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T 

Recreational mathematics can 
be fun and has often inspired 
students to pursue further 
study of mathematical topics. 
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Abstract 
Recreational mathematics can provide students with opportunities 
to explore mathematics in meaningful ways. Elementary number 
theory is one area of mathematics that lends itself readily to 
recreational mathematics. In this article, the author provides two 
examples from elementary number theory with results that 
students might find surprising, and which may be used to motivate 
them to study additional topics from number theory. 

 
here are some mathematical topics that lend themselves to exploration and 
investigation by students much more readily than others. Some have practical 
applications that may motivate the students to further study. Cryptography, for example, is a 
topic that many students find interesting and worthy of additional study. Others may offer 
surprising results or may simply be entertaining to the students. The Fibonacci sequence and 

Pascal’s triangle, for example, have both been used to motivate students to explore mathematics. Still 
others may simply align with a particular student’s strengths, causing that student to want to investigate 
further. A topic that relies heavily on pattern recognition may play to one student’s strengths while a 
different topic that requires computation may inspire another student. 
 

Topics which are readily accessible to non-mathematicians while allowing them to engage in meaningful 
exploration fall under the umbrella of recreational mathematics. A commonly-accepted, albeit informal, 
definition of recreational mathematics is that it is mathematics that is carried out for entertainment or self-
education rather than as a research or application-based professional activity. Recreational mathematics 

can be fun and has often inspired students to pursue further 
study of mathematical topics. While providing entertainment 
and amusement (or, indeed, amazement), it can also lay the 
groundwork for the study of more “serious” mathematics. 
Certainly, there have been occasions when recreational 
mathematics has led to unexpected, but meaningful, utility. For 
example, much of the foundation of actuarial science – the 

methods used to assess risk in insurance and other areas – utilizes the probability and statistical methods 
that grew out of the recreational mathematics subject of gambling in the 17th century and following. The 
famous Königsberg Bridge problem, posed in a manner that could be considered as recreational 
mathematics in the 18th century, led to the development of graph theory by Euler and others (Singmaster, 
1993). 

 
One area of mathematics that seems to lend itself readily to recreational mathematics is that of elementary 
number theory – the study of equations having integer or rational solutions. What follows is an example 
of two surprising results that students may find quite interesting.  
 
Sums of Squares 
Students who have studied the Pythagorean Theorem are likely familiar with the Pythagorean triple  
{3, 4, 5} and the fact that  

 
(1)  32 + 42 = 52  
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However, most are unaware that this identity can be extended to an entire family of identities by 
following a simple pattern involving the sum of the squares of consecutive integers: we will take the final 
term in each equation, and successively multiply the base number of that final term by a certain ratio (to 
be given below), and use that result as the base number of the first term in the next identity. We also add 
one additional term on both sides of the equation with each successive identity. The ratios that we use will 

be the sequence . That is, we will use the fraction  to obtain the second identity, then we will 

use the fraction  to obtain the third identity, then  , then , etc. 

 

To begin, the final term in the identity 32 + 42 = 52 is the term 52. We multiply the base number 5 by  to 

obtain 10, and that will become the base number of the first term in the next identity. This identity will 
grow from having two terms on the left and one term on the right to having three terms on the left and two 
terms on the right: 

 
(2)  102 + 112 + 122 = 132 + 142 

 
with both sides equaling 365. The final term in this identity is the term 142. Taking the base number of the 

final term, 14, and multiplying now by 
	 	

 gives the initial base number for the next identity, 21. The new 

identity will grow to four terms on the left and three terms on the right: 
 

(3)  212 + 222 + 232 + 242 = 252 + 262 + 272 
 

with both sides equaling 2030. Continuing in this manner, we see that 27 ∙  = 36 and the next identity is 

 
(4)  362 + 372 + 382 + 392 + 402 = 412 + 422 + 432 + 442 

 
and the one following that is 
 

(5)  552 + 562 + 572 + 582 + 592 + 602 = 612 + 622 + 632 + 642 + 652 
 
Apostol and Mnatsakanian (2011) point out that G.J. Doster showed that this family of identities is 
generalized by the formula 
 

(6)   ∑ ∑ 1  where m = n(2n + 1). 
 
For example, if n = 1, then m = 3 and we get the identity 
 

3 3 1 3 1 1  

 
which is 32 + 42 = 52. Similarly, if n = 2 then m = 10 and we obtain the identity 
 

10 10 2 10 2 1  

 
which is 102 + 112 + 122 = 132 + 142. 
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Unlike the first method that we used to obtain these identities, which required us multiplying the 

final term of one of the identities by one of the ratios 	 , 	 , 	, etc., in order to determine the first term of 

the next identity, Doster’s formula allows us to obtain any of the equations in this family of identities 
without the requirement of knowing any of the earlier identities. For example, if n = 8 then m = 136 and 
we get the identity 1362 + 1372 + 1382 + ··· + 1442 = 1452 + 1462 + ··· + 1522, with the left hand side of 
this equation being the sum of nine terms while the right hand side of the equation is the sum of eight 
terms. 
 
Sums of Cubes 
Students who have taken integral calculus may also be familiar with the formulas for the sum of the first n 
integers and the sum of the first n cubes: 

 

(7)   1 2 3 ⋯ 			and 

(8)   1 2 3 ⋯  

 
We see that if we square the formula for the sum of the first n integers then we obtain the formula for the 
sum of the first n cubes. Stated simply, the sum of the first n cubes is the square of the sum of the first n 
integers. The conventional way to prove these two formulas is by induction. However, a nice visual that 
exhibits this formula is provided by Barbeau (2014) as follows. 
 

Suppose we wish to show that 13 + 23 + 33 + 43 = (1 + 2 + 3 + 4)2 visually. We construct the 
following 4 × 4 array of numbers found in the corner of a standard multiplication table: 
  

1 2 3 4 
2 4 6 8 
3 6 9 12 
4 8 12 16 

  
We will sum the numbers in this array in two different ways. First, we sum the rows going across as 
follows: 
 

(1 + 2 + 3 + 4) + (2 + 4 + 6 + 8) + (3 + 6 + 9 + 12) + (4 + 8 + 12 + 16) =  
(1 + 2 + 3 + 4) + 2(1 + 2 + 3 + 4) + 3(1 + 2 + 3 + 4) + 4(1 + 2 + 3 + 4). 
 

Factoring out the common factor of (1 + 2 + 3 + 4) gives the sum as  
 

(1 + 2 + 3 + 4)[1 + 2 + 3 + 4], which is (1 + 2 + 3 + 4)2. 
 

The second way that we will sum the numbers in the array is by summing along L-shaped gnomons, 
displayed as either shaded or unshaded in the table below: 
 

1 2 3 4 
2 4 6 8 
3 6 9 12 
4 8 12 16 

 
The sum of all the entries in the array along the unshaded (or, respectively, shaded) gnomons is 

1 + (2 + 4 + 2) + (3 + 6 + 9 + 6 + 3) + (4 + 8 + 12 + 16 + 12 + 8 + 4).  
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Rearranging the order of the terms gives 
 

1 + [(2 + 2) + 4] + [(3 +6) + (6 + 3) + 9] + [(4 + 12) + (8 + 8) + (12 + 4) + 16] =  
1 + [4 + 4] + [9 + 9 + 9] + [16 + 16 + 16 + 16] = 1 + 2·4 + 3·9 + 4·16 = 
1 + 2·22 + 3·32 + 4·42 = 13 + 23 + 33 + 43. 
 

Thus, by adding all the numbers in this array in two different ways, we see that  
(1 + 2 + 3 + 4)2 = 13 + 23 + 33 + 43. 
 

Notice the manner in which the terms were rearranged: the first entry in each row of a gnomon is matched 
with the first entry immediately above the corner entry of that gnomon. For example, in the fourth set of 
terms, the 4 that is the first entry in the bottom row gets matched with the 12 that is immediately above 
the corner entry of 16. Then, matching terms across the row of the gnomon with the entries proceeding 
upward in the column of the gnomon produces the desired matches (4 and 12; 8 and 8; 12 and 4; with the 
remaining corner entry of 16 left by itself). 

 
This can be shown to work in the general case of adding the first n cubes as follows: 
  

1 2 3 ··· ··· n – 1 n 
2 4 6 ··· ··· 2(n – 1) 2n 
3 6 9 ··· ··· 3(n – 1) 3n 

··· ··· ··· ··· ··· ··· ··· 
··· ··· ··· ··· ··· ··· (n – 2)n 

n - 1 2(n – 1) 3(n – 1) ··· ··· (n – 1)2 (n – 1)n 
n 2n 3n ··· (n – 2)n (n – 1)n n2 

 
Adding row by row gives the sum of all the entries in the table as 

[1 + 2 + 3 + ··· + n] + [2 + 4 + 6 + ··· + 2n] + [3 + 6 + 9 + ··· + 3n] + ··· +  

[n + 2n + 3n + ··· + n2] = [1 + 2 + 3 + ··· + n] + 2[1 + 2 + 3 + ···+ n] +  

3[1 + 2 + 3 + ··· + n] + ··· + n[1 + 2 + 3 + ··· + n] = 

[1 + 2 + 3 + ··· + n] (1 + 2 + 3 + ··· + n) = (1 + 2 + 3 + ··· + n)2. 

 

Alternatively, adding along the L-shaped gnomons gives the sum of all the entries in the table as 
1 + (2 + 4 + 2) + (3 + 6 + 9 + 6 + 3) + ··· + [(n – 1) + 2(n – 1) + 3(n – 1) + ··· + (n – 1)2 + ··· +  
 

3(n – 1) + 2(n – 1) + (n – 1)] + [n + 2n + 3n + ··· + (n – 1)n + n2 + (n – 1)n + ··· + 3n + 2n + n]. 
 

Rearranging the terms in the manner outlined above, we see that this sum is equivalent to 
1 + [(2 + 2) + 4] + [(3 + 6) + (6 + 3) + 9] + ···  

+ [(n + (n – 1)n) + (2n + (n – 2)n) + ··· + ((n – 2)n + 2n) + ((n – 1)n + n) + n2] =  

1 + [4 + 4] + [9 + 9 + 9] + ··· + [n2 + n2 + ··· + n2] = 

1 + 2·4 + 3·9 + ··· + n·n2 = 1 + 2·22 + 3·32 + ··· + n·n2 = 13 + 23 + 33 + ··· + n3. 

 

Thus, by adding all the entries in the array in two different ways, we see that 
 
 (1 + 2 + 3 + ··· + n)2 = 13 + 23 + 33 + ··· + n3, that is, the sum of the first n cubes is the square of the sum 
of the first n integers. 
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Summary 
Properties of sums of integers, squares of integers, cubes of integers, odd integers, even integers, etc., 
lend themselves to a great deal of exploration by the motivated student. Sometimes, merely providing 
them with the initial few identities allows them to identify the entire family of identities, offer their own 
proofs, and extend those identities. These activities can be fun, while inspiring them to explore 
mathematics in meaningful ways.  

 
The particular examples discussed in this article can be presented in a manner that aligns nicely with the 
Standards for Mathematical Practice that mathematics educators are called upon to develop in their 
students as part of the Common Core State Standards, in particular the standard that students should “look 
for and express regularity in repeated reasoning.” For example, if students were presented with the first 
two or three identities from the first example – (1), (2), and perhaps (3) – they could then be asked to find 
a pattern and determine a method that would yield later identities, and test their results. Similarly with the 
second example discussed in this article, students could be presented with the array and shaded and 
unshaded gnomons used to demonstrate that the sum of the first four cubes is equal to the square of the 
sum of the first four integers, then asked to explore the pattern for the first five integers, and generalize 
the results to the first n integers.   

 
As a closing example, what would some of your students do if they were challenged to explore the 
following pattern?  

1 = 13 
                                                                          3 + 5 = 23 
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