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Differential and integrated elastic, integrated total cross sections as well as various polarization
parameters-the spin polarization P and the parameters T and U describing the change in the polar­
ization vector during scattering-for the scattering of electrons and positrons from argon in the en­
ergy range of 3-300 eV are calculated using the relativistic Dirac equation. The real part of the
projectile-target interaction is represented by a sum of model potentials. The phase shifts for large
angular momenta "1 are calculated using the Born approximation. The relativistic calculations for
the differential and integrated elastic cross sections obtained using the pure real potential show al­
most no improvement over those obtained nonrelativistically for positron scattering from argon
while similar calculations show some effects, except at low energies ( ~ 5 eV) where relativistic terms
are sensitive to the form of potentials used, on the values of the differential cross sections for elec­
tron scattering from argon. The polarization parameter P for electron scattering is found to be in
good agreement with various calculated and measured values. A few different models of the absorp­
tion potential for the inelastic processes are used to calculate the integrated inelastic and the in­
tegrated total cross sections for positron and electron scattering from argon. It is noticed that even
though the integrated elastic and the integrated total cross sections for the scattering of positrons
and electrons calculated using some complex model potential agree well with the corresponding
measured values, the differential cross section curves using the same model potentials can differ con­
siderably from each other as well as from the experimental values.

I. INTRODUcrION

Scattering of positrons and electrons (especially the
electrons) by argon atoms has been an intensively studied
problem for a long time (for references before 1987 see
Ref. 1). In the present work, we investigate the same
scattering problem using the relativistic approach, via the
Dirac equation, which provides, in its standard formula­
tion, the interaction effects of the projectile's spin. Dur­
ing the scattering of electrons and positrons (spin-t parti-
cles) their magnetic moments interact with the magnetic
field generated by the orbital motion of these particles
with respect to the target atom, leading to the well­
known spin-orbit interaction term. Hence, even though
the incident beam of projectiles may be unpolarized, the
spin-orbit interaction can orient the spins of the scattered
particles in a preferred direction causing a net spin polar­
ization. The study of spin polarization of the incident
projectiles due to scattering provides more detailed infor­
mation about the projectile-target interaction. The spin
polarization of electrons during scattering by a central
field was first investigated by Mott2 using a relativistic
treatment based on the theory of Dirac3 The measure­
ments of spin polarization parameters, however, are
difficult and were not carried out for about one and a half
decades after the prediction of Mott.2 In general the
spin-orbit interaction is a relatively weak interaction and
does not have significant effect on the differential and in-

tegrated cross sections. Hence one could either introduce
the spin-orbit interaction as a small perturbative term to
the total projectile..target interaction in the Schrodinger
equation or use the relativistic Dirac equation) which in ...
trinsically includes this interaction along with other rela­
tivistic correction terms. In the present work, we start
with the Dirac equation to describe the scattering system
and calculate the differential and integrated elastic cross
sections, momentum transfer cross sections, integrated
total cross sections, and the polarization parameters,
namely, the Sherman function P as well as the parameters
T and U relating the change in the polarization vector
due to scattering in the impact energy range of 3-300 eVe
In addition to representing the projectile-target interac­
tion by a pure real model potential} for the elastic scatter­
ing of electrons or positrons from argon, we also use two
model complex potentials to calculate the differential and
the integrated cross sections. A few other models of the
complex 'potential are used merely to observe the effects
of these potentials on the features of the differential
cross-section (DeS) curves.

II. THEORY

A. Setting up the radial Dirac equation

Consider a projectile of rest mass rna traveling with ve­
locity v in a central field force V( r) which can be either
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real or complex. The total energy of the projectile is
E =mo'Yc2=E; +moc2=(p2c2+m~4)1/2 where E; is
the kinetic energy of the projectile, p = m 0yv is its
momentum, and r is given by (1-V 2 / C2 ) - 1/ 2. The
Dirac equation representing the system is

(1)

where the operators a and {3can be expressed by the usu­
al 4 X 4 Dirac matrices" The spinor t/J has four com­
ponents, t/J= (1/l1' 1/12,1/13,1/14) where (1/11,1/12) are the "large"
components and (1/13' t/14) are the "small" components of
1/1. For a central potential, a set of two homogeneous cou­
pled equations satisfied by the radial parts of the large
and the small components of t/J can be obtainedv" from
the Dirac equation (1) and these are often used as the
starting point of scattering calculations. To obtain these
coupled equations and the solution of Eq. (1), we follow a
procedure similar to that described by Darwin.! Using
the matrix representation" of the operators a and f3 in Eq,
(1) and defining Po=(E - V)/c, a set of four simultaneous
equations satisfied by the four components of 1/1 can be ob­
tainedf as

- ~ (po-moclt/JI+ (a: -i a~ ]t/J4+ :z t/J3=0 • (2a)

- ~ (pO-m Oclt/J2+ [ a: +i a~ ]t/J3- :z t/J4=0 , (2b)

- ~ (po+mOc)t/J3+ [ a: -i~ ]t/J2+ :z t/JI=O , (2c)

- ~ (Po+mOclt/J4+ [ :x + i ;y ]t/JI - ;z t/J2 = 0 · (2d)

Since the potential V (r) in Eqs, (2) is a function of r only,
each component 1/l; (i = 1,2,3,4) of 1/1 can be expressed as
a product of a spherical harmonic Y/m and some radial
function R (r). Using the standard recursion relations7 of
spherical harmonics as well as Eqs. (A37)-(A39) of Ref.
4, all relevant derivatives of the product R (r) Y[m (8, </J )
can be evaluated easily. To begin with, if the angular
part of tPl is taken to be proportional to Ylm , then one
notes that the sum of the coefficients of various Y'm's
arising from the first term as well as from the terms
(a/ax -ia/ay).,p4 and <a/aZ)tP3 ofEq. (2a) must vanish.
This can be achieved by taking the same radial part for
functions 1/13 and 1/14 and by making 1/13 and 1/14 proportion­
al either to Y1+ 1•m and Y/+ 1,m + l or to Y/-1,m and
Y/-1,m + l' respectively. Similar arguments in Eq. (2c)
suggest that tPJ and 1/12 should contain the same radial
function and have angular dependences of the form Y1m
and Yr. m + r- Therefore, one can choose

1/11 =al G(r)Y,m(r), 1/I2=a2G ( r )Y /m, + I '

1/13= -ia3F(r)YI+I,m, tP4= - ia4F ( r )Y / + l.m +1 · (3)

The factor (- i) in tP3 and 1/14 makes the radial function
F (r) real. The values of the coefficients a's are adjusted
such that all four simultaneous equations) Eqs. (2), are
satisfied. Substituting the wave functions from Eqs. (3)
and Eq, (2a) and using Eqs. (A37)-(A39) of Ref. 4, one
gets

i . [[(I-m+2)(I-m+l) ]1/2 [dF _1+1 F]
-~(po-mOc)alGYlm +'°4 (21 +3)(21 +5) Y1+2,m dr r

_ [( I +m +2) (1 + m + 1) ] 112Y [dF + 1+ 2 F] ]
(21 + 1) (2/ +3 ) 1m dr r

+. [_ [</+m +2)(1-m +2) ]ll2 y [dF _1+1 F]
1°3 (21 +3)(21 +5) 1+2.m dr r

_ [(I+m+l)(l-m+l) ]1/2 y [dF+l+2 F]]=0.
(21 + 1)(2/ +3) lm dr r

It is seen that the terms proportional to Y1+2, m in this equation cancel for

a3V1 +m +2=a4 v / - m + 1 .

Similarly substituting the wave functions of Eqs, (3) into Eq. (2c), we can write

i . [ 1(I-m+l)(l-m) ]1/2 [dG 1 ]
-~(po+moc)( -la3FY' + 1,m >+02 - (2/ +1)(21 +3) Y/+l.m a;:--;G

+[(I+m+l) (l+m) ]ll2 y [dG+l+l G ] ]
(2/-1) (2/+1) [-l,m dr r

[ [
( / + m + l )(l - m + l ) ]1/2 IdG 1 ]

+a1 (2/ + 1)(2/ +3 ) Y,+ I, m d; - -;G

[
(1 +m )(1 - m) ] J /2 IdG 1+ 1 ]]

+ (2[-1)(2/+1) YI-1,m d;+-r-G =0.

(4a)

(4b)

(Sa)
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(7)

If we choose atomic units (mo =e =ft= I, 1Ie =a, where
a is the fine-structure constant) then 7]=C (I +y -a2V )
and in terms of K 2 we can write y=(I-v 2 / e 2 )- 1/ 2

= (1+ a 2K 2 )1/2. Substituting

Then substitution of the value of FI from Eq. (8) into Eq.
(7) gives for the large radial component G/ of 1/J,

G1"+ [~_i ]G 1+ [ 8+.!..!L_l(/+1) ]G =0.
r 11 / 'YJ r1J r 2 /

(10)

(15)

3 12 1 " 1 1-U-(r)=-2rV+a2V2__ ..!L:.+_~-_2L. (19)
, 4 1]2 2 11 r 11

Equations (13) and (18) can be combined as

g,±"+ [K 2 - /
U

r
; 1) -U/±(r) ]gl(r)=o. (20)

3 12 1 " 1+1 '- U+(r)= -2rV+alV2__ :!I..:.-+_!L..+-_.!L .
/ 4 1J2 2 1J r 7]

(14)

We shall refer to Eq, (20) as the Schrddinger equivalent of
the Dirac equation. The potentials U1± are the effective
Dirac potentials. It should be noted that the last terms of
U/± in Eq. (14) and in Eq. (19) correspond to the two, one
due to spin up and the other due to spin down, eigenval-

t/13= - ia3F (r )Yl - l.m' 1/14= - ia4F Y1- l.m +1 ,

and substitute these in Eqs. (2a) and (Zc), it can be seen
that the simultaneous equations are satisfied for

at V1+m +1=a2VY::;;;- ,

a4v'1+m = -a3V/-m -1 ,

so that Eqs. (15) can be written as

VJl=V1-m G/Y1m , 1/12=1/1 +m + IGIY[,m +1 ,

tP3= -fv'T+mF,Y/-t,m , (16)

1/14=iV/-m -lF1Y/- 1•m+ J •

With these choices of spinor components the following
coupled equations satisfied by the radial parts of the large
and the small components (GJ and FI ) are obtained from
Eqs. (2):

1 [ 21 - 1 ] 1/2 [ dFr 1 - 1 ]
~(po-moc)G/+ 2/+1 --;j;--r-F/ =0,

(17a)

1 [ 21+ 1 ] 1/2 [ dG1 1+ 1 ]
--,;(po+moc)F/+ 21-1 dr +-r-G/ =0.

(17b)

Combining these two equations for the large radial com..
ponent G/ of t/J and replacing G[ for gl as in Eq. (12), we
can get

gi'+ [K 2- /(lr;l) U,-(r) ]g/(r)=o, (18)

where in atomic units

On the other hand, if the forms Y/-1,m and Y/- 1tm + 1

were chosen for t/13 and 1/14 instead of Y1+ I,m and
Y/ + I,m + I' a different set of coupled equations satisfied by
the radial parts of the large and the small components of
1/1 would have been obtained following the above pro­
cedure. In this case if we choose

1/!1=at G ( r )Y/m(r ), tP2=a2 G Y1,m + l '

(9)

(11)

(13)

(12)

The prime and the double prime represent the first- and
the second-order derivatives, respectively, with respect to
r, Note that

1]B=K2-(2EV - V 2) f ( ft 2c 2 )

with

K 2 = (E 2 - m ac 4 ) I(1i2e 2) •

1 [2/+1 ]1/2 [dGt I ]
-~(po+moc)FI+ 21 +3 ~--;:GI =0. (8)

These two equations can now be cornbined'' to obtain a
single equation for the large component 6 1 which is simi­
lar to the radial Schrodinger equation. We denote

Again in this equation we see that the sum of the
coefficients of YI - 1•m cancel for

a2v'l+m +1=-a1v'l-m . (Sb)

From the two conditions, Eqs. (4b) and (Sb), on the
coefficients a's, the spinor components can be written as
(apart from an overall constant)

t/Jl=Vl+m +lG/Y/m, 1/12=-Vl-mGrYI,m + l '

t/J3= -iv'l-m + IF1YI + 1•m , (6)

1/14=-tvl+m +2F/Y/+l.m+l •

where F and G, the radial parts of the small and the large
components of .,p, have been subscripted with 1. Using
the spinor components of Eqs. (6), Eqs. (4a) and (Sa)
reduce to a set of two coupled equations satisfied by G1
and Fi:

1 [ 21+3 ] 1/2 [ dF l 1+2 ]
~(po-mOe)Gl+ 2/+1 dr+-r-F/ =0,

where, using atomic units and E =ye 2 = y /a",

G,=V';,gl/r,

Eq. (10) can be rewritten as

g('<r)+ [K 2 - l(lr~ 1) - U/(r) ]g/(r)=o ,
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ues of the well-known spin ..orbit interaction»9

_1_1- dV(r) er-L (21)
4m~c2 r dr ·

To include the spin-orbit interaction in the non relativistic
treatment of the Schrodinger equation the above term is
added as a small perturbation energy to the total
projectile-target interaction. In Eq, (21) above» o is relat­
ed to spin S as a = 28 and the value of (q. L >equals 1for
j = I +t and equals - (1 + 1) for j = I - t.

The proper asymptotic solution of Eq. (20) can be writ­
ten as

g/±(K,r) ~ Kr[j/(Kr)-tan8rn/(Kr)]» (22)
r-co

where i/ and n/ are the spherical Bessel functions of the
first and the second kind» respectively. The plus and the
minus signs attached to the phase shifts Sf correspond to
incident particles with spin uE and with spin down» re­
spectively. The phase shifts 8/ can be obtained from the
values of the radial wave function g/± at two adjacent
points rand r +h (h «r) at very large r as

± (r +h)gf(r)j/(K(r +h»-rg/±(r+h)j/(Kr)
taneS t =- .

rg/±(r+h)n/(Kr)-(r +h)g/±(r)n/(K(r +h»

(23)

In the present calculations the wave functions gI± are ob­
tained by numerical integration of Eq. (20) using the
Numerov method and the spherical Bessel functions are
evaluated as described in Ref. 1.

B. Cross sections and spin polarization

(26)

Since the spin-orbit interaction is a short-range interac­
tion» the phase shifts for spin-up and spin-down cases are
equal (8t = 8"1) for large angular momenta I fl. Hence
for large I, g «()) = 0 and the contribution to the scattering
amplitude comes only from f «(J). If Born approximation
is used for large 1> M, f (()) can be written as

f(K,(J)= 2~K i [U + l)(S,+ -1 )+I(S,- -l)]P,
I 1=0

1 M
+IB(K,(})- 2'X L (21+1)(SBI-l)P/, (27)

I f=O

where S/±=exp(2iBf), fB is the Born amplitude» and
SBf = expt 2iSBf)' 8Bl being the Born phase shift. Evalua­
tion of f Band 8B/ for the case of real potential used in
the present work is explained in Ref. 1. In the present
work a large nUlnber of exact phase shifts were evaluated
before using the Born approximation and hence the con­
tribution due to Born approximation is found to be very
small. The integrated elastic cross section for the unpo­
larized incident beam is obtained using

u el = 2 1Tf1T( 1/1 2+ Igl 2)sin8 d 8 » (28)
o

the integrated transport cross sections are given by

u(n)=21rJ1T( l-cosnOH 1/1 2+ Igl2)sin8 ae , (29)
o

where n = 1,2, ... ; n = 1 corresponds to the momentum
transfer cross section. The integrated total cross section
is given by

211" co
U to t =-2 ~ { (1 + 1)[ 1-Re(S/+)]

K 1=0

The generalized scattering amplitude for the collision
process is given bylO

A = !(K»(})+g(K»f))u'n (24)

(30)

and the integrated absorption cross section can be ob­
tained as

The amount of polarization produced in the ungolar­
ized incident beam due to the scattering is given by!

[the r-independent function g (K,6) in the scattering am­
plitude above is not to be confused with the radial wave
function g/±], where

1 oc
/(K»())= 2.K ~ { (1 + 1)[exp(2i8{ )-1]

1 1=0

+i[ exp(2i8,) -1] }PI(cos()) (25a)

Uabs=U tot -Uel · (31)

(32)

and

g(K»()= 2K
1 i [exp(2iBi)-exp(2ieS/)]pl(cos()»

1=0

(25b)

and Ii is the unit vector perpendicular to the scattering
plane. PI and pi are regular and associated Legendre po­
lynomials, respectively. Since only the second term in the
am plitude A can induce change in spin states, g (()) is
often called the spin-flip amplitude. The differential cross
section for the transition from an initial to a final state»
for the case of an unpolarized incident beam, is given by

where P(f) is often called the Sherman function. The
other polarization parameters describing the rotation of
polarization vector during the scattering process are

The angle of rotation of the component of the polariza­
tion vector in the scattering plane is given by
tan- 1( U I T ). If Bt=B1 (g=O), we see that p=u=o
while T = 1. It should be noted that these three polariza­
tion parameters are interrelated through the condition
p2+ T 2+ U 2=1.
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c. Real and complex potentials

For the calculations in the present work, the real part
VR (7) of the total potential V (7) is the same as the nonre­
lativistic model potential of Ref. 1 where the projectile­
target interaction was obtained by summing the static po­
tential (repulsive) and the Buckingham-type model polar­
ization potential (attractive) for positrons scattered from
argon and by summing the static potential (attractive),
the same polarization potential (attractive) and an ex­
change potential (attractive) for the electrons scattered
from argon. The static potential is obtained using the
nonrelativistic Slater-type orbitals of Roothan-Hartree­
Fock wave functions given by Clementi and Roetti. 11

The same orbitals are used to obtain the electron density
function in the electron exchange potentiall/ and in the
absorption potentials. 13,14 At low energies below the in­
elastic threshold the scattering is only elastic and V (r) is
represented purely by the real part VR (7). In the first
part of the calculations we consider only the elastic
scattering and represent V (r) by VR (7) at all impact ener­
gies. In the latter part of the calculations V (7) is
represented by a complex potential and the scattering is
considered total, that is, both the elastic and all the in­
elastic processes are included.

At projectile impact energies higher than the inelastic
threshold energy (which is 8.96 eV for positronium for­
mation during positron-argon scattering and 11.7 eV for
the first excited state formation of the target during
electron-argon scattering) other channels due to inelastic
processes open up along with the elastic scattering chan­
nel. The cross section accounting for all these inelastic
processes together is referred to as the absorption cross
section and can be obtained by including an imaginary
part V A' known as the absorption potential, to the
projectile-target interaction. This makes the complete
projectile-target interaction complex as V (r) = VR (7)

+ iVA (7). The absorption potential (VA) describing all
the inelastic processes during e ± and rare-gas- atom
scattering has been derived both empirically and
nonempirically by several investigators (see the review ar­
ticle of Ref. 15 and the references cited in Ref. 13). The
model absorption potential of Joachain and co-workers1S

is obtained using the Glauber eikonal approximation and
is not analytical in nature. Among the most successful
empirical model absorption potentials for (e - .Ar)
scattering is that of Furness and McCarthy16

VA =cp/Tl (34)

and T, = E - VR is the local kinetic energy, p is the
charge density of the target and c is an adjustable or
empirical parameter. This model was modified later with
good agreement with the experimental values of (e - .Ar)
scattering by McCarthy et all 17 as

(35)

where PHis the density of the highest occupied orbital.
It should be noted that the value of the empirical parame­
ter c depends on the impact energy and is different for
electron and positron scattering for the same incident

projectile energy since the inelastic processes for each
case are different. similar to the above absorption poten­
tials, Staszewska, Schwenke, and TruhlarP suggested a
rather simple empirical form for VA as

VA =cp . (36)

In a more elaborate manner they'" derived, by treating
the rare-gas target as a free-electron gas, an expression
for the absorption potential for electron scattering as

(37)

where v =[2(E-VR ) / m ] 1/ 2 is the local velocity of the
projectile for E - VR ~ 0 and ab is the average quasifree
binary collision cross section obtained nonempirically us­
ing the free-electron gas model. The factor t in Eq. (37)
is introduced to account for the effect of exchange of the
incident electron and the atomic electrons of the target
during the scattering process. This potential can be
adapted for positron scattering with the factor of one-half
replaced by one since there is no exchange effect during
positron-argon scattering. The most successful model of
absorption potential of Truhlar and co-workers is the
semiempirical quasifree binary collision model' in which
two parameters a and {3 are introduced in the expression
for (jb and these parameters are determined empirically.
Both the nonempirical model [Eq. (37)] as well as the
semiempirical model of Truhlar and co-workers] 3. l4 have
been used in the present calculations for electrons and
positrons scattered from argon.

III. RESULTS AND DISCUSSIONS

A. Elastic scattering processes
using real potentials

We compare first the results of the present relativistic
and the previous nonrelativistic calculations] of the elas­
tic scattering of positrons and electrons from argon when
the projectile-target interaction is represented by the
purely real model potential VR. Between the two projec­
tiles, we first discuss the scattering of positrons and then
of electrons. The contributions from the spin-orbit in­
teraction term and the relativistic correction terms in the
Dirac equation to the cross sections for the elastic
scattering of positrons from argon are found to be very
small and the values of the differential cross section
(DCS) are almost the same (differing in the third or the
fourth significant figures) as those of Ref. 1, which were
obtained using the Schrodinger equation with no spin­
orbit interaction. Hence the differential cross sections for
the scattering of positrons by argon are not presented
here in tables except for comparisons in figures. A possi­
ble reason for the small contributions from the aforemen­
tioned terms is the much weaker projectile-argon interac­
tion (the short-range repulsive static potential and the
long-range attractive polarization potential tend to cancel
one another) in the case of positron scattering than for
electron scattering. The present integrated elastic cross
sections for positron scattering from argon are presented
in Table I. These values are found to be close to those of
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TABLE I. Calculated and measured values of the integrated elastic and integrated total cross sec..
tions (in units of a5) for positrons and electronsof various impact energies E, scattered from argon. The
letters within parentheses next to the values of theoretical cross sections correspond to the type of pow
tential used in the Dirac equation. RP corresponds to the use of purely real potential. CP and CP3 to
the use of complex potentials that include the older version (Ref. 14) and version 3 (Ref. 13) of the ab-
sorption potential of Staszewska et ale

E; UeJ (units of aij) U tnt (units of aa)

(eV) Theory Experiment Theory Experiment
(e+,Ar)

3 8.42 (RP) 12.37,88.32,b,9.11c

5 9.27 (RP) 12.57,8,9.68c

10 11.77 (RP) 12.03 (CP) 15.71,a14.76, b

11.76 (CP) 11.77 (CP3) 14.33c

11.76 (CP3)
15 11.29 (RP) 17.40 (CP) 20.89d

11.04 (CP) 11.76 (CP3)
11.26 (CP3)

20 11.71 (RP) 23.96 (CP) 22.84d

11.11 (CP) 12.78 (CP3)
11.41 (CP3)

30 10.94 (RP) 30.37 (CP) 25.73,d26.07e

10.62 (CP) 13.78 (CP8)
10.49 (CP3)

40 10.40 (RP) 32.46 (CP) 26.70/29.8Se

10.66 (CP) 14.58 (CP3)
9.30 (CP3)

50 9.73 (RP) 32.69 (CP) 26.2d,28.21, e

10.64 (CP) 15.02 (CP3) 25.92 f

7.74 (CP3)
7S 10.20 (RP) 30.75 (CP) 24.16,d23.2Sf

10.43 (CP) 16.7S (CP3)
7.37 (CP3)

100 9.56 (RP) 28.33 (CP) 22.43,d15.39,b23.56,e

9.64 (CP) 16.09 (CP3) 21.61r
6.91 (CP3)

ISO 8.61 (RP) 24.40 (CP) 19.16,d19.48,e19.26f

8.14 (CP) 14.53 (CP3)
6.08 (CP3)

200 7.91 (RP) 21.63 (CP) 17.44,dlS. 24, e

7.08 (CP) 13.30 (CP3) 16.65f

5.51 (CP3)
250 7.36 (RP) 19.57 (CP) 13.5I,e 15.39f

6.30 (CP) 12.37 (CP3)
5.16 (CP3)

300 6.90 (RP) 17.96 (CP) 14.23,dt2. 88,e

5.72 (CP) 11.67 (CP3) 13.82f

5.04 (CP3)

(e-,Ar)
3 13.32 (RP) 19.65,817.30, h20.15, i

20.64J
5 33.24 (RP) 30.02,830.87, h36.09, i

36.76,j32. 1k

10 73.98 (RP) 64.32.&67.54, hS3.4, i

71.4,i69. 3,j73.47k

15 85.98 (RP) 7S.04,885.51i 86.22 (CP) 76.97,dSS. 3,178. 82j

85.78 (CP) 86.00 (CP3)
85.97 (CP3)

20 73.14 (RP) 68.4,m44.67,871. 31, n 74.42 (CP) 72.18,h61.89,d68.9,1
71.92 (CP) 70.65i 73.25 (CP3) 6S.75,070.78,j67. 97k

73.05 (CP3)
30 51.88 (RP) 32.88,847.21n 55.19 (CP) 46.18,dSO. 7,147. 66,j
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TABLE 1. (Continued).

48.50 (CP) 52.23 (CP3) 48.76,°51. 89k

51.55 (CP3)
40 40.38 (RP) 32.2Sn 45.19 (CP) 42.8,141. 94, °42. 32,i

35.54 (CP) 40.95 (CP3) 32.2k

39.81 (CP3)
50 33.89 (RP) 25.6,M21.8,826.48" 39.54 (CP) 35.5,d37. 5,136.65,0

28.09 (CP) 34.64 (CP3) 36. 19,j38.2k

33.13 (CP3)
75 23.59 (RP) 14.291 30.57 (CP) 29.9, d32.49°

17.90 (CP) 24.75 (CP3)
22.63 (CP3)

100 19.21 (RP) 17.1,m9.29,i18. 66,"17. 33, P 25.22 (CP) 27 .39,d29. 6, °28. 58k

12.04 (CP) 18.04,Q16.51r 20.57 (CP3)
18.20 (CP3)

150 14.88 (RP) 11.86,°13. 33,P 14.83, Q13. 2P 20.22 (CP) 22.65,d25. 13, °23. 77k

8.56 (CP) 16.33 (CP3)
13.90 (CP3)

200 12.66 (RP) lO.9,m9.81, n12.68,Qll.09, r 17.56 (CP) 20.04,d21.33,°20. 84k

7.39 (CP) 11.5P 14.03 (CP3)
11.76 (CP3)

250 11.25 (RP) 15.70 (CP) 18.92,018.67k

6.67 (CP) 12.51 (CP3)
10.45 (CP3)

300 10.24 (RP) 7.82,°10.19, Q8.81,r8. 745 14.27 (CP) 16.43,d17.47, °17. 15k

6.13 (CP) 11.40 (CP3)
9.54 (CP3)

1281

"Reference 18.
"Reference 19.
"Reference 20.
dReference 33.
"Reference 49.
'Reference SO.
gReference 24.
"Reference 31.
'Reference 32.
-Reference 36.

Ref. 1, up to almost four significant figures. The mea­
sured integrated elastic cross sections available at this
time are only at energies below the positronium forma­
tion threshold and these compare favorably with the
theoretical values of Table I. Relativistic calculations,
using three different approximations, for positron scatter...
ing from argon have also been made by Bartschat,
McEachran, and Stauffer. 21 OUf present integrated elas­
tic cross sections are larger than those obtained by
Bartschat, McEachran, and Stauffer using both the polar­
ized orbital method and the local polarization plus ten­
state absorption potential but are smaller than those ob­
tained using the ten-state optical potential. As in the
cases of differential and integrated elastic cross sections,
the values of the momentum transfer and higher trans­
port cross sections for positron impact obtained in the
present work are also about the same as those of Ref. 1,
and hence they are not repeated here. The spin polariza­
tion P and the other two spin-polarization parameters T
and U for positron scattering from argon at various
scattering angles have been calculated using only the real
potential in the Dirac equation. Because of weak spin­
orbit interaction for positrons, the values of the polariza­
tion P and the parameter U (which are not presented

kReference 37.
'Reference 34.
"Reference 22.
"Reference 25.
°Reference 35.
PReference 26.
QReference 27.
'Reference 28.
"Reference 29.

here) are found to be very small (of the order of 10- sand
less) and the value of T is almost 1 for all impact energies
considered, indicating that measurement of these param­
eters for positrons incident on argon will be quite
difficult.

For elastic scattering of electrons from argon, the con­
tributions from the relativistic terms in the Dirac equa..
tion to the cross sections are comparatively more
significant than those for positrons scattering from argon.
The present relativistic DeS values at energies 20, 100,
and 300 eV for elastic scattering of electrons from argon
are compared with the theoretical nonrelativistic values
of Ref. 1 and with various measured values22

-
29 in Fig. 1.

It is observed that for all electron impact energies con­
sidered, except 3 and 5 eV, the DeS curves for elastic
scattering of electrons from argon obtained in the present
work using the real potential are similar to those of Ref.
1 but show some differences at the minima and the maxi­
ma. Though the agreement is reasonable with the mea­
sured values of various investigators, it is not obvious
whether the present relativistic results are much im­
proved over the nonrelativistic results of Ref. 1. The
disagreement between the relativistic and the nonrela­
tivistic results at low impact energies, such as 3 and 5 eV,
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( ~ 5 eV) while at higher energies the cross sections stayed
almost unchanged with respect to those obtained using
the exchange potential of Riley and Truhlar'f which has
been used to obtain the values of all cross sections in the
present work. The integrated relativistic cross sections
for the elastic scattering of electrons from argon are com­
pared with various measured values22-28.31- 37 in Table I
and are shown in Fig. 2. Except at 3 eV, the calculated
integrated cross sections agree well with the measured
values. Elastic scattering of electrons from argon using
relativistic approach has been investigated theoretically
by Walker,38 Fink and Yates,39 Kemper et al., 40 Sienk­
iewicz and Baylis.t' and Bartschat, McEachran, and
Stauffer.v' The present cross sections for elastic scatter­
ing of electrons agree. reasonably with those of Refs. 21
and 40. The differential and integrated cross sections of
Sienkiewicz and Baytis41 are closer, at lower energies, to
the nonrelativistic values of Ref. 1 than to the present rel­
ativistic values while at energies higher than 10 eV their
values agree well with the present values as well as with
those of Ref. 1. The DeS values of Fink and Yates'"
differ significantly from the present results, and the cross
sections calculated by Walker38 cannot be compared
directly since values are not tabulated in the reference.
The present values of the integrated transport cross sec­
tions (for n = 1-4) are close to those of Ref. 1 except at
electron impact energies E; ~ 5 eVe The present calculat-

18030 10 10 120 110
SCltt,ring Angle (deg)

1(11 ~ .......
o

1d

1c!

1d

1d

can be explained by noting that the relativistic correction
terms along with the spin-orbit interaction term become
more sensitive to the form of potential used at lower ener­
gies. For example, the use of modified semiclassical ex­
change potential of Gianturco and Scialla/" for electron
scattering resulted in large cross sections at low energies

FIG. 1. The differential cross sections for the elastic scatter­
ing of electrons from argon. The solid curve corresponds to
Desvalues obtained in the present work using only the real po­
tential in the Dirac equation, the dotted curve using the com­
plex potential (V.3), and the dashed curve corresponds to the
nonrelativistic values of Ref. 1. The experimental values are
from Ref. 22 (solid circle), Ref. 24 (open circle), and Ref. 2S (as­
terisk) at 20 eV; Ref. 25 Copencircle), Ref. 26 (solid circle), and
Ref. 27 (asterisk) at 100 eV; Ref. 25 (solid circle), Ref. 28 (open
circle), and Ref. 29 (asterisk) at 300 eV.

FIG. 2. The integrated cross sections for the elastic scatter­
ing of electrons from argon. The solid curve corresponds to the
cross-section values obtained using the real potential in the
Dirac equation and the dotted-dash curve (almost coinciding
with the solid curve) corresponds to the nonrelativistic values
from Ref. 1. The dotted curve and the dashed curve correspond
to the use of complex potential in Dirac equation with absorp­
tion potentials represented by V.3 and the older version of Ref.
14, respectively. The experimental values are from Ref. 22
(open triangle), Ref. 24 (open squares), Ref. 25 (cross), Ref. 27
(diamond), Ref. 28 (plus), Ref. 31 Copen circle), and Ref. 32 (as­
terisk).
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ed momentum transfer cross sections (n = 1) are com­
pared with the measured values24, 32 in Table II.

The values of the spin polarization P for elastic scatter­
ing of electrons from argon at various impact energies cal-

culated in the present work using the real potential in the
Dirac equation are shown and compared with a limited
number of measurements in Figs. 3-5. Since the values
of P are measured more often than those of the parame-
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FIG. 3. The angular dependence of the spin polarization P
for elastic scattering of electrons from argon at various impact
kinetic energies. The experimental values (solid circle) are read
from the figures of Ref. 44 at 10, 20, and 30 eV.

FIG. 4. The angular dependence of the spin polarization P
for elastic scattering of electrons from argon at various impact
kinetic energies. The experimental values are read from the
figures of Ref. 42 (open circles) at 40 eV, Ref. 44 (solid circle) at
40 and 50 eV, and Ref. 43 (cross) at 40 eV, (open circle) at 50
eV, (filled circle) at 100 eV.
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ters T and U which are observed only in a "triple­
scattering experiment," we present the numerical values
of P only for electron scattering from argon in Table III.
Inversion of signs between the tabulated values of P and

the curves of P in Figs. 3- 5 is irrelevant since directions
of spin up and spin down are arbitrary. The spin polar­
ization of electrons scattered elastically by argon at vari­
ous angles has been measured by Mehr42 at the impact
energy of 40 eV, by Schackert'f in the impact energy

180
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FIG. S. The angular dependence of the spin polarization P
for elastic scattering of electrons from argon at various impact
kinetic energies. The experimental values are read from the
figures of Ref. 38 (solid circle) at ISO eVe

FIG. 6. The angular dependence of the spin polarization pa­
rameter U for elastic scattering of electrons from argon at a few
impact energies.
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TABLE II. Calculated and measured values of integrated elastic momentum transfer cross sections,
o 1 (in units of a5)for electrons scattered from argon at various electron impact energies E;.

E; 0- 1 (units of a~)

(eV) Calculated Measured

3 11.29 14.65,816.72b

5 30.27 22.87,832.4Sb

10 56.40 53.6,867.65b

15 47.85 53.6,851. 21b
20 32.29 23.58,833.66b

30 20.31 13.22 8

40 16.69

s, 0-
1 (units of a~)

(eV) Calculated Measured

50 15.03 8.SS8

7S 11.49 6.79 8

100 9.50 .5.72a

150 6.79
200 5.12
250 4.03
300 3.27

"Reference 24.
bReference 34.

FIG. 7. Differential cross sections for elastic scattering from
argon of positrons with impact energies of 30, 50, and 200 eVe
For each energy the solid curve and the dotted curve represent
DeS values obtained using the real potential and the version 3
of the complex potential, respectively.
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average, close to the theoretical curve. Though there is
some qualitative agreement in the angular distribution of
the present calculated polarization with those of Refs. 42
and 43, their measured polarization is larger than the
present values at all the energies considered. Theoretical
investigations on the angular dependence of the polariza­
tion have been made by Walker,38 Fink and Yates,39

FIG. 8. The relativistic differential cross sections for the elas­
tic scattering of positrons from argon at 100 eV using various
model potentials. The solid curve represents the use of real po­
tential and the rest of the curves correspond to the use of com­
plex potential with various different model absorption poten­
tials. The dotted curve corresponds to the model V.3, the
dashed to the older version, dotted chain to Eq, (34), and the
dashed chain to Eq. (36). A single set of experimental values
taken from Ref. 47 are normalized to each theoretical curve at
900 (with different symbols) for comparison.

18030 80 80 120 1&0
Scattering Angle (deg)

range of 40-150 eV, and by Beerlage, Qing, and Van der
Wiel44 in the energy range of 10-50 eVe For the pur­
poses of comparing, the measured values of Refs. 42-44
were read from the figures presented in these papers and
hence some reading errors in these values are expected.
From Figs. 3-5, we see that the amount of polarization
at various scattering angles agrees fairly well with those
measured by Beerlage, Qing, and Van der Wiel44 at 10,
30, 40, and 50 eV. At 20 eV, their measured values show
higher polarization before the first theoretical peak while
after the peak the measured polarization stays, on the
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TABLE III. The values of the spin polarization P of the electron beam elastically scattered by argon at various scattering angles 9
obtained using the real potential in the Dirac equation at the impact kinetic energy range of E; = 3-300 eVe The notation a [b]
means a X lOb.

f) Spin polarization P at
(degl E;=3 eV 5 eV 10 eV 15 eV 20 eV 30 eV 40 eV

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 0.147[ -2] 0.953[ -3] O.209[-3] -O.713[ -4] -0.153[-3] -0.176[ -3] -0.16l[ -3]

10 0.446[ -2] 0.228[ -2] 0.407[ -3] -0.l82[ -3] -0.357[-3] -0.425[ -3] -0.403 [ -3]
15 0.111[-1] O.404[-2] O.S83[-3] -0.331.[ -3] -0.610[-3] -0.740[-3] -0.724[-3]
20 O.198[-1] O.605[-2] O.725[-3] -0.522[ -3] -0.913[ -3] -0.tI2[ -2] -O.113[ -2]
25 O.180[-1] 0.762[ -2] O.806[-3] -0.767[ -3] -0.128[ -2] -0.l58[ -2] -0.162[ -2]
30 0.102[ -1] O.776[-2] O.783[-3] -O.I09[ -2] -0.173[-2] -O.214[ -2] -0.223[-2]
35 0.522[ -2] 0.620[ -2] 0.584[ -3] -0.151[ -2] -0.230[ -2] -0.284[ -2] -0.299[ -2]
40 0.255[ -2] 0.386[ -2] O.116[-3] -O.210[ -2] -0.304[ -2] -0.373[ -2] -0.397[ -2]
45 0.925[-3J O.163[-2] -0.717[-3] -0.294[ -2] -0.406[ -2] -0.494[ -2) -0.529[ -2]
50 ~0.l07[ -3] -0.136[ -3] -O.195[ -2] -O.418[ -2] -0.552[-2] -0.667[ -2] -0.722[ -2]
55 -O.817[ -3] -0.146[-2] -O.350[ -2] -O.603[ -2] -0.775[-2] -O.945[ -2] -O.l04[ -1]
60 -O.l36[ -2] -0.246[ -2] -O.515[ -2] -O.865[ -2] -0.114[-t] -O.146[ -1] -0.I71[ -1]
65 -O.179[ -2] -0.325[ -2] -0.668[-2] -0.116[-1] -0.172[ -I] -0.280[ -1] -0.403[-1]
70 -0.2l6[ -2] -0.391[-2] -O.SOO[-2] -0.132[ -1] -0.213[-1] -O.773[ -I] 0.101
75 -O.248[ -2] -0.451( -2] -0.911[-2] -0.119[-1] -0.796[-2] 0.438[ -1] 0.258[ -1]
80 -O.279[ -2] -0.509[-2] -O.lOI[ -1] -O.904( -2] 0.4S6[ -2] O.219[-1] 0.148[ -1]
85 -0.307[ -2] -O.570[ -2] -O.112{ -I] -O.634[ -2] 0.789[ -2] O.151[-1] O.105[-}]
90 -0.334[ -2] -0.637[-2] -O.125[ -1] -0.424[ -2] 0.855[ -2] O.118[-1] O.827[-2]
95 -O.359[ -2] -O.715[ -2] -0.143[-1] -0.254[ -2] 0.872[-2] 0.995[ -2] 0.689[ -2]

100 -O.377[ -2] -0.812[-2] -O.17l[ -1] -0.860[ -3] O.898[-2] 0.883[ -2] 0.600[ -2]
105 -O.375[ -2] -0.930[-2] -0.219[ -1] 0.133[ -2] 0.951[ -2] O.815[-2] 0.542[ -2]
110 -0.315[ -2] -0.106[-1] -O.320[ -1] 0.499[ -2] 0.105[ -1] 0.778[ -2] 0.506[ -2]
115 -O.440[ -3] -0.106[ -1] -0.609[-1] O.l17[ -1] O.119[-1] O.768[-2] O.490[-2)
120 0.120[ -1) 0.716[ -2] a.898[ -1] 0.204[ -1] O.136[-1] 0.781[ -2] 0.499[ -2]
125 0.834[ -1] a.674[ -1] 0.322[ -1] 0.215[ -1] O.144[-1] 0.814[ -2] 0.545[ -2]
130 O.978[-1] 0.343( -1] 0.176[ -1] O.150[-1] 0.122[ -1] O.826[-2] 0.677[ -2]
135 O.376[-1] 0.184[-1] 0.114[-1] O.959[-2] 0.790[ -2] O.565(-2] 0.117[ -1]
140 O.189[-1] 0.116[-1] 0.806[ -2] O.628[-2] O.434[-2] -O.422[ -2] -0.732[ -1]
145 0.115[-1] O.800[-2] O.593[-2] 0.430[ -2] 0.230[ -2] -0.750[ -2] -O.607[ -2]
150 O.765[-2] 0.S76[ -2] 0.445[ -2J O.304[-2] O.124[-2] -O.536[ -2] -0.256[ -2]
155 O.531[-2] 0.422[ -2] 0.335[ -2J 0.219[ -2] O.698[-3] -0.352[ -2] -0.137[-2]
160 0.373[ -2] O.307[-2] 0.248[ -2] 0.156[ -2] O.403[-3] -O.232[ -2] -0.806[-3]
165 0.225[ -2] 0.2I5[ -2] 0.176[ ~2] O.108[-2] O.233[-3] -O.tSO[ -2] -0.483[~3]

170 0.160[ -2] 0.136[ -2J 0.112[-2] O.679[-3] 0.129[-3] -O.908[ -3] -0.276[-3]
17S O.771[-3] 0.663[-3] 0.549[ -3] O.329[-3] 0.S74[ -4] -0.428[-3] -0.126[ -3]
180 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0 Spin polarization P at
(deg) E;=50 eV 75 eV 100 eV 150 eV 200 eV 250 eV 300 eV

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 -O.141[ -3] -0.148[ -3] -0.122[ -3] -0.760[-4] -0.416[-4] -0.176[-4] -O.tSO[ -5]

10 -0.362( -3] -O.357[ -3] -0.290[ -3] -0.172[-3] -O.834[ -4] -0.220[ -4] O.t88[ -4]
15 -0.666[ -3] -0.632[ -3] -O.SOS[ -3] -0.282[ -3] -0.107[ -3] O.lS8[ -4] 0.963[ -4]
20 -O.106[ -2] -O.985[ -3] -0.785[ -3] -0.384[ -3] -0.574[-4] O.l69[ - 3] 0.308[ -3]
25 -O.lS7[ -2] ~0.143[-2] -O.IIl[ -2] -0.396[-3] 0.202[ -3] 0.573[ -3] 0.743[ -3]
30 -0.221[ -2] -O.198[ -2] -O.145[ -2] -0.tI2[ -3) 0.890[-3] O.130[-2] 0.132[ -2]
35 -0.300[-2] -O.262[ -2] -O.163[ -2] 0.850[ -3] O.208[-2] O.210[-2] O.168[-2]
40 -O.400[ -2] -O.329[ -2] -O.126[ -2] O.279[-2] 0.329[ -2] O.245[-2] O.152[-2]
45 -0.S31[ -2] -O.379[ -2) 0.599[ -3] 0.S14[ -2] 0.378[ -2] 0.212[ -2] O.838[-3]
50 -0.719[ -2] -O.329[ -2] O.549[-2) O.638[-2] 0.327[ -2] O.117[-2] -O.291[ -3]
55 -O.102[ -I J 0.231[ -2] 0.121[ -I] 0.578[ -2] O.200[-2] -O.243[ -3] -0.177[ -2]
60 -O.I57[ -1] 0.215[ - t] O.130[-1] 0.395[ -2] 0.263[ -3] -0.196[ -2] -0.349[ -2]
65 O.741[-2) 0.212[ -1] O.914[-2] 0.I72[ -2J -0.168[ -2] -0.387[ -2] -0.536[ -2]
70 O.378[-1] O.118[-1] 0.530[ -2] -O.464[ -3] -0.370[-2] -0.S88[ -2] -0.730[-2]
75 0.166[ -1] 0.679[ -2] 0.249[ -2] -O.250[ -2] -0.576[-2] -O.796[ -2] -0.920[ -2]
80 0.I02[ -I] O.399[ -2] O.444[-3] -0.443[ -2] -0.791[ -2] -0.101[-1] -O.I09[ -1]
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TABLE III. (Continued).

85 O.718(-2] 0.222[ -2J -0.116[-2] -O.639[ -2] -O.103[ -1] -0.123[ -1] -0.122{ -1]
90 0.S46(-2] O.971[ -3] -0.254[-2] -O.856[ -2] -O.131[ -I] -0.144[ -}] -0.122[ -}]
95 O.434[-2] -O.S89[ -5] -O.387[ -2] -0.113[-1] -0.165[ -1] -0.155[ -]] -0.931[-2]

100 O.358[-2] -O.842[ -3] -0.532[ -2] -0.151[ -1] -O.204[ -}] -0.127[-1] -0.183[ -2]
105 O.304[-2] -O.162[ -2] -0.710[ -2] -0.216[ -I] -O.219[ -I] -0.138[ -2] O.844[ -2]
110 O.267[ -2] -O.237[ -2] -0.961[-2] -0.358[ -I] -0.419[ -2] 0.133[ -1] O.lS4[ -1]
115 O.249[-2] -O.308[ -2] -O.137[ -}] -O.525[ -1] O.210[-1] O.186[ -1] O.169[ -1]
120 O.258[-2] -O.320[ -2] -O.188[ -)] O.418[-I] 0.212[ -I] 0.172[ -I] 0.155[-1]
125 O.338[-2] 0.153[ -2] O.468[-1] 0.235[ -1] O.l64[ -1] O.142[-I] 0.133[ -1]
130 O.699[-2] O.254[-1] O.257[-I J O.I50[ -1 ] 0.124[ -1] 0.115[-1] 0.111 [ -1]
135 O.273[-I] 0.191 [-1] 0.137[ -I] O.IOS[-1] O.960[-2] O.929[-2] O.919[-2]
140 O.173[-I] 0.105[-1] 0.883[-2] 0.779[ -2] 0.752[ -2] O.750[-2] 0.757[-2]
145 O.S58[-2] 0.65S[ -2] O.620[-2] 0.S93[ -2] 0.S93[ -2] O.604[-2] 0.619[ -2]
150 O.280[-2] O.447[ -2] 0.453[ -2] 0.456[ -2] O.468[-2] O.483[-2] 0.500[ -2]
155 0.171[ -2] O.317[ -2] 0.336[ -2] 0.349[ -2] 0.364[ -2] 0.380[ -2] O.397[-2]
160 0.114[-2] O.226[ -2] 0.246[ -2] 0.262[ -2] O.276[-2] 0.291[ -2] O.305[-2]
165 O.756[-3] O.156[ -2] 0.173[-2] 0.187[ -2] O.199[ -2] O.211[-2] O.222[ -2)
170 O.468[ -3] O.987[ -3] O.tll[ -2] O.121[ -2] O.129[-2] O.137[-2] O.145[ -2]
175 0.225[ -3] 0.479[ -3] 0.540[ -3] 0.592]-3] O.635[-3] 0.676[ -3] O.715[ -3]
180 0.0 0.0 0.0 0.0 0.0 0.0 0.0

McCarthyet al., 17 Kemper et al., 40 and Sienkiewicz and
Baylis. 45 The present results agree better with these oth­
er theoretical results, except Ref. 39, than with the mea­
sured values. Since no measured values of U and Tare
available at this time, the angular dependence of only U
at several impact energies is shown in Fig. 6. The present
values of U agree well with the calculated values of Ref.
45.

B. Elastic and total scattering
using complex potentials

At higher energies the former starts to peak higher than
the latter removing the minimum after the forward peak.
These features can be seen in Fig. 7 where DeS curves
using the real potential and using version 3 of the com­
plex potential have been plotted for positron energies of
30, 50, and 200 eVe At 30 eV, both theoretical curves are
seen to agree with the measured values of Floeder et al. 46

except in the rising part below 30°. But above 200 eV use
of V.3 shows a minimum in the DeS values at large angle
which is not observed experimentally/" On the other
hand, the DCS curves obtained using the older version of
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FIG. 9. The integrated total cross sections for positrons scat­
tered from argon. The dotted curve corresponds to the use of
V.3 while the solid curve to the older version of the model ab­
sorption potential. The experimental values are from Ref. 20
(open square), Ref.33 (open circle), Ref. 49 (asterisk), and Ref.
SO (cross).
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Now we discuss the relativistic results of total, that is,
elastic as well as inelastic, scattering of positrons and
electrons from argon at impact energies above the inelas­
tic threshold where the total projectile-target interaction
is described by a complex optical potential. Both the
nonempirical model [Eq, (37)] which will be referred to as
the Holder" version of the absorption potential and the
semiempirical model" which, following the authors of
Ref. 13, will be called version 3 (or simply V.3) of the ab­
sorption potential from now on, are used to calculate the
elastic differential as well as the integrated elastic and in­
tegrated total cross sections for electrons and positrons
scattered from argon. Again first we will discuss positron
scattering from argon and then electron scattering. One
incentive for using the complex potential, to include all
inelastic processes during positron scattering from argon,
was to observe the effect of the potential on the features
of the differential cross section curves. The DeS values
for elastic scattering of positrons from argon obtained us­
ing a complex potential with both models13,14 of the ab­
sorption potential differ from each other at all energies
considered. Below 40 eV the DeS curve obtained using
the complex potential with absorption potential
represented by V.3 stays close to that obtained using a
real potential, shows a minimum after the forward peak,
and then decreases slowly with larger scattering angles.
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FIG. 10. The integrated total cross sections for electrons scat­
tered from argon. The dotted curve corresponds to the use of
V.3 while the solid curve to the older version. The experimental
values are from Ref. 33 (open square), Ref. 34 (open circle), Ref.
35 (cross), Ref. 36 (asterisk), and Ref. 37 (open triangle).

tivistically by solving the Dirac equation numerically for
the real model potential representing the projectile-target
interaction. The calculated values of various cross sec­
tions (namely, differential and integrated elastic as well as
momentum transfer) and the polarization parameters
agree reasonably well with the available measured values
except at low energies ( ~ 5 eV) for electron scattering.
The dependence of the electron exchange potential on the
radial distance, via the relativistic terms in the Dirac
equation, becomes more important at low energies. In
the case of total scattering, that is both the elastic and in­
elastic processes together, the calculated results and their
comparison with the measured values depend on the
model absorption potential used in the calculations.
Though use of version 3 of the absorption potential I J. pro­
duces better results for elastic scattering of both the posi­
trons and electrons from argon, the integrated total cross
sections for both cases are much lower than the observed
values. On the other hand, use of the "older" version of
the absorption potential!" produces better integrated to·
tal cross sections for both the positron and the electron
scattering but poor results for the elastic cross sections.
Use of two other empirical models of the absorption po­
tential shows that even though good agreement can be
obtained for the integrated cross sections by using vari­
ous forms of the complex model potentials, the other
features of the scattering processes such as the differential
cross sections, polarization parameters, etc., may not
show good agreement with the experimental values.
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the absorption potential show a shallow minimum near
the forward direction below 30 eV which disappears
forming a sharper peak in the forward direction and
another minimum following it with higher impact ener­
gies. None of the DeS curves at various positron ener­
gies calculated using the older version of the absorption
potential agree with the experimentally observed features
of Refs. 46-48. To investigate the effect of the potential
on the form of the DeS curves two other empirical model
absorption potentials, Eqs, (34) and (36), were used to ob­
tain the differential and the integrated elastic cross sec­
tions for lOO-eV positrons scattered from argon. The
empirical parameter c in the absorption potential was
varied to reproduce the observed integrated total cross
sections. The elastic DeS curves for the scattering of
positrons from argon at impact energy of 100 eV ob­
tained using various absorption potentials are shown in
Fig. 8. From this figure it can be seen that the DeS
curve at 100 eV using the older version is very consistent,
except at large angles, with those obtained using Eqs. (34)
and (36) in values and features. From Table I we see that
the values of the integrated elastic cross section obtained
using the older model are much closer, below 200 eV,
than those obtained using V.3 to the values obtained us..
ing only the real potential in the Dirac equation. The
present integrated elastic cross sections obtained using
both models13,14 of the absorption potential lie between
those obtained using two forms of complex potential by
Bartschat, McEachran, and Stauffer.I' The integrated to­
tal cross sections using the older nonempirical model
seem to show, as in Fig. 9 and Table I, better agreement
with the experimental values33,49, so than those obtained
using V.3. It will be seen below that the older version
generates better results for total integrated cross sections
for electron scattering as well.

The DeS curves for elastic scattering of electrons from
Ar, obtained using the V.3 absorption potential, agree
nicely with the experimental values at all energies con­
sidered while those obtained using the older version 14

agree well up to 50 eV of the impact energies and then
with higher impact energies start showing deeper and
larger minima and lower peak at angles near backward
scattering. The DeS curves for electron scattering ob­
tained using both the real potential and the V.3 of the
complex potential at energies 20, 100, and 300 eV are
shown in Fig. 1 and it can be seen that the overall agree­
ment with inclusion of V.3 is better than with those ob­
tained using the real potential only. The calculated in­
tegrated elastic cross sections for electrons scattered from
argon using the V.3 also agree better, as presented in
Table I and shown in Fig. 2, than those using the older
version at all energies. But for the integrated total cross
section, use of the older version produces, as in the case
of positron scattering also, values closer to the measured
values as is seen in Table I and Fig. 10.
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