

Semiclassical Study of the Photodissociation Dynamics of Vibrationally Excited NH₃(Ã) Molecules

David Bonhommeau

Department of Chemistry, University of Minnesota

Principle of the experiments

Principle of the experiments

• Excitation of NH₃ molecules

- \star Photo-excitation of NH₃ to a vibrational state of its first excited electronic state.
- * 6 modes with positive frequencies at the equilibrium geometry of the first excited electronic state well: ν_1 (symmetric stretch), ν_2 (out-of-plane bend or "umbrella" mode), ν_3 (2) (antisymmetric stretch), ν_4 (2) (bend).

Excess energies

Denoting E_{exc} the quantum energy available for fragmentation, also called excess energy, the NH₂ internal energy is given by

$$E_{int}(NH_2) = E_{exc} - E_{rel}(H)$$
 with $E_{rel}(H) = \frac{\mu_{red}}{2}V_R^2$

with μ_{re}	$_{d} =$	$\frac{m(NH_2)m(H)}{m(NH_3)}$	$\frac{1}{V}$, \vec{V}_R	$= \vec{v}(H)$	$-\vec{v}_{com}$	$(NH_2).$
-----------------	----------	-------------------------------	-----------------------------	----------------	------------------	-----------

n_2	E_{exc} (theory)	$E_{exc}(exp.1)$	$E_{exc}(exp.2)$	$E_{exc}(exp.3)$	
		(Biesner et al., 1989)	(Bach et al., 2003)	(Hause et al., 2006)	
0	1.16	1.08	1.13	1.12	
1	1.27	1.19	1.23	n.a.	
2	1.38	1.30	1.34	n.a.	
3	1.49	1.41	1.46	n.a.	
4	1.60	1.53	1.57	n.a.	
5	1.71	1.64	n.a.	n.a.	
6	1.82	1.76	n.a.	n.a.	

 63^{rd} OSU Conference, June 17, 2008 – p.3/12

Semiclassical methods (I)

• A mean-field approach, the CSDM (Coherent Switching with Decay of Mixing) method:

- ★ The dynamics of nuclei is performed on an average potential-energy surface.
- ★ The average surface decays toward an adiabatic surface, the decay proceeding faster as the system gets farther from a region of strong coupling.
- First-order decay time used to control the demixing of the average surface to a quantized state:

$$\tau = \frac{\hbar}{\Delta V} \left(c + \frac{E_0}{T_s} \right)$$

 ΔV is the difference between the adiabatic electronic energies,

c and E_0 are two parameters,

 T_s is the kinetic energy associated with the component of the momentum where energy is being added or removed as the trajectory demixes.

Ref (CSDM): C. Zhu et al., J. Chem. Phys., **121**, 7658 (2004). *Ref (FSTU):* A. W. Jasper et al., J. Chem. Phys., **116**, 5424 (2002). *Ref (FSTU/SD):* A. W. Jasper et al., J. Chem. Phys., **127**, 194306 (2007).

Semiclassical methods (II)

• A trajectory surface-hopping method, the FSTU (Fewest Switches with Time Uncertainty) and FSTU/SD (FSTU with Stochastic Decay) methods:

- ★ The dynamics of nuclei is performed on one adiabatic surface at a time.
- ★ Electronic nonadiabatic transitions ("hops") between surfaces j and k are governed by a hopping probability $g_{jk} = f(\mathbf{\dot{R}} \cdot \mathbf{d}_{jk}, c_j, c_k)$.
- Hopping event: Kinetic energy needs to be adjusted, some hops may be "frustrated", ie classically forbidden.
- ★ Improvements of FSTU: it looks backward ($t_h < t_0$) and forward ($t_h > t_0$) in time for a possible hopping time t_h that is different from t_0 . The electronic transition is allowed at $t_h \neq t_0$ if a hopping point is reachable within the Heisenberg interval of time uncertainty, that is when

$$|t_0 - t_h| \le \frac{\hbar}{2\Delta E}$$

 ΔE is the energy that would need to be borrowed at t_0 to allow a hop.

 Improvements of FSTU/SD: some decoherence is included (phenomenological decay of the off-diagonal elements of the electronic density matrix).

TRAjectory Projection onto Zero-point energy orbit (TRAPZ)

Main features of TRAPZ (I)

• Preliminary conditions:

- ★ Working in the center-of-mass frame.
- ★ Mass weighted Cartesian coordinates

$$x = [M]^{1/2} x_c$$
 et $p = [M]^{-1/2} p_c$

Main features of TRAPZ (I)

Preliminary conditions:

- ★ Working in the center-of-mass frame.
- ★ Mass weighted Cartesian coordinates

$$x = [M]^{1/2} x_c$$
 et $p = [M]^{-1/2} p_c$

• Harmonic analysis:

★ Calculation of the projected Hessian $[K^P]$ at time t_0 by removing the 6 infinitesimal rotations and translations from the Hessian [K]

$$[K^{P}] = ([I] - [\mathcal{P}])[K]([I] - [\mathcal{P}])$$

- ★ Diagonalization of $[K^P]$: normal modes, $L_k(t_0)$, and frequencies, $\Omega_k(t_0)$
- ★ Calculation of the instantaneous vibrational energy of mode k at time t_0

$$E_{k}(t_{0}) = \frac{1}{2\mu} \left[P_{k}^{2} + \left(\frac{D_{k}(t_{0})}{\Omega_{k}(t_{0})} \right)^{2} \right]$$

 63^{rd} OSU Conference, June 17, 2008 – p.8/13

Main features of TRAPZ (II)

- Comparison to the ZPE of each mode: $E_{\mathsf{ZPE},k}(t_0) = \frac{1}{2} \hbar \Omega_k(t_0)$?
- If $E_k(t_0) < E_{\mathsf{ZPE},k}(t_0)$ then

$$P'_{k} = sign(P_{k}) \sqrt{\mu \,\hbar\Omega_{k}(t_{0}) - \left(\frac{D_{k}(t_{0})}{\Omega_{k}(t_{0})}\right)^{2}}$$

Main features of TRAPZ (II)

- Comparison to the ZPE of each mode: $E_{ZPE,k}(t_0) = \frac{1}{2} \hbar \Omega_k(t_0)$?
- If $E_k(t_0) < E_{\mathsf{ZPE},k}(t_0)$ then

$$P_k' = sign(P_k) \sqrt{\mu \, \hbar \Omega_k(t_0) - \left(\frac{D_k(t_0)}{\Omega_k(t_0)}\right)^2}$$

Different TRAPZ-like methods:

TRAPZ criterion:
$$E_k(t_0) \leq E_{\mathsf{ZPE},k}(t_0)$$
mTRAPZ criterion: $\sum_{k=1}^{3N-q(t_0)} E_k(t_0) \leq \sum_{k=1}^{3N-q(t_0)} E_{\mathsf{ZPE},k}(t_0)$ mTRAPZ* criterion (less general): $\sum_{k=1}^{3N-q(t_0)} E_k(t_0) \leq E_{\mathsf{ZPE},\mathsf{NH}_2}(t_0)$

Ref: D. Bonhommeau, and D. G. Truhlar, J. Chem. Phys., accepted (2008).

NH₂ internal energy (mTRAPZ)

 63^{rd} OSU Conference, June 17, 2008 – p.10/13

Partitioning of energy

n_2	mTRAPZ		mTRAPZ*		Experiment	
	Internal	Translational	Internal	Translational	Internal	Translational
0	51	49	50	50	47 ± 2	53 ± 2
1	54	46	54	46	67 ± 2	33 ± 2
2	60	40	61	39	53 ± 2	47 ± 2
3	64	36	65	35	71 ± 2	29 ± 2
4	67	33	68	32	73 ± 2	27 ± 2
5	69	31	70	30	77 ± 2	23 ± 2
6	71	29	71	29	80 ± 2	20 ± 2

Comparison between methods:

- ★ mTRAPZ and mTRAPZ* are equivalent.
- ★ The partitioning is much better when considering mTRAPZ or mTRAPZ* rather than TRAPZ (highly vibrationnally excited NH₂ molecules, very cold H atoms for all the n₂ values) or no TRAPZ-like method (hot H atoms).

Conclusion

• The mixed quantum/classical methods tested here (CSDM, FSTU, FSTU/SD)

- ★ lead to similar results,
- ★ qualitatively reproduce experimental results,
- ★ but the ZPE maintenance is not ensured,
- * and the dynamics is found mainly nonadiabatic whatever n_2 whereas the experiment finds that the percentage of adiabatic dissociation steadily increases with n_2 for $n_2 \ge 3$.

• The mTRAPZ and mTRAPZ* methods

- ★ allows to ensure ZPE throughout the dynamics,
- ★ improve the partitioning of energy (compared to FSTU/SD or FSTU/SD+TRAPZ),
- \star but the dynamics is found more nonadiabatic.

• Future work:

- \star Studying the effect of exciting the symmetric and antisymmetric stretch of NH₃.
- ★ Modifying conditions at hopping events to favor adiabaticity !

Acknowledgements

Collaborators:

- * Regents Pr Donald G. Truhlar (University of Minnesota, USA),
- ★ Dr Rosendo Valero and Dr Zhen Hua Li (University of Minnesota, USA).

Institutions:

- ★ National Science Foundation (grant),
- Minnesota Supercomputing Institute (grant of computer time and technical support, USA).