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A Mathematical Origami Puzzle

The recent axiomization of Origami has led to numerous breakthroughs in both mathematics and in 
understanding of the ancient art of paper folding.  We propose a puzzle whose solution demonstrates the 
power of mathematical origami.  This puzzle is accessible to the geometry student and could be used as 
supplemental geometry instruction as an extension of traditional compass and straight edge constructions.  
Detailed images and photos are provided to guide the audience through the puzzle’s solution.

Introduction
Puzzle: Can a piece of paper, with any four points marked on it, be folded in such a way that all 

four points end up as the four corners of a rectangle? We begin our exploration by noticing that if 
we start with the four points as the corners of a rectangle, making the appropriate folds is easy.

Next, try adjusting one of the four points, as pictured in Figure 1, left.  After exploring this 
case with a sheet of paper, it is not hard to see that you can fold the paper so that the points 
form the corners of a rectangle, as shown in Figure 1, right.   For a more challenging case, draw 
three points with a fourth point inside the triangle formed by connecting the three points, as 
in Figure 2. 
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Fig 1 (Left) Initial setup; (Middle) Point moved; (Right) Rectangle

Try folding for a few minutes and make a conjecture. Before we can start trying to prove any 
of these conjectures, we need a system of mathematically rigorous tools at our disposal. 

Origami in a Formal Mathematical Setting
To begin, we note that every defi nition from Euclidean geometry remains the same: a 

line extends infi nitely, a rectangle is a quadrilateral with four right angles, etc. In addition to 

Fig 2 A more challenging rectangle folding task
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For our 
purposes, 
paper is 
infi nitely 
thin and 
transparent. 
Being 
infi nitely 
thin allows 
us to fold 
the paper as 
many times 
as we like; 
transparency 
allows us to 
always see a 
point or line 
drawn on the 
paper.   

Euclidean geometry defi nitions, we must also understand the two main parts of origami: paper 
and folding. For our purposes, paper is infi nitely thin and transparent. Being infi nitely thin 
allows us to fold the paper as many times as we like; transparency allows us to always see a point 
or line drawn on the paper. An eff ective way to simulate these properties is to use transparency 
paper or lightweight paper and heavy markers. To make a fold in origami, we hold one side of 
the paper still and fold the other side over a straight line. In origami, the term fold refers both 
to the action of folding and to the line produced by that fold. 

With clearly defi ned terminology, we can now discuss the axioms of origami.  In 1989, 
Humiaka Huzita defi ned seven axioms that mathematically describe origami  (Hull, 2008) 
listed in Table 1 with examples.

Table 1 Origami Axioms (Hull, 2008)
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It turns 
out not only 
can we fold 
four points 
onto a line, 
but we can 

fold any 
collection 

of n points 
onto a line. 

We can 
demonstrate 

this using 
induction.

With a system of axioms in place, we have a framework for solving the original puzzle.  
Before solving it though, we can try solving a simpler problem as a warm-up: Is it possible to 
fold any four points onto a line? If this were possible, we could fold that line into a rectangle, as 
demonstrated in Figure 3.

Fig 3 Folding a line into a rectangle

It turns out not only can we fold four points onto a line, but we can fold any collection 
of n points onto a line. We can demonstrate this using induction. Given any two points, by 
Axiom 1, there is a unique fold that passes through those two points. For reference we will 
label that fold l. Now assume that n-1 points have been folded to line l. Now by Axiom 1, 
we can make a fold through P1 and Pn and we can call it l2. Finally by Axiom 3 we can fold 
l2 onto l, and all n points have been folded to the line.  We use the process in Figure 4 to 
fold 5 points onto a single line. 

Photo 1. Folding 5 points to a line using our strategy

Notice that in Photo 1 the fi nal line appears to contain only four points because two 
points end up in the same place. To answer our original problem, we want four distinct 
points on a line (recall Figure 3). However, because the method outlined above does not 
yield distinct points, we need a more specifi c proof to guarantee that all four points remain 
distinct.  Below, we provide such an argument.

Lemma: It is possible to fold any four points onto a line such that those four points remain 
distinct. 
Proof: Let A, B, C and D be distinct points on paper. 
Step 1: Examine points A, B and C. If they are collinear go to Step 2. If they are not 
collinear, we need to fold them into distinct points on a line. To do this, we can fold lines 
AB, BC, and CA by Axiom 1 [Fig. 4a]. Th en, by Axiom 4, we can fold a line through each 
vertex that is perpendicular to the opposite side of the triangle [Fig 4b]. One of these lines 
must intersect a segment at a point other than a vertex, call this point i [Fig. 4c]. Without 
loss of generality, we can assume that the line through i is the line that passes through point 
B and is perpendicular to AC. Now we can fold B to the intersection point i [Fig. 4d]. At 
this step, we now have three points as distinct points on a line.
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Fig 4 Steps to fold 3 distinct points on a line

Step 2: A, B, and C are now contained on a line, call it lABC .Now we can fold a line 
l through point D that is perpendicular to lABC. Th ere are three possible cases for the 
intersection of line l.

Case 1: Th e intersection of lines l and lABC does not occur at points A, B or C, but instead 
at another point on lABC. Th en we can fold D to that intersection point (indicated in 
yellow in Figure 5).

Fig 5 Four distinct points, Case 1

Case 2: Th e intersection of lines l and lABC is an outer point, as pictured in Figure 6. 

In this situation, we can fold a line through D and the other outside point. From here, 
we can fold the lines perpendicular to this new line that run through each of the other 
points. Th en we can fold each of those points to the intersection points as demonstrated 
by Figure 7.

Fig 6 Two scenarios for case 2

Fig 7 Folding process to solve case 2
Case 3: Th e intersection of line l and lABC is the inner point. In this case, we can fold the 
line connecting one of the outside points and D. Th en we can either fold all points to 
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folding 
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the line by the process from Case 1 (as demonstrated in Figure 8), or the perpendicular 
line through A intersects D and we can proceed as in Case 2 (as shown in Figure 9).

Fig 8 Folding sequence for Case 3 that results in the confi guration in Case 1

Fig 9 Folding sequence for Case 3 that results in the confi guration examined in Case 2
Once we have this lemma, folding our four points onto a rectangle becomes a simple 
problem. Puzzle Solution: Any four distinct points can be folded to four distinct corners 
of a rectangle.

Proof: By the 
lemma we can fold 
the four points onto 
the line AD. We will 
label the points in 
order on the line as 
A, B, C, D.

Using Axiom 4, 
we can make a fold 
perpendicular to BC 
that passes through 
point B, called lB. 
We can do the same 
thing through point 
C, calling that line 
lC.
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Now by Axiom 
5, there is a fold 
through point B 
that places A onto 
line lB.

Similarly there is a 
fold through point 
C that places D 
onto line lC.

Without loss of 
generality we can 
assume that A is 
further away from 
B than C is from 
D. Th erefore, using 
Axiom 4 again, 
we can fold a 
perpendicular line 
to lC that passes 
through D.

We can now label 
the intersection of 
this fold with lB as 
Q. Th en by Axiom 
2 we can fold A 
onto Q and we 
have successfully 
constructed a 
rectangle.

This 
construction 
is just one of 
many amazing 
constructions 
based on 
the origami 
axioms. . 
Many of 
these axioms 
are based on 
compass and 
straight edge 
constructions 
from classical 
geometry. 
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In Conclusion
Th is construction is just one of many 

amazing constructions based on the origami 
axioms. Many of these axioms are based on 
compass and straight edge constructions 
from classical geometry. Axiom 6, however, 
requires the ability to slide the paper as 
you make a fold. Th is results in a non-
Euclidean geometry in which angles can 
be trisected and cubes doubled. For even 
more spectacular results see the work of 
Eric Demaine from MIT. He proved that 
anything that can be represented by a 
straight-line skeleton can be folded from a 
sheet of paper (2008). In addition, when 
folded from a two-color sheet of paper, the 
colors can be distributed in any possible 
way. Th is means that a lifelike giraff e could 
be folded with colored spots as in Photo 2.
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“The associative architecture 
of the brain contributes to 
false memories, and to the 
ease with which politicians 
and companies manipulate 
our behavior and beliefs.”
Buonomano, D. (2011). Brain bugs: 
How the brain’s fl aws shape our lives, 
16. W. W. Norton & Company, NY.

You better believe it!


