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A Generalized Framework for Learning and

Recovery of Structured Sparse Signals

Justin Ziniel

Abstract

We report on a framework for recovering single- or multi-timestep sparse signals that can learn

and exploit a variety of probabilistic forms of structure. Message passing-based inference and empirical

Bayesian parameter learning form the backbone of the recovery procedure. We further describe an object-

oriented software paradigm for implementing our framework, which consists of assembling modular

software components that collectively define a desired statistical signal model. Lastly, numerical results

for an example structured sparse signal model are provided.

Index Terms

Compressed sensing, structured sparse signal recovery, multiple measurement vectors, structured

sparsity, dynamic compressed sensing

I. INTRODUCTION

For many decades, digital signal processing has been guidedby the celebrated Shannon–

Nyquist sampling theorem [1], which dictates that a bandlimited analog signal can be uniquely

determined from equi-spaced digital samples collected at arate that is twice the analog signal’s

bandwidth. The implications of this theorem have been far-reaching, motivating an engineering

demand for hardware with ever-increasing sampling rates assignals of increasingly high dimen-

sionality are being sampled. The exponential growth in pixel density on digital cameras is but

one indicator of this trend.
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While Moore’s law has allowed for steady increases in the sampling rate of hardware, the

desire to recover high-resolution, large-scale data has often outstripped the ability to effectively

sample the underlying phenomenon for a variety of reasons. For example, the speed of image

acquisition in MRI scanners is inherently limited by certain physical and physiological constraints

[2]. Acquiring higher resolution images without requiring unacceptably long scan times will

mean violating the Shannon-Nyquist sampling theorem by sub-sampling the images. Examples

abound in many other disciplines where, for one reason or another, sub-Nyquist sampling is an

unavoidable reality. Coping with, or ideally counteracting, the degradation in quality introduced

by such sub-sampling has become an important and active areaof research.

Within the past decade, there has been a tremendous amount ofliterature emerging from the

signal processing, statistics, and applied mathematics communities on new sampling theory that

enables sub-Nyquist sampling of high-dimensional signalswhile still guaranteeing the ability

to accurately reconstruct such signals [3], [4]. This new approach, which has been termed

compressed sensing (CS), replaces the objective of recoveringany bandlimited signal with the

objective of recovering signals which possess a sparse representation. In this context, the concept

of a sparse representation means that the signal, although possessing high ambient dimensionality,

can be succinctly described with just a small amount of information. Many real-world signals

possess such a sparse representation; for instance, it’s the reason why digital cameras are able

to compress large raw images into compact JPEG files.

In recent years, a great deal of effort by the CS community hasbeen directed at developing

ways to incorporate additional signal structure beyond simple sparsity into recovery techniques

[5]. Recent work into Bayesian approaches aimed at exploitingthe low-dimensional structure

inherent in many real-world signals has demonstrated that significant performance gains can be

achieved, even when the structure must be learned (e.g., [6]–[10]).

In this work we present a flexible framework for performing empirical Bayesian estimation

of structured sparse signals. Our approach follows the “turbo CS” [11] principle of breaking

apart an intractable global inference problem into smallersub-problems for which efficient and

accurate inference is possible. By exchanging informationbetween the sub-problems, we obtain

a high-quality approximation of the solution to the global problem. Additionally, as a byproduct

of solving these sub-problems, we are often able to learn model parameters iteratively from the

data using an expectation-maximization (EM) algorithm.
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II. A STRUCTURED CS SIGNAL MODEL

We consider the task of recovering a collection of sparse vectors {x(t)}Tt=1 from a collection

of measurement vectors{y(t)}Tt=1, wherex(t) ∈ C
N , y(t) ∈ C

M , and (typically)M < N . The

relationship betweenx(t) and y(t) is determined as follows: Eachx(t) is transformed through

the linear process

z(t) = A(t)x(t), t = 1, . . . , T (1)

whereA(t) ∈ CM×N is a known linear operator. Each “transform coefficient”z
(t)
m is then observed

through an independent scalar “observation channel,” defined by the conditional distribution

p(y
(t)
m |z(t)m ), to yield a measurementy(t)m . Here we note that the standard noisy CS modely(t) =

A(t)x(t)+w(t) is a special case of the aforementioned signal model when theelements ofw(t) are

independent, as is the matrix CS modelY = AX +W . We assume without loss of generality

thatx(t) is sparse in the canonical basis.

As mentioned in SectionI, {x(t)}Tt=1 oftentimes exhibits substantial structure beyond simple

sparsity. For convenience, we will refer to the structure present within a single vectorx(t) as

spatial structure, and structure across multiple such vectors as temporal structure. Also, we

will use the overbar notation̄x , vec([x(1), . . . ,x(T )]) to denote the vectorization of all signal

timesteps (with other overbar variables defined analogously). In order to model the spatial and

temporal structure probabilistically, we introduce a setH of hidden random variables such that

p(x̄|H) becomes separable, i.e.,p(x̄|H) =
∏T

t=1

∏N

n=1 p(x
(t)
n |H).

The utility of using a separable signal prior is twofold: it oftentimes simplifies the task of

describing the structure probabilistically, and allows usto apply a powerful inference algorithm

known as GAMP [12] within a turbo inference framework. For ease of explanation, we will

henceforth focus on one particular choice of hidden variables, namely, where each signal co-

efficient x(t)
n can be expressed as the product of two hidden variables:x

(t)
n = s

(t)
n · γ(t)

n , where

s
(t)
n ∈ {0, 1} is an indicator of support set membership, andγ

(t)
n ∈ C expresses the amplitude of a

non-zerox(t)
n . This decomposition results in the following collection ofhidden random variables:

H , {s(t),γ(t)}Tt=1. (2)

We stress that this is simply one of many choices ofH and p(x̄|H); many others could be

considered within the framework we propose. (See SectionV for another example.)



4

Given the hidden variables in (2), we can model a wide variety of signal structures by choosing

appropriate priors for̄s andγ̄. Specifically,p(s̄) can be used to model spatio-temporal structure

in the support of̄x, such as block-, tree-, or clustered-sparsity, whilep(γ̄) can be used to model

spatio-temporal correlations in the amplitudes ofx̄.

III. T URBO INFERENCE ANDPARAMETER LEARNING

For the signal model of SectionII , the joint posterior distribution of all of the random variables,

given the measurements, can be expressed using Bayes’ rule as:

p(x̄,H|ȳ;P) ∝ p(ȳ|x̄;P)p(x̄|H;P)p(H;P), (3)

where∝ indicates equality up to a normalizing constant andP denotes a set of model parameters

that are used to parameterize the signal model, e.g., prior means, variances, etc., which we treat

as deterministic unknowns. The objective of our inference procedure will be to obtain marginal

posterior distributions of each random variable, e.g.,p(x
(t)
n |ȳ;P), which can be used to produce

an MMSE estimate of the signal. At the same time, we would liketo learn the model parameters

P from the data in a principled fashion.

By taking advantage of the fact thatp(ȳ|x̄;P)
(

≡ p(ȳ|z̄;P)
)

is separable due to the

independent observation assumption, and thatp(x̄|H;P) is separable by definition ofH, we

can conveniently describe (3) using a graphical model known as afactor graph. The sample

factor graph shown in Fig.1 expresses the probabilistic structure of the model (2), where

p(H) = p(s̄)p(γ̄) and p(x
(t)
n |H) = p(x

(t)
n |s(t)n , γ

(t)
n ), using circles to denote random variables

(here{xn}, {sn}, and{γn}) and squares to denote posterior factors. Although the subsequent

discussion will focus on this example factor graph, our technique generalizes to any factor graph

that describes separable signal and observation-channel priors.

A popular means of performing inference on probabilistic factor graphs is via belief prop-

agation (BP) [13], whose objective is to compute the posterior marginals of all unobserved

random variables. Due to the numerous loops in the factor graph of Fig.1, BP is not guaranteed

to produce exact marginals. However, for inference within each of the planes on the left of

Fig. 1, there exists an attractive approximate message passing algorithm known as GAMP [12].

GAMP’s appeal for our problem stems from several considerations:(i) GAMP supports arbitrary

separable signal and observation-channel priors,(ii) inference is rapid and highly accurate, and
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Fig. 1: A factor graph representation of the joint posteriordistribution of (3). In this example,M = T = 3, N = 4, and

H = {s(t),γ(t)}Tt=1.

(iii) theoretical analyses demonstrate that the behavior of GAMPcan be accurately predicted by

a set of state evolution equations [12].

To perform inference on the complete factor graph of Fig.1, we employ the “turbo CS” frame-

work of [11], which alternates1 between exploiting the measurement structure (using GAMP)

and exploiting the signal structure specified byp(H;P). This approach is reminiscent of modern

turbo communications receivers, which alternate between channel equalization and decoding.

The messages leaving the GAMP planes in Fig.1 constitute beliefs about the hidden variables

H, given the measurements̄y. These messages act as inputs to the{s(t)n } and {γ(t)
n } nodes

in the rightmost portion of the factor graph. There, inference can be performed using any

technique (e.g., the forward-backward algorithm [13]) that provides extrinsic likelihoods of the

hidden variables. These likelihoods act as updated beliefsabout the hidden variables, given the

underlying structure, and are fed back to GAMP, after which the entire process is repeated.

At the same time that turbo inference is being performed, theestimates of the unknown

model parametersP can be updated through an expectation-maximization (EM) [15] learning

procedure. Oftentimes it makes sense to use the hidden variablesH as the “missing data,” in

which case the EM update forP, at iterationk+1, can be expressed as the optimization problem

Pk+1 = argmax
P

E
H|ȳ

[

log p(ȳ,H;P)|ȳ;Pk
]

,

1Another way to exploit GAMP for message passing on the complete factor graph of Fig.1 is through “hybrid-GAMP” [14].

Unlike the “turbo” message-passing schedule adopted in this work, hybrid-GAMP employs a flooding schedule.
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wherePk is the estimated value of all model parameters as of iteration k. For many signal

models, log p(ȳ,H;P) will decouple into a sum of many terms that depend only on small

subsets of hidden variables and parameters. Therefore, it is often possible to obtain closed-form

EM updates of the model parameters using only marginal or pairwise joint posteriors, e.g.,

p(s
(t)
n |ȳ) and p(γ

(t)
n , γ

(t−1)
n |ȳ) in [16]. Since belief propagation provides these posteriors, it is

feasible to perform these EM updates as an auxiliary procedure to the main turbo inference

process with very little additional cost.

IV. OBJECT-ORIENTED SOFTWARE IMPLEMENTATION

One of the defining features of the framework we propose in Sections II and III is that it

decouples the global inference problem of marginalizing (3) into smaller sub-problems that

require only local, not global, information to complete their tasks. Furthermore, these sub-

problems roughly correspond to inference on different regions of the factor graph. Consequently,

the object-oriented programming (OOP) paradigm is useful for building a powerful and flexible

software implementation of our approach, which we call EMturboGAMP.

We will now describe a software implementation2 of EMturboGAMP that uses OOP principles

to allow one to solve a variety of structured CS problems. At its core, our implementation relies on

assembling objects of different classes in a modular fashion to specify a particular signal model.

To date, we have defined four abstract classes:Signal, Observation, SupportStruct,

andAmplitudeStruct, and a container class calledTurboOpt that holds objects derived

from these four classes.

At the highest level, EMturboGAMP consists of two steps performed repeatedly: in the first

step, GAMP is run for a particular choice of “local” signal and observation-channel priors3. In

the second step, the final state of GAMP messages is given to the TurboOpt object, which

works together with theSignal andObservation objects to provide updated local signal

and observation-channel priors to GAMP for the next turbo iteration.

Concrete implementations of these four abstract classes are responsible for overseeing specific

tasks. A Signal class object defines the marginal prior distributionp(x(t)
n ;P) and hidden

2Available atwww.ece.osu.edu/∼schniter/EMturboGAMP

3The GAMP algorithm is conventionally run with a fixed choice of signal and observation-channel priors. In the turbo

framework, these priors (from GAMP’s perspective) are updated every iteration, thus we refer to them as “local priors”.

www.ece.osu.edu/~schniter/EMturboGAMP
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GAMP
Inference

TurboOpt Observation

SignalSupport

Struct

Amplitude

Struct

Fig. 2: Information flow between EMturboGAMP classes and GAMP.

variablesH. It delegates the task of exploiting the signal support structure to aSupportStruct

object, which definesp(s̄;P), and the task of exploiting the signal amplitude structure to an

AmplitudeStruct object, which definesp(γ̄;P). TheObservation class object specifies

the observation-channel priorp(y(t)m |z(t)m ;P). Each class is also responsible for performing EM

updates of any model parameters∈ P which they define. In Fig.2 we summarize the relationship

between the various classes and GAMP, illustrating how information flows between them.

One nice property of the OOP approach is that it makes it easy to incorporate new signal or

observation-channel models without requiring one to code up an entirely new algorithm from

scratch. A new marginal signal prior, for example, can be specified by creating a new sub-class

of the Signal class. Each new sub-class must implement the handful of methods (functions)

specified by its abstract super-class, but the manner in which they are implemented is entirely

up to the programmer. This allows EMturboGAMP to be assured of a common interface without

mandating the way in which the inference is performed. For further details, we invite the reader

to explore the MATLAB
R©

code we have made publicly available (and to contribute additional

classes as well!).

V. A NUMERICAL EXAMPLE

To demonstrate both the flexibility of our proposed framework, as well as the convenience of its

OOP-based software implementation, we undertook a numerical comparison of EMturboGAMP

against several structure-aware and structure-agnostic algorithmic variants. To understand the

average performance of EMturboGAMP under a variety of test conditions, we empirically eval-

uated mean-squared error (MSE) performance on the sparsity-undersampling plane, calculating

MSE at various combinations of the normalized sparsity ratio, β (i.e., the ratio of non-zero

coefficients-to-measurements,K/M), and undersampling ratio,δ (i.e., the ratio of measurements-
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Fig. 3: Median TNMSE performance (in dB) across the sparsity-undersampling plane for four different recovery methods

to-unknowns,M/N). In particular, for each(δ, β) pair, multiple independent signal realizations

were recovered, and for each realization the time-averagednormalized MSE (TNMSE) was

computed, where TNMSE(x̄, ˆ̄x) , 1
T

∑T

t=1 ‖x
(t) − x̂(t)‖22/‖x

(t)‖22, and x̂(t) is an estimate of

x(t).

In our experiment, we considered a multiple measurement vector (MMV) problem in which

each coefficient was marginally a Bernoulli-Gaussian-mixture of the form

p(x(t)
n ) = (1− λ)δ(x(t)

n ) + λ
2
N (x(t)

n ; +1, 1
4
) + λ

2
N (x(t)

n ;−1, 1
4
). (4)
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We wished to impose smooth variations in the amplitudes overtime, in addition to the time-

invariant support constraint inherent in the classical MMVmodel. To accomplish this, we defined

our hidden variables asH , {s(t),γ(t)
1 ,γ

(t)
2 }Tt=1, whereγ(t)

1,n was marginally distributedN (+1, 1
4
),

γ
(t)
2,n was marginallyN (−1, 1

4
), ands(t)n ∈ {0, 1, 2} specified whetherx(t)

n was non-zero, and if

so, which component Gaussian it was drawn from. IndependentGauss-Markov processes with

correlationρ, (i.e., γ(t)
d,n = ργ

(t−1)
d,n + (1− ρ)e

(t)
d,n, d = 1, 2, wheree(t)d,n is a Gaussian perturbation

process), were used to model amplitude correlations for both γ̄1 and γ̄2, while p(s̄) was chosen

to enforce joint sparsity.

As an observation-channel model, we considered additive noise with a heavy-tailed distribu-

tion. Specifically, the observation-channel prior was

p(y(t)m |z(t)m ) = (1− π)N (z(t)m ; 0, ν0) + πN (z(t)m ; 0, ν1), (5)

whereν1 = 1000 · ν0, andπ = 0.10.

Iso-dB contours of median TNMSE performance for a signal model in which N = 1024,

T = 6, ρ = 0.95, and SNR= 25dB are plotted in Fig.3 for four different recovery methods. In

Fig. 3a, we show the performance of a support-aware genie smoother that had perfect knowledge

of the support, and perfect knowledge of the signal model andits parameters,P. In Fig. 3b, we

show the performance of TurboGAMP with perfect signal modelknowledge (i.e., no need for EM

learning) but no support knowledge. Then, in Fig.3c, we plot the performance of EMturboGAMP

with EM learning of the model parameters. Finally, Fig.3d shows the performance of a structure-

agnostic GAMP recovery method, which had knowledge ofp(x
(t)
n ;P) andp(y(t)m |z(t)m ;P), but no

knowledge ofp(γ̄1), p(γ̄2), or p(s̄). The structure-agnostic GAMP method was allowed to

refine model parameters using EM learning to compensate for model mismatch. Despite this,

the advantages of exploiting the additional signal structure are clearly evident.

VI. CONCLUSION

In this work we have provided an overview of a new framework for recovering structured sparse

signals that possess a variety of possible forms of structure. Our approach, EMturboGAMP,

is probabilistic in nature, and allows one to obtain soft signal estimates while learning the

probabilistic model parameters adaptively from the data. EMturboGAMP leverages the “turbo

CS” concept to break apart a challenging inference problem into easier to manage sub-problems.
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One of these sub-problems is efficiently solved using recently proposed approximate message

passing techniques.

We further described an object oriented programming (OOP) implementation of EMturboGAMP.

The advantage of the OOP paradigm is in the flexibility that itprovides the user, allowing one to

develop complex probabilistic models by mixing and matching different sub-components, instead

of requiring a completely new algorithm be coded from scratch for each model. We demonstrated

this flexibility in a numerical example, showcasing the ability of EMturboGAMP to accurately

recover an underlying signal that possesses a rich form of probabilistic structure.
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