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Stochasticity of gene products from transcriptional pulsing
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Transcriptional pulsing has been observed in both prokaryotes and eukaryotes and plays a crucial role in
cell-to-cell variability of protein and mRNA numbers. An important issue is how the time constants associated
with episodes of transcriptional bursting and mRNA and protein degradation rates lead to different cellular
mRNA and protein distributions, starting from the transient regime leading to the steady state. We address this
by deriving and then investigating the exact time-dependent solution of the master equation for a transcrip-
tional pulsing model of mRNA distributions. We find a plethora of results. We show that, among others,
bimodal and long-tailed (power-law) distributions occur in the steady state as the rate constants are varied over
biologically significant time scales. Since steady state may not be reached experimentally we present results for
the time evolution of the distributions. Because cellular behavior is determined by proteins, we also investigate
the effect of the different mRNA distributions on the corresponding protein distributions using numerical

simulations.
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I. INTRODUCTION

Cell-to-cell variability in mRNA and protein numbers is
now recognized as a major aspect of cellular response to
stimuli, a variability which is hidden in cell population stud-
ies. The most egregious example of the latter is provided in
cases where a graded average response hides the all-or-
nothing behavior of single cells [1-3]. Variability of cellular
response can have many origins, which are generally classi-
fied as extrinsic and intrinsic noise or fluctuations [4]. Many
studies, both experimental and theoretical from bacteria to
eukaryotes, have been undertaken to characterize intrinsic
and extrinsic fluctuations [4—11]. Extrinsic fluctuations can
have multiple origins, such as variations from cell to cell in
the number of regulatory molecules or signaling cascade
components. The source of intrinsic fluctuations is the ran-
dom occurrence of reactions that can lead to variability for
genetically identical cells in identical fixed environments.
When the number of molecules is small, intrinsic noise can
play a significant role in determining the behavior of indi-
vidual cells. The difficulty in determining rate constants ex-
perimentally and the possibility of experiments being either
in the steady state or in the transient regime make exact
time-dependent solutions to models especially useful in the
interpreting observed behavior of intrinsic noise. In this pa-
per we present the exact time-dependent solution to a widely
used model for transcriptional noise and discuss its implica-
tions.

II. EXPERIMENTAL AND THEORETICAL
BACKGROUNDS

Intrinsic fluctuations arise from either noisy transcription,
noisy translation, or both, the effects of which can be mea-
sured in single cell mRNA and protein experiments. The sim-
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plest model of mRNA and protein number distributions is to
consider both transcription and translation as Poisson pro-
cesses [7]. Recent experimental studies of mRNA distribu-
tions have shown strong evidence for transcriptional noise
beyond what can be described by a simple Poisson process,
i.e., distributions with variances significantly larger than the
mean have been observed. In particular, transcriptional puls-
ing, where bursts of transcription alternate with quiescent
periods, has been observed in both prokaryotes and eukary-
otes. Raser and O’Shea [5], who studied intrinsic and extrin-
sic noise in Saccharomyces cerevisiae, showed that the noise
associated with a particular promoter could be explained in a
transcriptional pulsing model and confirmed it by mutational
analysis. Transcriptional bursts were recorded in E. coli [12]
by following mRNA production in time and their statistics
computed. Evidence for a pulsing model of transcription,
obtained from fluorescent microscopy, has also been pre-
sented for the expression of the discoidin Ia gene of Dicty-
ostelium [13]. Transcriptional bursts have as well been de-
tected in Chinese hamster ovary cells [10]. In these
experiments the production of mRNA occurs in a sequence
of bursts of transcriptional activity separated by quiescent
periods. Transcriptional bursting, an intrinsically random
phenomenon, thus becomes an important element to consider
when evaluating cell-to-cell variability. One can predict that
in many cases it will be a significant part of overall noise and
most certainly of intrinsic noise.

Our study focuses on the consequences of transcriptional
bursting in a simplified model of transcription that has been
the subject of many studies and is believed to encapsulate the
key features of bursting [2,5,10,12,14-16]. Related models
that include feedback have been studied theoretically
[17-19]. The complex phenomena that can occur in tran-
scription (chromatin remodeling, enhanceosome formation,
preinitiation assembly, etc.) are modeled through positing
two states of gene activity: an inactive state, where no tran-
scription occurs, and an active one, in which transcription
occurs according to a Poisson process. The production of
mRNA is thus pulsatile: temporally there are periods of in-
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activity interspersed with periods or bursts of transcriptional
activity. Qualitative features of this model were presented in
Ref. [2] and aspects of it relating to bursts explored and
discussed in Ref. [12]. Raj et al. [10] provided a steady-state
solution to the master equation of the transcriptional model
considered here and analyzed it for some ranges of the rate
constants relevant to their experiments. A related model with
transcription in the presence of feedback without translation
was solved exactly in the steady state by Hornos et al. [17].

In this paper, we provide a comprehensive analysis of a
transcriptional pulsing model with an exact transient solution
to the master equation for mRNA production. Given the
range of time scales that can occurs in transcriptional pro-
cesses in different organisms, it is important to highlight the
most significant behaviors that can arise in this model and
investigate how these depend on the many time scales. While
the steady-state distribution was known [10] we have ex-
plored the entire range of behaviors that can arise: in particu-
lar we find a bimodal distribution that, surprisingly, exhibits
power-law behavior between the peaks. A virtue of the model
studied in this paper is that it is amenable to an analytic
determination of the probability distribution of mRNA num-
ber as a function of time. To the best of our knowledge, the
only previous case where a time-dependent analytical solu-
tion of a transcriptional model was known is that of the
simple birth-death process. The results from our solution are
directly relevant to experimental studies since the mRNA
distribution may well be in the transient state and it is there-
fore useful to determine the time evolution of the distribu-
tions and characterize the time scales over which steady state
is attained. Our time-dependent analytic solution allows us to
address these issues in detail, revealing in particular how the
mRNA lifetime shapes the time-dependent mRNA distribu-
tion.

Cellular behavior is however typically determined by pro-
teins and not the corresponding mRNA. Therefore, we ex-
tend the model to one in which proteins are produced accord-
ing to a birth-death process from mRNA produced from the
transcriptional bursting model. This model has been used to
interpret protein Fano factors measured experimentally in the
transient and steady states [20]. An important issue is to what
extent the protein distributions follow the mRNA distribu-
tions. It has been found experimentally [10] that when the
protein decays faster than the parent mRNA, the two distri-
butions are similar, while when the protein lifetime is longer,
the distributions are different; this was explained by numeri-
cal simulations using the Gillespie algorithm [21] for experi-
mentally relevant numbers for the pulsing model. We have
performed numerical simulations of the model using the
Gillespie algorithm to obtain the steady-state protein prob-
ability distributions for all the different behaviors of the un-
derlying mRNA distribution that we have uncovered. That
the two distributions are similar when the protein lifetime is
shorter than the mRNA lifetime is not surprising. On the
other hand, when the protein lifetime is longer the two dis-
tributions are not necessarily dissimilar; we have identified
cases, depending on the pulsing rate, for which the two dis-
tributions can be similar or different. Our comprehensive
study of the transcriptional pulsing model highlights how the
steady-state shapes of mRNA and protein distributions de-
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pend on the ratios of rate constants and determine the time
evolution to steady state. We thus provide an overview of
possible behaviors which yields a framework for interpreting
experimental results on transcriptional bursting across
prokaryotes and eukaryotes.

III. MODEL AND FORMALISM

We study a model of transcriptional pulsing described by
the following reactions where D and D" denote the gene in
the inactive and active states, respectively:

Cc

D=D", (1)
Cb
kp,
D*—=D*+M, )
kg
M— Q. (3)

The first equation describes the switching “on” and “off” of
the gene at the rates ¢, and ), respectively. The second and
third equations describe transcription of the mRNA at a con-
stant rate k;, in the active state and the subsequent degrada-
tion of the mRNA at a rate k;. We present results for P(m,1),
the probability that the cell contains m mRNA molecules at a
time 7 which describes cell-to-cell variability of mRNA copy
number as a function of time.

It is convenient to define Py(m,t) and P;(m,t) to be the
probability that at time ¢ the cell has m mRNA molecules and
the gene is in the inactive and active states, respectively. It is
straightforward to write down the master equation for the
two probabilities,

% == cpPy(m,1) + c,P (m,1)
1
+k[(m+1)Py(m+1,1) = mPy(m,1)]
X % = CfP()(m’t) - CbP](m’t)
+ kd[(m + l)Pl(m + l,t) - mPl(m,t)]
+kb[Pl(m_1vt)_Pl(m7t)]- (4)

We define the generating functions

Golz,0) = 2, 2"Po(m,1)
m=0

for @=0 and 1. If we can evaluate G(z,1)=G(z,1)+G,(z,1)
exactly, then the probability of having m mRNA transcripts
at time ¢ can be obtained by extracting the coefficient of the
7™ term. We derive the equations obeyed by G, and G, and
solve them exactly for the initial condition with zero mRNA,
i.e., P(m,0)=6,,. The details are relegated to the Appendix.
We find

G(z,1) = F()®[epcp+ cpy= k(1 - 2)]
+ P (P12 = cp=cpi=kp(1-2)], (5)

where ® is the (Kummer) confluent hypergeometric function
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[22,23]. All the rate constants are measured in units of the
decay rate k; and time in units of k;l. The coefficients F(r)
and F, (1) are given by

Fy(1) = @[ ¢ 1 = cp— cpikpe™ (1 - 2)] (6)
and
Fm(t) __ kab(l - Z) e‘(c_f"'cb)t
(cr+ cp)(1 - cr=cp)
X D[y, 1+ cp+ cpikpe™(1 - 2)]. (7)

In the steady-state limit F;— 1 and F,,—0. For a general
initial condition where the initial distribution P(m,0) corre-
sponds to the generating function Qy(z) the result can be
obtained by dividing the left-hand side of Eq. (5) by Q1
—e'(1-2)].

A. Time scales

The importance of the time scales of different reactions in
determining the behavior of models such as the one consid-
ered here has been discussed earlier [2,10,17-19]. We begin
by briefly summarizing the different time scales that deter-
mine both the steady-state and temporal behaviors of the
mRNA distributions. The model has four rate constants: the
forward and backward rates for the gene to switch between
the active and inactive states and the transcription and deg-
radation rates that govern mRNA numbers, leading to three
independent dimensionless ratios. The equation obeyed by
the probability for the DNA to be in the excited state, de-
noted by Q;(f) can be obtained directly from Eq. (1):
dQ,/dt=c;~(cs+c,)Q;. This shows that the effective DNA
relaxation rate to the steady state is governed by cy+c;. The
mean mRNA number obeys the equation d{(m(r))/dt=
—km)+k,Q,(¢). It is thus clear that the temporal behavior of
the mean mRNA number is determined by the rates k; and
cptcy, the latter entering since it determines the dynamics of
the transcriptionally active state. As long as k;<cs+c, the
mRNA decay rate sets the time scale over which relaxation
to the steady state occurs. We find that the results of our
exact solution can be interpreted in the most natural and
transparent way when we measure time in units of k;l, i.e., in
terms of the mRNA lifetime. Thus we will use the three
dimensionless ratios k,/k,, c;/k,, and c,/k, to organize our
results. The mean number of mRNA in the steady state is
given by the product of ¢/ (c/+c;), the fraction of the time
the gene is in the activated state, and k;/k,, the mean value
of mRNA if the gene is always “on.” The ratio k,/k, clearly
sets the scale for the number of mRNA and increasing it
extends the range over which P(m) is appreciable without a
significant change of shape. The remaining ratios c;/k; and
¢p/ kg determine the shape of the distribution.

B. Superposition of Poisson distributions

If the gene is always “on”” mRNA kinetics follows a birth-
death process. If no mRNAs are present initially, this implies
that the mRNA distribution follows a Poisson distribution
with the Poisson parameter, A, given by the mean, which in
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steady state is equal to k,/k,, the ratio of transcription and
degradation rates. Since the gene flips between the on and off
states with the rates determined by ¢, and c,, the mRNA
distribution is determined by a stochastic transcription rate
kp(t), where {(r) is a dichotomous noise, i.e., it assumes
values 0 or 1 corresponding to the gene being in the inactive
or active state, respectively. The dynamics of the random
variable { are determined by the stochastic chemical reaction
described by Eq. (1). Thus the distribution of the mRNA
number is described by a Poisson process in which the pa-
rameter \ itself is stochastic, a process known as a doubly
stochastic Poisson process [24]. This provides an intuitively
appealing way to view our exact result for P(m,t): it can be
written as a superposition of Poisson distributions with the
Poisson mean itself distributed (see the Appendix). A formal
proof that such a representation exists for this model and is
unique, for the general time-dependent case, will be provided
elsewhere.
We write
Am

P(m,t)=fd)\p()\,t)e_}‘;, (8)

where p(\,t) is the probability density of the random vari-
able . Thus p(\,7) contains the same information as the
probability distribution. The density in the steady sate p(\)

can be calculated from the exact generating function and can
be shown to be given by the scaled g distribution

(}\) _ (l&) 1_(Cf+cb)/kd F(Cz/kd + Cb/kd)
Pss - kd F(Cf/kd)r(ch/kd)
—l+cplky
X)\—“'Cf/kd(l& _ )\) (9)
kq

for 0 <\ <k,/k; and zero otherwise. The maximum allowed
value of \ corresponds to the gene being always on. We find
it mathematically convenient to use this representation to
derive the some of the results presented later; in addition it
provides a simple way of visualizing the actual distribution
in terms of Poisson distributions. Such superpositions have
been studied in the context of stochastic processes, for ex-
ample, in [25].

C. Steady-state distributions

Before discussing the full time-dependent distributions, in
order to place our results in the context of the distributions
that are asymptotically realized, we now describe the variety
of steady-state distributions that occur in different regions of
parameter space. These have been obtained by evaluating the
exact steady-state distribution. While the steady-state distri-
bution for this model [10] is in the literature, a complete
characterization of the forms of the distribution that occur for
different time scales is not available. Following the earlier
discussion of time scales we classify the distributions by
plotting ¢,/ k; and cs/ kg, respectively, along the x and y axes.
We fix k,/k;=100, a value chosen to make the range of m
values over which prototypical behavior obtains broad.
Changing k;,/k; only alters the extent of the distribution
without appreciably changing its shape. The results displayed
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in Fig. 1 provide a bird’s eye view of the strikingly different
mRNA distributions that arise in different regions of param-
eter space. The experiments are performed on a variety of
organisms both prokaryotic and eukaryotic; while rate con-
stants are not known, quite different time scales occur.
Therefore, we investigate values of ¢4/ k; and c,/k, that en-
compass different biologically significant cases: for example,
our choices include the vastly different rate constant values
in the experiments of Raser and O’Shea [5] and Raj et al.
[10].

We start with the interesting case displayed in the bottom
left figure in Fig. 1, when the mRNA half life is shorter than
the time scales over which the gene turns on or off, i.e., cp
¢, <k, In the steady state at any given time, the gene is off
in some cells. Since the mean duration of the pulse is larger
than the mean lifetime of the mRNA, the mRNA produced in
the previous occurrence of the on state would probably have
decayed and so the number of transcripts will usually be
small in these cells. This causes a peak in the mRNA distri-
bution near m=0. In those cells in which the gene is on at the
time of observation the number of transcripts can display a
broad range of values depending on how long the gene was
active as compared to the mRNA lifetime. Thus, we expect
to observe a bimodal distribution, as was qualitatively argued
in [2]. The result is shown in the lower left quadrant of Fig.
I. One finds a peak at m=0 and another peak at large
(~ky/ky) m values. If the two peaks are well separated, i.e.,
k;,>k,, much of the intermediate region displays a power-
law behavior with a power —1 + Z*;, a new result that follows
from our analysis. The representation of P(m) in terms of
p(N\) discussed earlier allows us to do a saddle-point approxi-
mation and deduce the exponent. We have verified this by

plotting the exact distribution using MATHEMATICA and fit-
ting it. The broad distribution of mRNA values reflects the
broad range of times for which the gene has been active in
different cells in the steady state. It is useful to remark that
bimodal distributions have been obtained in models with
feedback [8,26]. In contrast, in the transcriptional pulsing
model, bimodality is obtained without the presence of a feed-
back loop.

Now imagine that we keep cr fixed and vary ¢, so that it
is larger than the mRNA decay rate. This leads to a power-
law behavior with the same exponent as in the bimodal re-
gion for mRNA numbers less than approximately ];—: which
for appropriate choices of the rate constants can correspond
to a significant range of mRNA values. This monotonic
power-law decay, obtained in the case ¢, <k, and c,>k, is
illustrated in the lower right quadrant of Fig. 1. This case has
been treated analytically in a continuum approximation in
[10,14].

When both the activation and inactivation rates are rapid,
i.e., ¢, ¢ > ky, eliminating the fast reactions naively yields a
simple birth-death process for the mRNA with an effective
transcription rate k,c;/(cy+cp). This would lead one to ex-
pect a Poisson distribution for the mRNA number. However,
in this “quadrant,” i.e., for cf, ¢, >k, the observed distribu-
tion has a broad single-humped shape as displayed in the
upper right quadrant of Fig. 1, much broader than a Poisson
distribution. This broadening occurs because the parameter A
itself is stochastic. When ¢;>k,;>c,, the gene is on most of
the time. In the upper left quadrant of Fig. 1 the distribution
is Poisson to a very good approximation. For the case where
the four regions overlap when ¢, c,~ky, the distribution
interpolates between these different possibilities. When ¢
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FIG. 2. Time evolution of P(m,t) toward steady state as a func-
tion of m (from the exact expression in the Appendix) for the initial
condition P(0,0)=1. The weights at m=0 are not displayed. (a) The
time evolution of the mRNA distribution in the bimodal regime for
¢;=0.75kg, ¢;,=0.5k,, and k;=100k, at times 1=0.5,1, 2, 3, 4, and
in units of k;l is shown. As time increases, the weight at m=0
decreases while the mode at higher values acquires more weight
and occurs at larger values of m. The weights at m=0 at these times
are 0.69, 0.48, 0.23, 0.11, 0.06, and 0.016, respectively. (b) Log-log
plot of P(m,?) in the power-law regime is shown for ¢;=0.25k,,
¢,=2.5k,, and k, =100k, at times =1, 2, 3, 4, and % in units of k;l.
As time increases, the weight at m=0 decreases while the slope of
the curve in the power-law region increases. The weights at m=0 at
these times are, respectively, 0.79, 0.63, 0.52, 0.45, and 0.38.

=¢; we find a flat region in m with a cutoff of roughly k,/k,;
(see Fig. 1, center).

D. Time evolution of probability distributions

Because of the range of different time scales, it can hap-
pen that at the time when measurements are made, the bio-
logical system has not attained steady state: we present re-
sults for how the distributions evolve to a steady state from
an initial state with no mRNA and the gene in its inactive
state. Using the time-dependent result for the distribution
[Egs. (5)—(7)], we evaluate the evolution using MATH-
EMATICA and plot the complete probability distribution as a
function of time. Consider the case ¢y, ¢, <k, (bottom left in
Fig. 1), where the mRNA distribution displays bimodality.
Here the mRNA decay rate sets the scale for approach to the
steady state. Figure 2(a) shows the evolution of the bimodal
distribution as a function of time. For the given initial con-
dition the second peak away from zero develops after a pe-
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riod of roughly twice the mRNA half life. Steady-state be-
havior sets in at about 4-5 times k;l. It is clearly possible
that, depending on the relative values of the cell cycle time
and the mRNA half life, steady state and, therefore, full bi-
modality may not be observable.

Consider now the time evolution of the distribution that
exhibits a range of power-law behavior in the steady state
featured in the bottom right of Fig. 1. In Fig. 2(b) we plot
P(m,t) vs m on a double-logarithmic plot. We have chosen
c=0.25k; and ¢, =2.5k, to illustrate this case. Larger values
of the transcription rate lead to a larger range of mRNA
number over which power-law behavior obtains. It is clear
that the exponent of the power law increases in magnitude
with time and saturates at the steady-state value for ¢ greater
than about 4k;1. Thus the shape of the distribution depends
crucially on the time (measured in units of the decay time)
when experimental measurements are made.

E. Remarks on experiments

From the examples given in Fig. 1 it is clear that the
complete probability distribution of mRNA number is re-
quired to characterize the behavior of the transcriptional
pulsing model. Some of the experimental investigations,
however, have focused on the variance. In the following we
make remarks on attempts to represent a mRNA distribution
by its mean and variance only.

There is danger in characterizing distributions solely by
their mean and variance which can be calculated easily. An
important result in Ref. [5] is the decrease in the noise
strength (Fano factor, 7, defined as the ratio of the variance
o? to the mean) with increase in the mean for genes with
different activation rates. Here we show that a wide variety
of distributions can underlie this correlation between the
noise strength and the mean. The increase in the mean can be
obtained in the model through an increase in the activating
rate, ¢y, and experimentally through mutations of an appro-
priate promoter [5]. Even though a smooth curve is obtained
for the decrease of noise strength with the mean, the full
mRNA distribution can differ significantly for different
points along the curve. For specificity, we choose parameter
values k, =200k, and c¢;,=k, and vary the forward rate c; for
gene activation which changes the mean value. The result is
shown in Fig. 3(a) and is similar to that obtained experimen-
tally. The full probability distribution at three values of c,
namely, c¢;=0.1k,, k;, and 10k, corresponding to mean val-
ues of 18, 100, and 181 respectively, are shown in Fig. 3(b):
the distribution ranges from power-law decay of P(m) for
c;=0.1k, to a broadened Poisson distribution for c,=10k,. As
emphasized earlier, the value of mRNA degradation rate
plays an important role in determining the type of mRNA
distribution.

There are two popular measures of noise in terms of the
first two moments of a probability distribution: the coeffi-
cient of noise, &, defined as the ratio of the standard deviation
o to the mean u, and the noise strength or Fano factor, 7,
defined as the ratio of the variance o2 to the mean. The latter
has the value of unity for a Poisson distribution and is there-
fore convenient for describing deviations from Poisson be-
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FIG. 3. Smoothly varying noise strengths as the activation rate
cy is varied can correspond to very different probability distribu-
tions. (a) Variation of noise strength (mRNA Fano factor) with ac-
tivation rate for k,=200k, and c,=k,. (b) The steady-state distribu-
tions P(m) corresponding to the (diamond-shaped) points marked in
(a). The points in (a) going from right to left and the corresponding
figures from top to bottom in (b) are for ¢;/k,=10, 1 and 0.1,
respectively. (b) Illustrates how different points on the same curve
(a) can be associated with dramatically different mRNA distribu-
tions. These distributions were plotted using the exact results in
Egs. (5)-(7).

havior. In Fig. 4 we display constant 7 contours as a function
of ¢;/k, and ¢,/ k, for a fixed value of k,/k, on a logarithmic
scale to encompass a broad range of parameter variation.
When ¢;<k, and c,>k,, the steady-state distribution P(m)
is monotonically decreasing and has a power-law region. In
this region, a first approximation 7 is independent of ¢, [and
~1+k,/(ks+cp)] and the contours are roughly parallel to the
¢y axis. This emphasizes the possibility that o?/ u is a con-
stant for systems with power-law behavior in which ¢, varies
over a broad range of values. Since as we show later, the
protein distribution can reflect the behavior of the corre-
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FIG. 4. Contour plot of the (exact) mRNA Fano factor 7 as ¢,
and ¢ (in units of k) are varied, for k,=1000k,, in the steady state;
¢p and ¢y are varied on a log)q scale over 5 decades. Nine contours
for different values of # are placed at intervals of 100, from 1 to
1001 with 7 increasing from light to dark values.
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FIG. 5. Contour plot of the Shannon entropy of P(m) defined in
Eq. (10) for k,=100k,; separation between contours is 0.05 and the
Shannon entropy decreases outward from the central contour.

sponding mRNA distribution, the protein distribution can
show a similar constancy of the Fano factor. Such a behavior
has been observed experimentally in [20] where a pulsing
model was discussed. In the region where cp, ¢, <k, then
n=1+(ky/ky)/(1+cs/c,) and thus depends only on c//c,,.
This is consistent with the contours in this region being
straight lines with slope 1. For the region with ¢/, ¢,>ky,
there is rapid switching between on and off states and the
Fano factor depends weakly on the rates ¢, and c,.

A measure of noise that is sensitive to the shape of the
entire distribution is the Shannon entropy. Given the exact
solution we can directly evaluate the Shannon entropy asso-
ciated with the steady-state distribution P(m) defined by

S=- 2 P(m)log, P(m). (10)

In Fig. 5 we display contours of constant entropy as a
function of the forward and backward rates ¢, and c,. Not
surprisingly, the values ¢,/ k4, ¢,/ky=1 yield the largest en-
tropy; P(m) is then =k /k;, for m from 1 to k,/k; and the
entropy is well approximated by log(k,/k,). The power-law
distribution also provides a range of values for the rates in
which larger values of entropy can be obtained indicating
that greater information content than the other distributions.
Since the Shannon entropy is a measure of the amount of
information required to describe the random variable on av-
erage it may be helpful in the interpretation of data.

We comment on the relevance of long-tailed distributions
in biological systems. Consider dendritic cells that form a
key component of the innate immune system and act as first
responders to infection. Upon infection a series of complex
steps occur culminating in the maturation of the dendritic
cells that present the antigen to T cells after migration to the
lymphoid organs, thereby connecting the innate and adaptive
immune systems. The key first step in this process, in re-
sponse to a virus for example, is the production of interferon
B, a cytokine that is secreted into the intercellular medium
and primes other dendritic cells. There are clearly several
constraints on this step. It should be tightly controlled so that
production occurs only in response to a pathogen; excess
production of cytokines known as a cytokine storm that can
have adverse consequences must be avoided and at the same
time sufficient number must be produced by at least a few of
the cells so that adequate response is initiated. The last two
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requirements can be met by a broad distribution of mRNA.
In addition, viruses such as those influenza mutate resulting
in greater ability to evade the antagonistic action of the im-
mune system. One may speculate that a broad distribution of
the mRINA and the corresponding protein may confer greater
ability to the dendritic cell to overcome viral mutations. For
example, if the virus were to increase the rate of degradation
of the mRNA or protein resulting in a narrowing of the dis-
tribution then some of the dendritic cells would still produce
enough of the cytokines to respond to the pathogen. It has
been recently observed that the interferon-8 mRNA distribu-
tion in human dendritic cells is indeed broad [11].

F. Protein distributions

Given the variety of mRNA distributions that can result
from genes undergoing transcriptional pulsing, it is important
to understand how this affects the probability distributions
for the corresponding protein. While a careful answer to this
question would require detailed modeling of mRNA translo-
cation and translation, we address this issue by extending the
transcriptional pulsing model discussed thus far to include
the following additional reactions that model production and
degradation of the protein [7,10]:

Pp
M—M+P, (11)
Pa
P— Q. (12)

The effective protein degradation rate would include contri-
butions from dimerization and other gene-specific processes
involving the loss of proteins.

The results from the numerical simulations we have per-
formed using the Gillespie algorithm are consistent with the
expectation that the steady-state protein distribution will mir-
ror the mRNA distribution when the protein lifetime is
shorter than the mRNA time scale. As pointed out earlier the
time scale of mRNA dynamics is determined by the smaller
of k; and cs+c,. Even though for biologically relevant sce-
narios the protein lifetime is typically longer than the mRNA
lifetime, protein distributions that mimic the mRNA distribu-
tion may thus be obtained for c;+c,<p,<k,; Conversely,
when the protein lifetime is longer than the mRNA’s, then
the protein distribution may be qualitatively different from
the mRNA’s.

A neat argument has been proposed recently [27] for a
model in which the gene is always on and the protein pro-
duction occurs in instantaneous bursts separated by intervals
that are exponentially distributed with an exponentially dis-
tributed number of proteins produced in each burst. They
conclude that if the effective protein degradation is very slow
compared to that of the mRNA, the protein distribution can
be approximated by a gamma distribution. Similar arguments
have previously been made in [28]. Their discussion is valid
only when the protein lifetime is much larger than the
mRNA lifetime and tacitly assumes that the number of
mRNA is small O(1). We find that in our model when the
number of mRNAs display a power-law distribution the
gamma distribution nevertheless provides a reasonable ap-
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proximation for the proteins when ¢, <k, and c¢//(c/+c;)
<k,/k,;. However, their general claim that the gamma distri-
bution obtains even in the case of models such as ours is not
true without the restrictions we have pointed out. Another
case in point, for parameter values leading to a bimodal dis-
tribution for the mRNA, where cptey determines the mRNA
time scale, the gamma distribution is not a good approxima-
tion whether or not the protein distributions are bimodal.

IV. DISCUSSION

In this paper, we have presented results for the time-
dependent and steady-state probability distributions for
mRNA based on an exact time-dependent solution to the
master equation for a transcriptional pulsing model. A variety
of mRNA distributions occur in different regimes of rate
constants. Our aim is to provide a guide for the interpretation
of data on cell-to-cell variability that could arise from tran-
scriptional pulsing, both in the transient and the steady-state
regimes. Transcriptional pulsing, entailed by the dynamics of
chromatin remodeling, reinitiation, and similar processes, ap-
pears as a straightforward mechanism leading to bimodality
and also to mRNA distributions with long tails. Having an
exact analytic time-dependent solution for this model is es-
pecially useful given that long-tailed distributions are found
to occur for a large range of biologically relevant parameters.
Long-tailed distributions of mRNA have been seen in a va-
riety of systems: the experiments of Raser and O’Shea [5]
showed evidence for long tails which they attribute to tran-
scriptional pulsing. In experiments on the gene ActB in cells
from mouse pancreatic islets, the distribution of mRNA num-
ber m was found to be consistent with a log-normal distribu-
tion that would correspond to P(m)~m™" over some range
of m [29]. More recently, a long-tailed distribution of the
Interferon-B gene transcripts has been found in human den-
dritic cells [11]. For the latter two experiments our results
should help clarify whether the origin of the mRNA behavior
lies in transcriptional pulsing. Clearly, an important issue is
to determine whether the distribution of the protein coded by
the mRNA follows the corresponding mRNA distribution.
We have used numerical simulations to determine when the
two distributions are similar and when they are different
from those of the mRNA. We presented results for the time
dependence of the protein Fano factor. Our results on the
range of cell-to-cell variability of mRNA and protein re-
sponses due to transcriptional pulsing should provide signifi-
cant help in interpreting experiments.
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APPENDIX: TIME DEPENDENT SOLUTION
OF THE MASTER EQUATION

For the set of reactions described by Egs. (1)—-(3) in the
text, we define Py(m,1) and P;(m,t) to be the probability that
at time ¢ the cell has m mRNA molecules and the gene is in
the inactive and active states, respectively. It is straightfor-
ward to write down the master equation for the two prob-
abilities

dPy(m,t

—J%?—z=—qP&mJ)+qPﬂmJ%+@Km+1H%On+Lﬁ
—mPy(m,1)],

dP(m,t

% = cpPy(m,1) = c,Py(m,1) + ko[ (m + 1)Py(m + 1,1)

—mPl(m,t)]+kb[P1(m— l,t)—Pl(m,t)]. (Al)

We define the generating functions

Golzt) = 2 2"Po(m,1)
m=0
for =0 and 1. The mRNA distribution (independent of the
state of the gene) is determined by the sum G=Gy+G,. It is
easy to deduce the equations obeyed by the generating func-
tions from the master equations (with time rescaled by k),

8,Go(2.1) == ¢,Go(2,1) + ¢, G (z,1) + (1 = 2) .Gy (z.1),
(A2)

9,G1(z,1) = ¢,Go(z,1) = ¢,Gy(z.1)
+(1-2)0.G(z,1) = ky(1 = 2)G,(z.1).  (A3)

All the rate constants are measured in units of k.

We simplify the above equations using an analog of the
Galilean transformation by making the change of variables
v=ky(1-z) and w=ve'=k,(1-z)e™". In terms of the trans-
formed variables, we have

UﬁUGOI—CfG0+CbG1, (A4)

UﬁlechGO_CbGl_UGl- (AS)

Adding the two equations we have the useful relation

3,(Go+G,) =-G;. (A6)

Note that Gy(z,f) and G,(z,t) (and hence, their sum) are
functions of v only and independent of w=k;,(1—z)e™"; the
dependence on w is determined by the initial conditions.

It is convenient to derive a second-order differential equa-
tion for G. Therefore we differentiate the equations for G
and G, and obtain [using Eq. (A6)]

U(?IZIGO'i‘ (1 +Cf+ cp+ U)&vGO'i‘CfGO:O,

VA6 + (1 + ¢+, +0)3,G + (1 +¢)G=0. (A7)

We add the two equations and use Eq. (A6) to obtain
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VG + (cr+cp+0v)3,G+¢,G=0.

The substitution G(v)=eYF(v) shows that F(v) satisfies the
confluent hypergeometric equation in the canonical form.
The solution is given by
F=AW)®(cp,cr+cp3v) + Bo(w)v!=red(1 - cp2—cy
—cpiv). (A8)

Upon using the Kummer transformation, e “®(a,y;v)
=®(y-a,y;—-v), we obtain
G =AW)D(cp.cp+ cpi—v)
+ Bo(w)v! = ed(1 - ¢,,2 — cr—cp=v).  (A9)

In order to obtain a well-defined power series in v
=k,(1—-z) for the generating function we must impose

BO(W) — ch+ch(W) — l)cf+cb€_(€f+cb)lB(W).
This yields the form
G =AW)P(cp.cr+cpi-v)
+B(w)e rryd(1 - ¢,,2 - cr=cpi—v). (A10)

We impose the initial conditions at #=0 which corresponds to
w=v. The initial condition P(m,t=0)=4,, leads to
Gw=v,v)=1. (A11)

For an arbitrary initial state described by the generating func-
tion Qy(z) the right-hand side is Qg (1 —k;lv) where we have
used v=k,(1-z). We assume that the gene is initially in the
inactive state and thus G,(z,t=0)=0. The additional condi-

tion that arises from Eq. (A6) implies
3,G(w,0)],=, = 0. (A12)

Imposing these conditions we determine the unknown func-
tions A and B, This involves judicious use of the
Wronskian-type identity

Dla—y+ 1,1 - y;2)P(a, y;2) — 7®(a—y+1,2

_x
Yl -17)
- v:2)®P(a+1,y+1,2) =€

that follows from results in Ref. [23] and other identities
found there. The final result is

G(z,1) = F(t)®[cp.cp+ cps—ky(1 = 2)]
+ Fo()®[1 = .2 — ¢y = cpi= k(1 = 2)],
where
F(t) = ®[-cp1 = cp=cpikpe™(1=2)]

and
~ crkp(1 - z)

(C_f‘" cp)(1 - Cr— cp)
X B[y 1+ cp+ cpshpe™(1 - 2)].

e_(c./'" l

F(t) =

This yields Egs. (5)—(7). In the limit r—oo, F(f)— 1 (since
the argument of the confluent hypergeometric function van-
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ishes) and F,(r)—0 exponentially. At =0 the right-hand
side of the above expression yields 1 since we have imposed
Eq. (A11). For the general case since this initial condition is
altered as indicated above, the general result is obtained by
dividing the left-hand side by Qg[1-¢7"(1-2)].

We describe briefly the Poisson representation of the
probability distribution function [Eq. (8) in the text] that is
related to the generating function. From the definition of the
generating function G(z,1) for P(m,t), we can obtain P(m,t)
by multiplying by z™! and performing a contour integral
around the unit circle

P(m,t) Zf}g G(z,t)z_m"I%. (A13)

Now using the Laplace transform of the generating function
in the form
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Gz, = J d\p(\,1)e N1

and performing the z integral using Cauchy’s formula we
find the representation given in Eq. (8). For an intuitive in-
terpretation it is crucial that the density be non-negative as it
is in our case.

The steady-state functional form of p(\) given in Eq. (9)
in the text can be obtained as follows. One of the integral
representations of the confluent hypergeometric function is
given by [30]

! _ o T(wI'(v) _
By v=1(}, — o === (p v; Bu).
fo dxePx"(u — x)* T(u+t ) =D (v, u+ v; Bu)

(A14)

Identifying u=k,, B=—(1-z), v=c, and u=c, we can read
off the steady state p(\) given in Eq. (9) of the text.
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