconized Eppendorf tubes evenly coated with cholesterol in order to study 

Salmonella growth and biofilm formation in a bile-rich environment on cholesterol 

surfaces, serving as a model for cholesterol gallstones in the human gallbladder. Detailed 

information about the design of the TBA can be found in the Materials and Methods 

section. 

A biofilm is defined as a bacterial colony adhered to a solid surface that secretes a 

self-initiated, protective exopolysaccharide matrix (Fig. 1.1) (Costerton, et al., 1995).  

After initial colonization on the solid surface, cells recruit and replicate until a 

microcolony forms, which then progresses to a mature biofilm as the exopolysaccharide 

matrix is formed. Biofilms allow the continual shedding and reattachment of individual 

cells, contributing to the spread of bacteria, particularly in the human host (Levine, et al., 
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1982). Many human pathogens have been shown to form biofilms, including Escherichia 

coli (Pratt and Kolter, 1998), Vibrio cholerae (Yildiz and Schoolnik, 1999), and 

Staphylococcus aureus (Vaudaux et al., 1995). The protective nature of biofilms also 

confers resistance to antibiotics (Lai, et al., 1992).  As a result, biofilms are a major 

health concern and have been implicated in food- and water-borne illnesses, hospital-

acquired infections, and asymptomatic colonization in the human host (Davey and 

O'Toole, 2000). 

 

1.3 Objectives 

This project was part of an ongoing effort to characterize genes that mediate 

biofilm formation on cholesterol, specifically genes that promote initial binding to 

cholesterol-coated surfaces.  Since the mechanisms of Salmonella biofilm formation on 

cholesterol surfaces are not fully understood, any investigation into this area serves to 

further our understanding and characterization of the Salmonella chronic carrier state in 

the gallbladder.  These studies could also have implications for Salmonella biofilm 

formation on a variety of other surfaces, as well as biofilm formation in other pathogenic 

bacteria, including E. coli, V. cholerae, and S. aureus. The ultimate goal for this project is 

to determine the genes responsible for bile-induced biofilm formation and pave the way 

for targeted gene or drug therapies based on these findings. Such therapies have the 

potential to reduce or eliminate the chronic carrier state of Salmonella Typhi, thus 

alleviating the global health burden of typhoid fever. 
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Chapter 2 

Materials and Methods 

 

2.1 Bacterial strains, growth conditions, and molecular biology techniques  

The Salmonella strains used in this study are listed in Table 2.1. Luria-Bertani 

(LB) broth and agar were used for bacterial growth, creation of mutants, biofilm assays, 

and flagellum purification. For biofilm formation experiments, strains were grown on a 

rotating drum in the presence or absence of 3% crude ox bile extract (Sigma, St. Louis, 

MO) to mid- to late-exponential phase (optical density at 600 nm [OD600], 0.6 to 0.8). 

When necessary, antibiotics were added at the following concentrations: kanamycin 

(Kan), 25 μg/ml; chloramphenicol (Cam), 25 μg/ml; and tetracycline (Tet), 15 μg/ml. 

Molecular cloning and PCR were performed using established protocols. Plasmids were 

purified using QIAprep spin miniprep kits (Qiagen, Valencia, CA) and were transformed 

by electroporation as previously described (Schmid and Roth, 1983). 

 

2.2 Transposon mutagenesis and screening 

Cholesterol-binding-deficient, tetracycline-resistant serovar Typhimurium strains 

were created by random transposon mutagenesis using an established method (Schmid 

and Roth, 1983). Tn10d-Tet transposons were introduced into wild-type serovar 

Typhimurium. Strains containing Tn10d transposon insertions were selected on plates 

containing LB agar with Tet, and 40,000 individual colonies were pooled in LB broth 

containing Tet. The serovar Typhimurium transposon mutant pool was grown to log 

phase (OD600, 0.6) in LB broth containing Tet with 3% crude ox bile extract, and 100-μl 

 9



portions were added to siliconized Eppendorf tubes (Fisher Scientific, Pittsburgh, PA) 

coated with 1 mg of chromatography-grade cholesterol (Sigma, St. Louis, MO). 

Following incubation for 24 h at room temperature on a Nutator shaker (Labnet 

International, Edison, NJ), 10 μl of the planktonic, nonadherent culture was removed and 

added to 90 μl of fresh LB broth containing Tet with 3% crude ox bile in a new 

cholesterol-coated, siliconized Eppendorf tube. This panning for cholesterol-binding-

deficient bacteria was repeated every 24 h for 10 days. Serial dilutions of the final 

planktonic culture were plated on LB agar containing Tet, and 500 individual colonies 

were screened for loss of or a defect in biofilm formation on cholesterol-coated surfaces 

(values that were 0 to 25% of wild-type values) and preservation of biofilm formation on 

glass and plastic coverslips (values that were 75 to 100% of wild-type values). 49 

colonies were confirmed to have a non-biofilm-forming (on cholesterol only) phenotype 

by backtransduction using P22 HT int-105. Direct genomic DNA sequencing from the 

transposon 5’ end and sequence analyses revealed that the Tn10d insertions mapped to 

several genes corresponding to the serovar Typhimurium loci fimW, ompC, flhA, fliF, 

fliA, fliJ, fliL, and sseI (Table 2.2). These strains provided the foundation of the studies 

outlined in this work. 

 

2.3 Cholesterol, glass, and plastic surface biofilm assays 

Salmonella strains were tested to determine their abilities to form biofilms in the 

tube biofilm assay (TBA) as described previously (Crawford, et al., 2008). In brief, log-

phase Salmonella strains grown with or without 3% crude ox bile were added to 

cholesterol-coated Eppendorf tubes. The resulting cultures were incubated on a Nutator 
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shaker at room temperature for 6 days. Every 24 h, the medium was removed, the tubes 

were washed two times with LB medium, and fresh medium (LB medium with or without 

3% bile) was added. Bound bacterial samples were fixed at 60°C for 1 h, and a solution 

of 0.1% crystal violet (gentian violet in isopropanol-methanol-1x phosphate-buffered 

saline [PBS] [1:1:18]) was then added to stain cells for 5 min at room temperature. The 

tubes were washed with 1x PBS, and the dye was extracted using 33% acetic acid and 

quantified by determining the optical density at 570 nm. 

 

2.4 DNA sequencing and bioinformatics 

Sequencing of transposon mutant genomic DNA from serovar Typhimurium 

cholesterol-binding-deficient colonies with primer JG1787 (5’-

CCTTTTTCCGTGATGGTA-3’) was performed using an Applied Biosystems 3730 

DNA capillary analyzer and BigDye cycle fluorescent terminator chemistry at the Plant-

Microbe Genomics Facility at The Ohio State University. Transposon insertion sites of 

recovered sequences were determined using BlastX at the NCBI (Johnson, et al. 2008). 

 

2.5 Assay of adherence of live and dead bacteria 

Wild-type and flagellar transcriptional activator (flhC) mutant strains of serovar 

Typhimurium were grown overnight at 37°C in LB broth with or without 3% crude ox 

bile extract, diluted 1:100, and grown to an optical density at 600 nm of 0.6. Bacteria in 

these cultures were killed by incubation for 40 min in 10% formalin or by heat fixation 

for 20 min at 65°C. Triplicate 100-μl aliquots of live and dead salmonellae were added to 

24-well polystyrene tissue culture plates (Becton Dickinson Labware, Franklin Lakes, 
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NJ) coated with 1 mg of cholesterol per well, and the plates were centrifuged at 165 

relative centrifugal force (RCF) for 5 min to initiate contact between the bacteria and 

cholesterol. Three hours of incubation at room temperature for adherence was followed 

by five washes in 1x PBS, staining of wells with a 0.1% crystal violet solution (gentian 

violet in isopropanol-methanol-1x PBS [1:1:18]) for 5 min, and five more washes with 1x 

PBS. The dye retained by bound cells was extracted using 33% acetic acid and was 

quantified by determining the optical density at 570 nm. 

 

2.6 Live and dead scaffold assay 

Late-log-phase cultures of serovar Typhimurium wild-type and flagellar 

transcriptional activator (flhC) mutant strains were formalin fixed or heat killed as 

described above, and 100-μl aliquots were added to siliconized Eppendorf tubes coated 

with 1 mg of chromatography-grade cholesterol. Following incubation at room 

temperature on a Nutator shaker for 24 h, cultures were removed, and the tubes were 

washed three times in LB broth to remove nonadherent bacteria. Live cultures of late-log-

phase wild-type or flhC serovar Typhimurium strains were added to the tubes, and 

biofilm formation was examined using the TBA as described above. 

 

2.7 Purification of serovar Typhimurium flagellin 

Serovar Typhimurium wild-type, phase 1 (fliC; H:i) mutant, phase 2 (fljB; H:1,2) 

mutant, and flagellin (fliCfljB) mutant strains were grown to late log phase in LB medium 

at 37°C. The resulting cultures (500 ml) were centrifuged at 8,000 x g for 15 min. The 

cell pellets were washed once, resuspended in 15 ml 1x PBS, and sheared mechanically 
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for 3 min at 30,000 rpm using a Power Gen 125 tissue homogenizer (Fisher Scientific, 

Pittsburgh, PA). Flagellar filaments were separated from cellular debris by centrifugation 

for 10 min at 8,000 x g. The flagellum-containing supernatants were collected and 

centrifuged at 100,000 x g for 1 h. Filaments were gently resuspended overnight in 1x 

PBS with slow shaking at 4°C and then centrifuged at 100,000 x g. This 24-h washing 

cycle was repeated twice, and the final pellets of purified serovar Typhimurium flagellin 

were resuspended in 1x PBS and stored at -20°C. The protein concentrations of isolated 

flagellin were determined with a bicinchoninic acid (BCA) assay kit (Pierce 

Biotechnology Inc., Rockford, IL), and the purity was confirmed by sodium dodecyl 

sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) and staining with GelCode 

Blue reagent (Pierce Biotechnology Inc., Rockford, IL). 

 

2.8 Western blotting 

Monoclonal antibodies against Salmonella species flagella (Maine Biotechnology 

Services, Portland, ME) and FliC subunit protein (Bio-Legend, San Diego, CA) were 

used to probe purified flagellin from serovar Typhimurium wild-type, fljB mutant, and 

fliC mutant strains in a Western blot analysis. For each sample, 10 μl containing 1 μg 

purified flagellin was mixed with an equal volume of SDS-PAGE loading buffer and 

boiled for 15 min. Preparations were separated by 10% SDS-PAGE and transferred to 

Hybond-ECL nitrocellulose (Amersham Biosciences, Pittsburgh, PA) using a Trans-Blot 

semidry transfer apparatus (Bio-Rad, Hercules, CA). Membranes were blocked overnight 

in 5% bovine serum albumin (BSA) (Sigma, St. Louis, MO) and incubated with 

antiflagellum antibody (diluted 1:200 in PBS; Maine Biotechnology Services, Portland, 
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ME) or anti-FliC antibody (5 μg diluted in 5 ml PBS; BioLegend, San Diego, CA) for 4 

h. Goat anti-mouse horseradish peroxidase (HRP) conjugate (Bio-Rad, Hercules, CA) 

diluted 1:5,000 in PBS (with 2 h of incubation) and enhanced chemiluminescence (ECL) 

reagents (GE Healthcare, Pittsburgh, PA) were used to detect bound antibodies. Bands 

were visualized after exposure and development on HyBlot CL autoradiography film 

(Denville Scientific Inc., Metuchen, NJ). All washes were performed with 1x PBS. 

 

2.9 Subunit binding ELISA 

Purified flagellin from serovar Typhimurium wild-type, fljB mutant, and fliC 

mutant strains was assayed to determine its ability to bind cholesterol using a modified 

enzyme-linked immunosorbent assay (ELISA). Chromatography-grade cholesterol was 

dissolved in anhydrous ether (J. T. Baker, Phillipsburg, NJ) at a concentration of 25 

mg/ml, and 100-μl aliquots were added to polystyrene wells in 96-well Microtest tissue 

culture plates (Becton Dickinson Labware, Franklin Lakes, NJ). Six 1-μg replicates of 

each purified flagellin sample were then added to the cholesterol-coated wells. Following 

3 h of binding and incubation at room temperature, the plates were washed three times in 

1x PBS and blocked overnight with 3% BSA. Wells were emptied, washed, and 

incubated with antiflagellum antibody (diluted 1:20 in 0.3% BSA) or anti-FliC antibody 

(diluted 1:100 in 0.3% BSA) for 2 h, both in triplicate for a total of six replicates. 

Another washing step was followed by addition of goat anti-rabbit HRP conjugate (Bio-

Rad, Hercules, CA) diluted 1:5,000 in 0.3% BSA and incubation for 1 h. Measurements 

of flagellin binding to cholesterol were obtained using a Bio-Rad HRP substrate kit 
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according to the manufacturer’s specifications. Reaction products were transferred to an 

uncoated 96-well plate to determine the optical density at 415 nm. 
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Chapter 3 

Results and Discussion 

 

3.1 Results 

3.1.1. Fimbriae  

Fimbriae have been shown to mediate adherence during initiation of biofilm 

formation and cell-cell interactions during biofilm growth for a variety of 

microorganisms (Davey and O’Toole, 2000; O’Toole and Kolter, 1998). The serovar 

Typhimurium genome contains 13 putative fimbrial operons, some of which are not 

expressed in vitro (Nuccio, et al., 2007). Type 1 fimbriae have been shown to be 

important for biofilm formation on HEp-2 tissue culture cells, the murine intestinal 

epithelium, and the chicken intestinal epithelium (Boddicker, et al., 2002; Ledeboer and 

Jones, 2005) but not on human gallstones incubated with bile (Prouty, et al., 2002). 

A serovar Typhimurium SR11 strain having mutations in four fimbrial operons 

(fim, agf, lpf, and pef) was added to the TBA to examine biofilm formation on 

cholesterol-coated surfaces. To test whether serovar Typhimurium cholesterol-binding 

deficient mutants with mutations affecting type 1 fimbriae could form mature biofilms, 

strains having Tn10d transposon insertions in fimW were added to cholesterol-coated 

Eppendorf tubes in the TBA. FimW negatively regulates FimY, a multifunctional protein 

that positively regulates production of fimbriae by activating the fimA promoter (Saini, et 

al., 2009). To determine whether the fimW-mediated effects on biofilm formation were a 

direct result of disruption of type 1 fimbriae, a strain having a deletion of the type 1 

fimbrial operon marked with a kanamycin cassette was transduced in the fimW::Tn10d-
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Tet background. To further test whether over-expression of type 1 fimbriae could affect 

biofilm formation in an otherwise wild-type background, a strain with pISF101, which 

contains the type 1 fimbrial gene cluster and results in a hyperfimbriate phenotype, was 

added to the TBA. 

The results of the TBA are detailed in Fig. 3.1. In the presence of bile, the amount 

of biofilm formed by the quadruple-mutant SR11 strain equaled the amount of biofilm 

formed by serovar Typhimurium wild-type strain 14028s, suggesting that fimbriae 

encoded by the fim, agf, lpf, and pef operons do not contribute to biofilm formation in this 

static assay.  A fimW::Tn10d-Tet mutation rendered serovar Typhimurium deficient for 

biofilm formation in the presence of 3% bile. Complementation of this mutation with a 

plasmid-borne copy of fimW resulted in near WT biofilm formation (data not shown).  

When fimW was disrupted by insertion of a kanamycin cassette, the resulting serovar 

Typhimurium mutant expressed 4- to 8-fold more type 1 fimbriae than the parent strain 

(Tinker, et al., 2001). This fimW::Kan mutant was deficient for biofilm formation at 

levels similar to those of the strain having a transposon insertion in fimW (Fig. 3.1). The 

strain with the pISF101 plasmid, demonstrating a hyperfimbriate phenotype, did not form 

a biofilm in the TBA (Fig. 3.1). The strain lacking fimW and type 1 fimbrial genes 

(including fimA) exhibited wild-type levels of biofilm formation in the TBA (Fig. 3.1). 

Collectively, these results demonstrate that over-expression of type 1 fimbriae plays a 

negative role during Salmonella binding to cholesterol and that the inhibition prevents 

subsequent maturation of a cholesterol biofilm formed by the bacterium. 

 

3.1.2 Flagella 
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The highly ordered transcriptional hierarchy controlling expression of flagella is 

comprised of three classes of genes and is regulated by many global signals (Apel and 

Surette, 2007).  Therefore, it is no surprise that flagella make various contributions to 

biofilm formation depending on the environmental conditions, such as binding substrate 

material, nutrient limitation, temperature, medium flow rate, and other factors (Barken, et 

al., 2008; Merritt, et al., 2007; O’Toole and Kolter, 1998). Expression of the serovar 

Typhimurium flagella has been shown to inhibit biofilm formation on polystyrene wells 

(Teplitski, et al., 2006) but to promote biofilm development on human gallstones when 

bile is added to the growth medium (Prouty and Gunn, 2003; Prouty et. al, 2002). 

However, the stage at which this appendage positively or negatively impacts Salmonella 

biofilms has not been defined. To examine whether production of the flagellar filament is 

necessary for biofilm formation on cholesterol, a mutation in the flagellar transcriptional 

activation gene (flhC) in serovar Typhimurium was created and tested in the TBA. As 

demonstrated above (Table 2.2), mutations in serovar Typhimurium flagellum structural 

and biosynthesis genes affected binding to and biofilm formation on cholesterol. To 

determine if the physical presence of the flagellar filament or flagellum-mediated motility 

was required for biofilm formation, mutants that expressed flagella but could not swim 

(motA), demonstrated a smooth-swimming phenotype only (cheA, cheR, cheY), and 

demonstrated a hyper-tumbling phenotype only (cheB, cheZ) were also tested in the TBA. 

The TBA results are detailed in Figs. 3.2 and 3.3. The flhC mutant strain did not 

form a mature biofilm on cholesterol, providing direct evidence of the importance of 

flagella during biofilm development. A serovar Typhimurium motA mutation (which 

eliminates flagellar motility but not synthesis) (Dean, et al., 1984) did not reduce the 
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levels of biofilm on cholesterol surfaces in the presence or absence of bile compared to 

the results obtained for the parent strain, suggesting that motility is not critical for 

development of serovar Typhimurium biofilms on cholesterol-coated surfaces. 

Chemotaxis mutants demonstrating either smooth swimming and hyper-tumbling 

phenotypes (Pratt and Kolter, 1998) showed increased biofilm formation in the absence 

of bile, but biofilm formation in presence of bile was comparable to wild-type, suggesting 

that functional chemotaxis is inhibitory for biofilm formation in the absence of bile, but 

not in the presence of bile. 

The presence of bile has been shown to modestly downregulate serovar 

Typhimurium motility and flagellar gene expression in β-galactosidase assays using 

MudJ fusions to flhC, flgC, and fliC (Prouty, et al., 2004). Interestingly, bile is required 

for formation of mature biofilms on cholesterol-coated Eppendorf tubes, and flagellum 

biosynthesis mediates, at least in part, attachment to this surface for biofilm development. 

To determine if the bile-mediated downregulation of flagellar genes resulted in a loss of 

flagella or whether bile altered the expression of flagella at a posttranscriptional level, 

wild-type and flhC mutant strains of serovar Typhimurium were grown to late 

exponential phase with or without 3% bile and examined by transmission electron 

microscopy (TEM). For the wild-type strain TEM analysis, the average number of 

flagella was nearly 6 flagella per bacterium regardless of the growth conditions, whereas 

no flagella were observed for the flhC mutant (Fig. 3.4). Therefore, while exposure to bile 

may transcriptionally down-regulate flagellar genes, bile has no effect on the number of 

flagella. 
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If flagella mediate attachment to cholesterol, then dead salmonellae expressing 

intact flagella should bind to cholesterol in the TBA. Wild-type and flhC strains of 

serovar Typhimurium were fixed in 10% formalin for 40 min or heat killed at 65°C for 

20 min and added to cholesterol-coated wells of a 24-well tissue culture plate. Live and 

dead wild-type cells bound to cholesterol following 3 h of incubation, and the association 

was only modestly enhanced by bile (Table 3.1). Strains lacking FlhC production did not 

bind to cholesterol under any of the conditions tested, further suggesting that the serovar 

Typhimurium flagellar filament mediates binding to cholesterol in the early stages of 

biofilm formation. 

Furthermore, to determine if flagellum-mediated binding could provide a scaffold 

for serovar Typhimurium biofilm formation, formalin-fixed salmonellae were incubated 

in cholesterol-coated Eppendorf  tubes for 24 h and washed vigorously with 1x PBS. A 

late-logarithmic culture of wild-type serovar Typhimurium grown in 3% bile was added 

on top of the bound cells, and the standard 6-day TBA was performed. To test whether 

the presence of flagella contributed to later events during biofilm development, a live 

serovar Typhimurium flhC mutant culture was added to a scaffold of bound, dead wild-

type cells, and a TBA was performed. 

When formalin-fixed salmonellae were added, these killed, bound cells were able 

to support biofilm formation by live wild-type serovar Typhimurium, and the amounts of 

the biofilms were larger than the amounts of the biofilms for salmonellae grown in the 

TBA without this scaffold (Table 3.2). The flhC mutant, while deficient in biofilm 

formation on cholesterol-coated surfaces (Fig. 3.2), was able to form a biofilm on the 

dead cell scaffold, suggesting that serovar Typhimurium flagellar filaments, while 

 20



necessary for binding to cholesterol, do not contribute to subsequent biofilm development 

(Table 3.2). Furthermore, the amount of biofilm formed by an flhC mutant on dead cells 

was significantly larger the amount of biofilm formed by the wild-type strain under the 

same conditions, suggesting that after mediating the initial binding, flagella may inhibit 

biofilm growth (Table 3.2). 

The flagellar filament of S. enterica is approximately 10 μm long and is 

comprised of two antigenically distinct flagellin proteins, FliC (H:i) and FljB (H:1,2) 

(Chilcott and Hughes, 2000; de Vries, et al., 1998). During the well-characterized phase 

variation process, these subunits are alternatively expressed by a genetic control 

mechanism (Aldridge, et al., 2006; Bonifield and Hughes, 2003; Silverman, et al., 1979). 

To determine which subunit protein mediated binding of the serovar Typhimurium 

flagellar filament to cholesterol, antibody to Salmonella whole flagella and FliC was used 

in a quantitative binding ELISA. Briefly, flagella were isolated and purified from serovar 

Typhimurium wild-type, fliC, fljB, and fliCfljB strains using a mechanical shearing 

protocol adapted from the protocol of Andersen-Nissen et al. (2007). Wild-type and 

phase-locked mutant flagellin preparations (1 μg each) were separated by 10% SDS-

PAGE. Monoclonal antiflagellin antibodies (Fig. 3.5B) that recognized a peptide that is 

present in both FliC and FljB or only in FliC were used. Purified proteins from all 

samples were added to cholesterol-coated wells of a 96-well tissue culture plate and 

analyzed by a modified ELISA. 

Based on the amino acid sequences, the predicted molecular masses of the FliC 

and FljB proteins were 51.6 and 52.5 kDa, respectively (Uchiya and Nikai, 2008), and the 

approximately 1-kDa difference was detected by Coomassie blue staining (Fig. 3.5A) and 
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Western blotting. The identity of each band was confirmed by comparing the wild-type 

and mutant lanes (Fig. 3.5). Flagella from the wild-type and fljB strains bound equally 

well to cholesterol ELISA, while flagella from the fliC mutant showed decreased binding, 

suggesting that FliC is the critical serovar Typhimurium flagellar subunit that mediates 

binding to cholesterol (Fig. 3.6). 

 

3.1.3 Porin 

OmpC is an outer membrane porin that allows for passage of nutrients and 

antibiotics between the extra- and intra-cellular milieu via passive diffusion (Dorman, et 

al., 1989). It has been well characterized in many members of Enterobacteriaceae, 

including Salmonella (Puente, et al., 1991). OmpC, OmpD, and OmpF are the three 

major osmoregulatory porins in Salmonella, and they are controlled by the two-

component regulatory system EnvZ-OmpR based on the osmolarity of the environment 

(Dorman, et al., 1989).  During periods of high osmolarity, OmpF expression is reduced, 

but OmpC is expressed in equal amounts in both high and low osmolarity (Puente, et al., 

1991). 

Bacteria within biofilms are thought to encounter higher osmolarity than in the 

liquid phase due to the higher gradient of ions and ionized molecules near the liquid-solid 

interface (Prigent-Combaret, et al., 1999). Studies in E. coli have shown that OmpC 

expression is upregulated in biofilm cells (Prigent-Combaret, et al., 1999).  Since OmpF 

expression is reduced in high osmolarity, a mutant lacking a functional ompC gene may 

be unable to persist in the high osmolarity environment of the biofilm with fewer porins 

to regulate the osmolarity of the cell. To test whether biofilm formation of ompC mutants 
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is affected by variations in solution osmolarity, a modified TBA was performed with LB-

3% bile medium of varying osmolarity (0.11 M – 0.41 M).  Osmolarity was artificially 

altered in solution by varying the amount of sodium chloride added to the broth. 

The TBA results are detailed in Fig. 3.7.  Compared to wild-type Salmonella, the 

ompC mutant strain showed decreased biofilm formation, but biofilm formation was 

unaffected by variations in osmolarity.  At this time, the exact cause of decreased biofilm 

formation in ompC mutants is unclear, but it appears that the defect is the result of a 

phenotype other than osmolarity alteration. 

 

3.1.4 Secreted Effector Protein 

SseI is a secreted effector protein belonging to the GDSL family of lipases that 

colocalizes with the polymerizing actin cytoskeleton during host invasion (Miao, et al., 

2003). It is a member of the effector proteins secreted by the SPI-2 Type III Secretion 

System (Miao, et al., 2003). GDSL proteins associated with SPI-2 have been shown to 

hydrolyse phospholipids and esterify cholesterol intracellularly (Miao, et al., 2003; 

Ehrbar and Hardt, 2005). It has also been demonstrated that sseI is required to establish 

long-term Salmonella infection in a murine model (McLaughlin, et al., 2009).  To 

examine whether production of the secreted effector protein is necessary for biofilm 

formation on cholesterol, the sseI mutation recovered in the transposon mutagenesis and 

related SPI-2 genes were analyzed in the TBA. These related genes included another SPI-

2 secreted effector protein gene, sseJ, and a SPI-2 knockout strain. 

The TBA results are detailed in Fig. 3.8. When compared to wild-type, the sseI 

mutant strain recovered from the initial transposon mutagenesis formed increased 

 23



biofilms on cholesterol in the absense of 3% bile but decreased biofilms in the presence 

of bile.  Similar results were obtained for a second sseI strain obtained from a different 

serovar Typhimurium background, as well as the secreted effector gene sseJ and the SPI-

2 knockout mutant.  Together, these results suggest that SPI-2 genes are important for the 

formation of biofilms in the presence of bile, and SPI-2 mutants show enhanced biofilm 

formation in the absence of bile. 

 

3.2 Discussion  

Based on previous demonstrations that Salmonella persistence in bile and chronic 

carriage is mediated by biofilm formation on cholesterol surfaces and cholesterol 

gallstones (Crawford, et al., 2008; Prouty et al., 2002), we have isolated several S. 

Typhimurium genes crucial to cholesterol binding.  These genes were divided into four 

categories: fimbrial genes (fimW), flagellar genes (flhA, fliF, fliA, fliJ, and fliL), porin 

genes (ompC), and secreted effector protein genes (sseI). 

FimW has been shown to down-regulate production of type 1 fimbriae by 

inhibiting FimY, a protein that enhances expression of the fim structural genes by 

activating the fimA promoter (Saini, et al., 2009), and chromosomal fimW mutants 

demonstrate a hyper-fimbriate phenotype (Tinker, et al., 2001).  The fimW::Kan, 

fimW::Tn10d-Tet and Type I fimbriae overexpressing serovar Typhimurium strains did 

not form a biofilm on cholesterol. Mutation of fimA in a fimW mutant background  

restored biofilm formation to that of wild-type serovar Typhimurium.  These data suggest 

that over-expression of type 1 fimbriae plays a negative role during Salmonella binding 

to cholesterol and subsequent biofilm formation. 
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Flagella have been shown to promote surface binding during biofilm formation in 

E. coli (Giron, et al., 2002) and Pseudomonas spp. (Lillehoj, et al., 2002), as well as 

adhesion during colonization of tissue cultured cells and mucus by Salmonella spp. 

(Dibb-Fuller, et al., 1999). To examine whether the physical presence of the flagellar 

filament was necessary for biofilm formation on cholesterol, a serovar Typhimurium 

mutant lacking flagella (flhC) was examined in the TBA and shown not to form a mature 

biofilm on cholesterol.  These results provide direct evidence for the importance of 

flagella during biofilm development. 

Past studies have suggested that flagellar motility is impacted by environmental 

cues, such as bile enhancing tumbling frequency while modestly down-regulating 

motility in S. enterica (Prouty, et al., 2004), so S. Typhimurium mutant strains lacking 

motor function (motA) and functional chemotaxis (cheA, cheB, cheR, cheY, and cheZ) 

were analyzed for biofilm formation in the TBA.  Loss of flagellar motility had no 

significant effect on biofilm development in LB broth with or without bile.  Similarly, 

loss of functional chemotaxis was unimportant in LB broth with bile.  These results 

indicate that flagellar motility is dispensable to biofilm formation on cholesterol surfaces 

in the presence of bile.   

To determine whether dead cultures of serovar Typhimurium could bind to 

cholesterol in the absence of secreted factors, formalin fixed or heat killed wild-type and 

flhC mutant serovar Typhimurium strains were added to cholesterol-coated wells.  The 

results of these experiments indicate that surface expression of intact flagella is necessary 

to mediate binding to cholesterol.  Interestingly, bound and inactivated cells provided a 

scaffold for biofilm formation of live, wild-type cells in the TBA, and the amount of 
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these biofilms exceeded those of salmonellae grown in the TBA without this scaffold.  

The flhC mutant showed a greater increase in biofilm formation on a substrate of bound 

bacteria when compared to wild-type, suggesting that the flagellar filament, while critical 

for initial binding to and biofilm formation on cholesterol, does not mediate subsequent 

biofilm growth following attachment.   

The flagellar filament of S. enterica is comprised of two antigenically distinct 

subunit proteins, FliC (H:i) and FljB (H:1,2).  To determine which flagellar subunit 

mediated adherence to cholesterol, a modified ELISA was performed using anti-flagella 

or anti-FliC antibodies against purified flagella proteins from serovar Typhimurium wild-

type, fliC, fljB, and fliC fljB mutant strains bound to cholesterol-coated wells.  The FliC 

subunit was shown to be a critical factor mediating attachment to cholesterol.  

Interestingly, S. Typhi is monophasic, harboring only the fliC gene (Baker, et al., 2007), 

and FliC expression has been shown to be anatomically restricted to certain tissues during 

systemic serovar Typhimurium mouse infections (Cummings, et al., 2006).   

The investigation of the flagellar and fimbrial genes recovered in the original 

transposon mutagenesis is largely complete, but further examination of the ompC and 

sseI insertions will be required in the future.  The lambdoid phage Gifsy-2 encodes SseI 

(Ehrbar and Hardt, 2005; Miao, et al., 2003), and the receptor for Gifsy-2 is OmpC (Ho 

and Slauch, 2001). The association between SseI and OmpC and the known interaction of 

SseI with cholesterol suggest a role for adherence and/or modification of cholesterol 

during biofilm formation. 

Preliminary studies of the ompC mutant demonstrated that biofilm formation in 

the presence of bile was decreased when compared to wild-type. No significant 
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difference was observed in ompC biofilm formation at varying osmolarities in the 

presence of bile.  Future studies for ompC will include growth curve analyses and MIC 

assays to determine the nature of the biofilm and/or growth defects shown in the TBA 

(Fig. 3.7). Of the fourteen Tn10d insertions found within ompC, five were located 

downstream of the start codon at bp position 252 (JSG3064) and nine others were found 

at position 346 (JSG3073), suggesting potential genomic hotspots crucial to cholesterol 

binding. The ompC studies described above utilized only JSG3064, so studies comparing 

the two ompC strains will also be performed to assess any potential differences in the 

mutations. 

Preliminary studies of sseI and other SPI-2 genes showed that SPI-2 mutant 

strains demonstrated increased biofilm formation in the absence of bile, suggesting that 

SPI-2 genes are important for biofilm formation in the presence of bile, but unimportant 

for biofilm formation in the absence of bile. SPI-1 genes have been shown to be down-

regulated by the presence of bile (Prouty and Gunn, 2000), so it is possible that SPI-2 

genes show a similar sensitivity to the presence or absence of bile. Future studies for sseI 

will include detailed analyses of ssrA and ssrB, members of the two-component 

regulatory systems that controls SPI-2 expression (Miao and Miller, 2000) to determine if 

SPI-2 expression impacts biofilm formation. 

These studies showed that several genes are required to mediate successful 

salmonellae adherence specifically to cholesterol.  These and future studies will help to 

elucidate the temporal requirements of factors involved in biofilm formation on 

cholesterol-coated surfaces, which will lead to further understanding of the chronic 

carrier state of Salmonella Typhi. As these studies progress, the cholesterol-impaired 
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mutants will be examined in the mouse model of Salmonella carriage to establish an in 

vivo correlation to the in vitro TBA results.  Studies will also be performed to study the 

pharmaceutical implications of the bacterial proteins involved in cholesterol attachment.  

Currently, a study to determine the chemical binding site between cholesterol and 

Salmonella flagella is being arranged, with the hopes that a targeted drug could be 

developed to block this binding site.  As the roles of fimbriae, outer membrane porins, 

and secreted effector proteins are fully characterized, these too will be examined for 

potential therapeutic applications. Overall, it is our hope that the findings outlined in this 

thesis will lead to a better understanding of the chronic carrier state of S. Typhi, and may 

one day yield effective and novel therapies to eliminate chronic Salmonella carriage. 
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Strain  Characteristic(s)  Source or reference 

S. Typhimurium   
        JSG210 ATCC 14208s (CDC6516-60); wild-type ATCC 
        JSG526 flhC98::Tn10 (TH2934); (LT2 background) Gift of K. Hughes 
        JSG1174 Δ(fim-aph-11::Tn10)-391 lpfC::Kan agfB::Cam pefC::Tet; 

(SR11 background) 
Gift of A. Baumler 

        JSG1178 hin108::Tn10d-Cam (FljB locked off; FljB-FliC+); (14208s 
background) 

Gift of B. Cookson 

        JSG1179 hin108::Tn10d-Cam fliC::Tn10 (FljB locked on; 
FljB+FliC-); (14208s background) 

Gift of B. Cookson 

        JSG1190 hin108::Tn10d-Cam fliC::Tn10 (FljB locked off; FljB-
FliC-); (14208s background) 

Gift of B. Cookson 

        JSG1547 motA595::Tn10; (14208s background) Gift of T. Lino 
        JSG3024 cheZ::Tn10; (14208s background) Gift of B. Ahmer 
        JSG3041 cheA::Tn10; (14208s background) Gift of B. Ahmer 
        JSG3042 cheB::Tn10; (14208s background) Gift of B. Ahmer 
        JSG3043 cheR::Tn10; (14208s background) Gift of B. Ahmer 
        JSG3044 cheY::Tn10; (14208s background) Gift of B. Ahmer 
        JSG3055 fimW::Tn10d-Tet; Site 1, 17 insertions; (14208s 

background) 
This study 

        JSG3058 fimW::Tn10d-Tet; Site 2, 1 insertion; (14208s background) This study 
        JSG3059 flhA::Tn10d-Tet; 9 insertions; (14208s background) This study 
        JSG3060 fliF::Tn10d-Tet; 3 insertions; (14208s background) This study 
        JSG3061 fliA::Tn10d-Tet; 2 insertions; (14208s background) This study 
        JSG3062 fliJ::Tn10d-Tet; 1 insertion; (14208s background) This study 
        JSG3063 fliL::Tn10d-Tet; 1 insertion; (14208s background) This study 
        JSG3064 ompC::Tn10d-Tet; Site 1, 5 insertions; (14208s 

background) 
This study 

        JSG3065 sseI::Tn10d-Tet; 1 insertion; (14208s background) This study 
        JSG3073 ompC::Tn10d-Tet; Site 2, 9 insertions; (14208s 

background) 
This study 

JSG3186 fimW::Kan; (LB5010 background) Gift of S. Clegg 
JSG3188 fimW::Tn10-Tet fimA::Kan; (14208s background) This study, Gift of S. 

Clegg 
JSG3189 ATCC 14028s, pISF101 This study, Gift of S. 

Clegg 
        JSG3327 sseI::Tn10d-Tet back-transduced into wild-type; (14208s 

background) 
This study 

        JSG3328 sseI::Kan; (14208s background) Gift of M. 
McClelland 

        JSG3329 sseJ::Kan; (14208s background) Gift of M. 
McClelland 

        JSG3330 SPI-2::Kan; (14208s background) Gift of M. 
McClelland 

 
Table 2.1: Bacterial strains and relevant characteristics. 
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Gene No. 

Colonies 
No. Unique 
Insertions 

Function 

fimW 18 2 Inhibitor of type 1 fimbriae regulator FimZ 
ompC 14 2 Outer membrane protein; passive diffusion of ions, 

hydrophilic solutes 
flhA 9 1 Flagellar export apparatus, biosynthesis membrane protein 
fliF 3 1 Flagellar cytoplasmic anchor MS-ring protein 
fliA 2 1 Flagellar biosynthesis sigma factor 
fliJ 1 1 Rod/hook and filament biosynthesis chaperone 
fliL 1 1 Basal body protein; stability of MotAB complexes of MS-

ring 
sseI 1 1 Secreted effector; colocalizes with host polymerizing actin 

cytoskeleton 
 
Table 2.2: Transposon insertion sites, frequencies, and functions. Of the 500 mutant 
colonies screened for lack of cholesterol biofilm forming ability (but sufficient biofilm 
forming ability on glass or plastic surfaces), these 49 mutants were identified. 
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Strain and growth condition Live Dead 

Serovar Typhimurium, LB + + 
Serovar Typhimurium, LB + 3% Bile + + 
Serovar Typhimurium flhC mutant, LB - - 
Serovar Typhimurium flhC mutant, LB + 3% Bile - - 
 
Table 3.1: Binding quantification assay. Three hour binding quantification assay on 
cholesterol-coated wells of live or dead serovar Typhimurium wild-type and flhC mutant 
strains.  Crystal violet stained material was extracted with acetic acid, and optical density 
at 570 nm for quantification.  +, binding amounts equivalent to wild-type in appropriate 
condition; -, severe defect in or complete loss of adherence (0 to 10% of wild-type 
values). 
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Organism grown in 3% bile Biofilm development ona 

    Cholesterol    Dead Cells 
Serovar Typhimurium             +                  ++         

Serovar Typhimurium flhC mutant             -                  +++       

 
Table 3.2: Summary of biofilm formation on cholesterol or on formalin fixed bacteria 
bound to cholesterol. Biofilms grown on cholesterol-coated Eppendorf tubes or a 
substrate of inactivated, bound cells in the TBA.  Dye was extracted with acetic acid, and 
optical density at 570 nm for quantification.  +, robust, mature biofilm formation at wild 
type levels; ++, increased biofilm present (1.5 – 1.99-fold higher than wild-type values); 
+++, increased biofilm present (2.0-fold or greater above wild-type values); -, severe 
defect in or complete loss of biofilm formation (0 to 10% of wild-type values).
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Shedding and Re-Attachment 

 
 
Fig. 1.1: Mechanism of biofilm formation.  Bacteria initiate biofilm formation by binding 
to a biotic or abiotic surface/substrate.  Subsequent biofilm development requires growth 
and recruitment of cells from a monolayer, to a larger microcolony, and eventually to a 
mature biofilm with a characteristic extracellular matrix (ECM).  The self-initiated ECM 
is frequently comprised of polysaccharides, proteins, or extracellular DNA, and is 
thought to provide protection for bacteria embedded within. 
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Fig. 3.1: Tube Biofilm Assay. Over-expression of type 1 fimbriae inhibits biofilm 
formation on cholesterol-coated surfaces while normal or decreased expression of type 1 
fimbriae has no effect..  Biofilm formation of serovar Typhimurium strains grown with 
3% crude ox bile extract on cholesterol-coated Eppendorf tubes.  Crystal violet-stained 
TBA biofilms were extracted with acetic acid, and absorbance was measured at 570 nm.  
*, statistical significance (P < 0.005) based on a two-tailed Student t test. OD570, optical 
density at 570 nm. 
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*

Fig. 3.2: Tube Biofilm Assay. The presence of flagella is necessary for biofilm formation 
on cholesterol-coated surfaces whereas motility is dispensable.  Serovar Typhimurium 
strains were grown with and without 3% crude ox bile extract and added to cholesterol-
coated Eppendorf tubes.  Biofilms were stained with crystal violet, extracted with acetic 
acid, and absorbance was measured at 570 nm.  *, statistical significance (P < 0.005) 
based on a two-tailed Student t test. OD570, optical density at 570 nm. 
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Fig. 3.3: Tube Biofilm Assay.  Both smooth swimming and hyper-tumbling phenotypes 
showed increased biofilm formation in the absence of bile, whereas biofilm formation in 
presence of bile was comparable to wild-type.  These data suggest that functional 
chemotaxis is important for biofilm formation in the absence of bile, but not in the 
presence of bile. 
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Fig. 3.4: Expression of flagella on the surface of serovar Typhimurium strains grown in 
the presence or absence of bile visualized by negative staining under transmission 
electron microscopy.  (A) Serovar Typhimurium flhC mutant.  (B) Serovar Typhimurium 
flhC mutant + 3% bile.  (C) Serovar Typhimurium wild-type.  (D) Serovar Typhimurium 
wild-type + 3% bile. 
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Fig. 3.5: Identification of flagellin proteins from wild-type and mutant serovar 
Typhimurium strains.  Flagella were isolated from late log phase bacterial cultures using 
mechanical shearing, purified, separated by 10% SDS-PAGE gel electrophoresis, and 
analyzed by GelCode Blue staining (A) and Western blotting (B).  Detection with anti-
flagella (B, top panel) and anti-FliC monoclonal antibodies (B, lower panel) are shown.  
Lanes: 1, wild-type serovar Typhimurium; 2, fliC mutant strain; 3, fljB mutant strain; 4, 
fliC fljB double mutant strain.  FliC; 51.6 kD, FljB; 52.5 kD. 
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Fig. 3.6: Expression of purified flagella proteins from serovar Typhimurium wild-type, 
fliC, fljB, and fliC fljB mutant strains adhered to cholesterol-coated wells.  A modified 
ELISA was performed using anti-flagella or anti-FliC monoclonal antibodies and binding 
to cholesterol was quantified by measuring bound secondary conjugated HRP substrate at 
optical density 415 nm.  Statistical significance based on a two-tailed Student t test, *; P 
< 0.05, **; P < 0.005. 
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Fig. 3.7: Tube Biofilm Assay. Wild-type S. Typhimurium and ompC mutants were 
compared in LB/bile solution of variable molarity.  The molarity was changed by altering 
the salt content of LB.  The results suggest that biofilm defects in ompC mutants are due 
to a phenotype other than osmoregulation defect. 
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Fig. 3.8: Tube Biofilm Assay.  Strains containing mutations in genes found in the SPI-2 
pathogenicity island, as well as genes regulated by SPI-2, showed decreased biofilm 
formation in the absence of bile.  These results suggest that SPI-2 genes are important for 
the formation of biofilms in the presence of bile, and show enhanced biofilm formation in 
the absence of bile.  (This assay was performed twice more in triplicate, showing similar 
trends in the biofilm formation for all three assays.) 
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