

Semiclassical Study of thePhotodissociation Dynamics of Vibrationally Excited NH₃(\tilde{A}) Molecules

David Bonhommeau

Department of Chemistry, University of Minnesota

Principle of the experiments

Principle of the experiments

• **Excitation of NH**3 **molecules**

- \star \star Photo-excitation of NH₃ to a vibrational state of its first excited electronic state.
- \star ⁶ modes with positive frequencies at the equilibrium geometry of the first excitedelectronic state well: ν_1 (symmetric stretch), ν_2 (out-of-plane bend or "umbrella" mode), ν_3 (2) (antisymmetric stretch), ν_4 (2) (bend).

Excess energies

Denoting E_{exc} the quantum energy available for fragmentation, also called excess energy , the NH $_2$ internal energy is given by

$$
E_{int}(NH_2) = E_{exc} - E_{rel}(H)
$$
 with $E_{rel}(H) = \frac{\mu_{red}}{2}V_R^2$

63 rd OSU Conference, June 17, 2008 – p.3/13

Semiclassical methods (I)

• **^A mean-field approach, the CSDM (Coherent Switching with Decay of Mixing) method:**

- \star The dynamics of nuclei is performed on an average potential-energy surface.
- \star The average surface decays toward an adiabatic surface, the decay proceeding faster as the system gets farther from ^a region of strong coupling.
- \star First-order decay time used to control the demixing of the average surface to a quantized state:

$$
\tau = \frac{\hbar}{\Delta V} \left(c + \frac{E_0}{T_s} \right)
$$

 ΔV is the difference between the adiabatic electronic energies,

 \overline{c} and E_0 are two parameters,

 T_{s} is the kinetic energy associated with the component of the momentum where energy is being added or removed as the trajectory demixes.

Ref (CSDM): C. Zhu et al., J. Chem. Phys., **¹²¹**, 7658 (2004). Ref (FSTU): A. W. Jasper et al., J. Chem. Phys., **116**, 5424 (2002). Ref (FSTU/SD): A. W. Jasper et al., J. Chem. Phys., **¹²⁷**, 194306 (2007).

Semiclassical methods (II)

• **^A trajectory surface-hopping method, the FSTU (Fewest Switches with TimeUncertainty) and FSTU/SD (FSTU with Stochastic Decay) methods:**

- ⋆ \star The dynamics of nuclei is performed on one adiabatic surface at a time.
- \star \star Electronic nonadiabatic transitions ("hops") between surfaces j and k are governed by a hopping probability $g_{jk}=f(\mathbf{\dot{R}}\cdot \mathbf{d}_{jk}, c_j, c_k).$
- \star Hopping event: Kinetic energy needs to be adjusted, some hops may be"frustrated", ie classically forbidden.
- \star Improvements of FSTU: it looks backward $(t_h < t_0)$ and forward $(t_h > t_0)$ in time for a possible hopping time t_h that is different from t_0 . The electronic transition is allowed at $t_h\neq t_0$ if a hopping point is reachable within the Heisenberg interval of time uncertainty, that is when

$$
|t_0 - t_h| \le \frac{\hbar}{2\Delta E}
$$

 ΔE is the energy that would need to be borrowed at t_0 to allow a hop.

 \star Improvements of FSTU/SD: some decoherence is included (phenomenological decay of the off-diagonal elements of the electronic density matrix).

TRAjectory Projection onto Zero-point energy orbit (TRAPZ)

Main features of TRAPZ (I)

• **Preliminary conditions:**

- \star Working in the center-of-mass frame.
- \star -Mass weighted Cartesian coordinates

$$
x = [M]^{1/2} x_c \text{ et } p = [M]^{-1/2} p_c
$$

Main features of TRAPZ (I)

• **Preliminary conditions:**

- \star Working in the center-of-mass frame.
- \star -Mass weighted Cartesian coordinates

$$
x = [M]^{1/2} x_c \text{ et } p = [M]^{-1/2} p_c
$$

• **Harmonic analysis:**

 \star Calculation of the projected Hessian $[K^P]$ at time t_0 by removing the 6 infinitesimal rotations and translations from the Hessian $[K]$

$$
[K^P] = ([I] - [\mathcal{P}])[K]([I] - [\mathcal{P}])
$$

- \star \star $\,$ Diagonalization of $[K^P]$: normal modes, $L_k(t_0)$, and frequencies, $\Omega_k(t_0)$
- \star Calculation of the instantaneous vibrational energy of mode k at time t_0 \star

$$
E_k(t_0) = \frac{1}{2\mu} \left[P_k^2 + \left(\frac{D_k(t_0)}{\Omega_k(t_0)} \right)^2 \right]
$$

63 rd OSU Conference, June 17, 2008 – p.8/13

Main features of TRAPZ (II)

- \bullet Comparison to the ZPE of each mode: $E_{\sf ZPE, k}(t_0) = \frac{1}{2}$ $\frac{1}{2} \, \hbar \Omega_k(t_0)$?
- \bullet If $E_k(t_0) < E_{{\sf ZPE},k}(t_0)$ then

$$
P'_k = sign(P_k) \sqrt{\mu \,\hbar \Omega_k(t_0) - \left(\frac{D_k(t_0)}{\Omega_k(t_0)}\right)^2}
$$

Main features of TRAPZ (II)

- \bullet Comparison to the ZPE of each mode: $E_{\sf ZPE, k}(t_0) = \frac{1}{2}$ $\frac{1}{2} \, \hbar \Omega_k(t_0)$?
- \bullet If $E_k(t_0) < E_{{\sf ZPE},k}(t_0)$ then

$$
P'_{k} = sign(P_{k}) \sqrt{\mu \,\hbar\Omega_{k}(t_{0}) - \left(\frac{D_{k}(t_{0})}{\Omega_{k}(t_{0})}\right)^{2}}
$$

• **Different TRAPZ-like methods:**

TRAPZ criterion:

\n
$$
E_{k}(t_{0}) \leq E_{\text{ZPE},k}(t_{0})
$$
\n
$$
\text{mTRAPZ criterion:}
$$
\n
$$
\sum_{k=1}^{3N-q(t_{0})} E_{k}(t_{0}) \leq \sum_{k=1}^{3N-q(t_{0})} E_{\text{ZPE},k}(t_{0})
$$
\n
$$
\sum_{k=1}^{3N-q(t_{0})} E_{k}(t_{0}) \leq E_{\text{ZPE},\text{NH}_{2}}(t_{0})
$$
\n
$$
\sum_{k=1}^{3N-q(t_{0})} E_{k}(t_{0}) \leq E_{\text{ZPE},\text{NH}_{2}}(t_{0})
$$

Ref: D. Bonhommeau, and D. G. Truhlar, J. Chem. Phys., accepted (2008).

NH2 **internal energy (mTRAPZ)**

63 rd OSU Conference, June 17, 2008 – p.10/13

Partitioning of energy

• **Comparison between methods:**

- \star $\,$ mTRAPZ and mTRAPZ* are equivalent.
- \star The partitioning is much better when considering mTRAPZ or mTRAPZ* rather than TRAPZ (highly vibrationnally excited NH $_2$ molecules, very cold H atoms for all the n_2 values) or no TRAPZ-like method (hot H atoms).

Conclusion

• **The mixed quantum/classical methods tested here (CSDM, FSTU, FSTU/SD)**

- \star lead to similar results,
- \star -qualitatively reproduce experimental results,
- \star but the ZPE maintenance is not ensured,
- \star \star $\;$ and the dynamics is found mainly nonadiabatic whatever n_2 whereas the experiment finds that the percentage of adiabatic dissociation steadily increaseswith n_2 for $n_2 \geq 3$.

• **The mTRAPZ and mTRAPZ* methods**

- \star allows to ensure ZPE throughout the dynamics,
- \star improve the partitioning of energy (compared to FSTU/SD or FSTU/SD+TRAPZ),
- ⋆but the dynamics is found more nonadiabatic.

• **Future work:**

- \star $\;$ Studying the effect of exciting the symmetric and antisymmetric stretch of NH $_3.$
- \star Modifying conditions at hopping events to favor adiabaticity !

Acknowledgements

• **Collaborators:**

- \star $\,$ Regents Pr Donald G. Truhlar (University of Minnesota , USA), $\,$
- \star Dr Rosendo Valero and Dr Zhen Hua Li (University of Minnesota , USA).

• **Institutions:**

- \star -National Science Foundation (grant),
- \star Minnesota Supercomputing Institute (grant of computer time and technical support, USA).