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SUBNANOSECOND ANALYSIS OF COMPLEX
VELOCITY PROFILES

Abel Diaz, Thomas W. Tunnell, Cenobio Gallegos, 
Michael Berninger, Matthew Teel, Fred Sanders

National Security Technologies, LLC, Los Alamos Operations,
Los Alamos, NM 87544

This work describes progress at the Los Alamos Operations (LAO) of National Securities Technology (NSTec) in 
developing sub-nanosecond analysis capability for Photon Doppler Velocimetry (PDV)/triature data. We are 
developing analysis techniques that will ultimately provide fine time resolution for PDV/triature data. The 
application of these techniques to simulated data and laser-driven shock data are presented. The simulated data 
were generated with a “complex” velocity profile provided by Los Alamos National Laboratory to help determine 
uncertainties on expected velocity profiles of interest. The simulated triature data include gain and phase 
discrepancies that might be expected in actual data. The triature analysis flow applies a forward modeling 
technique to resolve these gain and phase discrepancies. Using the resolved gain and phase discrepancies, the 
fine time resolution techniques successfully extract rise times of a few hundred picoseconds (and less) for the 
simulated data. Pre- and post-experiment characterization techniques to resolve gain and phase discrepancies 
are also described here, although the analysis has the capability to extract such information from data. In addition, 
NSTec applied these analysis capabilities to laser-driven shock data to extract velocities of 2,500 m/s with 
subnanosecond rise times. Comparisons of these analysis results are made with corresponding VISAR diagnostic 
results.

This work was done by National Security Technologies, LLC, under Contract No. DE-AC52-06NA25946 with the 
U.S. Department of Energy.
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Outline

• Adaptive Down Conversion
• VISAR – Like analysis
• Omega filter analysis
• Simulation with Results
• Triature
• Forward Modeling
• Lissajous
• Triature Results (with Single PDV)
• VISAR Results
• Conclusion
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Single Channel Analysis: Adaptive Down Conversion

1. Interpolate data with FFT approach to double sample frequency 
2. Compute FFT power spectrum at greatest overlap as possible. 
3. Extract velocity and bandwidth as function of time
4. Convert to frequency
5. Integrate to obtain phase, (t)
6. Compute mixing functions cos( (t)) and sin( (t))
7. Multiply each mixing function by the data, D(t)
8. Low pass filter the products, PC(t) and PS(t)
9. Regenerate data using sin( (t)) and cos( (t)) mixing function
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Single Channel Analysis: VISAR Like
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Single Channel Analysis: Omega Filter
From Wikipedia, the free encyclopedia
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Single Channel Analysis: Omega Filter, cntd
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Simulation provided by Michael Furlanetto.

ADC at 800MHz bandwidth
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ADC at 800MHz bandwidth
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Triature: Phase/Gain Characterizations
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Triature: Issues
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Triature: Forward Modeling
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Triature: Forward Modeling, continued
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Triature: Lissajous (as suggested by Will Hemsing)
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Data vs. Model
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2008-20-08 shot 2

Saturated

Fringes not added past this point 
in time.
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Conclusions

• Sub-nanosecond time resolution in single PDV 
and Triature analysis.

• Need to finalize tools for ADC processing.
• Forward modeling recovers phase shifts and 

gains of Triature data. Need technique to 
resolve time delays. 

• Lissajous methods support Triature results.
• Resolve “ringing” in Triature (possibly due to 

baseline or uncorrected time delays).


